
Po err Conserva o SCraCegy for Mobile CompuCers Using
: Sharing

Mazliza Othrnan Stephen Hailes
M.Othman@cs.ucl.ac.uk S.Hailes@cs.ucl.ac.uk

University College London, Department of Computer Science, London, U.K.

Power management is an important aspect of mobile computing. Previous works on power conser-
vation have concentrated on the hardware approach. In this paper; we propose a different approach
of power conservation strategyJbr mobile computers which is based on the concept of load sharing.
User jobs are transferred from a mobile host to a fixed host to reduce power consumption by the
CPU. Simulation results show that under suitable conditions, transferring job can extend battery
Ii[e.time by up to 20%. 7?ansferring jobs to a fixed host does not only extend battery lifetime but also
gives users access to faster machines, hence improving job response time.

L IntroductiOn

Advancing technology in wireless communication will allow
roaming users to access the network while away from their of-
rice. An example of an application for roaming users is the
MOST project [3], where engineers take their laptops with
them to the field. Wireless Coyote [9] is an example of how
wireless technology can be used in an educational product.
The Wireless Coyote experiment involved four groups of stu-
dents who used the product on a field trip. The application
allowed the groups of students in different locations to share
the data they collected in real-time.

Power management has become one of the important issues
which need to be addressed in order to support roaming users.
A mobile computer operates on battery power. Under contin-
uous use, the battery will last for about 2 - 3 hours. Ideally it
should last for 8 hours (one working day). Since the projection
on progress in battery technology shows that only a 20% im-
provement in battery capacity will occur over the next 10 years
[17], it is vital that power utilisation is managed efficiently and
economically.

This paper discusses an approach to reduce power consump-
tion by the CPU. The CPU consumes approximately 31%
power on a mobile computer [8]. The proposed approach bor-
rows from the concept of load sharing. Jobs are migrated from
a mobile host to a fixed host for execution in order to reduce
power consumption by the mobile's CPU.

Executing the jobs at a fixed host will not only reduce power
consumption but will also give the mobile access to a faster
machine and, thus, improves performance.

Previous works on power conservation have concentrated on
the hardware approach. [4] and [6] discuss a strategy of spin-
ning down the hard disk during idle periods which will reduce
power consumption on mobile computers. [10] discusses a dy-
namic disk spin-down algorithm which receives input from a
set of experts. Each expert is assigned a weight which is up-
dated after each trial depending on how accurate or misleading
the expert's prediction is.

[5] discusses a storage alternative, the flash memory, which
consumes less power, has low latency and has high throughput
for read accesses.

[24] proposed a method of power savings by reducing the
CPU clock speed. In this paper, Weiser et al shows that is
better to spread work out by reducing clock speed and voltage

than to run the CPU at full speed for short bursts and then idle.
This approach stems from the non-linear relationship between
clock speed and energy saving.

The rest of this paper is organised as follows. Section 2
gives some background on load sharing and mobile comput-
ing issues. Section 3 discusses the algorithms, the simulation
model, experiments and assumptions. Section 4 discusses the
results and finally, section 5 concludes.

II. Background

A. Load Sharing in Distributed Systems

Load balancing or load sharing is a strategy to distribute work-
load among processors in a distributed system. Some liter-
ature distinguishes between load balancing and load sharing.
Load balancing is often defined as a strategy which attempts
to assure that each processor in a system has equal load. Load
sharing, on the other hand, is usually referred to as a strategy
which attempts to share loads in a distributed system without
attempting to equalise its load. Both strategies have the same
goal, which is to make better use of the system resources (usu-
ally the CPU) by making sure that no nodes are idle.

In the context of this study, we shall use the term load shar-
ing. A load sharing algorithm consists of 2 policies. A transfer
policy decides when a job should be transferred. This is usu-
ally determined based on the number of jobs in the queue wait-
ing to be serviced. The location policy decides to which host
a job should be transferred. This is done either by choosing a
host randomly or by using workload information. The work-
load information may be obtained either by probing a subset
of hosts or by collecting the information periodically. If the
information is collected periodically, an optimal period has to
be determined. Collecting the information frequently will re-
sult in accurate and up to date information but will incur more
overhead. On the other hand, a less frequent period will result
in out of date information being used.

Several load sharing algorithms have been proposed. The
algorithms vary from those which make no use of system state
information (e.g. Random algorithm of [7]) to those which
attempt to make use of global state information (e.g. [15]).

