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Power management is an important aspect of  mobile computing. Previous works on power conser- 
vation have concentrated on the hardware approach. In this paper; we propose a different approach 
of  power conservation strategyJbr mobile computers which is based on the concept of load sharing. 
User jobs are transferred from a mobile host to a fixed host to reduce power consumption by the 
CPU. Simulation results show that under suitable conditions, transferring job can extend battery 
Ii[e.time by up to 20%. 7?ansferring jobs to a fixed host does not only extend battery lifetime but also 
gives users access to faster machines, hence improving job response time. 

L IntroductiOn 

Advancing technology in wireless communication will allow 
roaming users to access the network while away from their of- 
rice. An example of an application for roaming users is the 
MOST project [3], where engineers take their laptops with 
them to the field. Wireless Coyote [9] is an example of how 
wireless technology can be used in an educational product. 
The Wireless Coyote experiment involved four groups of stu- 
dents who used the product on a field trip. The application 
allowed the groups of students in different locations to share 
the data they collected in real-time. 

Power management has become one of the important issues 
which need to be addressed in order to support roaming users. 
A mobile computer operates on battery power. Under contin- 
uous use, the battery will last for about 2 - 3 hours. Ideally it 
should last for 8 hours (one working day). Since the projection 
on progress in battery technology shows that only a 20% im- 
provement in battery capacity will occur over the next 10 years 
[ 17], it is vital that power utilisation is managed efficiently and 
economically. 

This paper discusses an approach to reduce power consump- 
tion by the CPU. The CPU consumes approximately 31% 
power on a mobile computer [8]. The proposed approach bor- 
rows from the concept of load sharing. Jobs are migrated from 
a mobile host to a fixed host for execution in order to reduce 
power consumption by the mobile's CPU. 

Executing the jobs at a fixed host will not only reduce power 
consumption but will also give the mobile access to a faster 
machine and, thus, improves performance. 

Previous works on power conservation have concentrated on 
the hardware approach. [4] and [6] discuss a strategy of spin- 
ning down the hard disk during idle periods which will reduce 
power consumption on mobile computers. [10] discusses a dy- 
namic disk spin-down algorithm which receives input from a 
set of experts. Each expert is assigned a weight which is up- 
dated after each trial depending on how accurate or misleading 
the expert's prediction is. 

[5] discusses a storage alternative, the flash memory, which 
consumes less power, has low latency and has high throughput 
for read accesses. 

[24] proposed a method of power savings by reducing the 
CPU clock speed. In this paper, Weiser et al shows that is 
better to spread work out by reducing clock speed and voltage 

than to run the CPU at full speed for short bursts and then idle. 
This approach stems from the non-linear relationship between 
clock speed and energy saving. 

The rest of this paper is organised as follows. Section 2 
gives some background on load sharing and mobile comput- 
ing issues. Section 3 discusses the algorithms, the simulation 
model, experiments and assumptions. Section 4 discusses the 
results and finally, section 5 concludes. 

II. Background 

A. Load Sharing in Distributed Systems 

Load balancing or load sharing is a strategy to distribute work- 
load among processors in a distributed system. Some liter- 
ature distinguishes between load balancing and load sharing. 
Load balancing is often defined as a strategy which attempts 
to assure that each processor in a system has equal load. Load 
sharing, on the other hand, is usually referred to as a strategy 
which attempts to share loads in a distributed system without 
attempting to equalise its load. Both strategies have the same 
goal, which is to make better use of the system resources (usu- 
ally the CPU) by making sure that no nodes are idle. 

In the context of this study, we shall use the term load shar- 
ing. A load sharing algorithm consists of 2 policies. A transfer 
policy decides when a job should be transferred. This is usu- 
ally determined based on the number of jobs in the queue wait- 
ing to be serviced. The location policy decides to which host 
a job should be transferred. This is done either by choosing a 
host randomly or by using workload information. The work- 
load information may be obtained either by probing a subset 
of hosts or by collecting the information periodically. If the 
information is collected periodically, an optimal period has to 
be determined. Collecting the information frequently will re- 
sult in accurate and up to date information but will incur more 
overhead. On the other hand, a less frequent period will result 
in out of date information being used. 

