
REAL-WORLD MM’S

Edward Sciore

Dept. of Computer Science
SUNY at Stony Brook

Stony Brook, N.Y.

Abstract

According to database theory, a database de-
signer can specify any set of data dependencies, no
matter how complex, to constrain a database scheme.
This paper investigates how much complexity is
actually needed in real-world situations. It is
shown that every "natural" set of mvd's must be-
long to a class of mvd's called conflict-free.
Conflict-free sets of mvd's have the desirable
property that they allow a unique 4NF dependency
preserving database scheme; moreover, non conflict-
free sets have no such normalization. If a set
of mvd's is not conflict-free, then the depend-
encies are inadequately specified; there are
semantic concepts that are unrepresented in the
scheme. These concepts are isolated, and it is
shown that adding these concepts amounts to making
the set of mvd's conflict-free.

using data dependencies. A data dependency, for

example, can assert that one attribute value

functionally depends on another, or that a set of

values is independent of another set. In specify-

ing a set of data dependencies, the database de-

signer describes the structure of the database. A

user interacts with the database through this

structure; consequently, the structure should be

simple and easy to understand -- otherwise, the

database designer cannot be sure that he has

correctly represented all of the relevant seman-

tics, and the user will not be able to understand

the interrelationships between the data.

1. Introduction

A critical part of relational database design

is the selection of attributes; the set of attrib-

utes provides a definite and specific meaning for

the value in a relation. For example, a scheme

may contain the two attributes SUPP and PART,

These attributes were chosen by the database de-

signer to denote a certain relationship. A tuple

(s,p) might denote the fact that supplier s is

currently supplying part p, or that s is able to

supply p, or that p is out of stock for s; but

whatever the meaning, it is determined once by the

database designer and does not change.

In theory, the database designer can specify

any possible set of data dependencies in his

scheme. This possibility has caused trouble for

automatic synthesis and decomposition algorithms;

there may be several different cahdidate schemes,

none of which can be considered best [BBG]. In

"real-world" situations , this problem does not

seem to arise; once a proper set of attributes has

been chosen, a natural database scheme always seems

to present itself. What happens to the structural

complexity that current theory allows? Is it ever

really needed?

Although the actual meaning of the attribute

realtionships is unknown to a database system, the
structure of the relationships can be specified,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

121

In this paper, we investigate these questions

with respect to the set of multivalued dependen-

cies in the scheme. Our results imply that not only

are complex sets of mvd's undesirable and avoid-

able, they are also unnatural; that is, for every

complex set of mvd's, there is a simpler set that

represents the application better. Therefore, the

existence of a complex set of dependencies indicates

a poorly designed scheme, rather than a complex

application.

"1981 ACM 0-89791-040-0 /80/0400/0121 $00.75 The formal criterion for a set of dependencies

http://crossmark.crossref.org/dialog/?doi=10.1145%2F582318.582337&domain=pdf&date_stamp=1981-04-29

to be simple is provided in Section 3, where we

define conflict-free. Conflict-free sets of mvd's

have several desirable properties. For any conflict-

free set G of mvd's, there is a single join

dependency D=*[Xl,..., x,] such that G is equivalent

to D. D belongs to a special class of join de-

pendencies which itself has interesting properties

[B+]. Furthermore, the database scheme (X1,.,.,X,)

is in 4NF and preserves dependencies. Thus,

I+.., Xn} is the best possible database scheme

representing G.

Our contention is that the notion of conflict-

free characterizes the simple and natural sets of

mvd's. In Section 4, we demonstrate the undesira-

bility of non conflict-free sets of mvd's; they are

impossible to normalize adequately, since they

cannot have a dependency preserving:4NF database

scheme. In Section 5, we show why they are un-

natural. If a set of mvd's is not conflict-free,

then it either has a transitive anomaly or a split-

key anomaly. The presence of one of these anomalies

indicates that the scheme is inadequately specified.

We investigate where this inadequacy is, and show

that by fixing the inadequacies, we make the mvd

set conflict-free.

Our results have a strong impact on data de-

pendency theory. The only sets of mvd's that need

ever be considered are conflict-free, and conflict-

free sets of mvd's are equivalent to one join de-

pendency. Therefore, the database designer can

spend his time looking for the one join dependency

rather than specifying mvd's. The implications of

this point are discussed in the conclusion.

2. Preliminaries

The state of relational database theory is

such that there is no standard notation currently

in use. The reader can find a good introduction

to relational theory in [t~l]; we shall adopt the

notation and terminology of that book. In addi-

tion, familiarity with the problems and concepts

of data dependency theory [BBG, MMS] is useful.

A universe IJ is a finite set of attributes.

As a convention, we use the symbols A,B,C... for

single attributes, and Z,W,X... for sets of attrib-

utes. If X is a set of attributes, the 1x1 is the

number of attributes in X. The union of attribute

sets X and Y is written XY. Associated with each

attribute A is a set of values, called the domain

of A. An X-tuple is a mapping from each attribute

A in X to a value in the domain of A. If t is an

X-tuple and RcX, then t(R) is the R-tuple which

is the restriction of t to R. If the set X is

ordered, an X-tuple can be thought of as a row of

values, A relation over X is a set of X-tuples.

When X is the universe U, then the relation is

called a universal relation.

Let r be a relation over R. The attribute

set R is called the relation scheme or r. A

database scheme is a set of relation schemes.

Let S=IXll..., X,) be a database scheme. Then Xi

is maximal in S if there is no X
.i

in S such that

xpj i max(S) is the set of all maximal relation

schemes in S.

If R is a relation scheme, a data dependency

for R is a constraint on the relations over R

that are considered meaningful. In this paper,

we shall consider functional dependencies (fd's),

multivalued dependencies (mvd's), and join

dependencies (jd's). Let r be a relation over R,

let X and Y be subsets of R, and let Z=R-X-Y.

Then r satisfies the PD X->Y if for all tuples s

and t in r, s(X)=t(X) implies that s(Y>=t(Y);

Relation r satisfies the mvd X->->Y if for all s

and t in r such that s(X)=t(X) there exist tuples

u and v in r such that u(XY>=s(XY), u(Z)=t(Z),

v(XY>=t(XY), and v(Z)=s(Z). Join dependencies

are defined later in this section.