Not all jobs are suitable for migration. [26] observes that
some jobs are immobile, i.e. they have to be executed locally.
Examples of such jobs are those which perform local services

44 Mobile Computing and Communications Review, Volume 2, Number I

http://crossmark.crossref.org/dialog/?doi=10.1145%2F584007.584011&domain=pdf&date_stamp=1998-01-01

and/or require local resources.
Migrating a job involves packaging it at the so~rce node,

transmitting it through the communication network and un-
packing it at the destination. A number of previous works
assumed that the probing cost and/or network cost to be neg-
ligible ([22], [7], [18] and [16]). Probes are usually assumed
to take zero time. Other works which made a non-negligible
delay assumptions were [11], [20], [25] and [14]. If a file used
by a job has to be transferred to be migrated along with it, the
delay factor wilt be even more significant.

This study investigates the use of load sharing for a different
purpose. We are investigating if load sharing is effective as a
power conservation strategy for mobile computers. The CPU
is one of the components which consumes significant battery
power. In this study, we migrate jobs from a mobile computer
to a fixed host and by doing so, we hope to reduce power con-
sumption by the CPU and thus, extends battery lifetime.

B. S o m e M o b i l e C o m p u t i n g I s s u e s

The idea behind mobile computing is tO allow users wireless
access to the network regardless of their location. Users will
want to run the same applications that they run on a fixed net-
work. They will expect the same computational environment
regardless of their location [21]. Alonso and Korth envisioned
that applications run will be similar to those currently served
by laptop computers and these applications will demand vari-
ous transaction and transaction-like services [1].

Ideally, users should receive the same quality of service and
performance as if they were connected to the wired network.
This, however, is not possible due to the limitations of the
wireless networks, among which are limited bandwidth, vari-
ability in the quality of wireless connection, lower memory ca-
pacity and limited battery power. Although the limitations are
being addressed in successive technologies, the performance
disparity between the wireless and wired networks is likely to
remain [23].

Mobile hosts have significantly lower memory capacity and
computing power compared to a fixed host. For this reason, [2]
proposed that the computation and communication load should
be borne by the static part of the network to the extent possible.
Doing so will reduce the burden of computation on mobile
hosts and also helps conserve battery power.

Transmitting a message from a mobile host consumes more
power than receiving a message of the same size. In order
to conserve power message transmission from a mobile host
should be kept to a minimum. Communication in a cell needs
to be asymmetric to reduce power consumption on the mo-
bile hosts and to better exploit the broadcast capability of the
medium [2].

Power can also be conserved by design and efficient oper-
ation. Applications can conserve power by reducing their ap-
petite for computation, communication and memory [8].

The power conservation strategy we are proposing takes on
the suggestion that the computation load should be borne by
the fixed network by [2].

wireless networks. Wireless networks are associated with low
bandwidth, high delays and frequent disconnection. This sec-
tion discusses how the assumptions made regarding load shar-
ing policies in a mobile environment will diftEr from those in
distributed networks.

Previous works on load sharing focused on job migrations
on fixed networks. The location policy has to select a suitable
host for the job transfer. In a wireless network, the mobile sup-
port station (MSS) (or a base station) is the only fixed host a
mobile host can communicate with directly. Therefore, jobs
can only be migrated from the mobile to the MSS. The loca-
tion policy is only needed in cases where the MSS decides to
delegate transfer requests to other fixed hosts. In this case, any
of the existing location policy may be used.

The MSS may transfer the migrated job to another fixed
host. This however, can be made transparent to the mobile
host. Where a job is actually executed is not important so long
as the mobile gets the result back when it needs it.

Due to the limited bandwidth inherent in wireless network,
it is no longer valid to assume negligible communication de-
lays. Probes can no longer be assumed to take zero time. The
delays incun'ed in transmitting a probe and receiving a reply
have to be taken into consideration.

In this study, we assume that only newly arrived jobs may
be considered for remote execution or transfer. When a new
job arrives, the load sharing algorithm will determine whether
the benefit of migrating a job outweighs the cost of migrating
it. If the benefit outweighs the cost, the mobile host will send
a transfer request to the MSS. The MSS will then send a re-
ply accepting or rejecting the request. When a MSS accepts a
transfer request, it implicitly agrees to execute the job even if
the mobile moves to a new cell.

Since the main goal of migrating jobs is to conserve battery
power on mobile hosts, jobs should only be migrated if the
amount of power consumed migrating the job is less that the
amount of power consumed by the CPU if the job is to be
executed locally.

