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Abstract 

According to database theory, a database de- 
signer can specify any set of data dependencies, no 
matter how complex, to constrain a database scheme. 
This paper investigates how much complexity is 
actually needed in real-world situations. It is 
shown that every "natural" set of mvd's must be- 
long to a class of mvd's called conflict-free. 
Conflict-free sets of mvd's have the desirable 
property that they allow a unique 4NF dependency 
preserving database scheme; moreover, non conflict- 
free sets have no such normalization. If a set 
of mvd's is not conflict-free, then the depend- 
encies are inadequately specified; there are 
semantic concepts that are unrepresented in the 
scheme. These concepts are isolated, and it is 
shown that adding these concepts amounts to making 
the set of mvd's conflict-free. 

using data dependencies. A data dependency, for 

example, can assert that one attribute value 

functionally depends on another, or that a set of 

values is independent of another set. In specify- 

ing a set of data dependencies, the database de- 

signer describes the structure of the database. A 

user interacts with the database through this 

structure; consequently, the structure should be 

simple and easy to understand -- otherwise, the 

database designer cannot be sure that he has 

correctly represented all of the relevant seman- 

tics, and the user will not be able to understand 

the interrelationships between the data. 

1. Introduction 

A critical part of relational database design 

is the selection of attributes; the set of attrib- 

utes provides a definite and specific meaning for 

the value in a relation. For example, a scheme 

may contain the two attributes SUPP and PART, 

These attributes were chosen by the database de- 

signer to denote a certain relationship. A tuple 

(s,p) might denote the fact that supplier s is 

currently supplying part p, or that s is able to 

supply p, or that p is out of stock for s; but 

whatever the meaning, it is determined once by the 

database designer and does not change. 

In theory, the database designer can specify 

any possible set of data dependencies in his 

scheme. This possibility has caused trouble for 

automatic synthesis and decomposition algorithms; 

there may be several different cahdidate schemes, 

none of which can be considered best [BBG]. In 

"real-world" situations , this problem does not 

seem to arise; once a proper set of attributes has 

been chosen, a natural database scheme always seems 

to present itself. What happens to the structural 

complexity that current theory allows? Is it ever 

really needed? 

Although the actual meaning of the attribute 

realtionships is unknown to a database system, the 
structure of the relationships can be specified, 
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In this paper, we investigate these questions 

with respect to the set of multivalued dependen- 

cies in the scheme. Our results imply that not only 

are complex sets of mvd's undesirable and avoid- 

able, they are also unnatural; that is, for every 

complex set of mvd's, there is a simpler set that 

represents the application better. Therefore, the 

existence of a complex set of dependencies indicates 

a poorly designed scheme, rather than a complex 

application. 
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to be simple is provided in Section 3, where we 

define conflict-free. Conflict-free sets of mvd's 

have several desirable properties. For any conflict- 

free set G of mvd's, there is a single join 

dependency D=*[Xl,..., x,] such that G is equivalent 

to D. D belongs to a special class of join de- 

pendencies which itself has interesting properties 

[B+]. Furthermore, the database scheme (X1,.,.,X,) 

is in 4NF and preserves dependencies. Thus, 

I+.., Xn} is the best possible database scheme 

representing G. 

Our contention is that the notion of conflict- 

free characterizes the simple and natural sets of 

mvd's. In Section 4, we demonstrate the undesira- 

bility of non conflict-free sets of mvd's; they are 

impossible to normalize adequately, since they 

cannot have a dependency preserving:4NF database 

scheme. In Section 5, we show why they are un- 

natural. If a set of mvd's is not conflict-free, 

then it either has a transitive anomaly or a split- 

key anomaly. The presence of one of these anomalies 

indicates that the scheme is inadequately specified. 

We investigate where this inadequacy is, and show 

that by fixing the inadequacies, we make the mvd 

set conflict-free. 

Our results have a strong impact on data de- 

pendency theory. The only sets of mvd's that need 

ever be considered are conflict-free, and conflict- 

free sets of mvd's are equivalent to one join de- 

pendency. Therefore, the database designer can 

spend his time looking for the one join dependency 

rather than specifying mvd's. The implications of 

this point are discussed in the conclusion. 

2. Preliminaries 

The state of relational database theory is 

such that there is no standard notation currently 

in use. The reader can find a good introduction 

to relational theory in [t~l]; we shall adopt the 

notation and terminology of that book. In addi- 

tion, familiarity with the problems and concepts 

of data dependency theory [BBG, MMS] is useful. 

A universe IJ is a finite set of attributes. 

As a convention, we use the symbols A,B,C... for 

single attributes, and Z,W,X... for sets of attrib- 

utes. If X is a set of attributes, the 1x1 is the 

number of attributes in X. The union of attribute 

sets X and Y is written XY. Associated with each 

attribute A is a set of values, called the domain 

of A. An X-tuple is a mapping from each attribute 

A in X to a value in the domain of A. If t is an 

X-tuple and RcX, then t(R) is the R-tuple which 

is the restriction of t to R. If the set X is 

ordered, an X-tuple can be thought of as a row of 

values, A relation over X is a set of X-tuples. 

When X is the universe U, then the relation is 

called a universal relation. 

Let r be a relation over R. The attribute 

set R is called the relation scheme or r. A 

database scheme is a set of relation schemes. 

Let S=IXll..., X,) be a database scheme. Then Xi 

is maximal in S if there is no X 
.i 

in S such that 

xpj i max(S) is the set of all maximal relation 

schemes in S. 

If R is a relation scheme, a data dependency 

for R is a constraint on the relations over R 

that are considered meaningful. In this paper, 

we shall consider functional dependencies (fd's), 

multivalued dependencies (mvd's), and join 

dependencies (jd's). Let r be a relation over R, 

let X and Y be subsets of R, and let Z=R-X-Y. 

Then r satisfies the PD X->Y if for all tuples s 

and t in r, s(X)=t(X) implies that s(Y>=t(Y); 

Relation r satisfies the mvd X->->Y if for all s 

and t in r such that s(X)=t(X) there exist tuples 

u and v in r such that u(XY>=s(XY), u(Z)=t(Z), 

v(XY>=t(XY), and v(Z)=s(Z). Join dependencies 

are defined later in this section. 

