
CAN WE USE THE UNIVERSAL INSTANCE ASSUMPTION WITHOUT USING NULLS? 

Yehoshua Sagiv 

Department of Computer Science 

University of Illinois at Urbana-Champaign 

Urbana, Illinois 61801 

ABSTRACT 

We claim that the representative instance of 

[Hol,Va3] is a correct representation of the data 

stored in a database even when the relations of the 

database are not the projections of a single 

universal instance. If no constraint (other than 

functional and join dependencies) is imposed on the 

data, then projections of the representative 

instance cannot always be computed by lossless 

joins. We show that if the database satisfies a 

modified foreign-key constraint, then projections 

of the representative instance can be computed by 

performing the union of several lossless joins. A 

class of relation schemes for which no constraint 

is necessary is characterized, and we show how to 

compute projections of the representative instance 

for databases that belong to this class. 

1.0 Introduction -- 

The universal instance assumption is an essen- 

tial assumption in many papers in design theory for 

relational databases. As pointed out in [FMU], 

there are two different concepts in this assump- 

tion. The most basic concept is the universal 

relation a theme assumption (also known as the 

“uniqueness assumption” [Ber]). It asserts that 

each attribute has a unique role, that is, for any 

subset of attributes X, there is (at most) one 

relationship among the attributes of x. This 

assumption is made explicitly or implicitly in many 

papers in design theory for relational databases. 

In particular, it is made in papers dealing with 

the axiomatization of dependencies, and synthesis 

and decomposition of relation schemes. 

The second and more controversial concept is 

,the universal instance assumption, thati is, the 

assumption that the relations of a database are the 

projections of a single relation over the set of 

all the attributes. This assumption is needed in 

order to define lossless joins [ABU]. There are 

two versions of this assumption. According to the 

first, this assumption has to be made only in order 

to determine whether a join is lossless (i.e., it 

is only a tool that is used when a database is 

designed and when queries are evaluated) [FMU]. 

The second version (the pure universal instance 

aesumption).states that the relations of a database 

must always be the projections of a universal 

instance, and null values have to be used in order 

to satisfy this requirement [HLY,Ko,Li,Ma,Sc]. 
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When a universal instance is assumed, users 

usuPlly formulate queries having in mind the 

universal Qstance rather than the actual relations 

of the datiibase [KU]. If a given query refers to a 

set of attributes X, then the first step in 

evaluating this query Is to compute the projection 

of the universal instance onto X. If the pure 

universal instance assumption is made, it is suffi- 
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cient to take any lossless join that contains all 

the attributes of X. If the relations of the data- 

base are not the projections of a universal 

instance, different lossless joins might give dif- 

ferent results. In [FMU] this problem is solved by 

requiring that the join dependency consisting of 

all the relation schemes be acyclic. 

In this paper we assume a universal, relation 

scheme, but not a pure universal instance?? In Set- 

tion 3 we define the representative instance of a 

database. In [Hol,Val] the representative instance 

is used to determine whether the database satisfies 
._ 

a set'of functional dependencies. We believe that 

the representative instance correctly describes the 

information stored in the database even when the 

relations are not the projections of a universal 

instance. In the remaining sections we deal with 

the problem of how to compute projections of the 

representative instance. In Section 3.1..:iJe show 

that if no additional constraint is imposed on the 

data, then projections of the representative;! 

instance cannot always be computed by lossless 

joins. In Section 3.2 we show that if the database 

satisfies a modified foreign-key constraint, then 

p-rejections can be computed by performing the union 
.* 
of several lossless joins. In Section"'3.3 we 

characterize a class of relation schemes for which 

no constraint is necessary. In Section 3 we assume 

that the only dependencies are functional. In Sec- 

tions 4 and 5 we extend our results to databases 

that are required to satisfy a set of functional 

dependencies and a single join dependency. Essen- 

tially, we adopt the view of [FMU] that the only 

dependency in addition to functional dependencies 

is a join dependency. However, we do not assume 

that the join dependency is acyclic. 

2.0 Basic definitions --- 

The data in a relational database are stored 

in. tables called relations. The columns of a rela- 

tion are labeled by distinct attributes. Each 

attribute has an associated domain of values. The - 
rows or tuples of a relation are mappings from the 

relation's attributes to their domains. The value 

of a tuple n for an attribute A is denoted by U(A). 

A relation scheme is the set of attributes labeling 

the columns of a relation, and it is usually writ- 

ten as a string of attributes. We often use the 

relation scheme itself as the name of the relation. 

A relation is just the "current value" of a rela- 

tion scheme. A database scheme is a set of rela- 

tion schemes RI, R -a*, n' and a database is a set of 

relations 5' . . . ,r n for the relation schemes 

R1,...,Rn. 

2.1 Relations with null values -- --- 

In many cases there is a need to represent 

partial information in the database. If we have a 

relation over the attributes Manager and Depart- 

ment, and Jones is a manager without a department, 

then the tuple (Jones,b) 'is inserted into this 

relation. The value 6 is a special value, called a 

value, null and it denotes unknown infbrmation. 

