
On the Accuracy of MANET Simulators ∗

David Cavin
david.cavin@epfl.ch

Yoav Sasson
yoav.sasson@epfl.ch

André Schiper
andre.schiper@epfl.ch

Distributed Systems Laboratory
Ecole Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne

ABSTRACT
The deployment of wireless applications or protocols in the
context of Mobile Ad-hoc NETworks (MANETs), often re-
quires to step through a simulation phase. For the results
of the simulation to be meaningful, it is important that the
model on which is based the simulator matches as closely as
possible the reality. In this paper we present the simulation
results of a straightforward algorithm using several popu-
lar simulators (OPNET Modeler, NS-2, GloMoSim). The
results tend to show that significant divergences exist be-
tween the simulators. This can be explained partly by the
mismatching of the modelisation of each simulator and also
by the different levels of detail provided to implement and
configure the simulated scenarios.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer-
Communication Networks—Distributed networks, Wireless
communication; D.2.8 [Software Engineering]: Metrics—
Performance measures; D.4.8 [Operating Systems]: Per-
formance—Simulation, Measurements, Modeling and predic-
tion; I.6.6 [Computing Methodologies]: Simulation Out-
put Analysis

General Terms
Measurement, Performance

Keywords
Mobile Ad-hoc networks, MANET, flooding, simulations,
simulators, accuracy, OPNET, NS-2, GloMoSim

∗The work presented in this paper was supported by the Na-
tional Competence Center in Research on Mobile Informa-
tion and Communication Systems (NCCR-MICS), a center
supported by the Swiss National Science Foundation under
grant 5005-67322.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POMC’02, October 30-31, 2002, Toulouse, France.
Copyright 2002 ACM 1-58113-511-4/02/0010 ...$5.00.

1. INTRODUCTION

Context
During the last ten years, Mobile Ad-hoc NETworks (or
MANET) have become more and more popular. This still
growing interest requires to adapt solutions from the tradi-
tional wired networks to the wireless environment (broad-
cast, routing, etc.). The deployment and the debugging of
wireless applications on a real network can be rather tire-
some if large networks are considered (typically hundreds of
nodes). This is why simulation is an important tool in the
sense that it can often help to improve or validate protocols.
All simulators provide a complete toolkit to the developers
that enables metrics collection and various wireless network
diagnostics.

Accuracy of simulations results
There exists several popular simulators, such as OPNET
[10] Modeler, NS-2 [9] or GloMoSim [2]. They all pro-
vide advanced simulation environments to test and debug
any kind of networking protocols, including wireless appli-
cations. But, for the simulations to be helpful, it is neces-
sary that the simulated behaviors match as closely as pos-
sible the reality. This latter requirement implies to address
several issues. Firstly, the application is likely to rely on ex-
isting components, such as collision detection module, radio
propagation or MAC protocols. The correct modelisation
of these components in the simulator is crucial. Each algo-
rithm that is being evaluated is modeled in detail, but the
interaction with the other layers is often not taken into ac-
count. Secondly, the simulation parameters and its environ-
ment (mobility schemes, power ranges, connectivity) must
be realistic. Incorrect initial conditions, for example may
lead to unexpected results not exploitable in a real network.

This paper presents a set of measures collected during the
simulation of the flooding algorithm on different simulators
(OPNET, NS-2, GloMoSim). This very simple broadcast
algorithm (which simply consists in forwarding to the neigh-
boring nodes every message received for the first time) is a
basic building block for several wireless network protocols
(such as routing or groups membership protocols, for exam-
ple). We have carefully implemented it in each simulator
paying special attention in setting the same parameters and
considering the same scenarios. But, surprisingly, we have
collected very different results, barely comparable.

The rest of the paper is structured as follows. The next
Section presents the flooding algorithm and the simulated
application. Section 4 discusses briefly the architecture and

the deployment procedure of each simulators. Then Section
5 describes in detail the different scenarios and presents the
results. Section 6 concludes this paper.

2. RELATED WORK
The literature in the context MANETs provides a lot of

papers discussing the efficiency of wireless algorithms and
comparing their relative performances using simulations. But
very few of them really focus on the possible divergences that
can be observed between the simulators, probably because
the developers are usually familiar with a single simulator
and also do not expect to notice any significant differences.
The modelisation of the physical layer in NS-2 and OPNET
have already been presented in [12] as well as the important
parameters that influence its behavior. It has been shown
that the configuration phase affects seriously the absolute
performance of a protocol and can even change the relative
ranking among protocols for the same scenario.