For the remainder of this paper, we shall 

assume that any set of dependencies are defined 

over the universe U; also, unless otherwise 

specified, "relation" means "relation over U". 

The more general case involves what are known as 

"embedded dependencies", and is an important 

research problem. 

Let G be a set of data dependencies. Then 

sat(G) is the set of all relations (over U) that 

satisfy every data dependency in G. We say that 

G entails D for a data dependency D if every 

relation,satisfying the data dependencies in G 

also satisfies D; that is,.sat(G)=sat(Gu(D)). For 

example, the reader can check that (X->Y) entails 

X->-BY, The set G is trivial if every relation 

is in sat(G). There is a complete set of inference 

rules for fd's and mvd's [BBG]; D can be derived 

from G using these rules if G entails D. The 
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closure of G, written G*, is the set (DIG entails 

D}. If G' is another set of data dependencies such 

that G' *+*, then G' is called a cover of G. 

Two important operations on relations are pro- 

jection and join. Let r be a relation over R, and 

let XcR. Then the X-projection of r, written TX(r), 

is the relation (t(X)lt is in r) over X. Let ri 

be a relation over Ri for i between 1 and n. The 

join of rl,...,rn, written *{rl,,,.,rn), is the 

relation {tlt is a tuple over URi, and for* each i 

there exists a tuple ti in r, such that t(Ri)=ti) 

over UR i' 
Let IX,,..., Xn' be a database scheme. Then 

the relation r satisfies the join dependency (jd) 

*my..., X,1] if r=*{rrXl(r),...,rx,(r)). For 

notational convenience, we drop the set brackets 

when writing jd's; thus *[{Xl,...,Xn>] is written 

*cq,...,xnl. For example, it is well known that 

if a relation r satisfies the mvd X->->Y, then r' 

also satisfies the jd *[xY,xz], where Z=U-X-Y. If 

D=*[X X ] 1'"" n 
and D'=*[Y1,...,Ym] are two jd's, 

then it is known [BMSU] that D entails D' if for 

all Xi there exists a Yi such that X cY.. 
i- J 

If D 

does not entail D' and D' does not entail D, then 

D and D' are called incomparable. 

One purpose of data dependency theory is to 

be able to syntactically determine when a database 

scheme S is a good model of an application. One 

standard criterion is that S be in fourth normal 

form (4NF). Let G be a set of data dependencies. 

Then S is in 4NP if *[s] is in G*, and for all R 

in S, if XYcR and X->->Y is in G*, then X->Y is 

in G*. 4NF is desirable, because it ensures that 

redundancy in relations is minimized [BBG]. 

Another desirable criterion is dependency pre- 

servation. 

Definition [S2]. Let S be a database scheme, P 

a set of fd's, and G a set of jd's. Then S 

preserves F if there is a cover F' for F such that 

for all X->Y in F', there exists an R in S such 

that XY;R. S preserves G if for all *[X ,...,x,] in 
*1 

G* and R in S, *[$nR,...,X,nR] is in G . [I 

3. Conflict-free Mvd's 

Definition. Let G be a set of mvd's for U. Then 

a set of disjoint relation schemes {Yl,...,Y,) is a 

dependency basis for a relation scheme X if X->->YI 
* 

is in G , Yi # 0, XnY1=d for each i, and for any mvd 

X->->Z entailed by G, Z-X is the union of some of 

the Yi's. We write DEP(X)={Yl,...,Yn), and 

x-'-'Y&../Y n* Cl 
In other words, a dependency basis for X is 

the finest partition Y Y of attributes in 1'"" n 
U-X such that X->->Yi., It is known [B] that a 

dependency basis must exist for any X and G. A 

dependency basis is a useful canonical form in 

which to express mvd's. 

Definition, Given a set G of mvd's, relation 

scheme X is a w of G if there exists an mvd 

X-74-Y in G. Each Y in DEP(X) is called essential 

dependent of X if X->->Y cannot be derived from G 

without using an mvd having left hand side X. A 

key is essential if it has an essential dependent; 

an essential key X is minimal if there is no 

essential key ZcX. [] 

Example. ,Let G be the set of mvd's 1X->->ABCID, 

X.4 ->->BICID}. Then D is not an essential 

dependent of XA, since XA->->D is entailed by 

X-7-7D. However, B and C are essential dependents 

of XA, so XA is an essential key. [] 

It is easily seen [L] that every cover of a 

set G of mvd's has the same essential keys. Since 

the set consisting of no mvd's is trivial and has 

no essential keys, it follows that G has no 

essential keys iff G is trivial. 

Definition [L]. Let G be a set of mvd's. Then G 

is conflict-free (cf) if for any two essential 

keys X and Y of G, the following condition holds. 

DEP(X)=(V1;,,.,Vk,X1,...,Xi,(ZkY1...Yj)} 

and 

DEP(Y)={Vl,...,Vk,Yl,.,.,Y.(Z X . ..X.)j 
J' Y 1 

where 

IV,,..., Vk)cDEP(XnY) and ZxX=ZyY. [] 

The reader can verify that the above example set 

G of mvd's is conflict-free. 

The definition of conflict-free is specifical- 

ly designed so that the following property holds. 

Proposition 3.1 [L]. A cf set of mvd's has a 

unique 4NF database scheme. [] 

Lien does not directly determine this data- 

base scheme S; in order for us to do so, we shall 

need some definitions. Let {X,,...,X,) be the 

essential keys of a set G of mvd's (not necessarily 

cf) over attributes R, and let DEP(Xk)=(Ykl,..., 

Ykm) for each k. That is, we have 
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X1-~->Y111Y121...lYlm 

. 

. 
m 

x*-~-~ynllyn21..‘/ynm 

Let j =(jl,..., jn) be a sequence of n integers; 

call j legal if lgkzmk for all k. A legal 

sequence j can be thought of as choosing the jkth 

dependent of each essential key Xk. Call S= 

{XIYlj,. . . , X Y ) the selection set for the se- 
n nj 

quence j; the common attributes of S are W = 
j 

(ZIZ is in S). That is, Wj is the maximum set of 

attributes such that WjcXkYkj for all k. We now 

define the database scheme SG to be the maximal 

elements in the set of all possible Wj's. 