Several load sharing algorithms have been proposed. The 
algorithms vary from those which make no use of system state 
information (e.g. Random algorithm of [7]) to those which 
attempt to make use of global state information (e.g. [15]). 

Not all jobs are suitable for migration. [26] observes that 
some jobs are immobile, i.e. they have to be executed locally. 
Examples of such jobs are those which perform local services 
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and/or require local resources. 
Migrating a job involves packaging it at the so~rce node, 

transmitting it through the communication network and un- 
packing it at the destination. A number of previous works 
assumed that the probing cost and/or network cost to be neg- 
ligible ([22], [7], [18] and [16]). Probes are usually assumed 
to take zero time. Other works which made a non-negligible 
delay assumptions were [ 11], [20], [25] and [ 14]. If a file used 
by a job has to be transferred to be migrated along with it, the 
delay factor wilt be even more significant. 

This study investigates the use of load sharing for a different 
purpose. We are investigating if load sharing is effective as a 
power conservation strategy for mobile computers. The CPU 
is one of the components which consumes significant battery 
power. In this study, we migrate jobs from a mobile computer 
to a fixed host and by doing so, we hope to reduce power con- 
sumption by the CPU and thus, extends battery lifetime. 

B. S o m e  M o b i l e  C o m p u t i n g  I s s u e s  

The idea behind mobile computing is tO allow users wireless 
access to the network regardless of their location. Users will 
want to run the same applications that they run on a fixed net- 
work. They will expect the same computational environment 
regardless of their location [21 ]. Alonso and Korth envisioned 
that applications run will be similar to those currently served 
by laptop computers and these applications will demand vari- 
ous transaction and transaction-like services [ 1]. 

Ideally, users should receive the same quality of service and 
performance as if they were connected to the wired network. 
This, however, is not possible due to the limitations of the 
wireless networks, among which are limited bandwidth, vari- 
ability in the quality of wireless connection, lower memory ca- 
pacity and limited battery power. Although the limitations are 
being addressed in successive technologies, the performance 
disparity between the wireless and wired networks is likely to 
remain [23]. 

Mobile hosts have significantly lower memory capacity and 
computing power compared to a fixed host. For this reason, [2] 
proposed that the computation and communication load should 
be borne by the static part of the network to the extent possible. 
Doing so will reduce the burden of computation on mobile 
hosts and also helps conserve battery power. 

Transmitting a message from a mobile host consumes more 
power than receiving a message of the same size. In order 
to conserve power message transmission from a mobile host 
should be kept to a minimum. Communication in a cell needs 
to be asymmetric to reduce power consumption on the mo- 
bile hosts and to better exploit the broadcast capability of the 
medium [2]. 

Power can also be conserved by design and efficient oper- 
ation. Applications can conserve power by reducing their ap- 
petite for computation, communication and memory [8]. 

The power conservation strategy we are proposing takes on 
the suggestion that the computation load should be borne by 
the fixed network by [2]. 

wireless networks. Wireless networks are associated with low 
bandwidth, high delays and frequent disconnection. This sec- 
tion discusses how the assumptions made regarding load shar- 
ing policies in a mobile environment will diftEr from those in 
distributed networks. 

Previous works on load sharing focused on job migrations 
on fixed networks. The location policy has to select a suitable 
host for the job transfer. In a wireless network, the mobile sup- 
port station (MSS) (or a base station) is the only fixed host a 
mobile host can communicate with directly. Therefore, jobs 
can only be migrated from the mobile to the MSS. The loca- 
tion policy is only needed in cases where the MSS decides to 
delegate transfer requests to other fixed hosts. In this case, any 
of the existing location policy may be used. 