Suppose that there are two managers without a 

department, e.g., Jones and Smith. There is no 

reason to assume that they manage the same (unk- 

nown) department. In order to distinguish the null 

value in the tuple (Jones,6) from the null value in 

the tuple (Smith,&), we will mark each null value 

with a unique subscript and store the tuples 

(.Jones,bl) and (Smith,b2). Null values with dis- 

tinguishing subscripts .are called marked null - - 

[Ko,ml, and will be used exclusively in this 

paper. Two null values are equal only if they have 

the same subscript. We say that tuples n1 and n2 

agree in column A if either both nl(A) and n2(A) 

are not nuli and equal or both are null and equal. 

Informally, we say that a tuple u is subsumed 

by a tuple u if v contains all the information 

stored in n. When a relation has nulls, one tuple 

may subsume another tuple even if the two tuples 

are not identical. We will use the following 

definition of subsumption that captures some (but 

not all) the cases in which a tuple can be removed 

from a relation with null values. 0) A tuple u sub- 

(1) It can be shown that the tuples of a relation r 
are subsumed by a subset s of r if and only if 
there is a containment mapping (cf. [ASUl]) from 
the tuples of r to the tuples of s. (When contain- 
ment mappings are used for testing 'subsumption, 
non-null values are treated as constants and null 
values are treated as nondistinguished variables.) 
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sumes tuple u in a relation r if,in every column in 

which v and u disagree, u has a null value that 

appears nowhere else in r. We assume that if w 

subsumes p in r, then u is removed from r. 

Example 1: ~ - Consider the following relation 

over the attributes P(player), M(manager), and 

T(team). 

The first tuple agrees with the second tuple in the 

column for P, and its null values in the other 

columns appears nowhere else in the relation. 

Thus, the first tuple is subsumed by the second 

tuple. However, the second tuple is not subsumed 

by the first tuple. [] 

2.2 Relational expressions -- 

In this paper we consider relational expres- 

sions over the operators project, (natural) join, 

and union that are denoted by n, *, and U, respec- 

tively. The operands are the relation schemes 

Rl' . . . . Rn* An expression E is evaluated for a 

given database by substituting the relations 

rl, . . ..r n for the relation schemes Rl,...,R,, and 

apply% the operators according to the usual 

definitions. (When the join is applied, two tuples 

are joined on a given column only if they agree in 

this column.) 

2.3 Functional dependencies and the chase process -- ---~ 

The data stored in a database are usually 

required to satisfy certain constraints. The most 

common types of constraints are functional depen- 

dencies [Arm,Cl] and join dependencies [MMS,Ris]. 

The latter type ,includes multivalued dependencies 

[BFH,Fag,Li,Zal] as a special case. Suppose that a 

relation r is required to satisfy a functional 

dependency (abbr. FD) X + A, where X is a set of 

attributes and A is a single attribute. This FD 

can be applied to equate symbols (2) of r in the 

following way. Suppose that the relation i has 

tuples ul and p2 that agree in all the columns for 

X but disagree in the column for A. If ul has 15~ 
in column A and u 

2 has 6 
j 

in column A, then we can 

replace all occurrences of 6 
iI 

in r with 6i. If lJl 
has a non-null value c in column A and p2 has a 

null value 6 
j 

in that column, then we can replace 

all occurrences of 6 with the non-null value c. 
j 

Suppose that the relation r is required to 

satisfy a set F of FD's. We can apply the FD's of 

F to r until no more symbols of r can be equated. 

The relation obtained in this way is called the 

chase of r with respect to F, written chaseF(r), 

and it satisfies an FD X + A of F if and only if 

there is no pair of tuples that agree in the 

columns for X and disagree in the column for A. We 

say that the relation r satisfies F if and only if 

chaseF(r) satisfies F. If r satisfies F, then r 

also satisfies additional FD's that can be inferred 

by Armstrong's axioms [Arm]. Similarly, given a 

set of attributes X, we can compute X" (i.e., the 

closure of X with respect to F) using the algorithm 

of [BB]. 

2.4 Join dependencies and tableaux --- - 

Let r be a relation over a relation scheme R, 

and let Rl,...,Rn be subsets of R. Tuples 

5' . . l ,un of r are joinable on R 1' . . ..R. with a 

result v if v is a tuple on R such that 

(1) for all lCiCn, u and p i agree on Ri, and 

(2) the columns of u for the attributes of 

R - U;f=l i R have distinct null values that do 

not appear in r. 

The dependency *[Rl, . . ..R.] holds in r if whenever 

tuples ul, ..*,!J n of r are joinable on Rl,...,Rn 

with a result U, then v is subsumed by some tuple 

of r. If U;& = R (i.e., every attribute.of the 

relation r is in some Ri), then *[Rl,...,Rn] is 

called a join dependency (abbr. JD). If 

U;t=l i R f I$, then *[Rl, . . ..R.] is called an embedded 

join dependency (abbr. EJD). 

(2) Occasionally, we refer to null and non-null 
values as symbols. 
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By definition, if r is a relation over 

R = 'J;&, then the relation *n i=l"R,(r) satisfies 

the JD *[Rl,...,Rn]. The expression in i,lnRi(R) can 

also be represented by a tableau. A tableau is a 

matrix whose columns correspond to the attributes 

of R. The rows of a tableau contain distinguished 

aud nondistinguished variables. Each column has 

exactly one distinguished variable (that may appear 

in several rows). The distinguished varrable in 

the ith column is denoted by ai. Nondistinguished 

variables are denoted by b *s. 
1 

The tableau T for *y=lxR (R) has a row wi for 
i 

each R i' Row wi contains distinguished variables 

in the columns for Ri, and distinct nondis- 

tinguished variables in the rest of the columns. 