Formally, we have 

SG=max({WjIj is a legal sequence)), 

Example. Let G= IX->->ABC/D, XA-MBICID) as in 

the above example. Then SG={XD, XAB, XAC). [] 

The definition of SG has the following inter- 

pretation: If X->->YlZ holds, then any relation- 

ship between Y-values and Z-values must be a 

derived one; that is, yz is in vyz(r) iff there 

exists an x such that r;y is in n xy(r) and xz is in 

nXz(r). Therefore, a good database scheme should 

separate Y from Z. The database scheme SG does ex- 

actly that. In the above example, BC cannot appear 

in any R in SG, since XA->->BlClD splits B and C; 

on the other hand XAB is in SC since none of the 

mvd's split X,A, and B. SG can be thought of as 

the database scheme that group together as many 

"unsplittable" attributes as possible. 

It turns out that if G is conflict-free, 

then SG is the database scheme mentioned in 

Proposition 3.1. The proof of this fact is 

given in the following series of lemmas. 

Definition. For an essential key X, Y in DEP(X) 

is basic for X if there does not exist an 

essential key Z # X and W in DEP(Z) such that 

zwg Y. [] 

Example. Let G={A->->BDEHIlCFJ, 

AB->->DHIIEICFJ, 

ABD->->HIIIEICFJ, 

AC->+F~J~B~DEHI) 

Note that G is cf. Dependents H and I are basic 

for ABD, E is basic for.AB, and F and J are basic 

for AC. There are no other basic dependents. [] 

Lemma 3.2. For any nontrivial cf set G of mvd's 

there exists an essential key X and a Y in DEP(X) 

such that Y is basic for X. 

Proof. If G is nontrivial, then there exists an 

essential key. Choose X and Y such that X is a 

minimal essential key, Y is in DEP(X), and for all 

minimal essential keys Z # X, if W is in dep(2) 

then IxY~~~zw~. Suppose Y is not basic for X; 

then there exists an essential key Z with dependent 

W such that ZWcXY. We can assume without loss of 

generality that Z is minimal, so XnZ is not an 

essential key. By the definition of cf, the 

dependency bases of X and Z must be 

x->->YIYII...IYm 

Z-'-'Z1]. . . lZ,lQ 

where Y = VxZ1...Zk, Q = VaY1...Ym, W = Zk, and 

v,x = vzz. Since IXY~~lZZil for any i, it must 

be that k=l and Vx=@; that is, Y=W. So if ZWL~, 

then ZcW -- which is a contradiction. [I 

Lemma 3.3. If Y is basic for X, then for all A in 

Y and all essential keys Z, A is not in Z. 

Proof, Suppose WA is an essential key. Since Y 

is basic for X, WAX is not a subset of XY for any 

Z in DEP(WA). So we must have the following 

dependency bases. 

x->->YIYII'.'IYm 

WA-'->WII...IWk 

Since A is in Y, the definition of cf implies that 

XY=WAZ for some Z. Consequently, since WA is not 

a subset of XY, there must be a dependent Wi of 

WA such that W&Y. Thus WAWi@Y, which is a 

contradiction. [] 

Lemma 3.4. If Y is basic for X, then XY is in SG. 

Proof. From Lemma 3.3, we know that each A in Y 

is not in any essential key. The definition of 

cf then implies that each essential key W#X must 

have the attributes XY in the same dependent; that 

is, there must exist a Z such that XYZ is in DEP(W). 

Therefore, there exists some R in SG such that 

XYcR. But Y in DEP(X) requires that RcXY. Thus, 

XYisinSG. [] 

Lemma 3.5. Let.G be a cf set of mvd's such that 
-¶I 
each mvd ,is essential, and let Y be basic for X. 

Let G' be G with the attributes of Y removed. 

Then G entails G'. 

Proof. It is well known that removing an attribute 

from the right hand side of an mvd D leaves an mvd 

entailed by D. Lemma 3.3 ensures that the 
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attributes in Y only appear in the right hand side 

of mvd's of G. [] 

Lemma 3.6. Let Y be basic for X, and let G and G' 

be as in Lemma 3.5. Then SG=max(SG,u{XY)). 

Proof. 
3 - : Suppose R is in SG,. Then by the;definition 

of SG" either RcXY or R is in SG. Si&l XY is in 

SG from Lemma 3.4, the containment is proved, 

c: Consider any W in SG.' If WnY=@, then clearly 

w is iii SG,. If there exists an A in WnY, then by 

Lemma 3.3 and the definition of cf there must exist 

a Q, for each essential key 2 such that Q,XY is in 

DEP(Z). Thus W=XY. [I 

We are now in a position to prove our theorem. 

Theorem 3.7. If G is cf, then G entails *[s,]. 

Proof. We can assume without loss of generality 

that every mvd in G is essential. Lemma 3.2 states 

that if G is nontrivial, then there exist X and Y 

such that Y is basic for X. Let G' be as in the 

previous lemmas. Since SG-lnax(SG'ucXY}), we need 

only to show [Sl] that G entails *[SG,,~]. Using 

the chase procedure of [MMS], we know that because 

X->->Y, in order to show that G entails *[sG,,XY] 

it suffices to show that G' entails *[S,,]. Now 

clearly G' is cf, and by Lemma 3.5 is entailed by 

G. Therefore G' has its own set of essential keys 

(which will be a subset of those of G), and if 

nontrivial, has some basic attributes. We con- 

tinue inductively until G' becomes trivial. Since 

a trivial set of mvd's over attributei;:R has 

s~=*[R] (the trivial jd), the result follows, [I 

The technique used in proving this theorem 

provides admeans to construct SG, given G; con- . ._ 
sider the following example. 

Example. Let G be the set of mvd's of the pre- 

v!ous example. Since attributes F and .I are basic 

for AC, ACP and ACJ are in SG. So we can remove 

FJ from G to get 

G'={A->->BDEHIIC, 

AB->->DHIIEIC, 

ABD->->HIIIEIC, 

AC->->BDEHI). 