For the remainder of this paper, we shall

assume that any set of dependencies are defined

over the universe U; also, unless otherwise

specified, "relation" means "relation over U".

The more general case involves what are known as

"embedded dependencies", and is an important

research problem.

Let G be a set of data dependencies. Then

sat(G) is the set of all relations (over U) that

satisfy every data dependency in G. We say that

G entails D for a data dependency D if every

relation,satisfying the data dependencies in G

also satisfies D; that is,.sat(G)=sat(Gu(D)). For

example, the reader can check that (X->Y) entails

X->-BY, The set G is trivial if every relation

is in sat(G). There is a complete set of inference

rules for fd's and mvd's [BBG]; D can be derived

from G using these rules if G entails D. The

122

closure of G, written G*, is the set (DIG entails

D}. If G' is another set of data dependencies such

that G' *+*, then G' is called a cover of G.

Two important operations on relations are pro-

jection and join. Let r be a relation over R, and

let XcR. Then the X-projection of r, written TX(r),

is the relation (t(X)lt is in r) over X. Let ri

be a relation over Ri for i between 1 and n. The

join of rl,...,rn, written *{rl,,,.,rn), is the

relation {tlt is a tuple over URi, and for* each i

there exists a tuple ti in r, such that t(Ri)=ti)

over UR i'
Let IX,,..., Xn' be a database scheme. Then

the relation r satisfies the join dependency (jd)

my..., X,1] if r={rrXl(r),...,rx,(r)). For

notational convenience, we drop the set brackets

when writing jd's; thus *[{Xl,...,Xn>] is written

*cq,...,xnl. For example, it is well known that

if a relation r satisfies the mvd X->->Y, then r'

also satisfies the jd *[xY,xz], where Z=U-X-Y. If

D=*[X X] 1'"" n
and D'=*[Y1,...,Ym] are two jd's,

then it is known [BMSU] that D entails D' if for

all Xi there exists a Yi such that X cY..
i- J

If D

does not entail D' and D' does not entail D, then

D and D' are called incomparable.

One purpose of data dependency theory is to

be able to syntactically determine when a database

scheme S is a good model of an application. One

standard criterion is that S be in fourth normal

form (4NF). Let G be a set of data dependencies.

Then S is in 4NP if *[s] is in G*, and for all R

in S, if XYcR and X->->Y is in G*, then X->Y is

in G*. 4NF is desirable, because it ensures that

redundancy in relations is minimized [BBG].

Another desirable criterion is dependency pre-

servation.

Definition [S2]. Let S be a database scheme, P

a set of fd's, and G a set of jd's. Then S

preserves F if there is a cover F' for F such that

for all X->Y in F', there exists an R in S such

that XY;R. S preserves G if for all *[X ,...,x,] in
*1

G* and R in S, *[$nR,...,X,nR] is in G . [I

3. Conflict-free Mvd's

Definition. Let G be a set of mvd's for U. Then

a set of disjoint relation schemes {Yl,...,Y,) is a

dependency basis for a relation scheme X if X->->YI
*

is in G , Yi # 0, XnY1=d for each i, and for any mvd

X->->Z entailed by G, Z-X is the union of some of

the Yi's. We write DEP(X)={Yl,...,Yn), and

x-'-'Y&../Y n* Cl
In other words, a dependency basis for X is

the finest partition Y Y of attributes in 1'"" n
U-X such that X->->Yi., It is known [B] that a

dependency basis must exist for any X and G. A

dependency basis is a useful canonical form in

which to express mvd's.

Definition, Given a set G of mvd's, relation

scheme X is a w of G if there exists an mvd

X-74-Y in G. Each Y in DEP(X) is called essential

dependent of X if X->->Y cannot be derived from G

without using an mvd having left hand side X. A

key is essential if it has an essential dependent;

an essential key X is minimal if there is no

essential key ZcX. []

Example. ,Let G be the set of mvd's 1X->->ABCID,

X.4 ->->BICID}. Then D is not an essential

dependent of XA, since XA->->D is entailed by

X-7-7D. However, B and C are essential dependents

of XA, so XA is an essential key. []

It is easily seen [L] that every cover of a

set G of mvd's has the same essential keys. Since

the set consisting of no mvd's is trivial and has

no essential keys, it follows that G has no

essential keys iff G is trivial.

Definition [L]. Let G be a set of mvd's. Then G

is conflict-free (cf) if for any two essential

keys X and Y of G, the following condition holds.

DEP(X)=(V1;,,.,Vk,X1,...,Xi,(ZkY1...Yj)}

and

DEP(Y)={Vl,...,Vk,Yl,.,.,Y.(Z X . ..X.)j
J' Y 1

where

IV,,..., Vk)cDEP(XnY) and ZxX=ZyY. []

The reader can verify that the above example set

G of mvd's is conflict-free.

The definition of conflict-free is specifical-

ly designed so that the following property holds.

Proposition 3.1 [L]. A cf set of mvd's has a

unique 4NF database scheme. []

Lien does not directly determine this data-

base scheme S; in order for us to do so, we shall

need some definitions. Let {X,,...,X,) be the

essential keys of a set G of mvd's (not necessarily

cf) over attributes R, and let DEP(Xk)=(Ykl,...,

Ykm) for each k. That is, we have

123

X1-~->Y111Y121...lYlm

.

.
m

x*-~-~ynllyn21..‘/ynm

Let j =(jl,..., jn) be a sequence of n integers;

call j legal if lgkzmk for all k. A legal

sequence j can be thought of as choosing the jkth

dependent of each essential key Xk. Call S=

{XIYlj,. . . , X Y) the selection set for the se-
n nj

quence j; the common attributes of S are W =
j

(ZIZ is in S). That is, Wj is the maximum set of

attributes such that WjcXkYkj for all k. We now

define the database scheme SG to be the maximal

elements in the set of all possible Wj's.