III. Experiments

A. The Algorithms

We ran the simulations using three different algorithms. The
algorithms perform the same calculations but differ in the way
they estimate the CPU time required to execute a job.

If a job is migratable, the algorithms carry out the following
calculations :

1. the amount of power consumed by the CPU if the job is
to be executed locally,

2. the amount of power consumed for transmitting and re-
ceiving messages if the job is to be transferred to a fixed

host,

3. an estimate of job response time for local execution vs.
remote execution.

C. Load Sharing in Wireless Networks

Mobility introduces new challenges as a lot of assumptions
made regarding distributed networks are no longer valid in

The messages exchanged between the mobile and the MSS
in order to execute the job remotely are :

• a transfer request sent by the mobile host to the MSS,

Mobile Computing and Communications Review, Volume 2, Number I 45

• a reply from the MSS accepting or rejecting the request,

® the job transfer itself,

® execution result returned by the MSS.

If the calculation shows that power consumed by (2) is less
than (1) and that remote execution will not result in higher
response time, the mobile will send a transfer request to the
MSS. In the transfer request, the mobile also specifies the max-
imum period of time it is willing to wait for the MSS to execute
the job on its behalf. The maximum waiting time is based on
the time required to execute the job. It is imposed in order to
avoid the mobile from having to wait too long for the remote
execution which will cause a degradation in job response time.

The MSS decides if it will be able to execute the job within
the specified time based on the execution time of jobs it has
waiting to be executed in its queue. If the MSS is able to do
so within the specified time, it will send a reply accepting the
request. Otherwise, the request will be rejected and the mobile
host will execute the job locally.

As was mentioned earlier, the algorithms differ in the way
that they estimate the CPU time required to execute a job. How
each algorithm estimates the CPU requirement is explained be-
low.
Algorithm 1 : Optimal Load Sharing (LS)

This algorithm assumes a priori knowledge of CPU require-
ment. The CPU time required to execute a job used by this
algorithm is obtained from the trace data. This value is used in
calculation (1) and as the maximum waiting time. The calcu-
lation performed by this algorithm always gives accurate esti-
mates and it is therefore, used as an upper bound algorithm.

In real life, it is unlikely that this information will be avail-
able in advance. Algorithm 2 and algorithm 3 make no as-
sumption of this a priori knowledge. The CPU time used in
calculation (1) is an average value.
Algorithm 2 : History

The simulation is first run in a no load sharing mode (NLS)
and the average CPU time taken to execute each job is calcu-
lated. For example, the CPU time taken for each execution of
job A is totalled and the average value is calculated at the end
of the simulation. Later, when the job is run in load sharing
mode using the History algorithm, the average value calcu-
lated in the previous simulation run is used in calculation (1).
This value is also used as the maximum waiting time.

Since the same trace data were used when running the simu-
lation in N kS and t.S mode, the users' workload is exactly the
same. In reality it is highly unlikely that the same workload
will be reproduced. Therefore, this algorithm can be consid-
ered to be an upper bound for the use of history information.
Algorithm 3 : Adaptive Load Sharing (ALS)

The adaptive algorithm learns and adapts its decision based
on previous execution of jobs. It works as follows. When
job A is executed for the first time, its CPU requirement is
unknown and therefore, no assumption can be made regarding
the feasibility of transferring it. Job A will be executed locally
and the algorithm will keep a record of the CPU time taken to
execute the job.

The next time job A is executed, the CPU time from the pre-
vious execution is used in calculation (1) to estimate if remote
execution will be beneficial. Each time job A is executed, the

CPU time taken to execute the job is used to calculate a new
average value which will be used in future calculations. As
in the History algorithm, this average value is also used as the
maximum waiting time.

We expect this algorithm to be the most practical compared
to the other two algorithms since it makes no assumption of a
priori knowledge and is able to adapt its behaviour according
to a user's working pattern.

B. T h e S i m u l a t i o n

The simulation is written using Maisie [19] which is a C-based
simulation language. Entities are defined to represent mobile
hosts, mobile support stations, fixed hosts and communication
channels. The entities communicate using message passing.

C. Trace Data

We would like the simulation to represent the type of work-
load generated in real life. For this reason, trace data for the
simulation were collected from Sun workstations in the un-
dergraduate labs at the Computer Science Department, UCL.
Process accounting was used to collect trace data for 24-hour
periods.