Let +--sAp be the attributes labeling the 

columns of T. The tableau T maps the relation r to 

the relation T(r) defined by 

{IJ t P$) = p(ai), where p is an assignment 

of values to the variables of T such that ,, 

each row of T becomes a tuple of r] 

Clearly, T(r) = *:=lxR i(r) - The tableau T for 

*n 
i~l"R,(~) can be transformed to a tableau for 

rX(*;=lxRi(R)) as follows. For every column Ai not 

in X, replace all occurrences of ai with a new non- 

distinguished variable. Tableaux can be minimized, 

that is, a tableau T can be replaced with an 

equivalent tableau that has a minimum number of 

rows [ASUZ]. 

Tableaux are very similar to the tables that 

represent relations. Consequently, we can apply 

the chase process to tableaux (distinguished vari- . '7 
ables are treated as non-null values and nondis- 

tinguished variables are treated as null values). 

The chase of a tableau T-with respect to F, written 

chaseF(T), is also a tableau. Furthermore, if r is 

a relation such that r = chaseF(r) and r satisfies 

F, then T(r) = chaseF(T)(r) [ASUL]. , '-, 
. ,' 

2.5 Keys and lossless joins ---- 

Let Rl,..., R, be a database scheme. Each Ri 

has one or more (explicit) keys. A key K for Ri is 

a subset of Ri. The relation ri for Ri cannot have 

two distinct tuples ~1 and 
n2 such that 

L+(K) - ~~0% Clearly, the keys of a relation 

scheme imply certain FD's. Formally, the relation 

scheme Ri embodies the set of FD'S 

FiP{K+A]KisakeyofRiandAeRi} 

The database scheme embodies the set of FD's 

F = "i'.&' 

A relation r over the set of all the attri- 

butes R can be stored in the database by assigning 

RR (r) to ri (l<i<n). The relation r can be 
i 

recovered from the relations stored in the database 

only if the database scheme has the lossless join 

property [ABU]. An important special case of loss- 

less joins is an extension join [HOG]. The expres- 

sion fl R 
j=l 5 

is an extension join of Ri if 

($,lRi 
k 

)+ contains a key of Ri 
1 

for every l<j<m. 
jtl 

The extension join ",lRi. is a complete extension 

join of R. if R+ 
ll il 

= $;xi * If a cover of the 
ii 

FD's is embodied in the relation schemes, then 

every Ri has a complete extension join consisting 

of all the relation schemes that are contained in 

R+ . . 
1 

Example 2: ~- Let ABC, ED, and CDE be the rela- - - 
tion schemes (the key of each relation scheme is 

underlined). ABC * BD is an extension join of ABC. 

ABC * BD * CDE is a complete extension join of ABC, 

because (ABC)+ = ABCDE, ABC contains a key of BD, 

and ABCD contains a key of CDE. But ABC * CDE is 

not an extension join. [] 

3.0 The representative instance --- 

The ultimate goal of designing a database 

scheme has always been a collection of relation 

schemes R 1' . . ..R. that are independent, that is, 

relation schemes.that allow the user to update each 

relation in the database without having to change 

the contents of the other relations. Of course, 

there might be some semantically meaningful con- 

straints (e.g., as in [C2]) that do not allow every 

possible update. But these constraints should be 

as limited as possible. We feel that enforcing the 

universal instance assumption is too restrictive. 

Clearly, this assumption can always be enforced by 
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using marked nulls [KU,Ma]. However, this can be 

done only at the expense of applying the chase pro- 

cess to the universal instance whenever updates are 

performed on the database. Furthermore, there is a 

need to store many null values that do not provide 

any information. These null values are needed only 

to satisfy the universal instance assumption. 

Efficiency is not the only issue. Most rala- 

tional database systems are not designed to use the 

chase process. Therefore, there is a need to 

develop a theory for determining correct access 

paths when the universal instance assumption is not 

satisfied. The simplified universal instance 

assumption of [FMU] is one possible solution. In 

[FMD] a certain condition is imposed on the data- 

base scheme, and it is claimed that under that con- 

dition a minimal (in the number of relation 

schemes) lossless join is a correct access path 

(even if the relations of the database are not the 

projections of a universal instance). We will 

present a different set of conditions’and show that 

queries should be evaluated by performing the union 

of several lossless joins rather than just one 

lossless join. 

In this section we will define the representa- 

tive instance of a database rl, . . .,rn. The 

representative instance is defined for every 

rl,...,rn (even if the r i -s are not the projections 

of a single relation). If rl,...,rn are the pro- 

jections of a universal instance r and the database 

scheme has the lossless join property, then r -is 

also the representative instance. In [Hol,Val] the 

representative instance is used to determine 

whether the database satisfies a set of FD’s. We 

believe that the representative instance is also a 

correct representation of all the information 

stored in the database, and queries posed about the 

contents of the database should be answered with 

respect to the representative instance. 

