
CAN WE USE THE UNIVERSAL INSTANCE ASSUMPTION WITHOUT USING NULLS?

Yehoshua Sagiv

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

ABSTRACT

We claim that the representative instance of

[Hol,Va3] is a correct representation of the data

stored in a database even when the relations of the

database are not the projections of a single

universal instance. If no constraint (other than

functional and join dependencies) is imposed on the

data, then projections of the representative

instance cannot always be computed by lossless

joins. We show that if the database satisfies a

modified foreign-key constraint, then projections

of the representative instance can be computed by

performing the union of several lossless joins. A

class of relation schemes for which no constraint

is necessary is characterized, and we show how to

compute projections of the representative instance

for databases that belong to this class.

1.0 Introduction --

The universal instance assumption is an essen-

tial assumption in many papers in design theory for

relational databases. As pointed out in [FMU],

there are two different concepts in this assump-

tion. The most basic concept is the universal

relation a theme assumption (also known as the

“uniqueness assumption” [Ber]). It asserts that

each attribute has a unique role, that is, for any

subset of attributes X, there is (at most) one

relationship among the attributes of x. This

assumption is made explicitly or implicitly in many

papers in design theory for relational databases.

In particular, it is made in papers dealing with

the axiomatization of dependencies, and synthesis

and decomposition of relation schemes.

The second and more controversial concept is

,the universal instance assumption, thati is, the

assumption that the relations of a database are the

projections of a single relation over the set of

all the attributes. This assumption is needed in

order to define lossless joins [ABU]. There are

two versions of this assumption. According to the

first, this assumption has to be made only in order

to determine whether a join is lossless (i.e., it

is only a tool that is used when a database is

designed and when queries are evaluated) [FMU].

The second version (the pure universal instance

aesumption).states that the relations of a database

must always be the projections of a universal

instance, and null values have to be used in order

to satisfy this requirement [HLY,Ko,Li,Ma,Sc].

This research was supported in part by NSF grant
MCS-80-03308.

Permission to copy without fee aI1 or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

“1981 ACM 0-89791-040-0 /80/0400/0108 $00.75

When a universal instance is assumed, users

usuPlly formulate queries having in mind the

universal Qstance rather than the actual relations

of the datiibase [KU]. If a given query refers to a

set of attributes X, then the first step in

evaluating this query Is to compute the projection

of the universal instance onto X. If the pure

universal instance assumption is made, it is suffi-

108

http://crossmark.crossref.org/dialog/?doi=10.1145%2F582318.582336&domain=pdf&date_stamp=1981-04-29

cient to take any lossless join that contains all

the attributes of X. If the relations of the data-

base are not the projections of a universal

instance, different lossless joins might give dif-

ferent results. In [FMU] this problem is solved by

requiring that the join dependency consisting of

all the relation schemes be acyclic.

In this paper we assume a universal, relation

scheme, but not a pure universal instance?? In Set-

tion 3 we define the representative instance of a

database. In [Hol,Val] the representative instance

is used to determine whether the database satisfies
._

a set'of functional dependencies. We believe that

the representative instance correctly describes the

information stored in the database even when the

relations are not the projections of a universal

instance. In the remaining sections we deal with

the problem of how to compute projections of the

representative instance. In Section 3.1..:iJe show

that if no additional constraint is imposed on the

data, then projections of the representative;!

instance cannot always be computed by lossless

joins. In Section 3.2 we show that if the database

satisfies a modified foreign-key constraint, then

p-rejections can be computed by performing the union
.*
of several lossless joins. In Section"'3.3 we

characterize a class of relation schemes for which

no constraint is necessary. In Section 3 we assume

that the only dependencies are functional. In Sec-

tions 4 and 5 we extend our results to databases

that are required to satisfy a set of functional

dependencies and a single join dependency. Essen-

tially, we adopt the view of [FMU] that the only

dependency in addition to functional dependencies

is a join dependency. However, we do not assume

that the join dependency is acyclic.

2.0 Basic definitions ---

The data in a relational database are stored

in. tables called relations. The columns of a rela-

tion are labeled by distinct attributes. Each

attribute has an associated domain of values. The -
rows or tuples of a relation are mappings from the

relation's attributes to their domains. The value

of a tuple n for an attribute A is denoted by U(A).

A relation scheme is the set of attributes labeling

the columns of a relation, and it is usually writ-

ten as a string of attributes. We often use the

relation scheme itself as the name of the relation.

A relation is just the "current value" of a rela-

tion scheme. A database scheme is a set of rela-

tion schemes RI, R -a*, n' and a database is a set of

relations 5' . . . ,r n for the relation schemes

R1,...,Rn.

2.1 Relations with null values -- ---

In many cases there is a need to represent

partial information in the database. If we have a

relation over the attributes Manager and Depart-

ment, and Jones is a manager without a department,

then the tuple (Jones,b) 'is inserted into this

relation. The value 6 is a special value, called a

value, null and it denotes unknown infbrmation.

Suppose that there are two managers without a

department, e.g., Jones and Smith. There is no

reason to assume that they manage the same (unk-

nown) department. In order to distinguish the null

value in the tuple (Jones,6) from the null value in

the tuple (Smith,&), we will mark each null value

with a unique subscript and store the tuples

(.Jones,bl) and (Smith,b2). Null values with dis-

tinguishing subscripts .are called marked null - -

[Ko,ml, and will be used exclusively in this

paper. Two null values are equal only if they have

the same subscript. We say that tuples n1 and n2

agree in column A if either both nl(A) and n2(A)

are not nuli and equal or both are null and equal.

