
HUMAN FACTORS INFLUENCING THE COMMAND, CONTROL AND
CO~UNICATION FUNCTIONS OF A TIMESHARING SYSTEM

by

Jon A. Stewart
Department of Computer Science and Statistics

University of Southern Mississippi

ABSTRACT

The intent of this paper is to
explore various human ~actors which
influence the design of a timeshar-
ing system and its processors; to
examine characteristics of existing
systems ; and, to propose solutions
which more nearly suit the require-
ments of the timesharing user. Most
illustrations will be drawn from
extensive personal use and observa-
tions of users of two particular
systems -- the XEROX CP-V system on
a Sigma 9 and TOPS10 on the DECSys-
tern-10. Both these systems are
characterized by extremely flexible
command capabilities, almost if not
complete compatibility with their
batch facilities and very crisp
response (for both the CPU resource
and file system functions) when
under proper administrative con-
trols.

INTRODUCT ION

The timesharing neophyte of a few
years back was making a transition
from batch and had a specific set of
learning problems. Today, especial-
ly in educational institutions, the
new user will probably have his
first contact with a computer
through remote terminal access and
may then at a later date become
familiarized with other aspects of
the system. Most concern here will
be with that initial orientation
~hase in which the user is first
earning the characteristics of the

terminal, how to use various proces-
sors and is having his first "expe-

I1 I I . - I I rience wlth the personality of
the system through the messages
communicated and the response of the
system to v~rlous commanas.

My own first experience with a
timesharing system dates back to
late 1968 with a PDP-IO in DEC's

plant in Maynard, ~.~assachusetts. We
were involved in an evaluation pro-
cess which eventually led to selec-
tion of the PDP-10 for an academic-
only computer operation at the Uni-
versity of New Orleans (then LSUNO).
During the same period use was made
of RACS (on a 360/40 in the New
Orleans data center) and BTM (on an
SDS Sigma 7 in El Segundo). Con-
tacts with all these systems led to
increased confirmation that time-
sharing was the way to do business
in an academic computing environment
but there were many peculiarities of
these relatively undeveloped sys-
tems. Initially, all these systems
produced an impression of instabili-
ty -- terminals misbehaved, files
disappeared, etc. Causes for this
"mysterious" behavior were later
determined to be: i) misuse of the
system (incorrect commands); 2) line
noise and accidental key depression
which caused the terminal to change
state; and 3) actual bugs in the
systems. Today there has been a
vast improvement in stability and
the "feel of security"; but, ooser-
vation of users at USM in their
contacts with CP-V and the Sigma 9
still produces many a surprise.

Most frequently, user problems
result from an unexpected response
which may be expli~ined by one of
several possib ilities : i) changes
of terminal state (various command
and input/output modes exist) delib-
erately induced by a processor or
accidentally by the user ; 2) a delay
due to CPU or file system response
which cannot, in most cases, be
anticipated by the user who usually
has little knowledge of the computa-
tional resources required to perform
his task, or the actual current
demand on these resources; 3) an
error message which, though it may
be descriptive and not just an error
code, does not usually indicate the
nature of the corrective action

118

http://crossmark.crossref.org/dialog/?doi=10.1145%2F584296.584345&domain=pdf&date_stamp=1976-11-07

which s h o u l d be t a k e n (u n l e s s t h e
u s e r has had c o n s i d e r a b l e e x p e r i e n c e
w i t h t h e p a r t i c u l a r s y s t e m compo-
n e n t) ; o r , 4) an i n c o r r e c t I /O a s -
s i g n m e n t , m i s s i n g f i l e o r i n c o r r e c t
f i l e t y p e (o r d e v i c e t y p e) f o r a
par ticular process.