Since the trace data were collected from undergraduate labs,
the type of jobs run were mostly text processing, program
compilation, email, web browsers etc. We tried to obtain some
trace data for multimedia applications. Unfortunately that was
not possible because the multimedia applications run on So-
laris machines while process accounting can only run on Sun
machines.

We summarised the data to contain only the time period
when the machines were being used. The time period when
no user was logged on were deleted. This gave us trace data
for a period of 4 - 8 hours. Each job type is classified either
migratable or non-migratable. Examples of migratable jobs
are program compilation, simulations and program runs, while
examples of non-migratable jobs are interactive jobs, text for-
matting and email.

Among the information provided by the trace data are job
name, job start and end time and the CPU time (in seconds)
taken to execute a job.

Even though the trace data were not collected from mobile
applications, this is not an unreasonable approximation. It is
plausible to assume that mobile users will use their mobile
computers as an extension to they way it is currently used in
the work place instead of for totally different type of applica-
tions.

D. Power Consumpt ion

An AST Power Executive 325/SL NiMh battery provides (14.4
V * 2.4 A-hr) ~ 34.6 W-hr. Transmitting and receiving will
consume 3.4W and 1.7W respectively [12]. [8] lists power
consumption of hardware components of a portable computer.
Based on this information, the battery will last for about 3.4
hours, assuming that general power consumption (i.e. power
consumption by the basic components such as the display, hard
drive, keyboard etc) will be about 10.1 W.

46 Mobile Computing and Communications Review, Volume 2, Number I

Power consumed when transmitting =

3.4. 3 ~ -hr

tr = time taken to transmit a message (sec)
Power consumed when receiving is calculated in a similar way.
Power consumed by the CPU is =

Pc'Pu" 3@0 W-hr

P(:Pu = power consumed by the CPU
t~ = CPU time taken to execute a,job on a mobile (sec)
Based on the information provided in Intel's Application Note
[13], the average active CPU power consumption is assumed
to be 4.59 Watts and idle power consumption, i.e. doze mode,
(with Advanced Power Management) is 1.24 Watts.

E. A s s u m p t i o n s

At the moment the simulation only considers job migration
between a mobile and its Mobile Support Station (MSS) or
Base Station (BS). The parameters used in order to determine
if it is worth migrating a job are :

o available bandwidth;

o job size;

® power consumed by the CPU to execute a job on the mo-
bile host;

e power consumed transmitting and receiving messages.

B = available bandwidth

R1 = packet size of request message

R2 = packet size of transfer reply

J = size job to be transferred + data

-R3 = packet size of the returned result

P = power remaining on the mobile host

• ~ = power consumed transmitting packet(s)

G, = power consumed receiving packet(s)

PcPu = power consumedto execute a job

on the mobile host

cost of sending transfer request

cost of receiving a reply

cost o f transferring a job

cost of migrating a job

R 1
m " P t .
B

Rz
-~ - - " r r

B

= cost of transmitting a job +

cost of receiving the result

J R3 = N-Pt + - g . Pr

= cost of sending a request +

cost of receiving a reply +

cost of transferring a job

c~ + . + R 3 . p , ,))

cost of executing a job on a mobile host =

fl" (PcPu" tm
3600y

c~ and fl are the weights given to remote and local execution
respectively. At the moment c~ = fl = 1.0.
The job service time and job inter-arrival time of the mobile
hosts are obtained from the trace data.
The workload of the fixed hosts are generated using exponen-
tial distribution. The fixed hosts are assumed to have an ex-
ponential service time of It = 0.1 and job inter-arrival rate of
.X = 1.0.

We generate the additional workload at the fixed hosts be-
cause, in reality, a fixed host may have its own jobs to execute.
If so, it can only accept a job transfer request if it has some
spare capacity. By taking this approach, we create an environ-
ment where a mobile host must compete for the fixed host's re-
sources and so reduce the chances of obtaining over-optimistic
results.

IV. R e s u l t s a n d D i s c u s s i o n

In the experiments carried out, we want to investigate :

® how the available bandwidth influence job migrations,

® how the mobile host's processor cycle influence the job
migration decision,

• the effectiveness of History and ALS compared to kS in
extending battery lifetime,

® any other factors which may influence battery lifetime.

We varied the processor cycle time of the mobile relative
to the fixed host to see the effect it has on power saving. A
processor cycle time of 1 /n means that the mobile's processor
is n times slower than the fixed host.