Related to our work, the effect of detail in MANET sim-
ulations has also been studied in [5]. Wireless simulations
raise many new questions about appropriate levels of de-
tail in simulation models for radio propagation an energy
consumption. Too detailed simulations may not be easily
adapted to quickly explore alternatives. On the other hand,
simulations which lack of necessary details can result in mis-
leading or incorrect answers. This problem becomes more
serious if the same algorithm is implemented in several sim-
ulators without the same level of detail.

3. FLOODING ALGORITHM

Introduction
The broadcast of messages is a frequently used operation
to spread information to the whole network. It is the sim-
plest building block used by network algorithms and is often
required by higher level protocols such as most routing algo-
rithms. For this reason, it is important for the broadcast to
be implemented in the most efficient way. Its performance
is likely to affect the global efficiency of any protocol using
it.

For the simulations we considered a peer-to-peer wireless
network of several tens of mobile nodes (typically 50) ran-
domly placed on a 1km x 1km area. The wireless network
operates in the ad-hoc mode, without any central infras-
tructure (such as an access point). Every nodes (or peer)
has the same possibilities and functionalities. The descrip-
tion of this environment will be described in detail later in
Section 5.

Flooding
A rather direct and simple way to implement broadcast is to
flood the message over the network. When a node initiates
a broadcast, it transmits the message to its neighborhood.
By neighborhood, we mean all the nodes within the sender’s
transmission range. Then, when the message is received for
the first time, the recipient re-broadcasts it. An example is
shown in Figure 1 with a network composed of five mobile
nodes labeled from A to E.

Node A initiates a broadcast by flooding a message m to
its surrounding nodes. In step (a), A floods m to its single
neighbor B. Then, in step (b), node B, which has received
m for the first time, re-broadcasts m to nodes C and D and

A B

D

C

E

m m m

(a)

A B

D

C

E

m m

m

m

m

m

m

A B

D

C

E

m m

m

m

m

m
m

m
m

A B

D

C

E

m m

m

m

m

(b)

(c) (d)

m

m

Figure 1: Flooding example

so on. In (c), m is completely flooded through the whole
network and delivered to every node. In this example, at
least three steps are required in order to reach node E on
the right. The last step (d) is useless as every neighbor of E
has already received m.

This technique has an important drawback : it leads ob-
viously to an overhead of flooded messages in the network.
With ideal conditions (i.e. all node receive the broadcast)
in a network of N nodes, a single broadcast will generate
exactly N copies of itself which are likely to increase the
probability of collisions. Moreover, most nodes will receive
the same message several times keeping the shared medium
unnecessarily busy.

Architecture
The flooding algorithm is build on top of the MAC layer
protocol as shown in Figure 2.

0$&

)ORRGLQJ�DOJRULWKP

VHQG UHFHLYH

3K\VLFDO

EURDGFDVW GHOLYHU

$SSOLFDWLRQ

Figure 2: Algorithm protocol stack

The application layer, not described here, accesses the
Flooding algorithm (FA) by the broadcast and deliver

primitives. The broadcast primitive is called each time the
application wishes to initiate a new broadcast. The deliver
primitive is called by the FA whenever a new broadcast mes-
sage is received. The send primitive floods a message by
locally broadcasting it to the node’s neighborhood. When a
new message is sensed by the MAC layer, it is forwarded to
the FA by the mean of the receive function. All messages
exchanged during the simulations are sent to a broadcast
MAC address. This means that each node that senses an
incoming message will always deliver it to the FA layer. Fi-
nally, no transport protocol such as UDP or TCP is used and
the FA is directly connected to the MAC layer. This minimal
protocol stack ensures that the comparison between simu-
lators will only depend of the differences between the MAC
and physical layers modelisations.

Flooding Algorithm
The flooding algorithm is pretty simple. When a node ini-
tiates the broadcast of a message m, it sends m to all its
neighbors. Whenever a node receives m for the first time, it
rebroadcasts it by relaying m to its own neighbors. The code
executed by a node ni is given in Algorithm 1.