Formally, we have

SG=max({WjIj is a legal sequence)),

Example. Let G= IX->->ABC/D, XA-MBICID) as in

the above example. Then SG={XD, XAB, XAC). []

The definition of SG has the following inter-

pretation: If X->->YlZ holds, then any relation-

ship between Y-values and Z-values must be a

derived one; that is, yz is in vyz(r) iff there

exists an x such that r;y is in n xy(r) and xz is in

nXz(r). Therefore, a good database scheme should

separate Y from Z. The database scheme SG does ex-

actly that. In the above example, BC cannot appear

in any R in SG, since XA->->BlClD splits B and C;

on the other hand XAB is in SC since none of the

mvd's split X,A, and B. SG can be thought of as

the database scheme that group together as many

"unsplittable" attributes as possible.

It turns out that if G is conflict-free,

then SG is the database scheme mentioned in

Proposition 3.1. The proof of this fact is

given in the following series of lemmas.

Definition. For an essential key X, Y in DEP(X)

is basic for X if there does not exist an

essential key Z # X and W in DEP(Z) such that

zwg Y. []

Example. Let G={A->->BDEHIlCFJ,

AB->->DHIIEICFJ,

ABD->->HIIIEICFJ,

AC->+F~J~B~DEHI)

Note that G is cf. Dependents H and I are basic

for ABD, E is basic for.AB, and F and J are basic

for AC. There are no other basic dependents. []

Lemma 3.2. For any nontrivial cf set G of mvd's

there exists an essential key X and a Y in DEP(X)

such that Y is basic for X.

Proof. If G is nontrivial, then there exists an

essential key. Choose X and Y such that X is a

minimal essential key, Y is in DEP(X), and for all

minimal essential keys Z # X, if W is in dep(2)

then IxY~~~zw~. Suppose Y is not basic for X;

then there exists an essential key Z with dependent

W such that ZWcXY. We can assume without loss of

generality that Z is minimal, so XnZ is not an

essential key. By the definition of cf, the

dependency bases of X and Z must be

x->->YIYII...IYm

Z-'-'Z1]. . . lZ,lQ

where Y = VxZ1...Zk, Q = VaY1...Ym, W = Zk, and

v,x = vzz. Since IXY~~lZZil for any i, it must

be that k=l and Vx=@; that is, Y=W. So if ZWL~,

then ZcW -- which is a contradiction. [I

Lemma 3.3. If Y is basic for X, then for all A in

Y and all essential keys Z, A is not in Z.

Proof, Suppose WA is an essential key. Since Y

is basic for X, WAX is not a subset of XY for any

Z in DEP(WA). So we must have the following

dependency bases.

x->->YIYII'.'IYm

WA-'->WII...IWk

Since A is in Y, the definition of cf implies that

XY=WAZ for some Z. Consequently, since WA is not

a subset of XY, there must be a dependent Wi of

WA such that W&Y. Thus WAWi@Y, which is a

contradiction. []

Lemma 3.4. If Y is basic for X, then XY is in SG.

Proof. From Lemma 3.3, we know that each A in Y

is not in any essential key. The definition of

cf then implies that each essential key W#X must

have the attributes XY in the same dependent; that

is, there must exist a Z such that XYZ is in DEP(W).

Therefore, there exists some R in SG such that

XYcR. But Y in DEP(X) requires that RcXY. Thus,

XYisinSG. []

Lemma 3.5. Let.G be a cf set of mvd's such that
-¶I
each mvd ,is essential, and let Y be basic for X.

Let G' be G with the attributes of Y removed.

Then G entails G'.

Proof. It is well known that removing an attribute

from the right hand side of an mvd D leaves an mvd

entailed by D. Lemma 3.3 ensures that the

124

attributes in Y only appear in the right hand side

of mvd's of G. []

Lemma 3.6. Let Y be basic for X, and let G and G'

be as in Lemma 3.5. Then SG=max(SG,u{XY)).

Proof.
3 - : Suppose R is in SG,. Then by the;definition

of SG" either RcXY or R is in SG. Si&l XY is in

SG from Lemma 3.4, the containment is proved,

c: Consider any W in SG.' If WnY=@, then clearly

w is iii SG,. If there exists an A in WnY, then by

Lemma 3.3 and the definition of cf there must exist

a Q, for each essential key 2 such that Q,XY is in

DEP(Z). Thus W=XY. [I

We are now in a position to prove our theorem.

Theorem 3.7. If G is cf, then G entails *[s,].

Proof. We can assume without loss of generality

that every mvd in G is essential. Lemma 3.2 states

that if G is nontrivial, then there exist X and Y

such that Y is basic for X. Let G' be as in the

previous lemmas. Since SG-lnax(SG'ucXY}), we need

only to show [Sl] that G entails *[SG,,~]. Using

the chase procedure of [MMS], we know that because

X->->Y, in order to show that G entails *[sG,,XY]

it suffices to show that G' entails *[S,,]. Now

clearly G' is cf, and by Lemma 3.5 is entailed by

G. Therefore G' has its own set of essential keys

(which will be a subset of those of G), and if

nontrivial, has some basic attributes. We con-

tinue inductively until G' becomes trivial. Since

a trivial set of mvd's over attributei;:R has

s~=*[R] (the trivial jd), the result follows, [I

The technique used in proving this theorem

provides admeans to construct SG, given G; con- . ._
sider the following example.

Example. Let G be the set of mvd's of the pre-

v!ous example. Since attributes F and .I are basic

for AC, ACP and ACJ are in SG. So we can remove

FJ from G to get

G'={A->->BDEHIIC,

AB->->DHIIEIC,

ABD->->HIIIEIC,

AC->->BDEHI).

This last mvd is nonessential, so we remove it. H

and I are still basic for ABD, and now C is basic

for A. Since AC is not maximal, we add only.ABDH

and ABDI to SG, and remove attributes CHI from G'.

The resulting mvd set is

{A->->J$DE,

AB->->D(E,

ABD->->E),

of which only AB->->D~E is essential. Here, D and

E are basic for AB; ABD is not maximal, so we add

ABE to SG and remove attributes DE from the

dependencies. The final set is

IAB->->01,
which is trivial, Since AB is not maximal, it is

not added to S G' SG is therefore{ACF,ACJ,ABDH,

ABDI,ABE). The reader can verify that G actually

does entail the jd *[ACP,ACJ,ABDH,ABDI,ABE~. Cl
Corollary 3.8, SG is a 4NF database scheme.