Simulations were run for groups of 30 users at a time. De-
tailed figures are given for five of those users, together with
an average over all 30 users. In this way, it is possible to see
both general behaviour and the way that behaviour may vary
between different classes of users. Table 1 gives the character-
istic of different classes of users.

A. B a n d w i d t h

The available bandwidth is an important factor in determining
if a job can be migrated. We varied the available bandwidth
from 9.6 kbps to 100.0 kbps. Figure 1 shows battery lifetime
improvement for various bandwidths. The graph shows that
for user 1, user2 and user3, the duration that the battery lifetime
improvement increases as the available bandwidth increases.

For userl, the battery lifetime increased from 2.68 hour (no
load sharing) to 3.16 hour (with load sharing) when the avail-
able bandwidth is 100.0 kbps. The battery lifetime of user2
increased from 2.52 hour to 3.07 hour. The battery lifetime of
user3 increased from 2.57 hour to 3.07 hour. The battery life-
time of user4 and user5 increased from 3.25 hour to 3.27 hour

Mobile Computing and Communications Review, Volume 2, Number I 47

users Average job
size (bytes)

[Av ge job
[executi~ gth (sec)

CPU
utilisation

Userl 8303 [10.17 0.69
User2 30441 I 11.07 0.89
User3 46154 13.50 0.94
User4 22383 0.73 0.01
User5 4980 0.94 0.02

Table 1: Table showing the different characteristics of users.

40.0

~'~ 30,0

.~ 20.0

lO.O

0.0

job transferred -available bm~dwidt h

user1 user2 user3 user4 user5 average

battery lifetime improvement (%)

20.0

.~ ~ 15.0

10,0

5.o

~ 0.0 ,
userl user2 user3 user4

I
~ _ [t H 2 S

C156

E]IO0

user5 average

Figure 1: Graph showing the percent of battery lifetime is
extended as available bandwidth increases (processor cycle =
1/5).

and from 3.23 hour to 3.27 hour respectively. Table 2 gives a
summary of the improvement of battery lifetime of each user.
User4 and user5 do not show significant improvement in bat-
tery lifetime. The reason why the two users exhibit such be-
haviour will be discussed in 4.3.

At low bandwidth few jobs were migrated because the
amount of time spent transmitting and receiving would con-
sume more power than executing the jobs locally. As the avail-
able bandwidth increases, more jobs were migrated (please
refer to Figure 2) and therefore, more power saving was
achieved.

Note that, even at low bandwidth, userl transferred many
more jobs than the other users. As can be seen from Table
1, userl execute smaller jobs than the other users. Conse-
quently, it is beneficial for userl to transfer jobs even at rel-
atively low bandwidth. Figure 3 shows that communication
delays decreases as the available bandwidth increases. Note
that for userl and user2, the mean communication delays in-
creases slightly when the available bandwidth increases from
56.0 kbps to 100.0 kbps. The same observation can be made
for user3, when the available bandwidth increases from 28.0
kbps to 56.0 kbps. The reason for this observation is that as
the available bandwidth increases, jobs which were previously
not transferred because it was not feasible to do so, are now
selected for transfer. Since these are jobs with relatively large
job size, they cause a slight increase in communication delays.

Figure 2: Graph showing percent of job transferred as the
available bandwidth increases (processor cycle = 1/5).

,';2
10.0

6.0

4.0

2.0

0 . 0

communication delays - available bandwidth [] 9.6

usert t~er2 user3 user4 t~er5 average

Figure 3: Graph shows that communication delays decreases
as the available bandwidth increases (processor cycle = 1/5).

Once again, we can observe that user4 and user5 do not ex-
hibit significant improvement in their battery lifetime.

Apart from extending battery lifetime, migrating jobs gives
users access to faster machines. As a result, the mean response
time improved. The response time improvement is calculated
as follows :

RT improvement = ((RTa - RTb) /RTa)%

where :

RTa = mean response time without load sharing,

RTb = mean response time with sharing.

Figure 5 shows that there is a vast improvement in response
time as the processor cycle decreases. This can be explained
as follows.

The job inter-arrival time is calculated from the trace data.
This value remains the same as we decrease the processor cy-
cle. Hence, the jobs still arrive at the same rate even though
they are now serviced at a slower rate, causing them to wait
longer in queue before being served. When jobs are transferred
to a fixed host, the waiting time is reduced drastically. As a re-
sult, we see the vast improvement in response time when jobs
are transferred from the slow machines.