Informally, we say that a tuple u is subsumed

by a tuple u if v contains all the information

stored in n. When a relation has nulls, one tuple

may subsume another tuple even if the two tuples

are not identical. We will use the following

definition of subsumption that captures some (but

not all) the cases in which a tuple can be removed

from a relation with null values. 0) A tuple u sub-

(1) It can be shown that the tuples of a relation r
are subsumed by a subset s of r if and only if
there is a containment mapping (cf. [ASUl]) from
the tuples of r to the tuples of s. (When contain-
ment mappings are used for testing 'subsumption,
non-null values are treated as constants and null
values are treated as nondistinguished variables.)

109

sumes tuple u in a relation r if,in every column in

which v and u disagree, u has a null value that

appears nowhere else in r. We assume that if w

subsumes p in r, then u is removed from r.

Example 1: ~ - Consider the following relation

over the attributes P(player), M(manager), and

T(team).

The first tuple agrees with the second tuple in the

column for P, and its null values in the other

columns appears nowhere else in the relation.

Thus, the first tuple is subsumed by the second

tuple. However, the second tuple is not subsumed

by the first tuple. []

2.2 Relational expressions --

In this paper we consider relational expres-

sions over the operators project, (natural) join,

and union that are denoted by n, *, and U, respec-

tively. The operands are the relation schemes

Rl' Rn* An expression E is evaluated for a

given database by substituting the relations

rl,r n for the relation schemes Rl,...,R,, and

apply% the operators according to the usual

definitions. (When the join is applied, two tuples

are joined on a given column only if they agree in

this column.)

2.3 Functional dependencies and the chase process -- ---~

The data stored in a database are usually

required to satisfy certain constraints. The most

common types of constraints are functional depen-

dencies [Arm,Cl] and join dependencies [MMS,Ris].

The latter type ,includes multivalued dependencies

[BFH,Fag,Li,Zal] as a special case. Suppose that a

relation r is required to satisfy a functional

dependency (abbr. FD) X + A, where X is a set of

attributes and A is a single attribute. This FD

can be applied to equate symbols (2) of r in the

following way. Suppose that the relation i has

tuples ul and p2 that agree in all the columns for

X but disagree in the column for A. If ul has 15~
in column A and u

2 has 6
j

in column A, then we can

replace all occurrences of 6
iI

in r with 6i. If lJl
has a non-null value c in column A and p2 has a

null value 6
j

in that column, then we can replace

all occurrences of 6 with the non-null value c.
j

Suppose that the relation r is required to

satisfy a set F of FD's. We can apply the FD's of

F to r until no more symbols of r can be equated.

The relation obtained in this way is called the

chase of r with respect to F, written chaseF(r),

and it satisfies an FD X + A of F if and only if

there is no pair of tuples that agree in the

columns for X and disagree in the column for A. We

say that the relation r satisfies F if and only if

chaseF(r) satisfies F. If r satisfies F, then r

also satisfies additional FD's that can be inferred

by Armstrong's axioms [Arm]. Similarly, given a

set of attributes X, we can compute X" (i.e., the

closure of X with respect to F) using the algorithm

of [BB].

2.4 Join dependencies and tableaux --- -

Let r be a relation over a relation scheme R,

and let Rl,...,Rn be subsets of R. Tuples

5' . . l ,un of r are joinable on R 1'R. with a

result v if v is a tuple on R such that

(1) for all lCiCn, u and p i agree on Ri, and

(2) the columns of u for the attributes of

R - U;f=l i R have distinct null values that do

not appear in r.

The dependency *[Rl,R.] holds in r if whenever

tuples ul, ..*,!J n of r are joinable on Rl,...,Rn

with a result U, then v is subsumed by some tuple

of r. If U;& = R (i.e., every attribute.of the

relation r is in some Ri), then *[Rl,...,Rn] is

called a join dependency (abbr. JD). If

U;t=l i R f I$, then *[Rl,R.] is called an embedded

join dependency (abbr. EJD).

(2) Occasionally, we refer to null and non-null
values as symbols.

.lO

By definition, if r is a relation over

R = 'J;&, then the relation *n i=l"R,(r) satisfies

the JD *[Rl,...,Rn]. The expression in i,lnRi(R) can

also be represented by a tableau. A tableau is a

matrix whose columns correspond to the attributes

of R. The rows of a tableau contain distinguished

aud nondistinguished variables. Each column has

exactly one distinguished variable (that may appear

in several rows). The distinguished varrable in

the ith column is denoted by ai. Nondistinguished

variables are denoted by b *s.
1

The tableau T for *y=lxR (R) has a row wi for
i

each R i' Row wi contains distinguished variables

in the columns for Ri, and distinct nondis-

tinguished variables in the rest of the columns.

Let +--sAp be the attributes labeling the

columns of T. The tableau T maps the relation r to

the relation T(r) defined by

{IJ t P$) = p(ai), where p is an assignment

of values to the variables of T such that ,,

each row of T becomes a tuple of r]

Clearly, T(r) = *:=lxR i(r) - The tableau T for

*n
i~l"R,(~) can be transformed to a tableau for

rX(*;=lxRi(R)) as follows. For every column Ai not

in X, replace all occurrences of ai with a new non-

distinguished variable. Tableaux can be minimized,

that is, a tableau T can be replaced with an

equivalent tableau that has a minimum number of

rows [ASUZ].

Tableaux are very similar to the tables that

represent relations. Consequently, we can apply

the chase process to tableaux (distinguished vari- . '7
ables are treated as non-null values and nondis-

tinguished variables are treated as null values).