This last mvd is nonessential, so we remove it. H 

and I are still basic for ABD, and now C is basic 

for A. Since AC is not maximal, we add only.ABDH 

and ABDI to SG, and remove attributes CHI from G'. 

The resulting mvd set is 

{A->->J$DE, 

AB->->D(E, 

ABD->->E), 

of which only AB->->D~E is essential. Here, D and 

E are basic for AB; ABD is not maximal, so we add 

ABE to SG and remove attributes DE from the 

dependencies. The final set is 

IAB->->01, 
which is trivial, Since AB is not maximal, it is 

not added to S G' SG is therefore{ACF,ACJ,ABDH, 

ABDI,ABE). The reader can verify that G actually 

does entail the jd *[ACP,ACJ,ABDH,ABDI,ABE~. Cl 
Corollary 3.8, SG is a 4NF database scheme. 

Proof. Suppose not. Then there must exist an R 

in SG'and X->->YII... IYn in G such that XcR and 

there exists i and j such that YInR#O and YjnR#O. 

However, if this were the case, then clearly the 

definition of SG would imply that R is not in 

SG. Cl 
Theorem 3.7 and Corollary 3.8 show that when 

G is cf, SG is indeed the 4NF database scheme of 

Proposition 3.1, and is therefore unique. We now 

consi'her SG when G is arbitrary. 

Theorem 3.9, For any set G of mvd's, *[SG]entails 

Proof, The definition of SG implies that every 

attribute appears in S G' It therefore suffices ! 

(from the results of [BMSU] ) to show that for 

all essential keys X and R in SG, there exists a 

Y in DEP(X) such that R&XY. But this fact follows 

directly from the definition of SG. [ ] 

,Not only does SG entail G, but it is the 

weakest jd to do so, as the following corollary 

states. 

Corollary 3.10. Let G be any set of mvd's, and 

let D be a jd. If D entails G, then D entails SG. 

Proof, If D entails G, then for every R in D and 

essential X->->YII ,.. IY, in G, there must exist an 

i such that RzXY,. Since this is true for all 

essential keys.X, the definition of SG implies 

that there is a Z in SG such that xYic-Z. Thus 

RcZ, which implies that D entails SG. [] ' 

Theorems 3.7 and 3.9 show that if G is a cf 

set of mvd's, then G is equivalent to the single 

jd *[s,]. The converse also holds. 

Proposition 3.11. [Y] Let G={X->->YlD entails 

X->->Y) for some jd D. Then G is cf. [I 
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If we start with a cf set G of mvd's, then 

Theorems 3.7 and 3.9 imply that the mvd's entailed 

by *[sG] will be G*. Now suppose we start with a 

jd D and find the 5et G of mvd's entailed by D. 

Then *[S,] will certainly be entailed by D (since 

D entails G which entails *[s,]>, but it may not 

be equivalent to D. For a simple example, let 

D=*[AB,AC,BC]. Then there are no non-trivial mvd's 

entailed by D, so *[S,]=*[ARC], the trivial jd. 

The results of this section show that a set 

G of mvd's is equivalent to jd *[s,] iff G is cf. 

It is interesting to note that there exist several 

very different characterizations of the class of 

jd's that are equivalent to their implied mvd's 

LB+]. Inasmuch as this class is quite general 

and has many desirable properties, it is natural 

to wonder whether there are any real-world schemes 

that do not belong to this class. Sections 4 and 

5 consider this question in detail. 

4. Normalization Considerations 

In the previous section we saw that cf set 

G of mvd's is equivalent to exactly one jd, namely 

*Cs,l* SG is a "perfect " 4NF, dependency pre- 

serving database scheme representing G. Conversely, 

if G is not cf, then by Proposition 3.11, there 

must be two incomparable jd's entailed by G. 

Suppose, for example, that @iA->->BIC, B->->AIC). 

TWO incomparable jd's entailed by G are *[AB,BC] 

and *[AB,AC]. What would be a good database scheme 

representing G? Consider the database scheme 

W,AC). Our definition of jd-preservation implies 

that the two jd's *[ACnAB,ACnBC] and *[AB~AR,AB~Bc] 

hold. The latter jd is *CAB] which trivially holds, 

but the former jd is the Cartesian product *[A,C], 

which does not hold. Thus, {AB,AC) does not pre- 

serire the jd *[AB,BC]. The reader can check that 

ABC is the only database scheme that preserves 

both jd's. Since a relation over ABC contains 

redundant information, however, this scheme also 

is not entirely satisfactory. 

In general, whenever there are two incomparable 

M's, there is a problem in finding a 4NP dependency 

preserving database scheme. 

Theorem 4.‘1. Let {Rl,...,Rn) be a 4NJ? database 

scheme, and suppose *[R~,...,R,] does not entail 

"CS 1 
,...,s,]. Then [R~,...,R,] does not preserve 

"CS 1 ,...,s,l. 

Proof. Define the attribute set M={AI there exist 

i, j such that A is in S nS 1; that is, M is the 

set of attributes appearing in more than one S 
k' 

Since Cq,..., Rnl is in 4NF, it can be shown that: , 

whenever McRi there is an S 
j 

such that R+Sj 

(otherwise, *cSl,...,Sn] would split Ri). It is 

known [BMSU] that if *[R~,...,R,] does not entail 

"IS ,...,S,], then there exists an Rk such that for 

all S., 
l3 l-5 

is not a subset of S . Thus M is not a 

subset of %' Now consider thejjd *[RknSl,,.., 

\nS,]. Since Rk is not a subset of S for all j, 

the jd D=*[RknSl,.,.,PknSm] is non-triiial. Since 

M is not a subset of Rl, it follows that there must 

exist i, j and some attribute A such that A is in 

both Si-Rk and Sj-I$. It is known [Sl] that this 

fact implies that D is not entailed by *[I$,,.,, 

R,] and *[Sl,...,Sm]. The result follows. [] 

Corollary 4.2. Let G be a set of mvd's. Then G 

has a dependency preserving 4NF database scheme iff 

G is conflict-free. 