B. Processor Cycle o f Mobile Computer C. CPU Uti l i sat ion

Figure 4 shows that for slower mobiles, more power saving
is achieved by migrating jobs. Slower machines require more
CPU time to execute a job. The cost of migrating jobs becomes
less than the cost of executing them locally. Therefore, on a
slow machine, more jobs will be transferred and a significant
amount of power can be saved.

In order to determine why user4 and user5 do not benefit from
job migration, we took a closer look at the users' trace data.
Upon closer examination, we discovered that the CPU utilisa-
tion influences the benefit of job transfers.

We calculated the average CPU utilisation for each trace
data. Table 1 shows that the CPU utilisation of user4 and user5

48 Mobile Computing and Communications Review, Volume 2, Number I

Bandwid Average for
I (kbps) 30 users

%

9.6 2.52
20.0 2.52
28.0 10.75
56.0 11.38
100.0 11.38

Table 2: A summary of battery lifetime improvement for each user ~br different bandwidth (processor cycle = 1/5).

25

~ ~ 20

0

battery lifetime improvement - processor cycle E1 I/5

[] / /4

[] 1/3

a t

userl user2 user3 user4 user5 average

Figure 4: Graph showing that slower mobile computers benefit
more from job transfers bandwidth = 56.0 kbps).

100.0

80.0

60.0
40.0

20,0

0.0

response time improvement - processor cycle

user i user2 user3 user4

IN t/5

] 114

[] 1/2

user5 average

Figure 5: Graph showing RT improvement by giving mobile
hosts access to faster machines on the fixed network

25

~ 2 0

N ~ 1 5

0

battery lifetime vs, CPU utilisation

0 ~

0.2 0.4 0.6 0.8

average CPU

utilisation

Figure 6: Graph showing the relationship between CPU utili-
sation and the benefit of job migration. (bandwidth=56.0 kbps;
processor cycle= 1/5).

are low compared to other users.

CPU utilisation ~ Ji
T

where Ji = CPU time to executejobi (sec)

T = simulation period (sec)

Referring to Figure 2, even though the percentage of jobs
transferred for user 5 is comparable to userl, user2 and user3,
there is no significant improvement in battery lifetime. This
is because since the CPU utilisation is low, transferring jobs
does not result in the CPU remaining idle long enough to lead
to substantial saving.

The percentage of jobs transferred for user4 is low because
most jobs are short-lived and, therefore, not worth migrating.
This agrees with the suggestion of [7] that a practical imple-
mentation of load sharing should attempt to selects jobs with a
relatively high ratio of processing costs to transfer cost.

Figure 6 shows that the benefit of job migration does indeed
correspond to average CPU utilisation.

D. History a n d ALS

Table 3 summarises the simulation results for users using His-
tory and ALS compared to kS. From the table, we can see that
for all three users, ALS's performance is almost as good as the
upper bound LS.

The trace data shows that the execution time of a job is not
a constant value. The value may fluctuate. Both History and
ALS makes use of an average CPU time in its calculation.
Since an average value is used, it is possible that sometimes
a incorrect estimate is made regarding power consumption. A
wrong prediction may cause either an unnecessary job trans-
fer or cause a job to be executed locally when it should have
been migrated. Incorrect predictions result in a waste of bat-
tery power.

History makes use of an average value from a previous sim-
ulation in its calculation. The same average value for job A is
used in the calculation each time job A is executed. Therefore,
it is likely that a wrong estimation will be repeated.

On the other hand, ALS which is a dynamic algorithm, uses
current information. The average value is updated after each
job execution. Consequently, it is capable of adapting its be-
haviour over time and of improving its estimates. Even though
ALS may still make mistakes, these are not as serious as His-
tory. Consequently, ALS out performs History. Figure 7 com-
pares the performance of kS, History and ALS.

Mobile Computing and Communications Review, Volume 2, Number I 49

- b a b y lifetime extended (%) I job transferred (%) I RT improvement (%)

_user3 I 18.68 15.56 17.90 1__2_Z2~_1 ~ ' [__~_2~_~_1 97.85] - ~ ' ..[__~_7_2~_97 27

Table 3: Table comparing the performance of I_S, History and At_5 (Bandwidth = 56.0 kbps; processor cycle = 1/5)

performance comparison of LS, ALS and History

20.0

~ ~ 15.0

10.0

5.0
"~ .g 0.0 -- - - , ~ ,

D History

iNALs

Figure 7: Graphs showing the performance of History and ALS
compared to LS

V. C o n c l u s i o n

We have shown that migrating jobs from a mobile host to a
fixed host can extend battery life and improve job response
time. The benefits of job migration depend on several factors,
i.e. available bandwidth, CPU utilisation and processor cycle
of the mobile relative to the fixed host. As the available band-
width increases, more jobs can be transferred to the fixed host.