Proof. Suppose not. Then there must exist an R

in SG'and X->->YII... IYn in G such that XcR and

there exists i and j such that YInR#O and YjnR#O.

However, if this were the case, then clearly the

definition of SG would imply that R is not in

SG. Cl
Theorem 3.7 and Corollary 3.8 show that when

G is cf, SG is indeed the 4NF database scheme of

Proposition 3.1, and is therefore unique. We now

consi'her SG when G is arbitrary.

Theorem 3.9, For any set G of mvd's, *[SG]entails

Proof, The definition of SG implies that every

attribute appears in S G' It therefore suffices !

(from the results of [BMSU]) to show that for

all essential keys X and R in SG, there exists a

Y in DEP(X) such that R&XY. But this fact follows

directly from the definition of SG. []

,Not only does SG entail G, but it is the

weakest jd to do so, as the following corollary

states.

Corollary 3.10. Let G be any set of mvd's, and

let D be a jd. If D entails G, then D entails SG.

Proof, If D entails G, then for every R in D and

essential X->->YII ,.. IY, in G, there must exist an

i such that RzXY,. Since this is true for all

essential keys.X, the definition of SG implies

that there is a Z in SG such that xYic-Z. Thus

RcZ, which implies that D entails SG. [] '

Theorems 3.7 and 3.9 show that if G is a cf

set of mvd's, then G is equivalent to the single

jd *[s,]. The converse also holds.

Proposition 3.11. [Y] Let G={X->->YlD entails

X->->Y) for some jd D. Then G is cf. [I

125

If we start with a cf set G of mvd's, then

Theorems 3.7 and 3.9 imply that the mvd's entailed

by *[sG] will be G*. Now suppose we start with a

jd D and find the 5et G of mvd's entailed by D.

Then *[S,] will certainly be entailed by D (since

D entails G which entails *[s,]>, but it may not

be equivalent to D. For a simple example, let

D=*[AB,AC,BC]. Then there are no non-trivial mvd's

entailed by D, so *[S,]=*[ARC], the trivial jd.

The results of this section show that a set

G of mvd's is equivalent to jd *[s,] iff G is cf.

It is interesting to note that there exist several

very different characterizations of the class of

jd's that are equivalent to their implied mvd's

LB+]. Inasmuch as this class is quite general

and has many desirable properties, it is natural

to wonder whether there are any real-world schemes

that do not belong to this class. Sections 4 and

5 consider this question in detail.

4. Normalization Considerations

In the previous section we saw that cf set

G of mvd's is equivalent to exactly one jd, namely

Cs,l SG is a "perfect " 4NF, dependency pre-

serving database scheme representing G. Conversely,

if G is not cf, then by Proposition 3.11, there

must be two incomparable jd's entailed by G.

Suppose, for example, that @iA->->BIC, B->->AIC).

TWO incomparable jd's entailed by G are *[AB,BC]

and *[AB,AC]. What would be a good database scheme

representing G? Consider the database scheme

W,AC). Our definition of jd-preservation implies

that the two jd's *[ACnAB,ACnBC] and *[AB~AR,AB~Bc]

hold. The latter jd is *CAB] which trivially holds,

but the former jd is the Cartesian product *[A,C],

which does not hold. Thus, {AB,AC) does not pre-

serire the jd *[AB,BC]. The reader can check that

ABC is the only database scheme that preserves

both jd's. Since a relation over ABC contains

redundant information, however, this scheme also

is not entirely satisfactory.

In general, whenever there are two incomparable

M's, there is a problem in finding a 4NP dependency

preserving database scheme.

Theorem 4.‘1. Let {Rl,...,Rn) be a 4NJ? database

scheme, and suppose *[R~,...,R,] does not entail

"CS 1
,...,s,]. Then [R~,...,R,] does not preserve

"CS 1 ,...,s,l.

Proof. Define the attribute set M={AI there exist

i, j such that A is in S nS 1; that is, M is the

set of attributes appearing in more than one S
k'

Since Cq,..., Rnl is in 4NF, it can be shown that: ,

whenever McRi there is an S
j

such that R+Sj

(otherwise, *cSl,...,Sn] would split Ri). It is

known [BMSU] that if *[R~,...,R,] does not entail

"IS ,...,S,], then there exists an Rk such that for

all S.,
l3 l-5

is not a subset of S . Thus M is not a

subset of %' Now consider thejjd *[RknSl,,..,

\nS,]. Since Rk is not a subset of S for all j,

the jd D=*[RknSl,.,.,PknSm] is non-triiial. Since

M is not a subset of Rl, it follows that there must

exist i, j and some attribute A such that A is in

both Si-Rk and Sj-I$. It is known [Sl] that this

fact implies that D is not entailed by *[I$,,.,,

R,] and *[Sl,...,Sm]. The result follows. []

Corollary 4.2. Let G be a set of mvd's. Then G

has a dependency preserving 4NF database scheme iff

G is conflict-free.

Proof. If G is cf, then SG is the required data-

base scheme. If G is not cf, then by Proposition

3.11 there are at least two incomparable jd's

entailed by G. The result then follows from

Theorem 4.1. []

Until this point we have been considering sets

of data dependencies that contain only mvd's.

When we also consider fd's, .complications arise.

For example, let G={A->B, B->C). The set of mvd's

entailed by G is {A->->BlC, B->->AIC), which is

not cf. However, the database scheme {AB,BC) is a
.‘

well-known "optimal" dependency preserving data-

base scheme representing G. Although this scheme

does not preserve the jd *[AB,AC] according to our

definition, it does not need to, as long as it

preserves the fd A->B. That is, as long as A->B

holds in relation AB, the jd*[AB,AC] will be pre-

served.

This extra power of fd's means that our notion

of cf should not apply to mvd's entailed by fd's.