The chase of a tableau T-with respect to F, written

chaseF(T), is also a tableau. Furthermore, if r is

a relation such that r = chaseF(r) and r satisfies

F, then T(r) = chaseF(T)(r) [ASUL]. , '-,
. ,'

2.5 Keys and lossless joins ----

Let Rl,..., R, be a database scheme. Each Ri

has one or more (explicit) keys. A key K for Ri is

a subset of Ri. The relation ri for Ri cannot have

two distinct tuples ~1 and
n2 such that

L+(K) - ~~0% Clearly, the keys of a relation

scheme imply certain FD's. Formally, the relation

scheme Ri embodies the set of FD'S

FiP{K+A]KisakeyofRiandAeRi}

The database scheme embodies the set of FD's

F = "i'.&'

A relation r over the set of all the attri-

butes R can be stored in the database by assigning

RR (r) to ri (l<i<n). The relation r can be
i

recovered from the relations stored in the database

only if the database scheme has the lossless join

property [ABU]. An important special case of loss-

less joins is an extension join [HOG]. The expres-

sion fl R
j=l 5

is an extension join of Ri if

($,lRi
k

)+ contains a key of Ri
1

for every l<j<m.
jtl

The extension join ",lRi. is a complete extension

join of R. if R+
ll il

= $;xi * If a cover of the
ii

FD's is embodied in the relation schemes, then

every Ri has a complete extension join consisting

of all the relation schemes that are contained in

R+ . .
1

Example 2: ~- Let ABC, ED, and CDE be the rela- - -
tion schemes (the key of each relation scheme is

underlined). ABC * BD is an extension join of ABC.

ABC * BD * CDE is a complete extension join of ABC,

because (ABC)+ = ABCDE, ABC contains a key of BD,

and ABCD contains a key of CDE. But ABC * CDE is

not an extension join. []

3.0 The representative instance ---

The ultimate goal of designing a database

scheme has always been a collection of relation

schemes R 1'R. that are independent, that is,

relation schemes.that allow the user to update each

relation in the database without having to change

the contents of the other relations. Of course,

there might be some semantically meaningful con-

straints (e.g., as in [C2]) that do not allow every

possible update. But these constraints should be

as limited as possible. We feel that enforcing the

universal instance assumption is too restrictive.

Clearly, this assumption can always be enforced by

111

using marked nulls [KU,Ma]. However, this can be

done only at the expense of applying the chase pro-

cess to the universal instance whenever updates are

performed on the database. Furthermore, there is a

need to store many null values that do not provide

any information. These null values are needed only

to satisfy the universal instance assumption.

Efficiency is not the only issue. Most rala-

tional database systems are not designed to use the

chase process. Therefore, there is a need to

develop a theory for determining correct access

paths when the universal instance assumption is not

satisfied. The simplified universal instance

assumption of [FMU] is one possible solution. In

[FMD] a certain condition is imposed on the data-

base scheme, and it is claimed that under that con-

dition a minimal (in the number of relation

schemes) lossless join is a correct access path

(even if the relations of the database are not the

projections of a universal instance). We will

present a different set of conditions’and show that

queries should be evaluated by performing the union

of several lossless joins rather than just one

lossless join.

In this section we will define the representa-

tive instance of a database rl, . . .,rn. The

representative instance is defined for every

rl,...,rn (even if the r i -s are not the projections

of a single relation). If rl,...,rn are the pro-

jections of a universal instance r and the database

scheme has the lossless join property, then r -is

also the representative instance. In [Hol,Val] the

representative instance is used to determine

whether the database satisfies a set of FD’s. We

believe that the representative instance is also a

correct representation of all the information

stored in the database, and queries posed about the

contents of the database should be answered with

respect to the representative instance.

Let R be the set of all the attributes. A

relation. r i can be viewed as a relation over R by

adding columns for the attributes in R - Ri that

contain distinct null values. Formally, the aug-

mentation of a relation r i to a relation over R,

written oR(ri), is

{p 1 P agrees with some tuple of ri on Ri,

and has distinct null values

(that do not appear in any other tuple)

for the attributes in R - Ri}

Example 3: Let r be the relation --

A 1 C
--I--

i cl c2 “,
i :

c3 %

aABm(r) is the relation

AlBlClD
-I-I-I-
Cl I 6 I c21 6

Ill I2
c3 i 63 i c,i 64

where 15~ d {cl,c2,c3,c4] for every i. []

Consider a database rl, . . . ,rn over a database

scheme Rl, . ..) Rn, and let rc =I $,loR(ri). If

there are no dependencies, then r- is the represen-

tative instance of the database rl,r . n When

dependencies are present, the chase process should

be applied to r*. Thus, if the only dependencies

are those In the set of FD’s F, then the represen-

tative ,ptance is chaseF(r’). The database

rl’ . . . ,r satisfies the set of FD’s F if the

represen:ative instance satisfies F @ol,Val] . We

take the view of [FMIJ] that all the relevant depe&

dencies in addition to FD’s are expressed by a sin-

gle JD. In Section 4 we define the representative

instance assuming that a single JD is the only ‘;,

dependency, and in Section 5 we deal with a set of

dependencies consisting of FD’s and a JD.

Example 4: Consider the database scheme ABCD, -
CGDEF, EB, and BCF (the key of each relation - -
scheme 5s underlined). Note that this database

scheme is in Boyce-Codd normal form. Suppose that

the relation for ABCD is {1112], the relation for

CGDEF is {lllll], the relation for DEFB is {llll],

and the relation for BCF is empty. To obtain the

representative instance we have to compute the
‘3 5

,.‘.’ chase of ,.