Proof. If G is cf, then SG is the required data- 

base scheme. If G is not cf, then by Proposition 

3.11 there are at least two incomparable jd's 

entailed by G. The result then follows from 

Theorem 4.1. [] 

Until this point we have been considering sets 

of data dependencies that contain only mvd's. 

When we also consider fd's, .complications arise. 

For example, let G={A->B, B->C). The set of mvd's 

entailed by G is {A->->BlC, B->->AIC), which is 

not cf. However, the database scheme {AB,BC) is a 
.‘ 

well-known "optimal" dependency preserving data- 

base scheme representing G. Although this scheme 

does not preserve the jd *[AB,AC] according to our 

definition, it does not need to, as long as it 

preserves the fd A->B. That is, as long as A->B 

holds in relation AB, the jd*[AB,AC] will be pre- 

served. 

This extra power of fd's means that our notion 

of cf should not apply to mvd's entailed by fd's. 

Recall the definition of an essential dependent in 

Section 9; Y is an essential dependent of X if 

X->->Y can be derived only by using some mvd with 

left hand side X. We can extend the definition to 

fd's by including the inference rule "X ->Y derives 

X->->Y." So if X->Y, then Y is not an essential 
1. 

dependent of X. In G={A->B, B->C},for e%ample, 

there are no essential keys; G is trivially cf. 
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Although this paper is concerned only with 

"real-world" sets of mvd's, we shall need to con- 

sider fd's briefly (see Theorem 5.3). The above 

treatment shell be satisfactory for our purposes, 

although we do not claim that it is entirely 

correct. That is, in the next section we shall 

phow that every non-cf set of mvd's is in some 

way inadequate and "unreasonable"; however, it is 

an open problem to determine whether the reason- 
* 

ableness of cf mvd's, as developed in these last 

two sections, extends to fd's as well. 

5. Improving Schemes That Are Not Conflict-Free 

Conflict-free sets of mvd's have been shown 

easy to normalize, whereas non-cf &d$ pose 

insurmountable normalization problems. Are these 

problems avoidable? We contend that they are. A 

well-formed set of dependencies for an application 

can only have so much complexity; if the depend- 

encies are not cf, then the scheme is unduly com- 

plex, and not well thought out. In this section 

we will argue that every "real-world" situation 

that can be modeled'using mvd's is modeled by a 

cf set of mvd's. Thus a database designer need 

only consider cf sets of dependencies -- if his 

dependencies are not cf, then he knows something 

is wrong. 

There are several things that,,might be wrong. 

An important situation is the case where the data- 

base designer simply makes a mistake, as in the 

following example. 

Example. Consider the scheme with attributes 

EMT?, DEPT, and FLOOR. We want to model the fact 

that each employee works in a set of departments 

and each department is located on a set of floors. 

A first attempt at specifying mvd's gives 

{EMP->->DEP'$, DEPT->->FLOOR}, which is not cf. 

However, the first mvd is incorrect; DEPT and 

FLOOR belong together in each mvd, and therefore 

EMP-a->{DEPT,FLOOR) is correct. This new scheme 

is cf. [I 

Mvd's are sufficiently difficult to understand 

that such mistakes are not unlikely. Therefore, an 

immediate advantage of requiring cf mvd's is that 

these simpler errors are easily caught. It is also 

possible for a scheme to be correctly specified, 

and yet the mvd's are not cf. In this case, we 

claim that the scheme is inadequately specified. 

Consider the following scheme. 

Example. Suppose we have the scheme (AUTH TITLE 

LOC), which represents authors, titles of their 

books, and the locations where the books are 

published, Futhermore, we have the data depend- 

encies AUTR->->TITLEILOC and TITLE->->AUWILOC. 

The first dependency states that each book written 

by an author is published in the same set of loca- 

tions, The second dependency states that if a 

book has several authors, then each of the authors 

uses the same set of locations to publish. This 

set of dependencies is not conflict-free. The 

following relation satisfies the mvd's. 

AUTR TITLE LOC 

Ullman Intro, to Automata Reading 
Ullman Intro. to Automata London 

Hopcroft Intro. to Automata .i Reading 
Hopcroft Intro. to Automata London 

Ullman Principles of Compilers Reading 
Ullman Principles of Compilers London 

Ah0 Principles of Compilers Reading 
Ah0 Principles of Compilers London 

Jensen PASCAL User's Manual " Berlin 
Jensen PASCAL User's Manual Heidelberg 
Wirth PASCAL User's Manual Berlin 
Wirth PASCAL User's Manual Heidelberg 

The problem with this scheme centers around '-' 

the following observation, Since Hopcroft and 

Ullman.wrote "Intro. to AutomataIt and Alio and 

Ullman wrote "Principles of Compilers," the mvd's 

imply that Aho, Hopcroft, and Ullman all must ' 

publish in the same locations (here, Reading and 

London). We can take,advantage of this implicit 

semantic property of the scheme to group together 

all authors that must have common publishing loca- 
'. 

tions, storing the data in two tables. 

AUTH 

~ 

? 

LOC 

1 Reading 

I' r"_i 

1 London 
2 Berlin 
2 Heidelberg 

Since Aho, Hopcroft, and Ullman all must 

publish in the same locations, they are assigned 

the same group number, as are Jensen and Wirth. 
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Is there any meaning to the grouping attribute G? 

Yes; it denotes the publishers of the books. The 

meaning of the scheme then becomes: authors have 

only one publisher, and books can be published by 

only one publisher; each publisher publishes its 

books in a certain set of.locations. The new data 

dependencies are {AUTR->PUB, TITLE->PUB, PUB->-> 

LOCI. , ,By acknowledging the existence of publishers, 

the scheme now has a cf set of dependencies, which 

is equivalent to the original dependencies (in a 

sense to be defined later). [I 

What makes the original set o,f;.mvd's for the 

above scheme not cf is the existence of essential 

keys X and Y such that X->->Y and Y->->Z are in G*, 

XYnZ=@, and XnY->->Z is not in G*; the reader can 

check the definition to see that in such cases, 

the mvd's cannot be cf. We made the scheme cf by 

adding an attribute and some fd's to the scheme. 