Recall the definition of an essential dependent in

Section 9; Y is an essential dependent of X if

X->->Y can be derived only by using some mvd with

left hand side X. We can extend the definition to

fd's by including the inference rule "X ->Y derives

X->->Y." So if X->Y, then Y is not an essential
1.

dependent of X. In G={A->B, B->C},for e%ample,

there are no essential keys; G is trivially cf.

126

Although this paper is concerned only with

"real-world" sets of mvd's, we shall need to con-

sider fd's briefly (see Theorem 5.3). The above

treatment shell be satisfactory for our purposes,

although we do not claim that it is entirely

correct. That is, in the next section we shall

phow that every non-cf set of mvd's is in some

way inadequate and "unreasonable"; however, it is

an open problem to determine whether the reason-
*

ableness of cf mvd's, as developed in these last

two sections, extends to fd's as well.

5. Improving Schemes That Are Not Conflict-Free

Conflict-free sets of mvd's have been shown

easy to normalize, whereas non-cf &d$ pose

insurmountable normalization problems. Are these

problems avoidable? We contend that they are. A

well-formed set of dependencies for an application

can only have so much complexity; if the depend-

encies are not cf, then the scheme is unduly com-

plex, and not well thought out. In this section

we will argue that every "real-world" situation

that can be modeled'using mvd's is modeled by a

cf set of mvd's. Thus a database designer need

only consider cf sets of dependencies -- if his

dependencies are not cf, then he knows something

is wrong.

There are several things that,,might be wrong.

An important situation is the case where the data-

base designer simply makes a mistake, as in the

following example.

Example. Consider the scheme with attributes

EMT?, DEPT, and FLOOR. We want to model the fact

that each employee works in a set of departments

and each department is located on a set of floors.

A first attempt at specifying mvd's gives

{EMP->->DEP'$, DEPT->->FLOOR}, which is not cf.

However, the first mvd is incorrect; DEPT and

FLOOR belong together in each mvd, and therefore

EMP-a->{DEPT,FLOOR) is correct. This new scheme

is cf. [I

Mvd's are sufficiently difficult to understand

that such mistakes are not unlikely. Therefore, an

immediate advantage of requiring cf mvd's is that

these simpler errors are easily caught. It is also

possible for a scheme to be correctly specified,

and yet the mvd's are not cf. In this case, we

claim that the scheme is inadequately specified.

Consider the following scheme.

Example. Suppose we have the scheme (AUTH TITLE

LOC), which represents authors, titles of their

books, and the locations where the books are

published, Futhermore, we have the data depend-

encies AUTR->->TITLEILOC and TITLE->->AUWILOC.

The first dependency states that each book written

by an author is published in the same set of loca-

tions, The second dependency states that if a

book has several authors, then each of the authors

uses the same set of locations to publish. This

set of dependencies is not conflict-free. The

following relation satisfies the mvd's.

AUTR TITLE LOC

Ullman Intro, to Automata Reading
Ullman Intro. to Automata London

Hopcroft Intro. to Automata .i Reading
Hopcroft Intro. to Automata London

Ullman Principles of Compilers Reading
Ullman Principles of Compilers London

Ah0 Principles of Compilers Reading
Ah0 Principles of Compilers London

Jensen PASCAL User's Manual " Berlin
Jensen PASCAL User's Manual Heidelberg
Wirth PASCAL User's Manual Berlin
Wirth PASCAL User's Manual Heidelberg

The problem with this scheme centers around '-'

the following observation, Since Hopcroft and

Ullman.wrote "Intro. to AutomataIt and Alio and

Ullman wrote "Principles of Compilers," the mvd's

imply that Aho, Hopcroft, and Ullman all must '

publish in the same locations (here, Reading and

London). We can take,advantage of this implicit

semantic property of the scheme to group together

all authors that must have common publishing loca-
'.

tions, storing the data in two tables.

AUTH

~

?

LOC

1 Reading

I' r"_i

1 London
2 Berlin
2 Heidelberg

Since Aho, Hopcroft, and Ullman all must

publish in the same locations, they are assigned

the same group number, as are Jensen and Wirth.

127

Is there any meaning to the grouping attribute G?

Yes; it denotes the publishers of the books. The

meaning of the scheme then becomes: authors have

only one publisher, and books can be published by

only one publisher; each publisher publishes its

books in a certain set of.locations. The new data

dependencies are {AUTR->PUB, TITLE->PUB, PUB->->

LOCI. , ,By acknowledging the existence of publishers,

the scheme now has a cf set of dependencies, which

is equivalent to the original dependencies (in a

sense to be defined later). [I

What makes the original set o,f;.mvd's for the

above scheme not cf is the existence of essential

keys X and Y such that X->->Y and Y->->Z are in G*,

XYnZ=@, and XnY->->Z is not in G*; the reader can

check the definition to see that in such cases,

the mvd's cannot be cf. We made the scheme cf by

adding an attribute and some fd's to the scheme.

We now show that this technique works in general;

the new scheme we get will more accurately model

the application than the original one. :.,

Definition. n(xzx)y(r)=IyIxy is in n,(r)). When

X is obvious from context, we shall write r,(r).[]

Our first result is a generalization of Theorem 2

of [FXY].

Lemma 5.1. Let G be a set of mvd's, and suppose

attribute sets X,Y, and Z are such that X->->Y

and Y->->Z are in G*, and XYnZ=Q. Let r be a

reiation over R, where XYZcR. , Then

a) If there exist x, x1: y such that both

xy and x'y are in n,(r), then xxz(r)qxIz(r);

b) If there exist x, y, y' such that both

xy and xy' are in x,(r), then syz(r)=xy,z(r).

P&of.

(a) Suppose x2 is in nxz(r). Since xy is in

n,(r) and YnZ=@, X->->Y implies that xyz is in

FXYz(r). Now since x'y is in r,(r) and XnZ=0,

Y->->Z implies that x'yz is in rXYz(r), Thus

X'Z is in n,(r), and rxz(r)~vx,z(r). The proof

of the reverse containment is similar.