The MSS may transfer the migrated job to another fixed 
host. This however, can be made transparent to the mobile 
host. Where a job is actually executed is not important so long 
as the mobile gets the result back when it needs it. 

Due to the limited bandwidth inherent in wireless network, 
it is no longer valid to assume negligible communication de- 
lays. Probes can no longer be assumed to take zero time. The 
delays incun'ed in transmitting a probe and receiving a reply 
have to be taken into consideration. 

In this study, we assume that only newly arrived jobs may 
be considered for remote execution or transfer. When a new 
job arrives, the load sharing algorithm will determine whether 
the benefit of migrating a job outweighs the cost of migrating 
it. If the benefit outweighs the cost, the mobile host will send 
a transfer request to the MSS. The MSS will then send a re- 
ply accepting or rejecting the request. When a MSS accepts a 
transfer request, it implicitly agrees to execute the job even if 
the mobile moves to a new cell. 

Since the main goal of migrating jobs is to conserve battery 
power on mobile hosts, jobs should only be migrated if the 
amount of power consumed migrating the job is less that the 
amount of power consumed by the CPU if the job is to be 
executed locally. 

III. Experiments 

A. The Algorithms 

We ran the simulations using three different algorithms. The 
algorithms perform the same calculations but differ in the way 
they estimate the CPU time required to execute a job. 

If a job is migratable, the algorithms carry out the following 
calculations : 

1. the amount of power consumed by the CPU if the job is 
to be executed locally, 

2. the amount of power consumed for transmitting and re- 
ceiving messages if the job is to be transferred to a fixed 

host, 

3. an estimate of job response time for local execution vs. 
remote execution. 

C. Load Sharing in Wireless Networks  

Mobility introduces new challenges as a lot of assumptions 
made regarding distributed networks are no longer valid in 

The messages exchanged between the mobile and the MSS 
in order to execute the job remotely are : 

• a transfer request sent by the mobile host to the MSS, 
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• a reply from the MSS accepting or rejecting the request, 

® the job transfer itself, 

® execution result returned by the MSS. 

If  the calculation shows that power consumed by (2) is less 
than (1) and that remote execution will not result in higher 
response time, the mobile will send a transfer request to the 
MSS. In the transfer request, the mobile also specifies the max- 
imum period of time it is willing to wait for the MSS to execute 
the job on its behalf. The maximum waiting time is based on 
the time required to execute the job. It is imposed in order to 
avoid the mobile from having to wait too long for the remote 
execution which will cause a degradation in job response time. 

The MSS decides if it will be able to execute the job within 
the specified time based on the execution time of jobs it has 
waiting to be executed in its queue. If the MSS is able to do 
so within the specified time, it will send a reply accepting the 
request. Otherwise, the request will be rejected and the mobile 
host will execute the job locally. 

As was mentioned earlier, the algorithms differ in the way 
that they estimate the CPU time required to execute a job. How 
each algorithm estimates the CPU requirement is explained be- 
low. 
Algorithm 1 : Optimal Load Sharing (LS) 

This algorithm assumes a priori knowledge of CPU require- 
ment. The CPU time required to execute a job used by this 
algorithm is obtained from the trace data. This value is used in 
calculation (1) and as the maximum waiting time. The calcu- 
lation performed by this algorithm always gives accurate esti- 
mates and it is therefore, used as an upper bound algorithm. 

In real life, it is unlikely that this information will be avail- 
able in advance. Algorithm 2 and algorithm 3 make no as- 
sumption of this a priori knowledge. The CPU time used in 
calculation (1) is an average value. 
Algorithm 2 : History 

The simulation is first run in a no load sharing mode (NLS) 
and the average CPU time taken to execute each job is calcu- 
lated. For example, the CPU time taken for each execution of 
job A is totalled and the average value is calculated at the end 
of the simulation. Later, when the job is run in load sharing 
mode using the History algorithm, the average value calcu- 
lated in the previous simulation run is used in calculation (1). 
This value is also used as the maximum waiting time. 