We now show that this technique works in general; 

the new scheme we get will more accurately model 

the application than the original one. :., 

Definition. n(xzx)y(r)=IyIxy is in n,(r)). When 

X is obvious from context, we shall write r,(r).[] 

Our first result is a generalization of Theorem 2 

of [FXY]. 

Lemma 5.1. Let G be a set of mvd's, and suppose 

attribute sets X,Y, and Z are such that X->->Y 

and Y->->Z are in G*, and XYnZ=Q. Let r be a 

reiation over R, where XYZcR. , Then 

a) If there exist x, x1: y such that both 

xy and x'y are in n,(r), then xxz(r)qxIz(r); 

b) If there exist x, y, y' such that both 

xy and xy' are in x,(r), then syz(r)=xy,z(r). 

P&of. 

(a) Suppose x2 is in nxz(r). Since xy is in 

n,(r) and YnZ=@, X->->Y implies that xyz is in 

FXYz(r). Now since x'y is in r,(r) and XnZ=0, 

Y->->Z implies that x'yz is in rXYz(r), Thus 

X'Z is in n,(r), and rxz(r)~vx,z(r). The proof 

of the reverse containment is similar. 

(b) This is analogous to (a), and is left to the 

reader. [I 

We can combine parts (a) and (b) of Lemma 5.1 

to connect several tuples together. For example, 

if xy, xy', and x'y' are in r,(r), then rxZ(r)= 

nxtz(r) and ;z(rhytz(;~i sjhg:;y;, E 

xlyl,...,xnyn are in xxy 21 2i+1 

and ~~i-~~y~i~ then r,,(r)=xxi,(r) and 

syiZ(=)-=yjz (r). Consequently, whenever 

there exist XY-tuples xy and x'y' in 

r,(r) that can be connected in this fashion, 

they must have the same set of Z-values. 

Let us say that the set of such XY-values 

form a group; all tuples in a group must 

have the same set of Z-values. In our 

above example, we grouped together the 

tuples (Ullman, Intro. to Automata), (Hopcroft, 

Intro. to Automata), (Ullman, Principles 

of Compilers), and noted that each of these 

tuples must have the same set of locations. 

The tuples (Jensen, PASCAL User's Manual), 

and (Wirth, PASCAL User's Manual) formed a 

second group, 

In general, a relation may be partitioned in- 

to several groups. This partitioning will denote 

extra semantic information, except in the case 

when there can only be one group. The next lemma 

characterizes this case. 

Lemma 5.2. Let G be a set of mvd's, and let X,Y, 

Z be as in Lemma 5.1. Then there exists a rela- 

tion in sat(G) which will be partitioned into 

more than one group iff the mvd XnY->->Z is not in 

G*. 

Proof. 

(if): Suppose XnY-;->Z is in G*. Then given x 

and x', 'II xz(r)=nxtz (r) for every r in sat(G), re- 

gardless of Y-values, Consequently, every tuple 

will be in the same group. 

(only if): Let W=XnY, If W->->Z is not in G*, 

then there exists a relation r and two tuples xwyz, 

x'wy'z' in r such that xwyz' is not in r. Thus, 

xwy must be in a different group from x'wy'. [I 

For a set G of mvd's, let us call the depend- 

encies X->->Y, Y->->Z in G* a transitive anomaly 

if XYnZ=O and XnY->->Z is not in G*. Our results 

say that whenever there is a transitive anomaly, 

any relation in sat(G) can be partitioned into 
/ .' 

groups. ,%These groups are semantically important; 

recall f'rom the above example that they permit a 

less redundant representation of relations. HOW- 

ever, the concept underlying the group (e.g. in the 

above example the notion of "publisher") is not 

specified anywhere. 
., 

128 

” i i 



The existence of groups means that there is 

some aspect of the application that is inadequately 

represented in the scheme. We rectify this situa- 

tion by adding an attribute (say, A) to the scheme, 

describing the groups. Since each X-value and Y- 

value beJ,o$g to exactly one group, the fd's X->A 

and Y->A hold. The following theorem asserts that 

by adding the mvd A->->2 to the scheme, we remove 

the transitive anomaly; moreover, the data,dspend- 

, encies not involving A in the new scheme are!‘Lthe 

same as the data dependencies in the original 

scheme. 

Theorem 5.3. Consider a scheme with attributes 

R=XYZW, and mvd's G and fd's F. Suppose X->->Y and 

Y->+Z are in (GuF)* and form a transitive anomaly. 

Let R'-XYZWA for some A not in R, F'=Fu(X->A, Y->A), 

and G'=(G-{X->->Y, Y->->Z))u A->->Z,. Let D be a 

data dependency not involving attribute A. Then D 

is entailed by FUG iff D is entailed by F'uG'. 

Proof. 

(if): The easiest way to show this is to‘ronsider 

the tableau obtained by using F'uG' to prove D in 

the chase [MMS]. If A+->Z is used to derive a 

row w, then there must be two rows having the 

same values for A. These rows can only be obtained 

by using X-PA (or Y++A) on two other rows. It 

is easy to see that using X->->Z on these latter 

two rows will produce the same row w. 

(only if): This follows directly from the defi- 

nition of F' and G' and the fact that X->A and A-7 

-7Z entail X-7-7Z. [] 

Theorem 5.3 states that the data dependencies 

GuF were correctly specified, given the attributes 

that were available; adding the attribute A allows 

other important data dependencies to be specified 

as well. Moreover, we can show that the old and 

new schemes are related in the following manner. 

Every legal relation for the new scheme embeds a 

legal relation for the old scheme and conversely, 

every legal relation for the old scheme is a p,r,o- 

jection of a legal r'elation for the new scheme. 

Because of this close relationship between the two 

schemes, we say that the new scheme is'equivalent 

to the old one with respect to the original 

attributes. Therefore, adding the attribute A re- 

sults in a strictly more accurate specification of 

the application, and we therefore are able to con- 

clude that transitive anomalies result from 

inadequate attribute selection. 

The fact that our method of adding attributes 

produces equivalent schemes is stated formally in 

the following theorem. 

Theorem 5.4. Consider the relation schemes R and 
, 

R' of the previous theorem, having data dependency 

sets GuF and G'uF“respectively. Then 

a) for all r in sat(FuG) there is an r' in 

sat(F'uG') such that r=sR(r'); 

b) for all r' in sat(F'uG') there is an r in 

sat(FuG) such that r=vR(r'). 