(b) This is analogous to (a), and is left to the

reader. [I

We can combine parts (a) and (b) of Lemma 5.1

to connect several tuples together. For example,

if xy, xy', and x'y' are in r,(r), then rxZ(r)=

nxtz(r) and ;z(rhytz(;~i sjhg:;y;, E

xlyl,...,xnyn are in xxy 21 2i+1

and ~~i-~~y~i~ then r,,(r)=xxi,(r) and

syiZ(=)-=yjz (r). Consequently, whenever

there exist XY-tuples xy and x'y' in

r,(r) that can be connected in this fashion,

they must have the same set of Z-values.

Let us say that the set of such XY-values

form a group; all tuples in a group must

have the same set of Z-values. In our

above example, we grouped together the

tuples (Ullman, Intro. to Automata), (Hopcroft,

Intro. to Automata), (Ullman, Principles

of Compilers), and noted that each of these

tuples must have the same set of locations.

The tuples (Jensen, PASCAL User's Manual),

and (Wirth, PASCAL User's Manual) formed a

second group,

In general, a relation may be partitioned in-

to several groups. This partitioning will denote

extra semantic information, except in the case

when there can only be one group. The next lemma

characterizes this case.

Lemma 5.2. Let G be a set of mvd's, and let X,Y,

Z be as in Lemma 5.1. Then there exists a rela-

tion in sat(G) which will be partitioned into

more than one group iff the mvd XnY->->Z is not in

G*.

Proof.

(if): Suppose XnY-;->Z is in G*. Then given x

and x', 'II xz(r)=nxtz (r) for every r in sat(G), re-

gardless of Y-values, Consequently, every tuple

will be in the same group.

(only if): Let W=XnY, If W->->Z is not in G*,

then there exists a relation r and two tuples xwyz,

x'wy'z' in r such that xwyz' is not in r. Thus,

xwy must be in a different group from x'wy'. [I

For a set G of mvd's, let us call the depend-

encies X->->Y, Y->->Z in G* a transitive anomaly

if XYnZ=O and XnY->->Z is not in G*. Our results

say that whenever there is a transitive anomaly,

any relation in sat(G) can be partitioned into
/ .'

groups. ,%These groups are semantically important;

recall f'rom the above example that they permit a

less redundant representation of relations. HOW-

ever, the concept underlying the group (e.g. in the

above example the notion of "publisher") is not

specified anywhere.
.,

128

” i i

The existence of groups means that there is

some aspect of the application that is inadequately

represented in the scheme. We rectify this situa-

tion by adding an attribute (say, A) to the scheme,

describing the groups. Since each X-value and Y-

value beJ,o$g to exactly one group, the fd's X->A

and Y->A hold. The following theorem asserts that

by adding the mvd A->->2 to the scheme, we remove

the transitive anomaly; moreover, the data,dspend-

, encies not involving A in the new scheme are!‘Lthe

same as the data dependencies in the original

scheme.

Theorem 5.3. Consider a scheme with attributes

R=XYZW, and mvd's G and fd's F. Suppose X->->Y and

Y->+Z are in (GuF)* and form a transitive anomaly.

Let R'-XYZWA for some A not in R, F'=Fu(X->A, Y->A),

and G'=(G-{X->->Y, Y->->Z))u A->->Z,. Let D be a

data dependency not involving attribute A. Then D

is entailed by FUG iff D is entailed by F'uG'.

Proof.

(if): The easiest way to show this is to‘ronsider

the tableau obtained by using F'uG' to prove D in

the chase [MMS]. If A+->Z is used to derive a

row w, then there must be two rows having the

same values for A. These rows can only be obtained

by using X-PA (or Y++A) on two other rows. It

is easy to see that using X->->Z on these latter

two rows will produce the same row w.

(only if): This follows directly from the defi-

nition of F' and G' and the fact that X->A and A-7

-7Z entail X-7-7Z. []

Theorem 5.3 states that the data dependencies

GuF were correctly specified, given the attributes

that were available; adding the attribute A allows

other important data dependencies to be specified

as well. Moreover, we can show that the old and

new schemes are related in the following manner.

Every legal relation for the new scheme embeds a

legal relation for the old scheme and conversely,

every legal relation for the old scheme is a p,r,o-

jection of a legal r'elation for the new scheme.

Because of this close relationship between the two

schemes, we say that the new scheme is'equivalent

to the old one with respect to the original

attributes. Therefore, adding the attribute A re-

sults in a strictly more accurate specification of

the application, and we therefore are able to con-

clude that transitive anomalies result from

inadequate attribute selection.

The fact that our method of adding attributes

produces equivalent schemes is stated formally in

the following theorem.

Theorem 5.4. Consider the relation schemes R and
,

R' of the previous theorem, having data dependency

sets GuF and G'uF“respectively. Then

a) for all r in sat(FuG) there is an r' in

sat(F'uG') such that r=sR(r');

b) for all r' in sat(F'uG') there is an r in

sat(FuG) such that r=vR(r').

Proof.

a) Consider any r in sat(FuG). Let s be the rela-

tion over R'=RA defined as follows, Relation s

has the same number of tuples asr, and for each

tuple t in r, there is a tuple t’ in s such that

nR(t')=t and rA(t') is some uniquely appearing

value. Relation s is not necessarily in sat(F'uG'),

since the fd's X->A and Y+A may be violated;

(Note that these are the only dependencies that

can possibly be violated.)

Suppose X->A is violated. Then there exist

tuples tl and t2 in s such that tl(X)=t2(X) but

tl(A) # t2(A). Change s to a new relation s' by

changing t 1 (A) 'to t2(A) everywhere in s. We claim

that this change will not violate any data depend-

encies in F'uG'. First, since A does not appear

in the left hand side of any fd in F', the change

cannot violate F'. Second, the only mvd that can

be.violated is A++Z. But since tl and t2 have

the same X-values, they belong to the same XY-

group i thus, if t -Iryxwa and
1

t =xy's'w'a, 2 Lemma

5.1 implies that there exists tuples xyz'w an%,

x'y'sw' in r. Consequently, A+->Z will no be

violated in 8'.

We can continue changing the relation until

X+A and Y+A are satisfied. Since we never change

any values other than A-values, in the final re-

lation r', rR(r')=r.

b) It is sufficient to show that nR(r') is in

sat(FuG). This follows immediately from Theorem

5.3. Cl
For another example of transitive anomalies,

consider the following example from [zM].