We have also established that the benefit of job migration is
influenced by CPU utilisation. A mobile host with high CPU
utilisation is more likely to benefit from job migrations.

We introduced two dynamic algorithms, i.e. History and
ALS. ALS out performs History and its performance is almost
as good as the upper bound kS algorithm due to its ability to
adapt its behaviour over time.

[6]

[7]

[81

191

[101

[ll]

[12]

[131

[14]

F. Douglis, R Krishnan, B. Bershad, "Adaptive Disk Spin-
Down Policies for Mobile Computers," 2nd USENIX Sympo-
sium on Mobile and Location-Independent Computing, April
1995.

D.L. Eager, E.D. Lazowska, J. Zahorjan, "Adaptive Load Shar-
ing in Homogeneous Distributed Systems," IEEE Transactions
on Software Engineering, Vol. 12, No. 5, May 1986.

G.H. Forman, J. Zahorjan, "The Challenges of Mobile Com-
puting," Technical Report, UW CSE #93-11-03, University of
Washington, March 1994.

W.C. Grant, "Wireless Coyote : A Computer-Supported Field
Trip," Communications of the ACM, Vol. 36, No. 5, May 1993.

D.R Helmbold, D.D.E. Long, B. Sherrod, "A Dynamic Disk
Spin-Down Technique for Mobile Computing," Mobicom 1996.

C.H. Hsu, J. Liu, "Dynamic Load Balancing Algorithms in Ho-
mogeneous Distributed Systems," Proceedings of the 6th Inter-
national Conference on Distributed Computing Systems, May
1986.

T. Imielinski (ed.), H.F. Korth, Mobile Computing, Kluwer
Academic Publishers, 1996.

lntel Application Note, Pentium(r) Processor (610
75) Power Consumption, Rev. 1.1, October 1994.

O. Kremian, J. Kramer, "Methodical Analysis of Adaptive
Load Sharing Algorithms," IEEE Transactions on Parallel and
Distributed Systems, Vol. 3, No. 6, November 1992.

R e f e r e n c e s

[1] R. Alonso, H.E Korth, "Database System Issues in Nomadic
Computing," SIGMOD Record, Vol. 22, Iss. 2, June 1993.

[21 B.R, Badrinath, A. Acharya, T. Imielinski, "Impact of Mobil-
ity on Distributed Computing," Operating Systems Review, Vol.
27, No. 2, April 1993.

[31 N. Davies, G.S. Blair, A.D. Cross, RE Raven, "Mobile Open
Systems Technologies for the Utilities Industries," lEE Col-
loquium on CSCW Issues for Mobile and Remote Workers,
March, 1993.

[41 F. Douglis, E Krishnan, B. Marsh, "Thwarting the Power-
Hungry Disk," 1994 Winter USENIX Conference, January
1994.

[51 F. Douglis, R. Caceres, B. Marsh, E Kaashoek, K. Li, "Stor-
age Alternatives for Mobile Computers," Proc. of the 1st.
Symposium on Operating System Design and Implementation,
USENIX Assc., November 1994.

1151

[16]

[171

[181

[191

[20]

P. Krueger, N.G. Shivarati, "Adaptive Location Policies for
Global Scheduling," IEEE Transactions on Software Engineer-
ing, Vol. 20, No. 6, June 1994.

R. Mirchandaney, D. Towsley, J.A. Stankovic, "Adaptive Load
Sharing in Heterogeneous Distributed Systems," Journal of
Parallel and Distributed Computing, VoL 9, No. 4, August
1990.

S. Sheng, A. Chandrakasan, R.W. Brodersen, "A Portable Mul-
timedia Terminal," IEEE Communications Magazine, Decem-
ber 1992.

K.G. Shin, Y.C. Chang, "Load Sharing in Distributed Real-
Time Systems with State-Change Broadcasts," IEEE Transac-
tions on Computers, Vol. 38, No. 8, August 1989.