112

AiBlClDlElPlG __--- ---
11111l2 161Sl63

I I I I 5 21
641 6J 1 I 1 I 1 I 1 I 1

I -I I I I I
Ql 1 I 6+ 1 I 1 I 1 I b8

The null value 65 can be replaced with 1 by apply-

ing the FD DEP + B to the second and third tuples,

and then 62 is replaced with 1 by applying BC + F

to the first and second tuples. No FD can be

applied after that, and so the repre>entatPve

instance is

AlBlClDlElFlG -------
1 I 1 I 1 I 2 I 6 I 1

I I I PI I
I 63

64111111111111
I I I I I I

6J 1 I 6J 1 I 1 I 1 I 68

This representative instance (and hence also the

database) satisfies the FD's that are embodied in

the relation schemes. []

In the above example, the projection of the

representative instance onto BCF contains the tuple

111. It may be argued that the tuple 111 over the

attributes BCF does not represent a correct infor-

mation, since the relation for the relation scheme

BCF does not contain this tuple. However, if this

argument is accepted, then it follows that two dis-

tinct relationships between the attributes B, C,

and F are stored in the database. One relationship-

is stored in the relation for the relation scheme

BCF, and the other relationship is obtained by the

extension join CGDEF * DEFB. The assumption that

there is only one relationship between any collec-

tion of attributes in the database is essential to

many works in design theory for relational data-

bases. Without this assumption the axioms for

functional and mltivalued dependencies, and the

various synthesis and decomposition algorithms can-

not be used. Therefore, we believe that the

representative instance correctly represents the

information stored in the database.

3.1 Computing total projections of the representa- -- --
tive instance

In the remainder of this'paper we' consider a c
database scheme l$,.., Bn that embodies a cover F of

.‘i

all the FD's'that the data must satisfy, and a

corresponding database r lB--Jrn with a representa-

tive instance r. For simplicity's sake, we assume

that the relations r 1' . . ,r do not contain null n

values. (Thus, null values exist only in the

representative instance.) We can always decompose a

relation scheme into smaller relation schemes, each

having the key of the original relation scheme and

some of its attributes. Therefore, the only actual

restriction implied by our assumption is that null

values cannot be stored for the attributes of a

key.

The user formulates queries having in mind the

representative instance r rather then the indivi-

dual relations rl,r . n Suppose that the user is

formulating a query that refers to a set of attri-

butes X. In order to evaluate this query, we have

to compute the projection of r onto X. We assume

that if the user is referring to the attributes in

X, then he/she is interested only in tuples of r

that have non-null values for all the attributes in

X. Therefore, the problem addressed in this paper

is how to compute the X-total projection of r, --
i.e.,

{n 1 n is a tuple in xx(r) without any null value)

For example, given the database of Example 4, the

ACF-total projection of the representative instance

is {ill}.

Example 4 illustrates a somewhat surprising

fact. An X-total projection of the representative

instance cannot always be computed by joining

several relations of,the database and then project-

ing onto X. In that example, the ABCDF-total pro-

jection of the representative instance is {11121).

Eowever, no expression of the form n (*m
. . 3 :

x j=lBij) has

as its value the relation {11121) over ABCDF.

(Here, Ril Ri ,**., are some of the relation
m

schemes.) In the following sections we will

describe two cases in which the problem indicated

by Example 4 does not occur.

3.2 The modified foreign-k&constraint ---

The problem presented in the previous section

can be solved by imposing a rather simple and

113

natural constraint on the database. Many papers

(e.g., [SmS,VaZ,ZaZ]) assume that databases satisfy

the foreign-key constraint. This basic constraint --
is defined as follows. If a relation scheme Ri

contains a set of attributes K that is a key of

another relation scheme R., and if the relation r
J i

contains a tuple whose projection onto K is k, then

the relation r
3

must also contain a tuple whose

projection onto K is k.

Example. 2: Consider the database scheme

ABCDE, =F, EE, and suppose that the relation for -
each relation scheme is empty. If we insert the

tuple 11111 into ABCDE, then the foreign-key con-

straint requires that we insert into CDEF a tuple

whose CDE-value is 111. So, suppose we insert the

tuple 1111 into CDEF. Now the database -satisfies

the foreign-key constraint. [J

In the above example, if the relations for

ABCDE and CDEF are joined, we get a tuple with an

AF-value 11. But the relation for ALOE does not

contain any tuple with an AF-value 11, although AF

is the key of this relation. If the database is

intended to satisfy the foreign-key constraint, it

is natural to require also that the relation for

ALOE will have a tuple with an AF-value 11. Moreo-

ver, a tuple of ABCDE * CDEF has values for all the

attributes of AFE and not just for the key, and so

we should require that the projection of that tuple

onto AFE will be in the relation for AFE. A con-

straint that imposes this requirement on a database

is defined as follows. Let RL,...,Rn be a database

scheme that embodies a cover F of all the FD's. A

database rl, . . . ,r n satisfies the modified foreign-

key constraint if for every ri the following is -
true. If a tuple u is in ri, and R.

JL
,.*-, R.

Jm
are

all the relation schemes contained in R+

there is a tuple v defined on R:
i' then

such that v(R
jk

)

is in r. An efficient
Jk

(l<k<m) and v(Ri) = p.

method for enforcing this constraint is described

in [KS].

Theorem 1: - - If the modified foreign-key con-

straint is satisfied, and each relation r i satis-

fies the FD's embodied in its relation scheme, then

(1) the non-null portion of every tuple in the

representative instance is included in some

'extension join, and

(2) the representative instance satisfies all the

FD's.

Proof: Let rc = U" j=laR(rj), and let u be a

tuple in oR(ri). Consider the computation of

chaseF(r'). By a lemma of [BDB], the only columns

of IJ that might be changed in the chase process are

in Rl. By the modified foreign-key constraint and

the above lemma, chaseF(r') can be computed even if

we impose the following restriction. Wh.enever an

FD X + A is applied to a pair of tuples ul and p2,

one of these tuples must have originated from a

relation r
k whose relation scheme embodies X + A.