Let R be the set of all the attributes. A 

relation. r i can be viewed as a relation over R by 

adding columns for the attributes in R - Ri that 

contain distinct null values. Formally, the aug- 

mentation of a relation r i to a relation over R, 

written oR(ri), is 

{p 1 P agrees with some tuple of ri on Ri, 

and has distinct null values 

(that do not appear in any other tuple) 

for the attributes in R - Ri} 

Example 3: Let r be the relation -- 

A 1 C 
--I-- 

i cl c2 “, 
i : 

c3 % 

aABm(r) is the relation 

AlBlClD 
-I-I-I- 
Cl I 6 I c21 6 

Ill I2 
c3 i 63 i c,i 64 

where 15~ d {cl,c2,c3,c4] for every i. [] 

Consider a database rl, . . . ,rn over a database 

scheme Rl, . ..) Rn, and let rc =I $,loR(ri). If 

there are no dependencies, then r- is the represen- 

tative instance of the database rl, . . ..r . n When 

dependencies are present, the chase process should 

be applied to r*. Thus, if the only dependencies 

are those In the set of FD’s F, then the represen- 

tative ,ptance is chaseF(r’). The database 

rl’ . . . ,r satisfies the set of FD’s F if the 

represen:ative instance satisfies F @ol,Val] . We 

take the view of [FMIJ] that all the relevant depe& 

dencies in addition to FD’s are expressed by a sin- 

gle JD. In Section 4 we define the representative 

instance assuming that a single JD is the only ‘;, 

dependency, and in Section 5 we deal with a set of 

dependencies consisting of FD’s and a JD. 

Example 4: Consider the database scheme ABCD, - 
CGDEF, EB, and BCF (the key of each relation - - 
scheme 5s underlined). Note that this database 

scheme is in Boyce-Codd normal form. Suppose that 

the relation for ABCD is {1112], the relation for 

CGDEF is {lllll], the relation for DEFB is {llll], 

and the relation for BCF is empty. To obtain the 

representative instance we have to compute the 
‘3 5 

,.‘.’ chase of ,. 
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AiBlClDlElPlG __--- --- 
11111l2 161Sl63 

I I I I 5 21 
641 6J 1 I 1 I 1 I 1 I 1 

I -I I I I I 
Ql 1 I 6+ 1 I 1 I 1 I b8 

The null value 65 can be replaced with 1 by apply- 

ing the FD DEP + B to the second and third tuples, 

and then 62 is replaced with 1 by applying BC + F 

to the first and second tuples. No FD can be 

applied after that, and so the repre>entatPve 

instance is 

AlBlClDlElFlG ------- 
1 I 1 I 1 I 2 I 6 I 1 

I I I PI I 
I 63 

64111111111111 
I I I I I I 

6J 1 I 6J 1 I 1 I 1 I 68 

This representative instance (and hence also the 

database) satisfies the FD's that are embodied in 

the relation schemes. [] 

In the above example, the projection of the 

representative instance onto BCF contains the tuple 

111. It may be argued that the tuple 111 over the 

attributes BCF does not represent a correct infor- 

mation, since the relation for the relation scheme 

BCF does not contain this tuple. However, if this 

argument is accepted, then it follows that two dis- 

tinct relationships between the attributes B, C, 

and F are stored in the database. One relationship- 

is stored in the relation for the relation scheme 

BCF, and the other relationship is obtained by the 

extension join CGDEF * DEFB. The assumption that 

there is only one relationship between any collec- 

tion of attributes in the database is essential to 

many works in design theory for relational data- 

bases. Without this assumption the axioms for 

functional and mltivalued dependencies, and the 

various synthesis and decomposition algorithms can- 

not be used. Therefore, we believe that the 

representative instance correctly represents the 

information stored in the database. 

3.1 Computing total projections of the representa- -- -- 
tive instance 

In the remainder of this'paper we' consider a c 
database scheme l$,.., Bn that embodies a cover F of 

.‘i 

all the FD's'that the data must satisfy, and a 

corresponding database r lB--Jrn with a representa- 

tive instance r. For simplicity's sake, we assume 

that the relations r 1' . . ,r do not contain null n 

values. (Thus, null values exist only in the 

representative instance.) We can always decompose a 

relation scheme into smaller relation schemes, each 

having the key of the original relation scheme and 

some of its attributes. Therefore, the only actual 

restriction implied by our assumption is that null 

values cannot be stored for the attributes of a 

key. 

The user formulates queries having in mind the 

representative instance r rather then the indivi- 

dual relations rl, . . ..r . n Suppose that the user is 

formulating a query that refers to a set of attri- 

butes X. In order to evaluate this query, we have 

to compute the projection of r onto X. We assume 

that if the user is referring to the attributes in 

X, then he/she is interested only in tuples of r 

that have non-null values for all the attributes in 

X. Therefore, the problem addressed in this paper 

is how to compute the X-total projection of r, -- 
i.e., 

{n 1 n is a tuple in xx(r) without any null value) 

For example, given the database of Example 4, the 

ACF-total projection of the representative instance 

is {ill}. 

Example 4 illustrates a somewhat surprising 

fact. An X-total projection of the representative 

instance cannot always be computed by joining 

several relations of,the database and then project- 

ing onto X. In that example, the ABCDF-total pro- 

jection of the representative instance is {11121). 

Eowever, no expression of the form n (*m 
. . 3 : 

x j=lBij) has 

as its value the relation {11121) over ABCDF. 