TERMINAL INTERFACE DESIGN

Problems c a u s e d by u n e x p e c t e d
t e r m i n a l s t a t e c h a n g e s can be a l l e -
v i a t e d o r a l m o s t d e f e a t e d by making
t h e " c o m b i n a t i o n " r e q u i r e d a d i f f i -
c u l t one to p r o d u c e a c c i d e n t a l l y .
With l i m i t e d a v a i l a b l e key combina -
t i o n s , and in k e e p i n g w i t h t h e ob -
J e c t i v e of minimizing key strokes
and allowing sufficient flexibility,
this goal seems to be rather elu-
sive. But another solution would be
to have a simple "panic" procedure,
uniform across all processors, which
would initialize the terminal
status.

The question of prompt characters
and the transparency of command
levels is another important concern
in terminal interface design. Time-
sharing utilities attempting to
provide command uniformity and ease
of use tend toward the one language/
one level concept -- often some
extension of the Dartmouth BASIC
type of command facility. More
sophisticated systems allow the user
to re-design his command interface
-- substituting synonyms or even
changing syntax. Vendors in their
standard offerings seem to take the
middle ground wl th recognition
prompts keyed to the processor and
essentially a two level command
structure -- namely, the operating
system (SYSTEM) level or the proces-
sor (subsystem) level (e.g., BASIC).
Another possible solution would be
to have an assistance function which
could easily establish the processor
currently doing the command inter-
pretation. Distinguishing prompt s,
Which CP-V uses, are really not that
necessary since: I) the advanced
user knows what processor he has
invoked, 2) the inexperienced user
will not know what the different
prompts mean anyway , and 3) an as-
sistance zeature, if made available,
could establish the identity of the
processor in any eventuality. Hav-
ing different command levels and
terminal states controlled by user
and/or processor seems desirable for
flexible and efficient use of a
system; however, the user should be
able at any time to re-establlsh a
basis for . understanding the re-
sponses ot the system and continuing
his command/response dialogue with
the system.

Minimization of key strokes is
certainly a desirable objective
since touch typists with good speed

are the exception, rather than the
rule, in most general user communi-
ties. Commands should be simple in
form and, ideally, uniform in syntax
across all processors. Abbrevia-
tions should be allowed and an easy
rule for forming an acceptable com-
mand abbreviation is desirable (such
as, first three letters, initial
letters of multi-word commands).
Keying input is, at best, a poor
solution. Until practical voice or
optical character recognition re-
places the ASCII terminal it seems
that we have all agreed to be stuck
with the functional characteristics
of this device; but we don't have to
be committed to its graphics set.
Perhaps a good interim solution here
would be the establishment of stan-
dard commands (RUN, SAVE, LOAD, CAT,
whatever. • •) implemented through
software interpretation of available
CONTROL/SHIFT key combinations •
Wlth the full duplex protocol han-
dled by many systems the echoed
response could visually confirm the
command typed -- such as EDIT, RUN,
SAVE, etc. -- but the typing time
for inputting the commands would be
substantially reduced. Better yet,
of course, would be to re-deslgn the
terminal to include a "function" pad
which would allow single key input
of the necessary system commands.

A final word about terminal de-
sign: the question of full or half
duplex, llne at a time or character
at a time transmissions (with echo-
plex protocol) seems resolved for
all but a few vendors (they may
never come around!). Observation of
many casual or occasional users
would certainly indicate that full
duplex is not their mode of opera-
tlon, whether or not the system
supports it. Interrupt overhead for
the single character at a time sys-
tems can be significant for the
higher speed displays ; but, at the
same time, can be easily absorbed in
frontend mini- or micro-processors.
The user might even be allowed to
select a preferred mode of terminal
operation -U even getting a rate cut
for selecting the lower overhead
method of operation. But there is
another side to the full duplex
story. The most sophisticated and,
indeed, most effective and prolific
timesharing users make good use of
the type-ahead capability afforded
by the full duplex protocol. These
users seem completely frustrated
when faced with the "primitive"
systems which: I) lock keyboards
after transmissions (return or EOT);
2) refuse to.accept type-ahead; or,
3) simply can t respond fast enough
because of software interlocks and
c o n s e q u e n t processes which have
"inertia" -- i .e •, must complete
before additional command interpre-
tation or action can proceed, or

119

even recognition of "escape" or
"break" requests.