If this restriction is applied, then the tuple u

will have in chase (r*)
F

non-null values exactly in

the columns for Ri. Furthermore, if Ri ,-**,
2 Rim

are all the relation schemes that embody FD's that

are'used to replace null values of p with non-null

values, then the non-null portion.of p is contained

in the extension join $=lRi
k

, where Ri = Ri.
1

We now prove that the representative instance

satisfies F. Suppose not. That is, there are

tuples pl and p2 that violate an FD X + A. Let Rk

be the relation scheme that embodies X + A. By the

modified foreign-key constraint, ul(RL) and u2(RL)

are in r k and, therefore, this relation has two

distinct tuples with the same value for the key

x- [I

We now give an algorithm for finding an

expression E whose value is the total projectionrof
. . , . .

the representative instance onto a given set of

attributes X. The correctness of this algorithm

follows from Theorem 1 and its proof.

Algorithm 1

(1) Let S be the set of all the Ri's such that

X 2 RI.

(2) While there are R i and R. in S such that

R CR+
J

i- j' remove Rj from S.

(3) Let 'pi ;...,Ri be the relation schemes that
1 m

remain in S.

(4) For each R i let Ei be an extension join of
j j

R. that contains X.
li

The expression E is

IPa j=l”X(Ei 1.
j

114

Step (2) minimizes the number of extension joins

participating in the union. The time complexity of

the algorithm is O(n3).

Example 6: Consider the relation schemes

(keys are underlined) IJK, $DA, KIA. Let X be KA. -
After step (l), S - {HDA,KIA], and that is also the

value of S after step (2). An extension join of

HDA that contains KA is HDA * DK, and an'extension

join of KIA that contains KA is KIA. Thus, the

expression E is nKA(HDA * DK) U nKA(KIA). [J

3.3 Independent relation schemes --

We say that the relation schemes Rl,...,Rn are

independent if we can perform any insertion or

deletion on each relation ri without having to

modify the contents of other relations. Formally,

we define the relation schemes R 1'R.‘ to be

independent if the following is true. If each

relation r i
satisfies the FD's that are embodied in

its relation scheme, then

(1) the representative instance satisfies the ED's,

and

(2) total projections of the representative

instance can be computed by expressions of the

form U~=lxX(Ei), where each Ei is an extension

join.

We will give a sufficient condition for a collec-

tion of relation schemes R 1'R. that embody a

cover of the FD's to be independent. Our condition

is much less restrictive than the one implied by

WI s and we believe that many practical applica-

tions satisfy it. This condition is also more gen-

eral than the tree-structured schemas of [Va3].

We say that a relation scheme R. can add an
J -

attribute A to Ri if there is a key K of R

that- A 6 K and Rj 2 R:.
3

such

The relation schemes

R1'R. satisfy the uniqueness condition if and

only if for every Ri

(a) no relation scheme (other than Ri) can add to

Ri an attribute already in Ri, and
+ (b) if A E Ri-Ri, then there is a unique R

j
that

can add A to Ri.

Theorem 2: ~- If the relation schemes R1,...,Rn

embody a cover of the FD's and satisfy the unique-

ness condition, then they are independent. Furth-
ermore, if Rl,..., Rn embody a cover of the FD's and

each Ri has only one (explicit) key, then they are

independent if and only if they satisfy the unique-

ness condition.

Example 7: ~- The relation schemes in Example 4

do not satisfy the uniqueness condition, because

BCF adds F to CGDEF and F is already in CGDEF. The

relation schemes of Example 6 satisfy the unique-

ness condition and, hence, are independent. In

proof, (DK)+ = DK and DK does not contain any other

relation schemes. Similarly, (KIA)+ - KIA and

DK $ KIA, HDA k KIA. As for HDA, the relation

scheme DK adds K to HDA and

KIA $ (HDA)+ = HDAK. [I

Suppose that RI,R. embody a cover of the

FD's and satisfy the uniqueness condition. We will

give an algorithm for constructing an expression E

whose value is the total projection of the

representative instance onto a given set of attri-

butes X. The expression E is a union of several

extension joins that contain X. However, when con-

structing an extension join that contains X we

should be more careful than in Section 3.2.

Example 8: Suppose we have the relation - -
schemes &B, I$, CJ), and we need an extension join

that contains AC: Only AB has both A and C in its

closure, and so we have to consider only extension

joins of AB. Both rAC(AB*BC) and nAC(AB*BC*CD) are

expressions where a projection onto AC is applied

to an extension join of AB. Since no constraint

(such as the universal instance assumption or the

modified foreign-key constraint) is imposed on the

data, the value of the latter expression is con-

tained in but not necessarily equal to the value of

the former. []

Since Rl,..., R, satisfy the uniqueness condi-

tion, each R i (
such that XC Rl) has a unique

minimal (in the number of relation schemes) exten-

sion join containing X, and this minimal extension

join has to be chosen. Formally, we say that an

extension join E = <40kj of Ri (i.e., i = kl) is

minimal with respect to a set of attributes X if

(1) X 5 qpls , and
j

115

(2) no proper subsequence of RR P".D is an
1

extension join of Ri that satisfies (1).

Lemma 1: Let X be a set of attributes such - -
that X 5 R:. If the relation schemes of the data-

base satisfy the uniqueness condition, then the

minimal extension join of Ri with respect to X'is

unique and can be computed in polynomial time.

We now give an algorithm for computing an

expression E whose value is the X-total projection

of the representative instance.

Algorithm 2

(1) Let S be the set of all the Ri's such that

(2) While there are Ri and R
j

in S such that the

minimal extension join of R
j

with respect to X

contains Ri, remove R
j

from S.

(3) Let Ri ,...,Ri be the relation schemes that
1 m

remain in S.

(4) For each Ri
j

let Ei be a minimal extension
j

join of Ri with respect to X. The expression
I

Step (2) of the algorithm minimizes the number of

extension joins participating in the union. The

time complexity of the algorithm is O(n3).

Example 9: Suppose that the attributes are - -
P(project), D(department), M(manager), L(location),

and A(assistant), and the relation schemes are DP,

DpM, and &F-N.