Proof. 

a) Consider any r in sat(FuG). Let s be the rela- 

tion over R'=RA defined as follows, Relation s 

has the same number of tuples asr, and for each 

tuple t in r, there is a tuple t’ in s such that 

nR(t')=t and rA(t') is some uniquely appearing 

value. Relation s is not necessarily in sat(F'uG'), 

since the fd's X->A and Y+A may be violated; 

(Note that these are the only dependencies that 

can possibly be violated.) 

Suppose X->A is violated. Then there exist 

tuples tl and t2 in s such that tl(X)=t2(X) but 

tl(A) # t2(A). Change s to a new relation s' by 

changing t 1 (A) 'to t2(A) everywhere in s. We claim 

that this change will not violate any data depend- 

encies in F'uG'. First, since A does not appear 

in the left hand side of any fd in F', the change 

cannot violate F'. Second, the only mvd that can 

be.violated is A++Z. But since tl and t2 have 

the same X-values, they belong to the same XY- 

group i thus, if t -Iryxwa and 
1 

t =xy's'w'a, 2 Lemma 

5.1 implies that there exists tuples xyz'w an%, 

x'y'sw' in r. Consequently, A+->Z will no be 

violated in 8'. 

We can continue changing the relation until 

X+A and Y+A are satisfied. Since we never change 

any values other than A-values, in the final re- 

lation r', rR(r')=r. 

b) It is sufficient to show that nR(r') is in 

sat(FuG). This follows immediately from Theorem 

5.3. Cl 
For another example of transitive anomalies, 

consider the following example from [zM]. 

.Example. Consider a dict$onary database of 1 ,.. 1: 
technical terms in three different languages (say 

E,F,G). Each word can stand for only one concept, 

but there may be several words in any language 
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that stand for one word in any other language. 
That is, several words in one language may stand for 

the same concept. The mvd's that hold are IE->->F.I 

G, F->->ElG, G->->EIF). Considering the first two 

mvd's, our rule adds a new attribute C (for CONCEPT) 
.a 

such that,.E->C, and C->->G. The dependencies for 

the new scheme become H={C->->GIEIF, G->->EIF/C, E 

->C, F->C). It might seem appropriate to use the 

rule again on the mvd's C->->G and G->->E. However, 

this is incorrect, since G->-SE is not essential; the 

fd G->C is entailed by H, and this, along with C-> 

->E, entails G->->E. In fact, H is cf, since it has 

the cover H'= C->->EIF/G, E->C, F+C, G+c}. [] 

So far, we have shown in this section that if 

a set G of data dependencies is not cf because of 

a transitive anomaly, it is possible to remove this 

problem by adding an attribute and some fd's. 

Given a set G of mvd's attributes can be added to 

the scheme until no transitive anomalies remain. 

Will this process transform every non-cf scheme in- 

to a cf one? No; consider the mvd's IAB->->ClD, 

CD->->AIB). This scheme is not cf, but there are 

also no transitive anomalies. The following 

theorem describes the general case. 

Theorem 5.5. Let G be a set of mvd's. If G is 

not cf, then either there exists a transitive 

anomaly or there are essential keys ZX and ZY 

such that 

II. DEP(ZX) = (V~Y~,...,V,Y,,P,,...,P~} 

DEP(ZY) = CWlxl,...,wm~m.~l,...,~k~ 

where XnY=fl, Wi=Y, DXi=X, and for all i, if 

Z->->Qi is not in G*, then Qj$JVj, 

is not in G*, then P cUW * 

and if Z++Pi 

i- j' in addition, either m or 

n is greater than one. 

Proof. Since G is not cf, there exist two essen- 

tial keys ZX and ZY, where XnY-0 and such that ZX 

!and ZY do not satisfy the definition of Section 3. 

We can express the dependency bases of ZX and ZY 

as follows. 

DEP(ZX)={VIYl,...,VnYn,Pl,...,Ph) 

DEP(m)=iWIXl,...,WmXm,Q1,...,Qk) 

where lJYi=Y and DXi=X. Consequently, the mvd's 
.: 

TX->->UViYiZ %Gi WiYiZ->->Qj are in G* for all j. 

If there is not a transitive anomaly, then either 

Z-'->Q., or ZXnQj#O. The latter case must be true 
J 

iff Qi$Vj for all i. Similarly, we see that if 

Z-'-'Pi is not in G then P cIJW.. 
i- J 

Finally, if 

n=m"l, then ZX and Z'Y satisfy the definition of 

conflict-free, Since ZX and ZY were chosen so as 

not to satisfy the definition, either n>l or m>l. 

The theorem follows. [] 

Suppose we have essential keys ZX and ZY satisfy- 

ing the conditions of the above theorem. If n>l, 

then the key ZX splits the key ZY into pieces 

vlyl,..., VnYn.- So if G={A->->CDIE, CE->->AlD), 

for example, then A->->CD/E splits the key CE. 

Therefore, we call this case a split-key anomaly. 

Theorem 5.5 states that every non-cf set of mvd's 

contains either a transitive anomaly or a split- 

key anomaly. 

We have seen that the existence of a transitive 

anomaly implies that there are concepts still un- 

represented in the database. It was shown that by 

adding appropriate attributes to the scheme, we 

could explicitly model these concepts and remove 

the anomalies. This solution is elegant, in that 

the new scheme does not contain any data depend- 

encies involving the original attributes that were 

not present in the original scheme (see Theorem 

5.3). Split-key anomalies also indicate that the 

scheme is inadequately specified; sometimes,this 

inadequacy can be resolved by adding more mvd's. 
: 1' 

Example. Consider the scheme ESPM, where the 

tuple espm means that employee e has salary s, 

and works on project p for manager m. The follow- 

ing two mvd's hold. First, every project has a 

set of managers, so P+->MIES. Second, an employee 

can work on several projects for each manager; thus 

EM->->PlS. These two mvd's form a split-key 

anomaly, since P splits EM in P->->MIES. We see, 

however, that not all mvd's have been specified; 

in particular, there has been no mention of the 

fact that employees have salaries. This new fd, 

:E->S, entails the mvd E->->SIPM, and makes EM no 

longer an essential key; the resulting mvd set: 

(E->->SIPM, P->->MIES) is cf. [] 

The inadequacy demonstrated in the above ex- 

ample resulted simply from not finding every mvd 

that holds in the scheme. Once the mvd's are 

found, ,the anomaly disappears. However, there are 

cases when a split-key anomaly will remain even 

after all possible mvd's are found. In this case, 

a split-key anomaly means that mvd's are inadequate 

to model the scheme satisfactorily. Consider the 

following example. 