Editing capabilities are also
closely tled to terminal support and
must be given special attention
because successful use of the editor
-- which encompasses not only file
building and editing but examination
oz output and many other functions
-- is often the key to successful
use of the timesharing system. By
placing a terminal in non-echo mode
the editor can accept interspersed
command and data information. For
example, the SOS editor (from the
Stanford AI Lab) has very effective
within llne editing capability. In
the "alter" mode this editor uses
spaces and rubouts as cursor posi-
tioning commands in order to move to
positions within a line where dele-
tions, insertions or changes are to
be made; at that point particular
single letter commands indicate
switching to a data input function
and a special character is used to
terminate data input and return to
command inputs. Of course, editing
functions ao not have to be supplied
by the central (main) computer sys-
tem; micro- or mlnl-processors in
either communication frontends or in
the terminals may actually perform
editing without any regard for the
nature of the final transmission to
the central system where, presum-
ably, the file system exists in
which the information from the edi-
tor is ultimately deposited.

UNEXPECTED DELAYS IN SYSTEM RESPONSE

This is perhaps the most mysteri-
ous aspect of a timesharing system,
not just for the new user, but for
the long time, relatively sophisti-
cated applications programmer. For
one thing, most appiications pro-
grammers have insufficient knowledge
of either hardware or software per-
formance characteristics of the
system they are using; and, in fact,
are not generally allowed any (or
much) information about the current
demand (load) placed on the system.
This latter information gap some-
times (usually?) extends even to
those demands placed by the user
himself. It would not place an
inordinate demand on any good system
(that is, one with sufficient built-
in performance monitoring capabili-
ty) to allow the user to display at
any time: I) an indication of the
total demand on the CPU resource and
his job's predicted .(through analy-
sis of past history} current demand
on that same resource; 2) an indica-
tion of the total demand on the disk
system (sectors read and written and
seeks per some time interwtl) caused
by both file transfers and page/swap
trafflc; and, 3) display of all
pertinent cumulative and last snap

(small interval observation) statis-
tical parameters characterizing his
session (connect time, CPU time,
disk I/O, terminal interactions,
average line lengths, etc.).

Information such as the above
mentioned should be available on
demand at any time without interfer-
ing with the current process for the
user. There should be a simple
summary from selected data geared to
the requirements of different user
categories. This information would
assist the user in: i) deciding
whether to continue, suspend (saving
for future re-actlvating) or abort
the current task; 2) predicting
resource demands for estimating time
and cost requirements of the job;
and, 3) deciding whether the system
(if not the user task) is performing
as it should. This would also con-
tribute to: i) educating the user
generally about the system; 2) more
efficient usage of the system (fewer
invalid runs aue to "early" error
detecting and unnecessary reruns
caused by premature aborts); and, 3)
better program design by supplying
the more advanced user a powerful
tool for analyzing and improving
program performance through detec-
tion of bad design characteristics.

CONTROLS FOR PREVENTING ACCIDENTAL
, D(OR ALIcmU> .SUSE

AS various timesharing systems
evolved, more sophisticated user
(usage) controls were added; many at
the request of users who had experi-
enced difficulties. It is not the
intent here to examine the more
usual account privileges and limits
but to address those controls
(usually lacking) which could be
used to prevent accidental and mali-
cious mlsuse by alerting both the
user and the system administrator to
program "behavior" ~ich is outside
o~ expected or acceptable limits.
For example, especially in student
envlronments, processes often fall
into accidental loops and needlessly
waste valuable computing time. CPU
"consumption" per elapsed time
(connect time) interval could be
monitored by the system to suspend
activity on such a "suspect" gob.
Different CPU consumption limits
could be established by account,
since some users have a much higher
expected consumption rate than oth-
ers. Actual decision to abort could
still remain with the user but the
system might simply refuse to con-
tinue the suspended task until the
average rate of CPU usage for the
session (say CPU minutes per connect
time minute) had droppea below the
acceptable account i imlt • ~ If t~e
user insl sted in continuing the
CPU-bound task the limit would soon
be exceeded again and the task again