Algorithm 1 : Flooding algorithm

1: Upon broadcast(m) by a node ni :
2: send(m) to all neighbors;
3: deliver(m);
4:
5: Upon receive(m) by nodei :
6: if m is received for the first time then

7: deliver(m);
8: wait for a random time;
9: send(m) to all neighbors;

10: else

11: discard(m);
12: end if

The send(m) operation (lines 2 and 8) corresponds to a
single transmission of m to all listening nodes within the
transmission range of the sender. As a node cannot sense
the message it has just sent, the messages must be locally
delivered each time a node initiates a new broadcast (line
3). When a new message m is received, the recipient tests
if m has already been received (line 5). To achieve this, we
assume that every message has a unique ID and that each
node maintains a list of message IDs. A incoming message m

is only delivered and its ID inserted in the list if m is received
for the first time (i.e. its ID is not present in the list). Then
m is relayed to the surrounding nodes (line 8) after a random
delay (line 7). This enables to shift the retransmission times
and prevent collisions of messages relayed at the same time
by several neighbors. Finally, if the message has already
been delivered, it is simply discarded (line10).

4. THE SIMULATORS

Introduction
This section gives a brief overview of each simulator. Its aim
is to summarize the different implementation approaches of
each simulators. The way a new algorithm is integrated can
be pretty different from one simulator to another.

OPNET Modeler
OPNET Modeler is a powerful network simulator developed
by OPNET. It can simulate all kinds of wired networks,
and a 802.11 compliant MAC layer implementation is also
provided. Although OPNET is rather intended for compa-
nies to diagnose or reorganize their network, it is possible to
implement one’s own algorithm by reusing a lot of existing
components. Most part of the deployment is made through
a hierarchical graphic user interface.

Basically, the deployment process goes through the fol-
lowing phases. First you have to choose and configure the
node models (i.e. types) you want to use in the simulations
- for example a wireless node, a workstation, a firewall, a
router, a web server, etc. Then you build and organize your
network by connecting the different entities. The last step

consists in selecting the statistics you want to collect during
the simulations.

In our case, we had to create a new node model which en-
capsulates the 802.11 MAC layer of OPNET and, on top of
it, an application process that implements the flooding algo-
rithm. A process model (such as the flooding algorithm) is
described as a state machine. Each state can have some code
that is executed when it gets active. A transition that links
two states is followed whenever a certain condition carried
by the transition is true.

The difficulty with OPNET Modeler is to build this state
machine for each level of the protocol stack. It can be be
pretty difficult to abstract such a state machine starting
from a pseudo-coded algorithm. But anyway, state machines
are the most practical input for discrete simulators. In sum-
mary, it is possible to reuse a lot of existing components
(MAC layer, transceivers, links, etc.) improving the deploy-
ment process. But on the other hand, any new feature must
be described as a finite state machine which can be difficult
to debug, extend and validate.

NS-2
NS-2 [9] is a discrete event network simulator that has be-
gun in 1989 as a variant of the REAL network simulator [1].
Initially intended for wired networks, the Monarch Group
at CMU have extended NS-2 to support wireless network-
ing such as MANET and wireless LANs as well [11]. Most
MANET routing protocols are available for NS-2, as well as
a 802.11 MAC layer implementation [4].

NS-2’s code source is split between C++ for its core en-
gine and OTcl, an object oriented version of TCL for config-
uration and simulation scripts. The combination of the two
languages offers an interesting compromise between perfor-
mance and ease of use.

Implementation and simulation under NS-2 consists of 4
steps: (1) implementing the protocol by adding a combi-
nation of C++ and OTcl code to NS-2’s source base; (2)
describing the simulation in an OTcl script; (3) running the
simulation and (4) analyzing the generated trace files.

Implementing a new protocol in NS-2 typically requires
adding C++ code for the protocol’s functionality, as well as
updating key NS-2 OTcl configuration files in order for NS-
2 to recognize the new protocol and its default parameters.
The C++ code also describes which parameters and meth-
ods are to be made available for OTcl scripting. The NS-2
architecture follows closely the OSI model. We have adapted
the implementation of flooding provided in NS-2 in the con-
text of diffusion in sensor networks [6]. An agent in NS-2 ter-
minology represents an endpoint where network packets are
constructed, processed or consumed. Such an Agent was im-
plemented at the Application layer for the broadcast source,
and the simulation trace was collected at the MAC layer.