:.
Intuitively, the database scheme describes an

application in which each project belongs to

several departments and is carried out in several

locations, but a department can have only one pro-

ject in each location. In each department partici-

pating in a project, there is a manager responsible

for that project. Each manager has an assistant in

each location. These relation schemes satisfy the

uniqueness condition.

Suppose we want to compute the total projec-

tion of the representative instance onto LM. After

Step (1) of the algorithm, S - {LDP,LMA). The

minimal extension join of LDP with respect to LM is

LDP * PDM, and the minimal extension join of LMA

Suppose that the database scheme is Rl,...,Rn,

and the only constraint is the JD *[R
1'R.].

The representative instance is r = TIlrR (r*),
i

n where rc = U i&+i) since r satisfies 'khe given

JD. Therefore, the projection onto X is given by

vX($=lrR i(f))e Let T' be the tableau for this

expression. We can minimize T' as described in

[ASUZ]. The minimal tableau has to be evaluated

with respect to r-. However, we will show how to

construct from the minimal tableau T an expression

E with the operands Rl,..., R, whose'kue is the

X-total projection of the representative instance.

Let wi be a row of T. Suppose that wi has

distinguished and repeated(l) nondistinguished
': ,' :

116

variables exactly in the columns for V. Let

Ril
,***, Ri be all the relation schemes that con-

q
tain V. Construct the expression Ei = Dq j=l"V(Rij)

for row wi. Let El,.., Ep be the expressions con-

structed in this way for all the rows of T. The

X-total projection of the representative instance

is given by the expression vX(*;=lEi).

:k
Example 10: ~- Suppose that the attributes are

Npart), J(proWt), M(machine), S(supplier),

W(warehouse), O(order), and E(employee). The rela-

(1) A nondistinguished variable is repeated if it
appears in more than one row.

with respect to LM is LMA. In Step (2) of the

algorithm S is not changed, and so an expression

for the LM-total projection of the representative

instance is vLM (LDP * PDM) U vLM(LMA).

The result of the above expression is all

tuples (1,m) such that either manager m has an

assistant in location 1 or manager m manages some

project in location 1. Considering the fact that

there might be partial information (e.g., a manager

with a project in a location where he does not have

an assistant, or a manager with an assistant in a

location where he does not have a project), the

correct answer is indeed given by the above expres-

sion. []

4.0 Dealing with join dependencies -- --

tion schemes are PJM, PSW, PJSO, JE. The tableau pose' it. We adopt the approach of [FMU] that it is

for the expression npE (PJM * PSW * PJSO * JE) is rather easy and natural for the user to specify the

PJSMWOE relation schemes into which Rn has to be decom-

la , 1 bo bl bz b3 b4 b5 / : posed. Thus, the result of the design process is a

la b6 4 b8 b9 b10 bll/
set of relation schemes

I l
R1,"',Rn-l,Rn,.'.,Rk,

where the first n-l relation schemes embody a cover
la , 1 b. b7 b12 b13 b14 b15' F of the FD's and Ri = epnRi is a key of R.

lb16 bO b17 b18 b19 b20 a7 ' I

5.1 The first case: FD's and a JD. ----- -----

The minimal tableau obtained from the above Suppose that the database must satisfy F, the
tableau is JD *[Rlv-,~l, and the modified foreign-key con-

PJSMWOE
la 1 1 b. b7 b12 b13 b14 b151

lb b b17 $8 big b20 a7 \ I 16 0
I

The expression that corresponds to the first

row of the minimal tableau iS

El = npJ(PJM) U rpJ(PJSO). The expression that

corresponds to the second row is E2 = JB. The PE-

total projection of the representative instance is

given b the expression

~PE{bpJO’JM) U npJ(PJSO)) * JE); [I

A proof of correctness for this algorithm is

based on the technique for minimizing tableaux

[ASUP] and is beyond the scope of this paper.

5.0 Functional and join dependencies -- -

We believe that‘the first step in designing a

database scheme is to find relation schemes

Rl' ...,Rn-l in third normal form that embody the

FD's [Ber]. Further decompositions of Rl,...,Rnml

according to JD's that are not implied by the FD's

is undesirable, since some keys will be split

between several relation schemes. (As a result,
1 some FD's will no longer be embodied by the data-

base scheme.) However, if for all i R e R: (R is

the set of all the attributes), then an additional

relation scheme R, has to be added [BDB]. Rn is a

key of R, i.e., R C Ri and no subset of R, has this
I property. R, is needed to ensure that the database

scheme has the lossless join property. Since R,

does not embody any FD, we can use JD's to decom-

straint. The representative instance is computed

as follows. Let rc = UkVloR(ri). First compute

r" = chaseF(r'), and then compute r = &
ialnRi(r”) l

By a theorem of [BMSU], the representative instance

r satisfies F and *[R 1' l l l &I l

By Theorem 1, during the computation of

chaseF(r') a null value is always equated Bith a

non-null value and, therefore, all the null values

in rV are distinct. Furthermore, if tuple u of r*

has non-null values exactly in the columns for R
j'

then the chase process transforms n to a tuple with

non-null values exactly in the columns for R+.
j

Now consider the tableau T' for

and let T - chaseF(T'). By a theorem of [ASUl],

r = T(r"), since r" satisfies F. Since the rela-

tion schemes embody F, all the nondistinguished

variables in T are distinct. Furthermore, a row of

T' that corresponds to R. is transformed by the
J

chase process to a row of T with distinguished

variables exactly in the columns for RT [BDB,BMSU].

Thus, the rows of T correspond to complete exten-

sion joins of the R *s.
j

We can now apply the

results of Section 4.0 to T provided that we use

complete extension joins of the R *s as the rela-
.I

tion schemes.