Example. Let the attributes for a scheme be CVAP, 

where a tuple cvap means that country c buys a 

product p from a vendor v through agent a. With 

regard to constraints, we know the following, 

Agents will not handle any product they cannot 

immediately sell. Therefore, an agent will handle 

a product p iff it is already mediating between a 

country c and a vendor v such that v sells p and c 

needs p. In this case, the agent knows it, can 

sell p from v to c due to the following semantic 

constraint: A country c buys from a vendor v iff 

c needs a product that v sells, and there is an 

agent that can handle the transaction. 

Translating these constraints into mvd's, we 

get G={CV->->AIP, AP- >-XIV), which form a split- 

key anomaly. Our contention is that something is 

wrong with the scheme; what can it be? Note that 

the constraints, as we given them, contain circular 

reasoning. That is, in order for an agent to 

handle a product, CV->->AIP implies that there must 

already be a relationship between a country and a 

vendor. But AP->-XIV implies that in order for a 

country and a vendor to be related, there must,be 

an agent that can supply a needed product. Some 

important concept, clearly, is missing; the con- 

straints must be incompletely described, Perhaps 

we need to be able to say that an agent has an 

agreement with a country or a vendor. The first 

constraint then translates to ttAn agent will handle 

a product p if it has agreements with country c 

and vendor v, v sells p and c needs p." The 

second constraint becomes "A country c buys from 

v if there is a product that v sells and c needs, 

and there exists an agent that has agreements 

with both c and v." Note that both conditions are 

the same, and are equivalent to the jd D=*[CP,VP 

BC,BV]. The reader can verify that D entails the 

two original mvd's, but is not equivalent to any 

set of mvd's. [] 

In this example, in order to adequately 

specify the semantics of the scheme, we had to 

explicitly specify a jd; this jd contained extra 

semantics not entailed by the given mvd's (or any 

other set of mvd's). Consequently, mvd's are 

inadequate for specifying the semantics of some 

applications. 

If a set G of mvd's has a split-key anomaly, 

then some information is missing. In both of the 

above examples, this extra information is con- 

tained in the jd *[SG]. Indeed, Corollary 3.10 

implies that if any single database scheme is to 

represent the set of mvd's, it must be *[S 1. G In 

the first example, we were able to add more mvd's 

so as to entail *[So]; in the second example, we 

had to specify this jd directly, However, it is 

not clear why *ES,] should hold for every instance 

of a split-key anomaly; resolving this conjecture 

is an open problem. 

6. Conclusion 

In this paper, we have tried to characterize 

those sets of mvd's that are important in "real- 

world" applications. To this end, we defined 

conflict-free sets of mvd's. Conflict-free sets 

of mvd's were shown to be desirable, in that they 

always allow a unique, dependency preserving 4NF 

database scheme. Moreover, non cf sets of mvd's 

do not have any dependency preserving database 

scheme, and therefore should be avoided. 

Is it always possible to avoid non cf mvd's? 

Perhaps there is an application where the best 

representation involves a non cf set of mvd's. 

In Section 5 we showed that this is not the case; 

the best set of dependencies for an application is 

always cf. If a set of mvd's is not cf, then we 

showed that it possesses either a transitive 

anomaly or a split-key anomaly. The existence 

of these anomalies indicates an inadequate repre- 

sentation of semantic information. This implies 

that for every non cf set of dependencies, there 

is a better cf set, whose dependencies entail 

the dependencies of the original set. For 

transitive anomalies, this better set resulted 

from adding extra attributes; for split-key 

anomalies, it involved recognizing that mvd's 

might not be sufficient to describe the semantics 

of the scheme. 

Our solution to the transitive anomaly case 

is elegant and interesting. Adding an extra 

attribute allows more data dependencies to be 

specified, and the data dependencies that are 

needed to remove the anomaly involve only this 

new attribute. Moreover, the presence of the 

new attribute allows the database to be repre- 

sented with less redundancy. 
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The solution for split-key anomelies is not as 

nice. Here, the best we can say is that given a 

set of attributes, there may be no set of mvd's 

that adequately describes the scheme, and that the 

jd +[s,] should describe the necessary additiona'l 

semantics. Note that we certainly have not proven 

.that *[s,] should always hold; it only seems to be 

a reasonable assumptisn. For example, there may 

be a way of adding extra attributes to the scheme 

that will remove the anomaly, as was the case for 

transitive anomalies. However, we do not see how 

to improve the CVAP example of Section 5, using 

such a technique. It is hard to derive insight in- 

to this problem, due to the tremendous difficulty 

in finding examples of split-key anomalies; it also 

indicates that such anomalies are in some sense not 

natural. 

Since we have concluded that all-natural sets 

!,;!of mvd's are ones that are equivalent to a single 
.' 

jd, it is natural to wonder whether it is easier 

to specify the set of mvd's or the one jd. Tradi- 

tional database design methods suggest that find- 

ing the jd is more natural. Designers tend to 

think in terms of facts (denoted by "objects" in 

CSZl> or "primitive predicates" [FMU]. If this is 

the case, then the jd can be built up by specifying 

facts without considering mvd's at all. Mvd's are 

therefore unnecessary in database design. 

One important open problem concerns how fd's 

and .embedded dependencies interact with jd's. 

Our definition at the end of Section 4 implies 

that a cf set of data dependencies has a cover 

consisting of one jd and a set of fd's. Is such 

a set always reasonable? Is there always a good 

database scheme representing such a set? If not, 

how do we characterize the reasonable one?? These 

questions, deserve more study. 
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