Some disadvantages of NS-2 stem from its open source
nature. First, documentation is often limited and out of
date with the current release of the simulator. Fortunately
most problems may be solved by consulting the highly dy-
namic newsgroups and browsing the source code. Then code
consistency is lacking at times in the code base and across
releases. Finally, there is a lack of tools to describe simula-
tion scenarios and analyze or visualize simulation trace files.
These tools are often written with scripting languages. The
lack of generalized analysis tools may lead to different people
measuring different values for the same metric names.

The learning curve for NS-2 is steep and debugging is
difficult due to the dual C++/OTcl nature of the simulator.
A more troublesome limitation of NS-2 is its large memory
footprint and its lack of scalability as soon as simulations of
a few hundred to a few thousand of nodes are undertaken.

GloMoSim
GloMoSim is a scalable simulation environment for wireless
and wired networks systems developed initially at UCLA
Computing Laboratory [2]. It is designed using the parallel
discrete-event simulation capability provided by a C-based
parallel simulation language, Parsec [8]. GloMoSim cur-
rently supports protocols for purely wireless networks. It
is build using a layered approach. Standard APIs are used
between the different layers. This allow the rapid integration
of models developed at different layers by users.

To specify the network characteristics, the user has to de-
fine specific scenarios in text configuration files : app.conf
and Config.in. The first contains the description of the traf-
fic to generate (application type, bit rate, etc.) and the
second contains the description of the remainder parame-
ters. The statistics collected can be either textual or graph-
ical. In addition, GloMoSim provides various applications
(CBR, ftp, telnet), transport protocols (tcp, udp), routing
protocols (AODV, flooding) and mobility schemes (random
waypoint, random drunken).

With GloMoSim, the difficulty was to describe a simple
application that bypasses most OSI layers. The bypass of
the protocol stack is not obvious to achieve as most appli-
cations usually lie on top of it. Compared to OPNET, for
example, the architecture is much less flexible.

5. SIMULATIONS

Introduction
Several scenarios have been implemented on each simula-
tor (OPNET, GloMoSim and NS-2). For the simulations
we considered a wireless ad-hoc network of 50 mobile nodes,
uniformly placed on a terrain of 1 km x 1 km. All nodes runs
the IEEE 802.11 [4] MAC protocol in the ad-hoc mode (or
peer-to-peer). In opposition to the infrastructure mode, the
ad-hoc mode does not require any central base station (or ac-
cess point). The network is completely peer-to-peer. More-
over, since we are in a broadcast communication scheme,
the MAC protocol runs without request-to-send (RTS) and
clear-to-send (CTS) 1. This technique solves the well known
hidden terminal problem, but does only apply to point-to-
point communications and has no sense for a broadcast en-
vironment. The physical layer has a data rate of 2 Mbps.
Each simulation run lasts 300 seconds during which 10 nodes
initiate 100 broadcasts that will be flooded throughout the
whole network.

Mobility
Nodes’ mobility is an important metric when evaluating ad-
hoc networks and can be modeled in several ways. A lot of
papers have compared and discussed the relevance of these

1RTS is a control message sent by a node that wants to
reserve the shared medium for a certain amount of time in
order to reduce the risk of collisions. The destination node
acknowledges a RTS by sending to the source node a CTS
control message.

models [3]. Our goal was to find a mobility model which
allows to vary the mobility in a controlled way. We have
chosen the random waypoint model [7], probably the most
popular. A node chooses a destination within the physical
terrain. Then it moves in the direction of the destination at
a constant speed uniformly chosen between MIN SPEED and
MAX SPEED. After it reaches its destination, the node stays
there for PAUSE TIME time period. This model offers more
control that other ones since two parameters can influence
the mobility, the speed and the pause time.

Metrics and parameters
Metrics
In order to evaluate the performance of the flooding algo-
rithm, we have defined three important metrics. The first
one gives information about the time needed to flood a mes-
sage. The second measures the general efficiency of the al-
gorithm. And the last one stores the overhead of messages
(unnecessarily) flooded in the network.

Time delay: For a node n, this is the average time needed
for one packet to reach n.

Success rate: For a node n, this is the difference between
the expected and the actual number of messages re-
ceived at n.

Overhead: For a node n, this is the sum of duplicated pack-
ets received by n.

The three metrics above are all locally computed and then
averaged among all the nodes. The conjunction of these
metrics gives a pretty good idea of the performance of the
flooding algorithm.