(Here, Ril Ri ,**., are some of the relation 
m 

schemes.) In the following sections we will 

describe two cases in which the problem indicated 

by Example 4 does not occur. 

3.2 The modified foreign-k&constraint --- 

The problem presented in the previous section 

can be solved by imposing a rather simple and 
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natural constraint on the database. Many papers 

(e.g., [SmS,VaZ,ZaZ]) assume that databases satisfy 

the foreign-key constraint. This basic constraint -- 
is defined as follows. If a relation scheme Ri 

contains a set of attributes K that is a key of 

another relation scheme R., and if the relation r 
J i 

contains a tuple whose projection onto K is k, then 

the relation r 
3 

must also contain a tuple whose 

projection onto K is k. 

Example. 2: Consider the database scheme 

ABCDE, =F, EE, and suppose that the relation for - 
each relation scheme is empty. If we insert the 

tuple 11111 into ABCDE, then the foreign-key con- 

straint requires that we insert into CDEF a tuple 

whose CDE-value is 111. So, suppose we insert the 

tuple 1111 into CDEF. Now the database -satisfies 

the foreign-key constraint. [J 

In the above example, if the relations for 

ABCDE and CDEF are joined, we get a tuple with an 

AF-value 11. But the relation for ALOE does not 

contain any tuple with an AF-value 11, although AF 

is the key of this relation. If the database is 

intended to satisfy the foreign-key constraint, it 

is natural to require also that the relation for 

ALOE will have a tuple with an AF-value 11. Moreo- 

ver, a tuple of ABCDE * CDEF has values for all the 

attributes of AFE and not just for the key, and so 

we should require that the projection of that tuple 

onto AFE will be in the relation for AFE. A con- 

straint that imposes this requirement on a database 

is defined as follows. Let RL,...,Rn be a database 

scheme that embodies a cover F of all the FD's. A 

database rl, . . . ,r n satisfies the modified foreign- 

key constraint if for every ri the following is - 
true. If a tuple u is in ri, and R. 

JL 
,.*-, R. 

Jm 
are 

all the relation schemes contained in R+ 

there is a tuple v defined on R: 
i' then 

such that v(R 
jk 

) 

is in r. An efficient 
Jk 

(l<k<m) and v(Ri) = p. 

method for enforcing this constraint is described 

in [KS]. 

Theorem 1: - - If the modified foreign-key con- 

straint is satisfied, and each relation r i satis- 

fies the FD's embodied in its relation scheme, then 

(1) the non-null portion of every tuple in the 

representative instance is included in some 

'extension join, and 

(2) the representative instance satisfies all the 

FD's. 

Proof: Let rc = U" j=laR(rj), and let u be a 

tuple in oR(ri). Consider the computation of 

chaseF(r'). By a lemma of [BDB], the only columns 

of IJ that might be changed in the chase process are 

in Rl. By the modified foreign-key constraint and 

the above lemma, chaseF(r') can be computed even if 

we impose the following restriction. Wh.enever an 

FD X + A is applied to a pair of tuples ul and p2, 

one of these tuples must have originated from a 

relation r 
k whose relation scheme embodies X + A. 

If this restriction is applied, then the tuple u 

will have in chase (r*) 
F 

non-null values exactly in 

the columns for Ri. Furthermore, if Ri ,-**, 
2 Rim 

are all the relation schemes that embody FD's that 

are'used to replace null values of p with non-null 

values, then the non-null portion.of p is contained 

in the extension join $=lRi 
k 

, where Ri = Ri. 
1 

We now prove that the representative instance 

satisfies F. Suppose not. That is, there are 

tuples pl and p2 that violate an FD X + A. Let Rk 

be the relation scheme that embodies X + A. By the 

modified foreign-key constraint, ul(RL) and u2(RL) 

are in r k and, therefore, this relation has two 

distinct tuples with the same value for the key 

x- [I 

We now give an algorithm for finding an 

expression E whose value is the total projectionrof 
. . , . . 

the representative instance onto a given set of 

attributes X. The correctness of this algorithm 

follows from Theorem 1 and its proof. 

Algorithm 1 

(1) Let S be the set of all the Ri's such that 

X 2 RI. 

(2) While there are R i and R. in S such that 

R CR+ 
J 

i- j' remove Rj from S. 

(3) Let 'pi ;...,Ri be the relation schemes that 
1 m 

remain in S. 

(4) For each R i let Ei be an extension join of 
j j 

R. that contains X. 
li 

The expression E is 

IPa j=l”X(Ei 1. 
j 
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Step (2) minimizes the number of extension joins 

participating in the union. The time complexity of 

the algorithm is O(n3). 

Example 6: Consider the relation schemes 

(keys are underlined) IJK, $DA, KIA. Let X be KA. - 
After step (l), S - {HDA,KIA], and that is also the 

value of S after step (2). An extension join of 

HDA that contains KA is HDA * DK, and an'extension 

join of KIA that contains KA is KIA. Thus, the 

expression E is nKA(HDA * DK) U nKA(KIA). [J 

3.3 Independent relation schemes -- 

We say that the relation schemes Rl,...,Rn are 

independent if we can perform any insertion or 

deletion on each relation ri without having to 

modify the contents of other relations. Formally, 

we define the relation schemes R 1' . . ..R.‘ to be 

independent if the following is true. If each 

relation r i 
satisfies the FD's that are embodied in 

its relation scheme, then 

(1) the representative instance satisfies the ED's, 

and 

(2) total projections of the representative 

instance can be computed by expressions of the 

form U~=lxX(Ei), where each Ei is an extension 

join. 