Example 11: This example is from [FMU]. The

attributes are B(bank), A(account), L(loan), and

C(customer). The relation schemes are p, B, CA,

and CL. The tableau for *[AB,LB,CA,CL] is -

117

CAL B
lb a , 1 2 b2 a41

ib ,3 b
4

a
3

al
4,

la ,I a 2 b 5 bl 6,

1 b7 a3 b8'
*

I

By applying A + B, we can replace b6 with a4. By

applying L + B, we can replace b8 with a
4

. No more

FD's can be applied after that, and so the chase of

the above tableau is

CALB
lb a , 1

lb b a al
,3 4 3 4,

The rows of the above tableau correspond to com-

plete extension joins as follows. The first row

corresponds to AB, the second to LB, the third to

CA * AB, and the fourth to CL * LB. Suppose we

want to compute the CB-total projection of the

representative instance. By applying this projec-

tion to the above tableau, we get the tableau

CAL B
lb b b al ,I 0 2 4,

lb ,3 b 4 b 9 al 4,

la ,I b 0 b 5 al 4,

la b b a] ,I 7 9 4,

and after minimization it becomes

CAL B

ia1 b. b5 '41

The expression that corresponds to the single row

of this tableau is nCB(CA * AB) U vCB(CL * LB).

Similarly, it can be shown that the CALB-total

projection of the representative instance is given

by the expression CA * AB * CL * LB. []

If Rl,...J$ satisfy the uniqueness condition

(as in the above example), then the modified

foreign-key constraint is not required. However,

computing an expression E for a total projection is

more complicated [Sag].

5.2 The second case: FD's and an EJD ----- -----
I

Suppose that the relation schemes
c

R1' -.-J$,m.l, Rn satisfy the uniqueness condition.
*

The relation scheme R n is decomposed into R,, ~

using the EJD *[R,,...+], and so the database

scheme is 3' %' A representative instance is

constructed in two stages. First construct a rela-

tion rn * for R* using rn,...,rk and the EJD

*[R,, . ..J$J. n and then construct the representative .
instance using

c 1
r ,...,rnWl,rn as in Section 3.3.

The relation rn might .have nulls, but these nulls

cannot be replaced with non-nulls when the chase of
c

the FD's is computed (because R1 ,--.,Rn-l,Rn
satisfy the uniqueness condition). The representa-

tive instance as defined here does not necessarily

satisfy the given EJD. However, it is not clear

that it should satisfy the EJD. A simple case in

which the representative instance does satisfy the

EJD is discussed in [Sag].

Let X be a set of attributes. A subset K of

RL is a key for X 5 Ri if XC K+, and for every

proper subset K' of K, we have X$ K’+.

Lemma 2: - - If ~,...,R~-~,R: satisfy the

uniqueness condition, then a set X has a unique key

K in Ri. The key K can be computed in polynomial

time.

An expression E for the X-total projection of

the representative instance can be constructed as

follows. Let S be the set of all the Rjcs (l<j<n)

such that XCR+.
j

Add to S a key K for X in Rc. n
Now apply the algorithm of Section 3.3 to the rela-

tions rl,...,rn-1 and the relation for K. The

relation for K is computed using the EJD c
*Pn,--J$l and the relations r

n'
. . . ,r k according

I
to Section 4.0.

:L

Example 12: Suppose that the attributes are

J(project), S(supplier), P(part), R(price), and

E(employee). The relation schemes are SpR, JE, Jp,

and JS. The only FD is SP + R, and the EJD is -
*[JE,JP,JS]. Suppose we want to compute the SP- I

t

118

total projection of the representative instance. A

key for SP in JSPE is SP. Thus, the expression for

the SP-total projection of the representative

instance is E U nSp(SPR). The expression E is com-

puted as follows. The tableau for *[JE,JS,JP] is

J S P E

la b a bl ,I 3 3 4,

1'1 b5 b6 a4]

By applying projection onto SP (i.e., onto the key
s

K of SP in R,), we get the tableau

J S P E
lb , 7 a2 bl b2/

lb b , 7 3 a3 b41

lb7 b5 b6 bi31

Minimizing the above tableau yields

J S P E
lb a , 7

lb b a bl ,7 3 3 4,

By the algorithm of Section 4.0, the expression for

this tableau is nSp(JS * JP) and so the complete

expression is nSp(JS * JP) U nSp(SPR) []

6.0 Conclusions --

We have shown that if null values are not

used, then some constraints must be imposed on the

data to guarantee that queries can be evaluated by

lossless joins rather than by the chase process.

We have proposed the modified foreign-key con-

straint as a possible constraint. We have also

shown that if the relation schemes satisfy the

uniqueness condition, then no constraints are

needed. In this case the relations of the database

can be updated independently. This result is more

general than earlier conditions [BG,Va3]. We have

also considered the case where the dependencies are

FD's and a JD. We have shown how to apply the

optimization techniques of [ASUZ] in order to

obtain expressions that have as few operands as

possible. Finally, we have proposed a method for
handling FD's and an EJD. However, this topic

requires further investigation.

References
[ABU] Aho, A. V., C. Beeri, and J. D. Ullman, "The

Theory of Joins in Relational Databases," ACM
Trans. on Database Systems, Vol.
(Sept. 1979), pp. 297-314.

4, No.3

[ASUl]Aho, A. V., Y. Sagiv, and J. D. Ullman,
"Equivalences Among Relational Expressions,"
SIAM J. Computing, Vol. 8, No. 2 (May 1979), --
pp. 218-246.

[ASU2]Aho, A. V., Y. Sagiv, and J. D. Ullman,
"Efficient Optimization of a Class of Rela-
tional Expressions," ACM Trans. on Database
Systems, Vol. 4, No. n(Den979x pp. 435-
454.