120

suspended. Some users would wish to
set temporary usage limits in order
to be able to detect abnormal pro-
gram behavior earlier than otherwise
possible. These same ideas could be
usefully extended to other resources
-- disk space, main storage job
requirements, etc. CPU, disk and
maln storage controls of this type
would supply the system administra-
tor with very effective load control
based on job (account) profiles.
The often asked question "How many
users can the system support?" might
then be given a reasonably accurate
answer -- and clearly t~e answer
would vary with the setting of the
controls.

MAN/MACHINE COMMUNICATION GAPS AND
POSSIBLE SOLUTIONS

Commands given by the user to the
system often have been chosen to
mimic English in syntactic form and
meaning (COPY A OVER B or RUN X,
etc.). Sometimes they convey unin-
tended meaning which traps the user
into invalid use of the command.
For example, RUN X should work for
program x, no matter what its form
-- but it won't on CP-V or many
other systems. X which is really a
file might be a Fortran source, a
BASIC source, a relocatable object
module, a core image save file, a
load module, a compressed file or
many other possibilities. Thus, it
is perhaps expecting too much that
this command work for all forms of X
but an error message to the user, in
this case, could clearly specify why
the command didn't work -- "Program
does not exist .", "BASIC sources
only allowed under BASIC.", or
"Linking X, load module does not
exist." might be some of the possi-
ble responses to different situa-
tions. To perform such services
successfully the system has to know
the distinguishing attributes of
each file and, ideally, be able to
associate sets of related files
(source, object, load module for
exampi ~) o Inevitably, ambiguities
will arise -- for example, both a
Fortran and BASIC source might exist
and a load module produced from the
Fortran source -- all by the same
name X. What then does the user
intend when typing RUN X? The pro-
tective system would not execute the
load module without comment but
would alert the user to the exis-
te~ce of the two different sources.

Messages given by the system to
the user are open to many forms of
misinterpretation. These generally
are caused by: i) misleading choice
• of message by the designer -- often
accepting a default when more speci-
fic analysis should be performed; 2)
poor error (trap) control often
originating in the runtime support

Systems for various processors and
resulting in loss of information
which might otherwise point to a

• ar ticular problem situation; 3)
ack of understanding of terminolo-

gy, unawareness of existing documen-
tation which could explain a mes-
saEe, or inconsistent use of termi-
nology by the designer; and, 4)
shortcuts taken in the name of sys-
tem efficiency (cutting overhead).
Most of these can be corrected by
good design of the message system in
the first place, which then allows
continual improvement as users have
trouble with the system and feedback
information about various ~roblem
areas. Lack of uniformity and pre-
ciseness in terminology is a serious
industry-wide problem which can't be
corrected by a particular vendor or
educational institution; but a given
installation can do much toward
stating the "official" meaning of
me§sages issued by a specific system
and c|lange the messages as required
to be more useful glven the level of
understanding (and error propensi-
ties) of the user community.

A timesharing system should be
responsive in many ways, not just in
achieving the efficient execution of
properly submitted user tasks. It
must inform the users of their prob-
lems and, inevitably, of the sys-
tem s problems. It must encourage
the good tendencies of the users and
discourage or prevent the bad tend-
encies. To do these things involves
careful study of the man/machine
interface and other factors which
influence effective on-line computer
usage. Many good systems do exist
but neither of the two which were
the basis for much of this discus-
sion come close to all the objec-
tives stated here ; however, they
both have potential for relatively
easy change and did improve immea-
surably over the years.

121