We will give a sufficient condition for a collec- 

tion of relation schemes R 1' . . ..R. that embody a 

cover of the FD's to be independent. Our condition 

is much less restrictive than the one implied by 

WI s and we believe that many practical applica- 

tions satisfy it. This condition is also more gen- 

eral than the tree-structured schemas of [Va3]. 

We say that a relation scheme R. can add an 
J - 

attribute A to Ri if there is a key K of R 

that- A 6 K and Rj 2 R:. 
3 

such 

The relation schemes 

R1' . . ..R. satisfy the uniqueness condition if and 

only if for every Ri 

(a) no relation scheme (other than Ri) can add to 

Ri an attribute already in Ri, and 
+ (b) if A E Ri-Ri, then there is a unique R 

j 
that 

can add A to Ri. 

Theorem 2: ~- If the relation schemes R1,...,Rn 

embody a cover of the FD's and satisfy the unique- 

ness condition, then they are independent. Furth- 
ermore, if Rl,..., Rn embody a cover of the FD's and 

each Ri has only one (explicit) key, then they are 

independent if and only if they satisfy the unique- 

ness condition. 

Example 7: ~- The relation schemes in Example 4 

do not satisfy the uniqueness condition, because 

BCF adds F to CGDEF and F is already in CGDEF. The 

relation schemes of Example 6 satisfy the unique- 

ness condition and, hence, are independent. In 

proof, (DK)+ = DK and DK does not contain any other 

relation schemes. Similarly, (KIA)+ - KIA and 

DK $ KIA, HDA k KIA. As for HDA, the relation 

scheme DK adds K to HDA and 

KIA $ (HDA)+ = HDAK. [I 

Suppose that RI, . . ..R. embody a cover of the 

FD's and satisfy the uniqueness condition. We will 

give an algorithm for constructing an expression E 

whose value is the total projection of the 

representative instance onto a given set of attri- 

butes X. The expression E is a union of several 

extension joins that contain X. However, when con- 

structing an extension join that contains X we 

should be more careful than in Section 3.2. 

Example 8: Suppose we have the relation - - 
schemes &B, I$, CJ), and we need an extension join 

that contains AC: Only AB has both A and C in its 

closure, and so we have to consider only extension 

joins of AB. Both rAC(AB*BC) and nAC(AB*BC*CD) are 

expressions where a projection onto AC is applied 

to an extension join of AB. Since no constraint 

(such as the universal instance assumption or the 

modified foreign-key constraint) is imposed on the 

data, the value of the latter expression is con- 

tained in but not necessarily equal to the value of 

the former. [] 

Since Rl,..., R, satisfy the uniqueness condi- 

tion, each R i ( 
such that XC Rl) has a unique 

minimal (in the number of relation schemes) exten- 

sion join containing X, and this minimal extension 

join has to be chosen. Formally, we say that an 

extension join E = <40kj of Ri (i.e., i = kl) is 

minimal with respect to a set of attributes X if 

(1) X 5 qpls , and 
j 
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(2) no proper subsequence of RR P".D is an 
1 

extension join of Ri that satisfies (1). 

Lemma 1: Let X be a set of attributes such - - 
that X 5 R:. If the relation schemes of the data- 

base satisfy the uniqueness condition, then the 

minimal extension join of Ri with respect to X'is 

unique and can be computed in polynomial time. 

We now give an algorithm for computing an 

expression E whose value is the X-total projection 

of the representative instance. 

Algorithm 2 

(1) Let S be the set of all the Ri's such that 

(2) While there are Ri and R 
j 

in S such that the 

minimal extension join of R 
j 

with respect to X 

contains Ri, remove R 
j 

from S. 

(3) Let Ri ,...,Ri be the relation schemes that 
1 m 

remain in S. 

(4) For each Ri 
j 

let Ei be a minimal extension 
j 

join of Ri with respect to X. The expression 
I 

Step (2) of the algorithm minimizes the number of 

extension joins participating in the union. The 

time complexity of the algorithm is O(n3). 

Example 9: Suppose that the attributes are - - 
P(project), D(department), M(manager), L(location), 

and A(assistant), and the relation schemes are DP, 

DpM, and &F-N. 

:. 
Intuitively, the database scheme describes an 

application in which each project belongs to 

several departments and is carried out in several 

locations, but a department can have only one pro- 

ject in each location. In each department partici- 

pating in a project, there is a manager responsible 

for that project. Each manager has an assistant in 

each location. These relation schemes satisfy the 

uniqueness condition. 

Suppose we want to compute the total projec- 

tion of the representative instance onto LM. After 

Step (1) of the algorithm, S - {LDP,LMA). The 

minimal extension join of LDP with respect to LM is 

LDP * PDM, and the minimal extension join of LMA 

Suppose that the database scheme is Rl,...,Rn, 

and the only constraint is the JD *[R 
1' . . ..R.]. 