Since the same trace data were used when running the simu- 
lation in N kS and t.S mode, the users' workload is exactly the 
same. In reality it is highly unlikely that the same workload 
will be reproduced. Therefore, this algorithm can be consid- 
ered to be an upper bound for the use of history information. 
Algorithm 3 : Adaptive Load Sharing (ALS) 

The adaptive algorithm learns and adapts its decision based 
on previous execution of jobs. It works as follows. When 
job A is executed for the first time, its CPU requirement is 
unknown and therefore, no assumption can be made regarding 
the feasibility of transferring it. Job A will be executed locally 
and the algorithm will keep a record of the CPU time taken to 
execute the job. 

The next time job A is executed, the CPU time from the pre- 
vious execution is used in calculation (1) to estimate if remote 
execution will be beneficial. Each time job A is executed, the 

CPU time taken to execute the job is used to calculate a new 
average value which will be used in future calculations. As 
in the History algorithm, this average value is also used as the 
maximum waiting time. 

We expect this algorithm to be the most practical compared 
to the other two algorithms since it makes no assumption of a 
priori knowledge and is able to adapt its behaviour according 
to a user's working pattern. 

B.  T h e  S i m u l a t i o n  

The simulation is written using Maisie [19] which is a C-based 
simulation language. Entities are defined to represent mobile 
hosts, mobile support stations, fixed hosts and communication 
channels. The entities communicate using message passing. 

C. Trace Data 

We would like the simulation to represent the type of work- 
load generated in real life. For this reason, trace data for the 
simulation were collected from Sun workstations in the un- 
dergraduate labs at the Computer Science Department, UCL. 
Process accounting was used to collect trace data for 24-hour 
periods. 

Since the trace data were collected from undergraduate labs, 
the type of jobs run were mostly text processing, program 
compilation, email, web browsers etc. We tried to obtain some 
trace data for multimedia applications. Unfortunately that was 
not possible because the multimedia applications run on So- 
laris machines while process accounting can only run on Sun 
machines. 

We summarised the data to contain only the time period 
when the machines were being used. The time period when 
no user was logged on were deleted. This gave us trace data 
for a period of 4 - 8 hours. Each job type is classified either 
migratable or non-migratable. Examples of migratable jobs 
are program compilation, simulations and program runs, while 
examples of non-migratable jobs are interactive jobs, text for- 
matting and email. 

Among the information provided by the trace data are job 
name, job start and end time and the CPU time (in seconds) 
taken to execute a job. 

Even though the trace data were not collected from mobile 
applications, this is not an unreasonable approximation. It is 
plausible to assume that mobile users will use their mobile 
computers as an extension to they way it is currently used in 
the work place instead of for totally different type of applica- 
tions. 

D. Power  Consumpt ion  

An AST Power Executive 325/SL NiMh battery provides (14.4 
V * 2.4 A-hr) ~ 34.6 W-hr. Transmitting and receiving will 
consume 3.4W and 1.7W respectively [12]. [8] lists power 
consumption of hardware components of a portable computer. 
Based on this information, the battery will last for about 3.4 
hours, assuming that general power consumption (i.e. power 
consumption by the basic components such as the display, hard 
drive, keyboard etc) will be about 10.1 W. 
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Power consumed when transmitting = 

3.4.  3 ~  -hr 

tr = time taken to transmit a message (sec) 
Power consumed when receiving is calculated in a similar way. 
Power consumed by the CPU is = 

Pc'Pu" 3@0 W-hr 

P(:Pu = power consumed by the CPU 
t~  = CPU time taken to execute a,job on a mobile (sec) 
Based on the information provided in Intel's Application Note 
[13], the average active CPU power consumption is assumed 
to be 4.59 Watts and idle power consumption, i.e. doze mode, 
(with Advanced Power Management) is 1.24 Watts. 