.Example. Consider a dict$onary database of 1 ,.. 1:
technical terms in three different languages (say

E,F,G). Each word can stand for only one concept,

but there may be several words in any language

129

that stand for one word in any other language.
That is, several words in one language may stand for

the same concept. The mvd's that hold are IE->->F.I

G, F->->ElG, G->->EIF). Considering the first two

mvd's, our rule adds a new attribute C (for CONCEPT)
.a

such that,.E->C, and C->->G. The dependencies for

the new scheme become H={C->->GIEIF, G->->EIF/C, E

->C, F->C). It might seem appropriate to use the

rule again on the mvd's C->->G and G->->E. However,

this is incorrect, since G->-SE is not essential; the

fd G->C is entailed by H, and this, along with C->

->E, entails G->->E. In fact, H is cf, since it has

the cover H'= C->->EIF/G, E->C, F+C, G+c}. []

So far, we have shown in this section that if

a set G of data dependencies is not cf because of

a transitive anomaly, it is possible to remove this

problem by adding an attribute and some fd's.

Given a set G of mvd's attributes can be added to

the scheme until no transitive anomalies remain.

Will this process transform every non-cf scheme in-

to a cf one? No; consider the mvd's IAB->->ClD,

CD->->AIB). This scheme is not cf, but there are

also no transitive anomalies. The following

theorem describes the general case.

Theorem 5.5. Let G be a set of mvd's. If G is

not cf, then either there exists a transitive

anomaly or there are essential keys ZX and ZY

such that

II. DEP(ZX) = (V~Y~,...,V,Y,,P,,...,P~}

DEP(ZY) = CWlxl,...,wm~m.~l,...,~k~

where XnY=fl, Wi=Y, DXi=X, and for all i, if

Z->->Qi is not in G*, then Qj$JVj,

is not in G*, then P cUW *

and if Z++Pi

i- j' in addition, either m or

n is greater than one.

Proof. Since G is not cf, there exist two essen-

tial keys ZX and ZY, where XnY-0 and such that ZX

!and ZY do not satisfy the definition of Section 3.

We can express the dependency bases of ZX and ZY

as follows.

DEP(ZX)={VIYl,...,VnYn,Pl,...,Ph)

DEP(m)=iWIXl,...,WmXm,Q1,...,Qk)

where lJYi=Y and DXi=X. Consequently, the mvd's
.:

TX->->UViYiZ %Gi WiYiZ->->Qj are in G* for all j.

If there is not a transitive anomaly, then either

Z-'->Q., or ZXnQj#O. The latter case must be true
J

iff Qi$Vj for all i. Similarly, we see that if

Z-'-'Pi is not in G then P cIJW..
i- J

Finally, if

n=m"l, then ZX and Z'Y satisfy the definition of

conflict-free, Since ZX and ZY were chosen so as

not to satisfy the definition, either n>l or m>l.

The theorem follows. []

Suppose we have essential keys ZX and ZY satisfy-

ing the conditions of the above theorem. If n>l,

then the key ZX splits the key ZY into pieces

vlyl,..., VnYn.- So if G={A->->CDIE, CE->->AlD),

for example, then A->->CD/E splits the key CE.

Therefore, we call this case a split-key anomaly.

Theorem 5.5 states that every non-cf set of mvd's

contains either a transitive anomaly or a split-

key anomaly.

We have seen that the existence of a transitive

anomaly implies that there are concepts still un-

represented in the database. It was shown that by

adding appropriate attributes to the scheme, we

could explicitly model these concepts and remove

the anomalies. This solution is elegant, in that

the new scheme does not contain any data depend-

encies involving the original attributes that were

not present in the original scheme (see Theorem

5.3). Split-key anomalies also indicate that the

scheme is inadequately specified; sometimes,this

inadequacy can be resolved by adding more mvd's.
: 1'

Example. Consider the scheme ESPM, where the

tuple espm means that employee e has salary s,

and works on project p for manager m. The follow-

ing two mvd's hold. First, every project has a

set of managers, so P+->MIES. Second, an employee

can work on several projects for each manager; thus

EM->->PlS. These two mvd's form a split-key

anomaly, since P splits EM in P->->MIES. We see,

however, that not all mvd's have been specified;

in particular, there has been no mention of the

fact that employees have salaries. This new fd,

:E->S, entails the mvd E->->SIPM, and makes EM no

longer an essential key; the resulting mvd set:

(E->->SIPM, P->->MIES) is cf. []

The inadequacy demonstrated in the above ex-

ample resulted simply from not finding every mvd

that holds in the scheme. Once the mvd's are

found, ,the anomaly disappears. However, there are

cases when a split-key anomaly will remain even

after all possible mvd's are found. In this case,

a split-key anomaly means that mvd's are inadequate

to model the scheme satisfactorily. Consider the

following example.

Example. Let the attributes for a scheme be CVAP,

where a tuple cvap means that country c buys a

product p from a vendor v through agent a. With

regard to constraints, we know the following,

Agents will not handle any product they cannot

immediately sell. Therefore, an agent will handle

a product p iff it is already mediating between a

country c and a vendor v such that v sells p and c

needs p. In this case, the agent knows it, can

sell p from v to c due to the following semantic

constraint: A country c buys from a vendor v iff

c needs a product that v sells, and there is an

agent that can handle the transaction.

Translating these constraints into mvd's, we

get G={CV->->AIP, AP- >-XIV), which form a split-

key anomaly. Our contention is that something is

wrong with the scheme; what can it be? Note that

the constraints, as we given them, contain circular

reasoning. That is, in order for an agent to

handle a product, CV->->AIP implies that there must

already be a relationship between a country and a

vendor. But AP->-XIV implies that in order for a

country and a vendor to be related, there must,be

an agent that can supply a needed product. Some

important concept, clearly, is missing; the con-

straints must be incompletely described, Perhaps

we need to be able to say that an agent has an

agreement with a country or a vendor. The first

constraint then translates to ttAn agent will handle

a product p if it has agreements with country c

and vendor v, v sells p and c needs p." The

second constraint becomes "A country c buys from

v if there is a product that v sells and c needs,

and there exists an agent that has agreements

with both c and v." Note that both conditions are

the same, and are equivalent to the jd D=*[CP,VP

BC,BV]. The reader can verify that D entails the

two original mvd's, but is not equivalent to any

set of mvd's. []

In this example, in order to adequately

specify the semantics of the scheme, we had to

explicitly specify a jd; this jd contained extra

semantics not entailed by the given mvd's (or any

other set of mvd's). Consequently, mvd's are

inadequate for specifying the semantics of some

applications.