The representative instance is r = TIlrR (r*), 
i 

n where rc = U i&+i) since r satisfies 'khe given 

JD. Therefore, the projection onto X is given by 

vX($=lrR i(f))e Let T' be the tableau for this 

expression. We can minimize T' as described in 

[ASUZ]. The minimal tableau has to be evaluated 

with respect to r-. However, we will show how to 

construct from the minimal tableau T an expression 

E with the operands Rl,..., R, whose'kue is the 

X-total projection of the representative instance. 

Let wi be a row of T. Suppose that wi has 

distinguished and repeated(l) nondistinguished 
': ,' : 
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variables exactly in the columns for V. Let 

Ril 
,***, Ri be all the relation schemes that con- 

q 
tain V. Construct the expression Ei = Dq j=l"V(Rij) 

for row wi. Let El,.., Ep be the expressions con- 

structed in this way for all the rows of T. The 

X-total projection of the representative instance 

is given by the expression vX(*;=lEi). 

:k 
Example 10: ~- Suppose that the attributes are 

Npart), J(proWt), M(machine), S(supplier), 

W(warehouse), O(order), and E(employee). The rela- 

(1) A nondistinguished variable is repeated if it 
appears in more than one row. 

with respect to LM is LMA. In Step (2) of the 

algorithm S is not changed, and so an expression 

for the LM-total projection of the representative 

instance is vLM (LDP * PDM) U vLM(LMA). 

The result of the above expression is all 

tuples (1,m) such that either manager m has an 

assistant in location 1 or manager m manages some 

project in location 1. Considering the fact that 

there might be partial information (e.g., a manager 

with a project in a location where he does not have 

an assistant, or a manager with an assistant in a 

location where he does not have a project), the 

correct answer is indeed given by the above expres- 

sion. [] 

4.0 Dealing with join dependencies -- -- 



tion schemes are PJM, PSW, PJSO, JE. The tableau pose' it. We adopt the approach of [FMU] that it is 

for the expression npE (PJM * PSW * PJSO * JE) is rather easy and natural for the user to specify the 

PJSMWOE relation schemes into which Rn has to be decom- 

la , 1 bo bl bz b3 b4 b5 / : posed. Thus, the result of the design process is a 

la b6 4 b8 b9 b10 bll/ 
set of relation schemes 

I l 
R1,"',Rn-l,Rn,.'.,Rk, 

where the first n-l relation schemes embody a cover 
la , 1 b. b7 b12 b13 b14 b15' F of the FD's and Ri = epnRi is a key of R. 

lb16 bO b17 b18 b19 b20 a7 ' I 

5.1 The first case: FD's and a JD. ----- ----- 

The minimal tableau obtained from the above Suppose that the database must satisfy F, the 
tableau is JD *[Rlv-,~l, and the modified foreign-key con- 

PJSMWOE 
la 1 1 b. b7 b12 b13 b14 b151 

lb b b17 $8 big b20 a7 \ I 16 0 
I 

The expression that corresponds to the first 

row of the minimal tableau iS 

El = npJ(PJM) U rpJ(PJSO). The expression that 

corresponds to the second row is E2 = JB. The PE- 

total projection of the representative instance is 

given b the expression 

~PE{bpJO’JM) U npJ(PJSO)) * JE); [I 

A proof of correctness for this algorithm is 

based on the technique for minimizing tableaux 

[ASUP] and is beyond the scope of this paper. 

5.0 Functional and join dependencies -- - 

We believe that‘the first step in designing a 

database scheme is to find relation schemes 

Rl' ...,Rn-l in third normal form that embody the 

FD's [Ber]. Further decompositions of Rl,...,Rnml 

according to JD's that are not implied by the FD's 

is undesirable, since some keys will be split 

between several relation schemes. (As a result, 
1 some FD's will no longer be embodied by the data- 

base scheme.) However, if for all i R e R: (R is 

the set of all the attributes), then an additional 

relation scheme R, has to be added [BDB]. Rn is a 

key of R, i.e., R C Ri and no subset of R, has this 
I property. R, is needed to ensure that the database 

scheme has the lossless join property. Since R, 

does not embody any FD, we can use JD's to decom- 

straint. The representative instance is computed 

as follows. Let rc = UkVloR(ri). First compute 

r" = chaseF(r'), and then compute r = & 
ialnRi(r”) l 

By a theorem of [BMSU], the representative instance 

r satisfies F and *[R 1' l l l &I l 

By Theorem 1, during the computation of 

chaseF(r') a null value is always equated Bith a 

non-null value and, therefore, all the null values 

in rV are distinct. Furthermore, if tuple u of r* 

has non-null values exactly in the columns for R 
j' 

then the chase process transforms n to a tuple with 

non-null values exactly in the columns for R+. 
j 

Now consider the tableau T' for 

and let T - chaseF(T'). By a theorem of [ASUl], 

r = T(r"), since r" satisfies F. Since the rela- 

tion schemes embody F, all the nondistinguished 

variables in T are distinct. Furthermore, a row of 

T' that corresponds to R. is transformed by the 
J 

chase process to a row of T with distinguished 

variables exactly in the columns for RT [BDB,BMSU]. 

Thus, the rows of T correspond to complete exten- 

sion joins of the R *s. 
j 

We can now apply the 

results of Section 4.0 to T provided that we use 

complete extension joins of the R *s as the rela- 
.I 

tion schemes. 