J. Short, R. Bagrodia, L, Kleinrock, "Mobile Wireless Network
System Simulation;' Mobicom '95, November 1995.

A. Svensson, "History, an Intelligent Load Sharing Filter;' Pro-
ceedings of the lOth International Conference on Distributed
Computing Systems, 1990.

50 Mobile Computing and Communications Review, Volume 2, Number I

[21]

[22]

[23]

[24]

[25]

[26]

K Teraoka, Y. Yokote, M. Tokoro, "A Network Architecture
Providing Host Migration Transparency," ACM SIGCOMM,
September 1991.

Y.T. Wang, R.J.T. Morris, "Load Sharing in Distributed Sys-
tems," IEEE Transactions on Computers, Vol. C-34, No. 3,
March t985.

T. Watson, "Application Design for Wireless Computing,"
IEEE Workshop on Mobile Computing, December 1994.

M. Weiser, B. Welch, A. Demers, S. Shenker, "Scheduling for
Reduced CPU Energy," USENIX 1994 Operating System De-
sign and Implementation Symposium, November 1994.

O. ZeinE1Dine, M. E1-Toweissy, R. Mukkamala, "A Distributed
Scheduling algorithm for Heterogeneous Real-Time Systems,"
Lecture Notes in Computer Science, Vol. 497, 1991.

S. Zhou, "A Trace-Driven Simulation of Study of Dynamic
Load Balancing," IEEE Transactions on Software Engineering,
Vol. 14, No. 9, September 1988.

Biographies

Mazliza Othman is currently reading for a Ph.D. degree at the Uni-
versity College London. She obtained her first degree in Computer
Science from Universiti Kebangsaan Malaysia. She obtained her
M.Sc. degree in Data Communication Networks and Distributed Sys-
tems from University College London. She has worked at Telekom
Malaysia as a System Analyst before joining Universiti Malaya as an
academic staff.

Stephen Hailes is currently a lecturer in computer science at Univer-
sity College London. He obtained a B.A. in Computer Science from
the University of Cambridge in 1987 (M.A. 1991). His Ph.D. work,
again at the Computer Laboratory, University of Cambridge, was in
the field of Distributed Object-Based Programming languages. Since
1991, he has worked at UCL in the fields of multimedia, networks and
distributed systems. After 1995, these interests crystallised around
the area of mobile systems, and he now leads the UCL mobile sys-
tems group.

November 3-5, 1998
The Fairmont Hotel, San Francisco, California, USA

Papers offering novel research contributions in any as-
pect of computer security are solicited for submission to
the Fifth ACM Conference on Computer and Communi-
cations Security. Papers may present theory, technique,
applications, or practical experience on topics including
but not limited to:

access control
accounting and audit
applied cryptography
electronic commerce
intrusion detection
privacy and anonymity
information warfare
viruses and worms
security management
security
secure smartcards/PDAs

authentication
mobile code security
data/system integrity
cryptographic protocols
key management
intell, property protection
secure networking
secure OSs
distr, systems
database security
security verification

Accepted papers will be presented at the conference and
published by the ACM in a conference proceedings. Out-
standing papers will be invited for possible publication in
ACM Transactions on Information and System Security.
For paper and panel submission instructions please refer
to the full Call for Papers at:

http://www.research.att.comFreiter/ecs5/

Important dates:
Paper submissions due: April 3, 1998
Panel proposals due: May 1, 1998
Acceptance notification: June 5, 1998
Final papers due: July 16, 1998

Steering comm. chair:
General chair:
Program chair:
Awards chair:
Publication chair:
Publicity chair:

Ravi Sandhu, GMU
Li Gong, JavaSoft
Mike Reiter, AT&T Labs
Jacques Stem, ENS/DMI
Stuart Stubblebine, AT&T Labs
Gene Tsudik, USC ISI

Program Committee
Martin Abadi, DEC SRC
Carl Ellison, Cybercash
Paul Karger, IBM Watson
Ueli Maurer, ETH Zurich
David Naccache, Gemplus
Avi Rubin, AT&T Labs
Gene Tsudik, USC ISI
Bennet Yee, UCSD

Bill Cheswick, Lucent
Ed Felten, Princeton
Steve Kent, BBN Corp.
Cathy Meadows, NRL
Hilafie Orman, DARPA/ITO
Pierangela Samarati, U. Milan
Paul Van Oorschot, Nortel
Moti Yung, CertCo

Mobile Computing and Communications Review, Volume 2, Number 1 51