E. A s s u m p t i o n s  

At the moment the simulation only considers job migration 
between a mobile and its Mobile Support Station (MSS) or 
Base Station (BS). The parameters used in order to determine 
if it is worth migrating a job are : 

o available bandwidth; 

o job size; 

® power consumed by the CPU to execute a job on the mo- 
bile host; 

e power consumed transmitting and receiving messages. 

B = available bandwidth 

R1 = packet size of  request message 

R2 = packet size of  transfer reply 

J = size job to be transferred + data 

-R3 = packet size of  the returned result 

P = power remaining on the mobile host 

• ~ = power consumed transmitting packet(s) 

G, = power consumed receiving packet(s) 

PcPu = power consumedto execute a job 

on the mobile host 

cost of  sending transfer request 

cost of  receiving a reply 

cost o f  transferring a job 

cost of  migrating a job 

R 1  
m " P t .  
B 

Rz 
-~ - -  " r r  

B 

= cost of  transmitting a job + 

cost of  receiving the result 

J R3 = N-Pt + - g .  Pr 

= cost of  sending a request + 

cost of  receiving a reply + 

cost of  transferring a job 

c~ + . + R 3 . p , , ) )  

cost of executing a job on a mobile host = 

fl" (PcPu" tm 
3600y 

c~ and fl are the weights given to remote and local execution 
respectively. At the moment c~ = fl = 1.0. 
The job service time and job inter-arrival time of  the mobile 
hosts are obtained from the trace data. 
The workload of  the fixed hosts are generated using exponen- 
tial distribution. The fixed hosts are assumed to have an ex- 
ponential service time of  It = 0.1 and job inter-arrival rate of  
.X = 1.0. 

We generate the additional workload at the fixed hosts be- 
cause, in reality, a fixed host may have its own jobs to execute. 
If  so, it can only accept a job transfer request if it has some 
spare capacity. By taking this approach, we create an environ- 
ment where a mobile host must compete for the fixed host's re- 
sources and so reduce the chances of  obtaining over-optimistic 
results. 

IV. R e s u l t s  a n d  D i s c u s s i o n  

In the experiments carried out, we want to investigate : 

® how the available bandwidth influence job migrations, 

® how the mobile host's processor cycle influence the job 
migration decision, 

• the effectiveness of  History and ALS compared to kS in 
extending battery lifetime, 

® any other factors which may influence battery lifetime. 

We varied the processor cycle time of  the mobile relative 
to the fixed host to see the effect it has on power saving. A 
processor cycle time of 1 /n  means that the mobile's processor 
is n times slower than the fixed host. 

Simulations were run for groups of  30 users at a time. De- 
tailed figures are given for five of  those users, together with 
an average over all 30 users. In this way, it is possible to see 
both general behaviour and the way that behaviour may vary 
between different classes of  users. Table 1 gives the character- 
istic of different classes of  users. 

A. B a n d w i d t h  

The available bandwidth is an important factor in determining 
if a job can be migrated. We varied the available bandwidth 
from 9.6 kbps to 100.0 kbps. Figure 1 shows battery lifetime 
improvement for various bandwidths. The graph shows that 
for user 1, user2 and user3, the duration that the battery lifetime 
improvement increases as the available bandwidth increases. 