Parameters
Table 1 summarizes all the common constant parameters of
the simulations. In addition to these static parameters, the

Parameters Value

Terrain size 1km x 1km
Number of nodes 50
Node placement uniform
Nb. of broadcasting nodes 10
Nb. of broadcasts per node 100
MAC protocol 802.11 without RTS/CTS
Bit rate 2 Mbps
Wireless propagation model FreeSpace
Antenna Type Omnidirectional
Mobility model Random Waypoint
Minimum node speed 0 m/s

Table 1: Static parameters

metric has to be measured against some varying parameters
that describe the behavior of an ad-hoc network and that
can be set in a controlled way. From a global point of view,
we chose to vary the mobility parameters and network load.
Table 2 below summarizes these parameters.

Results
This part presents the results collected during the simulation
of the flooding algorithm with the different simulators. Only

Parameters Value range Unit

Flooding rate [4..20] packet/seconds
Max node speed [0..20] meter/seconds
Pause time [0..100] seconds
Power range [1..300] meter

Table 2: Varying parameters

the most striking graphs are shown in this paper. We defined
several scenarios by varying one or more parameters from
Table 2. For each scenario, the set of parameters is given in
the table just above the graph.

The first scenario (Figure 3) studies a critical factor that
influences the success rate in MANET : the effective trans-
mission range. We notice important differences between the
simulators not only in term of absolute value but also in
terms of general trend.

Max node speed = 10 m/s, Pause time = 100 s,
Broadcast rate = 4 pk/s

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300

S
uc

ce
ss

 r
at

e
[p

er
ce

nt
]

Power range [meters]

OPNET Modeler
NS-2

GloMoSim

Figure 3: Success rate vs Power range

The next scenario (Figure 4) evaluates the effects of node
mobility on the flooding’s ability to deliver packets reliably.
Here again, we notice a significant difference in terms of
success rate. The most important is the maximal success
rate that can be achieved by NS-2 for our scenarios. It is
less than twice smaller compared to the results of OPNET
and GloMoSim.

Power range = 200 m, Pause time = 100 s,
Broadcast rate = 4 pk/s

0

20

40

60

80

100

0 5 10 15 20

S
uc

ce
ss

 r
at

e
[p

er
ce

nt
]

Max speed [meters/second]

OPNET Modeler
NS-2

GloMoSim

Figure 4: Success rate vs Mobility

The third scenario (Figure 5) presents the average over-
head of messages flooded in the network for a single sim-
ulation run. This metric is related to the mean number of
reachable neighbors (i.e. within transmission range). In this
scenario, OPNET receives about three times more duplicate
packets.

Power range = 200 m, Pause time = 100 s,
Broadcast rate = 4 pk/s

0

500

1000

1500

2000

2500

3000

0 5 10 15 20

O
ve

rh
ea

d
[p

ac
ke

ts
]

Max speed [meters/second]

OPNET Modeler
NS-2

GloMoSim

Figure 5: Overhead vs Mobility

The last scenario (Figure 6) compares the average time
delay needed to flood a message throughout the whole net-
work. This metric increases with the number of hops from
the source to the destination and also whenever collisions
occur. OPNET simulates a very high time delay compared
to NS-2 and GloMoSim.

Power range = 200 m, Pause time = 100 s,
Broadcast rate = 4 pk/s

0

1

2

3

4

5

6

7

0 5 10 15 20

T
im

e
de

la
y

[s
ec

on
ds

]

Max speed [meters/second]

OPNET Modeler
NS-2

GloMoSim

Figure 6: Time delay vs Mobility

Analysis and interpretation
The simulation results of the flooding algorithm shown in
the above section demonstrate that the modelisations of the
MAC protocol and of the physical layer can lead to pretty
different results depending on the simulator. People of the
MANET community have rarely noticed these serious diver-
gences because it is often too time costly to become familiar
with more than one simulator as long as it is not necessary.

Several reasons may help to explain these unexpected re-
sults. One major issue, from the physical layer point of view,

is that the reality (i.e. the environment and mobility model)
is hard to describe and the simulators usually provide too
simple and too general wireless propagation models. But
even if it was possible to extract all environmental parame-
ters from the reality, it would be anyway almost impossible
to integrate them efficiently. Thus the physical layer im-
plementation may significantly differ from one simulator to
another simply because the levels of detail are not the same.
Each implementation relies on several abstractions and sim-
plifications that may lead to different results.