[Arm1 Armstrong. W. W.. "Dependency Structures of _ _
Database-Relationships;" Proc: IFIP 74; North
Holland, 1974, pp. 580-583.

[BB] Beeri, C. and Pi-A. Bernstein, "Computational
Problems Related to the Design of Normal Form
Relational Schemas," ACM Trans. on Database -- -
Systems, Vol. 4, No. 1 (March 1979), pp. 30-
59.

[Ber] Bernstein, P. A., "Synthesizing Third Normal
Form Relations from Functional Denendencies."
ACM Trans. on Database Systems, Vol. 1, No.*4 -- -
(Dec. 1976). PP. 277-298. ._ _-

[BFH] Beeri, C., R. Fagin, and J. H. Howard, "A
Complete Axiomatization for Functional and
Multivalued Dependencies in Database Rela-
tions, " Proc. ACM-SIGMOD Int. Conf. on
Management of Data, Eo,xg. m, p<
47-61.

[BMSU]Beeri, C., A. 0. Mendelzon, Y. Sagiv, and J.
D. Ullman, "Equivalence of Relational Data-
base Schemes," Proc.' 11th Annual ACM B. on
Theory of Computing, K3-,-79. -

[BG] Bernstein, P. A., and N. Goodman, What Does
Boyce-Codd Normal Form Do?," Proc. Int. Conf. ---
on Very Large Data Bases, 1980, pp. 245-259.

[BDB] zskup, J., IJ.yGnd P. A. Bernstein,
"Synthesizing Independent Database Schemas,"

[Cl

IQ

Proc. ACM-SIGMOD Int. Conf. on Management of - --- - - -
Data, 1979, pp. 143-151.

] Codd, E. F., "A Relational Model for Large
Shared Data Banks," Comm. s, Vol. 13, No. 6
(June 1970), pp. 377-387.

1 Codd. E. F.. "Extending the Database Rela-
tional Model to Capture More Meaning," ACM
Trans. on Database .Systems, Vol. 4, No.4
(Dec. 1979). pp. 397-434. ._ __

[Fag] Fagin, R., "Multivalued Dependencies and a
New Normal Form for Relational Databases,"
ACM Trans. on Database Systems, Vol. 2, No. 3
(Sept.77r pp. 262-278.

[FMU] Fagin, R., A. b; Mendelzon, and J. D. Ullman,
"A Simplified Universal Relation Assumption
and Its Properties," IBM research report,
RJ2900, Nov., 1980.

[Hol] Honeyman, P., "Testing Satisfaction of Func-
tional Dependencies," Proc. KPl Conf., Sto- - --
nybrook, N. Y., June, 1980.

[Ho21 Honeyman, P., "Extension Joins," Proc. Int. --
Conf. on Very Large Data Bases, 1980, pp. -- ---

119

239-244.
[HLY] Honeyman, P., R. E. Ladner, and M. Yan-

nakakis, "Testing the Universal Instance
Assumption," Information Processing Letters,
Vol. 10, No. 1 (Feb. 1980), pp. 14-19.

[Ko] Korth, Ii. F., "A Proposal for the SYSTEM/U
Query Language," unpublished memorandum,
Stanford University, Stanford, CA, 1980.

[KU] Korth, H. F. and J. D. Ullman, "System/U: a
Database System Based on the Universal Rela-
tion Assumption," Proc. XP1 Conf., sto-
nybrook, N. Y., June, 1980. -

[KS] Kuck, S. M., and Y. Sagiv, "A Universal Rela-
tion Interface for Network Schemas," in
preparation.

[Li] Lien, Y. E., 'Multivalued Dependencies With
Null Values in Relational Databases," Proc.
Int. Conf. on Very Large Data Bases, 1979.

[Ma] M&r, D., -- discarding the Universal Instance
Assumption: Preliminary Results," Proc. XPl
Conf., Stonybrook, N. Y., June, 19807 -

[MMS] Maier D., A. 0. Mendelzon, and Y. Sagiv,
"Testing Implications of Data Dependencies."
ACM Trans. z Database Systems, Vol. 4, No.-4 __-
(Dec. 1979), pp. 455-469.

[Ris] Rissanen, J., "Theory of Relations for Data-
bases - A Tutorial Survey," Proc. 7th Symp. - --
on Mathematical Foundations of Computer Sci-
g, Lecture Notes in Computer Science 64, ---
Springer-Verlag, 1978, pp. 536-551.

[Sag] Sagiv, Y., manuscript in preparation.
[SC] Sciore, E., "The Universal Instance and Data-

base Design," TR 271, Dept. of Elec. Eng. and
Camp. Sci., Princeton University, Princeton,

[SmS] !ii:h:
June, 1980.
J. M. and C. P. Smith, "Database

Abstractions: Aggregation," CACM, Vol. '20,
No. 6 (Jun. 1979), pp. 405-413.

[Val] Vassiliou, Y., "Functional Dependencies and
Incomplete Information," Proc. Int. Conf. on --
Very Large Data Bases, 198~pp.-%O-269.

[Va2] Vassiliou, rand. H. Lochovsky, "DBMS
Transaction Translation," Proc. COMPSAC so, --
Oct., 1980.

[Va3] Vassiliou, Y., "A Formal Treatment of Imper-
fect Information in Database Management,"
Technical Report CSRG-123, University of
Toronto, Nov., 1980.

[Zal] Zaniolo, C., "Analysis and Design of Rela-
tional Schemata for Database Systems," Tech.
Rep. UCLA-EN07669, Dept. of Comp. Scl.,
UCLA, July 1976.

[Za2] Zanlolo, C., "Design of Relational Views Over
Network Schemas," Proc. ACM-SIGMOD Int. Conf. - --- -
on Management of Data, 1979, pp.179-190. - --

120