For userl, the battery lifetime increased from 2.68 hour (no 
load sharing) to  3.16 hour (with load sharing) when the avail- 
able bandwidth is 100.0 kbps. The battery lifetime of user2 
increased from 2.52 hour to 3.07 hour. The battery lifetime of  
user3 increased from 2.57 hour to 3.07 hour. The battery life- 
time of user4 and user5 increased from 3.25 hour to 3.27 hour 
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users Average job 
size (bytes) 

[ Av ge job 
[ executi~ gth (sec) 

CPU 
utilisation 

Userl 8303 [ 10.17 0.69 
User2 30441 I 11.07 0.89 
User3 46154 13.50 0.94 
User4 22383 0.73 0.01 
User5 4980 0.94 0.02 

Table 1: Table showing the different characteristics of users. 
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Figure 1: Graph showing the percent of battery lifetime is 
extended as available bandwidth increases (processor cycle = 
1/5). 

and from 3.23 hour to 3.27 hour respectively. Table 2 gives a 
summary of the improvement of battery lifetime of each user. 
User4 and user5 do not show significant improvement in bat- 
tery lifetime. The reason why the two users exhibit such be- 
haviour will be discussed in 4.3. 

At low bandwidth few jobs were migrated because the 
amount of time spent transmitting and receiving would con- 
sume more power than executing the jobs locally. As the avail- 
able bandwidth increases, more jobs were migrated (please 
refer to Figure 2) and therefore, more power saving was 
achieved. 

Note that, even at low bandwidth, userl transferred many 
more jobs than the other users. As can be seen from Table 
1, userl execute smaller jobs than the other users. Conse- 
quently, it is beneficial for userl to transfer jobs even at rel- 
atively low bandwidth. Figure 3 shows that communication 
delays decreases as the available bandwidth increases. Note 
that for userl and user2, the mean communication delays in- 
creases slightly when the available bandwidth increases from 
56.0 kbps to 100.0 kbps. The same observation can be made 
for user3, when the available bandwidth increases from 28.0 
kbps to 56.0 kbps. The reason for this observation is that as 
the available bandwidth increases, jobs which were previously 
not transferred because it was not feasible to do so, are now 
selected for transfer. Since these are jobs with relatively large 
job size, they cause a slight increase in communication delays. 

Figure 2: Graph showing percent of job transferred as the 
available bandwidth increases (processor cycle = 1/5). 

,';2 
10.0 

6.0 

4.0 

2.0 

0 . 0  

communication delays - available bandwidth [] 9.6 

usert t~er2 user3 user4 t~er5 average 

Figure 3: Graph shows that communication delays decreases 
as the available bandwidth increases (processor cycle = 1/5). 

Once again, we can observe that user4 and user5 do not ex- 
hibit significant improvement in their battery lifetime. 

Apart from extending battery lifetime, migrating jobs gives 
users access to faster machines. As a result, the mean response 
time improved. The response time improvement is calculated 
as follows : 

RT improvement = ((RTa - RTb) /RTa)% 

where : 

RTa = mean response time without load sharing, 

RTb = mean response time with sharing. 

Figure 5 shows that there is a vast improvement in response 
time as the processor cycle decreases. This can be explained 
as follows. 

The job inter-arrival time is calculated from the trace data. 
This value remains the same as we decrease the processor cy- 
cle. Hence, the jobs still arrive at the same rate even though 
they are now serviced at a slower rate, causing them to wait 
longer in queue before being served. When jobs are transferred 
to a fixed host, the waiting time is reduced drastically. As a re- 
sult, we see the vast improvement in response time when jobs 
are transferred from the slow machines. 

B. Processor  Cycle o f  Mobile Computer  C. CPU Uti l i sat ion 

Figure 4 shows that for slower mobiles, more power saving 
is achieved by migrating jobs. Slower machines require more 
CPU time to execute a job. The cost of migrating jobs becomes 
less than the cost of executing them locally. Therefore, on a 
slow machine, more jobs will be transferred and a significant 
amount of power can be saved. 

In order to determine why user4 and user5 do not benefit from 
job migration, we took a closer look at the users' trace data. 
Upon closer examination, we discovered that the CPU utilisa- 
tion influences the benefit of job transfers. 