Then, the implementation of a new protocol itself is not
straightforward and hard to transpose from one simulator to
another. The deployment procedures can be pretty different
(state machines, C/C++ code, layers description, graphical
interface, script based, etc.) with more or less flexibility and
integration facilities of existing building blocks.

Finally, through their successive releases each simulator
announces the correction of newly discovered bugs especially
in the lower layers such as the MAC and physical layers. It
is reasonable to think that MANET simulators still contain
errors or incompatibilities with respect to the IEEE 802.11
standard. These remarks tend to show that simulations,
as such, do not sufficiently help to deploy and diagnose real
networks (i.e. not simulated) as their results are not directly
exploitable.

6. CONCLUSIONS
In this paper we have presented the results of the simu-

lation of the flooding algorithm using three popular mobile
ad-hoc network simulators. We have intentionally chosen
one of the simplest algorithms in order to rely on a minimal
set of building blocks (essentially MAC and physical layers).
Moreover, flooding is a wide used technique used to spread
informations in a whole network by wireless applications and
protocols (e.g. routing).

Through intensive simulations we have noticed important
divergences between the simulators and, in some cases, re-
sults that are barely comparable. The differences are not
only quantitative (not the same absolute value) but also
qualitative (not the same general behavior). This observa-
tion makes the simulation phase less credible as it is difficult
to tell which simulator describes better the reality. Simula-
tions do not really improve the development process.

To conclude, we think, according to our experience, that
standalone simulations do not really fit the actual needs of
wireless applications developers. Instead of simulations, it
is probably more realistic to consider a hybrid approach in
which only the lowest layers (MAC and physical) and the
mobility model are simulated and all the upper layers (from
transport to application) are executed on a dedicated hosts
(e.g. cluster of machines) [13].

Finally, besides simulations and according to the feeling of
the MANET community, there is an important lack of real
experiments that prove the feasibility of wireless protocols.

7. REFERENCES
[1] The REAL network simulator.

http://www.cs.cornell.edu/skeshav/real/overview.html

[2] L. Bajaj, M. Takai, R. Ahuja, K. Tang,
R. Bagrodia, and M. Gerla. Glomosim: A scalable
network simulation environment. Technical Report
990027, UCLA Computer Science Departmen, May
1999.

[3] T. Camp, J. Boleng, and V. Davies. A survey of
mobility models for ad hoc network research. Dept. of
Math and Computer Sciences, Colorado School of
Mines, Golden, CO.

[4] I. W. Group. Wireless LAN medium access control
(MAC) and physical layer (PHY) specifications. IEEE
specification
(http://standards.ieee.org/getieee802/download/802.11b-
1999.pdf), Sep 1999. Work in
Progress.

[5] J. Heidemann, N. Bulusu, J. Elson,
C. Intanagonwiwat and K. Lan and Y. Xu and W.
Ye and D.Estrin, and R. Govindan. Effects of detail
in wireless network simulation. In Proceedings of the
SCS Multiconference on Distributed Simulation, pages
3–11, Phoenix, Arizona, USA, January 2001.
USC/Information Sciences Institute, Society for
Computer Simulation.

[6] C. Intanagonwiwat, R. Govindan, and D. Estrin.
Directed Diffusion: A Scalable and Robust
Communication Paradigm for Sensor Networks. In
Proceedings of the sixth annual international
conference on Mobile computing and networking,
pages 56–67, Boston, MA USA, 2000.

[7] D. Johnson and D. Maltz. Dynamic source routing
in ad hoc wireless networks. In T. Imielinski and
H. Korth, editors, Mobile Computing, chapter 5, pages
195–206. Kluwer Academic Publishers, Seattle, WA,
1996.

[8] R. A. Meyer. PARSEC User Manual. UCLA Parralel
Computing Laboratory, http://pcl.cs.ucla.edu.

[9] The network simulator - NS-2.
http://www.isi.edu/nsnam/ns.

[10] OPNET Modeler.
http://www.opnet.com/products/modeler/home.html.

[11] T. C. M. Project. The CMU Monarch Project’s
wireless and mobility extensions to ns, Aug 1998.
Available from http://www.monarch.cs.cmu.edu.

[12] M. Takai, J. Martin, and R. Bagrodia. Effects of
wireless physical layer modeling in mobile ad hoc
networks. In MobiHoc 2001, 2001.

[13] Y. Zhang and W. Li. An integrated environment for
testing mobile ad-hoc networks. In The Third ACM
International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), 2002.