Example 11: This example is from [FMU]. The 

attributes are B(bank), A(account), L(loan), and 

C(customer). The relation schemes are p, B, CA, 

and CL. The tableau for *[AB,LB,CA,CL] is - 
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CAL B 
lb a , 1 2 b2 a41 

ib ,3 b 
4 

a 
3 

al 
4, 

la ,I a 2 b 5 bl 6, 

1 b7 a3 b8' 
* 

I 

By applying A + B, we can replace b6 with a4. By 

applying L + B, we can replace b8 with a 
4 

. No more 

FD's can be applied after that, and so the chase of 

the above tableau is 

CALB 
lb a , 1 

lb b a al 
,3 4 3 4, 

The rows of the above tableau correspond to com- 

plete extension joins as follows. The first row 

corresponds to AB, the second to LB, the third to 

CA * AB, and the fourth to CL * LB. Suppose we 

want to compute the CB-total projection of the 

representative instance. By applying this projec- 

tion to the above tableau, we get the tableau 

CAL B 
lb b b al ,I 0 2 4, 

lb ,3 b 4 b 9 al 4, 

la ,I b 0 b 5 al 4, 

la b b a] ,I 7 9 4, 

and after minimization it becomes 

CAL B 

ia1 b. b5 '41 

The expression that corresponds to the single row 

of this tableau is nCB(CA * AB) U vCB(CL * LB). 

Similarly, it can be shown that the CALB-total 

projection of the representative instance is given 

by the expression CA * AB * CL * LB. [] 

If Rl,...J$ satisfy the uniqueness condition 

(as in the above example), then the modified 

foreign-key constraint is not required. However, 

computing an expression E for a total projection is 

more complicated [Sag]. 

5.2 The second case: FD's and an EJD ----- ----- 
I 

Suppose that the relation schemes 
c 

R1' -.-J$,m.l, Rn satisfy the uniqueness condition. 
* 

The relation scheme R n is decomposed into R,, . . . . ~ 

using the EJD *[R,,...+], and so the database 

scheme is 3' %' . . . . A representative instance is 

constructed in two stages. First construct a rela- 

tion rn * for R* using rn,...,rk and the EJD 

*[R,, . ..J$J. n and then construct the representative . 
instance using 

c 1 
r ,...,rnWl,rn as in Section 3.3. 

The relation rn might .have nulls, but these nulls 

cannot be replaced with non-nulls when the chase of 
c 

the FD's is computed (because R1 ,--.,Rn-l,Rn 
satisfy the uniqueness condition). The representa- 

tive instance as defined here does not necessarily 

satisfy the given EJD. However, it is not clear 

that it should satisfy the EJD. A simple case in 

which the representative instance does satisfy the 

EJD is discussed in [Sag]. 

Let X be a set of attributes. A subset K of 

RL is a key for X 5 Ri if XC K+, and for every 

proper subset K' of K, we have X$ K’+. 

Lemma 2: - - If ~,...,R~-~,R: satisfy the 

uniqueness condition, then a set X has a unique key 

K in Ri. The key K can be computed in polynomial 

time. 

An expression E for the X-total projection of 

the representative instance can be constructed as 

follows. Let S be the set of all the Rjcs (l<j<n) 

such that XCR+. 
j 

Add to S a key K for X in Rc. n 
Now apply the algorithm of Section 3.3 to the rela- 

tions rl,...,rn-1 and the relation for K. The 

relation for K is computed using the EJD c 
*Pn,--J$l and the relations r 

n' 
. . . ,r k according 

I 
to Section 4.0. 

:L 

Example 12: Suppose that the attributes are 

J(project), S(supplier), P(part), R(price), and 

E(employee). The relation schemes are SpR, JE, Jp, 

and JS. The only FD is SP + R, and the EJD is - 
*[JE,JP,JS]. Suppose we want to compute the SP- I 

t 
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total projection of the representative instance. A 

key for SP in JSPE is SP. Thus, the expression for 

the SP-total projection of the representative 

instance is E U nSp(SPR). The expression E is com- 

puted as follows. The tableau for *[JE,JS,JP] is 

J S P E 

la b a bl ,I 3 3 4, 

1'1 b5 b6 a4] 

By applying projection onto SP (i.e., onto the key 
s 

K of SP in R,), we get the tableau 

J S P E 
lb , 7 a2 bl b2/ 

lb b , 7 3 a3 b41 

lb7 b5 b6 bi31 

Minimizing the above tableau yields 

J S P E 
lb a , 7 

lb b a bl ,7 3 3 4, 

By the algorithm of Section 4.0, the expression for 

this tableau is nSp(JS * JP) and so the complete 

expression is nSp(JS * JP) U nSp(SPR) [] 

6.0 Conclusions -- 

We have shown that if null values are not 

used, then some constraints must be imposed on the 

data to guarantee that queries can be evaluated by 

lossless joins rather than by the chase process. 

We have proposed the modified foreign-key con- 

straint as a possible constraint. We have also 

shown that if the relation schemes satisfy the 

uniqueness condition, then no constraints are 

needed. In this case the relations of the database 

can be updated independently. This result is more 

general than earlier conditions [BG,Va3]. We have 

also considered the case where the dependencies are 

FD's and a JD. We have shown how to apply the 

optimization techniques of [ASUZ] in order to 

obtain expressions that have as few operands as 

possible. Finally, we have proposed a method for 
handling FD's and an EJD. However, this topic 

requires further investigation. 
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