If a set G of mvd's has a split-key anomaly,

then some information is missing. In both of the

above examples, this extra information is con-

tained in the jd *[SG]. Indeed, Corollary 3.10

implies that if any single database scheme is to

represent the set of mvd's, it must be *[S 1. G In

the first example, we were able to add more mvd's

so as to entail *[So]; in the second example, we

had to specify this jd directly, However, it is

not clear why *ES,] should hold for every instance

of a split-key anomaly; resolving this conjecture

is an open problem.

6. Conclusion

In this paper, we have tried to characterize

those sets of mvd's that are important in "real-

world" applications. To this end, we defined

conflict-free sets of mvd's. Conflict-free sets

of mvd's were shown to be desirable, in that they

always allow a unique, dependency preserving 4NF

database scheme. Moreover, non cf sets of mvd's

do not have any dependency preserving database

scheme, and therefore should be avoided.

Is it always possible to avoid non cf mvd's?

Perhaps there is an application where the best

representation involves a non cf set of mvd's.

In Section 5 we showed that this is not the case;

the best set of dependencies for an application is

always cf. If a set of mvd's is not cf, then we

showed that it possesses either a transitive

anomaly or a split-key anomaly. The existence

of these anomalies indicates an inadequate repre-

sentation of semantic information. This implies

that for every non cf set of dependencies, there

is a better cf set, whose dependencies entail

the dependencies of the original set. For

transitive anomalies, this better set resulted

from adding extra attributes; for split-key

anomalies, it involved recognizing that mvd's

might not be sufficient to describe the semantics

of the scheme.

Our solution to the transitive anomaly case

is elegant and interesting. Adding an extra

attribute allows more data dependencies to be

specified, and the data dependencies that are

needed to remove the anomaly involve only this

new attribute. Moreover, the presence of the

new attribute allows the database to be repre-

sented with less redundancy.

131

The solution for split-key anomelies is not as

nice. Here, the best we can say is that given a

set of attributes, there may be no set of mvd's

that adequately describes the scheme, and that the

jd +[s,] should describe the necessary additiona'l

semantics. Note that we certainly have not proven

.that *[s,] should always hold; it only seems to be

a reasonable assumptisn. For example, there may

be a way of adding extra attributes to the scheme

that will remove the anomaly, as was the case for

transitive anomalies. However, we do not see how

to improve the CVAP example of Section 5, using

such a technique. It is hard to derive insight in-

to this problem, due to the tremendous difficulty

in finding examples of split-key anomalies; it also

indicates that such anomalies are in some sense not

natural.

Since we have concluded that all-natural sets

!,;!of mvd's are ones that are equivalent to a single
.'

jd, it is natural to wonder whether it is easier

to specify the set of mvd's or the one jd. Tradi-

tional database design methods suggest that find-

ing the jd is more natural. Designers tend to

think in terms of facts (denoted by "objects" in

CSZl> or "primitive predicates" [FMU]. If this is

the case, then the jd can be built up by specifying

facts without considering mvd's at all. Mvd's are

therefore unnecessary in database design.

One important open problem concerns how fd's

and .embedded dependencies interact with jd's.

Our definition at the end of Section 4 implies

that a cf set of data dependencies has a cover

consisting of one jd and a set of fd's. Is such

a set always reasonable? Is there always a good

database scheme representing such a set? If not,

how do we characterize the reasonable one?? These

questions, deserve more study.

7. Acknowledgements.

The author wishes to thank Scott Parker and

Da&d Maie?: for! helpful discussions; Billie

Goldstein and a referee provided extensive comments

on earlier versions.

8. References.

bl Beeri, C. "On the Membership Problem for
Multivafiued Dependencies in Relational
Databases." ACM TODS (5,3) Sept. 1980.,.

[BBG] Beeri, C., P. Bernstein, and N. Goodman.
"A Sophisticate's Guide to Database Normal-
ization Theory." Proc. VLDB Conference;
1977.

[BMW] Beeri, c., A. Mendelxon, Y. Sagiv, and
J. Ullman. "Equivalence of Relational Data-
base Schemes." Proc. ACM-SIGACT Conference,
1979.

LB+]

cm1

[~I

CL1

l3-d

Ial

ml

INI

I31

Cd

Beeri, C., R. Fagin, D. Maier, A. Mendelzon,
J. Ullman, and M. Yannakakis, "Properties
of Acyclic Database Schemes." Proc. ACM-
SIGACT Conference, 1981,

Fagin, R., A. Mendelson, and J. Ullman.
"A Simplified Universal Relation Assumption
and its Properties." IBM TR RJ2900,
Nov. 1980.

Eambayashi, Y., T. Eatsumi, and S. Yajima.
"Semantic Aspects of Data Dependencies and
Their Application to Relational Database
Design." Proc. COMSAC Conference, 1979.

Lien, Y. "On the Equivalence of Database
Models." Unpublished Manuscript, Bell
Laboratories, 1980.

Maier D., A. Mendelzon, and Y. Sagiv.
"Testing Implications of Data Dependencies."
ACM TODS (4,4) Dec., 1979.

Sciore, E. "A Complete Axiomatization'of
Full Join Dependencies." Princeton
University, 1979. To appear, JACM.

Sciore, E. "The Universal Instance and
Database Design," TR271, Princeton
University, 1980.

Ullman, J. Principles of Da?abase Systems.
Computer Science Press, 1980.

Yanakakis, M. Personal Communication.

Zaniolo, C. and M. Melkanoff. "Relational
Schemas for Database Systems.” TR UCLA-RNG-
7801, UCLA, Jan. 1978, p99.

:*
:<

132