We calculated the average CPU utilisation for each trace 
data. Table 1 shows that the CPU utilisation of user4 and user5 
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Bandwid Average for 
I (kbps) 30 users 

% 

9.6 2.52 
20.0 2.52 
28.0 10.75 
56.0 11.38 
100.0 11.38 

Table 2: A summary of battery lifetime improvement for each user ~br different bandwidth (processor cycle = 1/5). 
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Figure 4: Graph showing that slower mobile computers benefit 
more from job transfers bandwidth = 56.0 kbps). 
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Figure 5: Graph showing RT improvement by giving mobile 
hosts access to faster machines on the fixed network 
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Figure 6: Graph showing the relationship between CPU utili- 
sation and the benefit of job migration. (bandwidth=56.0 kbps; 
processor cycle= 1/5). 

are low compared to other users. 

CPU utilisation ~ Ji 
T 

where Ji = CPU time to executejobi (sec) 

T = simulation period (sec) 

Referring to Figure 2, even though the percentage of jobs 
transferred for user 5 is comparable to userl, user2 and user3, 
there is no significant improvement in battery lifetime. This 
is because since the CPU utilisation is low, transferring jobs 
does not result in the CPU remaining idle long enough to lead 
to substantial saving. 

The percentage of jobs transferred for user4 is low because 
most jobs are short-lived and, therefore, not worth migrating. 
This agrees with the suggestion of [7] that a practical imple- 
mentation of load sharing should attempt to selects jobs with a 
relatively high ratio of processing costs to transfer cost. 

Figure 6 shows that the benefit of job migration does indeed 
correspond to average CPU utilisation. 

D. History  a n d  ALS 

Table 3 summarises the simulation results for users using His- 
tory and ALS compared to kS. From the table, we can see that 
for all three users, ALS's performance is almost as good as the 
upper bound LS. 

The trace data shows that the execution time of a job is not 
a constant value. The value may fluctuate. Both History and 
ALS makes use of an average CPU time in its calculation. 
Since an average value is used, it is possible that sometimes 
a incorrect estimate is made regarding power consumption. A 
wrong prediction may cause either an unnecessary job trans- 
fer or cause a job to be executed locally when it should have 
been migrated. Incorrect predictions result in a waste of bat- 
tery power. 

History makes use of an average value from a previous sim- 
ulation in its calculation. The same average value for job A is 
used in the calculation each time job A is executed. Therefore, 
it is likely that a wrong estimation will be repeated. 

On the other hand, ALS which is a dynamic algorithm, uses 
current information. The average value is updated after each 
job execution. Consequently, it is capable of adapting its be- 
haviour over time and of improving its estimates. Even though 
ALS may still make mistakes, these are not as serious as His- 
tory. Consequently, ALS out performs History. Figure 7 com- 
pares the performance of kS, History and ALS. 
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- b a b y  lifetime extended (%) I job transferred (%) I RT improvement (%) 

_user3 I 18.68 15.56 17.90 1__2_Z2~_1 ~ '  [__~_2~_~_1 97.85] - ~ '  ..[__~_7_2~_97 27 

Table 3: Table comparing the performance of I_S, History and At_5 (Bandwidth = 56.0 kbps; processor cycle = 1/5) 

performance comparison of LS, ALS and History 

20.0 

~ ~ 15.0 

10.0 

5.0 
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Figure 7: Graphs showing the performance of History and ALS 
compared to LS 

V. C o n c l u s i o n  

We have shown that migrating jobs from a mobile host to a 
fixed host can extend battery life and improve job response 
time. The benefits of job migration depend on several factors, 
i.e. available bandwidth, CPU utilisation and processor cycle 
of the mobile relative to the fixed host. As the available band- 
width increases, more jobs can be transferred to the fixed host. 

We have also established that the benefit of job migration is 
influenced by CPU utilisation. A mobile host with high CPU 
utilisation is more likely to benefit from job migrations. 

We introduced two dynamic algorithms, i.e. History and 
ALS. ALS out performs History and its performance is almost 
as good as the upper bound kS algorithm due to its ability to 
adapt its behaviour over time. 
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