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Abstract

We investigate here the behavior of the
standard k-means clustering algorithm
and several alternatives to it: the k-
harmonic means algorithm due to Zhang
and colleagues, fuzzy k-means, Gaussian
expectation-maximization, and two new
variants of k-harmonic means. Our aim is
to find which aspects of these algorithms
contribute to finding good clusterings, as
opposed to converging to a low-quality local
optimum. We describe each algorithm in a
unified framework that introduces separate
cluster membership and data weight func-
tions. We then show that the algorithms do
behave very differently from each other on
simple low-dimensional synthetic datasets,
and that the k-harmonic means method
is superior. Having a soft membership
function is essential for finding high-quality
clusterings, but having a non-constant data
weight function is useful also.

1. Introduction

Data clustering, which is the task of finding natural
groupings in data, is an important task in machine
learning and pattern recognition. Typically in cluster-
ing there is no one perfect solution to the problem, but
algorithms seek to minimize a certain mathematical
criterion (which varies between algorithms). Minimiz-
ing such criteria is known to be NP-hard for the general
problem of partitioning d-dimensional data into k sets
(Ostrovsky & Rabani, 2000; Drineas et al., 1999). Al-
gorithms like k-means seek local rather than the global
minimum solutions, but can get stuck at poor solu-
tions. In these cases we consider that a solution which
better minimizes the mathematical criterion (for the
same number of centers) to be a better-quality clus-
tering.

We use the term “center-based clustering” to refer to
the family of algorithms such as k-means and Gaussian
expectation-maximization, since they use a number of

“centers” to represent and/or partition the input data.
Each center defines a cluster with a central point and
perhaps a covariance matrix. Center-based clustering
algorithms begin with a guess about the solution, and
then refine the positions of centers until a local opti-
mum is reached. These methods can work well, but
they can also converge to a local minimum that is far
from the global minimum, i.e. the clustering that has
the highest quality according to the criterion in use.
Converging to bad local optima is related to sensitiv-
ity to initialization, and is a primary problem of data
clustering.

The goal of this work is to understand and extend
center-based clustering algorithms to find good-quality
clusterings in spatial data. Recently, many wrap-
per methods have been proposed to improve cluster-
ing solutions. A wrapper method is one that trans-
forms the input or output of the clustering algorithm,
and/or uses the algorithm multiple times. One wrap-
per method is simply running the clustering algo-
rithm several times from different starting points (of-
ten called random restart), and taking the best solu-
tion (Jain et al., 1999). This is a common technique,
and methods such as used in (Likas et al., 2001) push
this technique to its extreme, at the cost of compu-
tation. Another wrapper method to finding quality
clusterings is using the best initializations possible;
this has been looked at in (Pena et al., 1999; Meila
& Heckerman, 2001; Bradley & Fayyad, 1998). This
is fruitful research, as many clustering algorithms are
sensitive to their initializations. Other research (Sand
& Moore, 2001; Pelleg & Moore, 2000) has been look-
ing at finding the appropriate number of clusters, and
analyzing the difference between the cluster solution
and the dataset. This is useful when the appropri-
ate number of centers is unknown, or the algorithm is
stuck at a sub-optimal solution.

These approaches are beneficial, but they are attempt-
ing to fix the problems of clustering algorithms exter-
nally, rather than to improve the clustering algorithms
themselves. We are interested in improving the clus-
tering algorithms directly to make them less sensitive
to initializations and give better solutions. Of course,



any clustering algorithm developed could benefit from
wrapper methods.

Recently, Zhang et al. introduced a new clustering al-
gorithm called k-harmonic means (KHM) that arises
from an optimization criterion based on the harmonic
mean (Zhang et al., 1999; Zhang, 2000). This algo-
rithm shows promise in finding good clustering so-
lutions quickly, and outperforms k-means (KM) and
Gaussian expectation-maximization (GEM) in many
tests. The KHM algorithm also has a novel feature
that gives more influence to data points that are not
well-modeled by the clustering solution, but is un-
known how important this feature is. Our work is a
first answer to this question.

In this paper, we present a unified framework for look-
ing at center-based clustering algorithms, and then de-
rive two new algorithms that are based on properties
of KM and KHM. The algorithms are compared ana-
lytically and empirically.

2. Center-based clustering algorithms

The algorithms k-means, Gaussian expectation-
maximization, fuzzy k-means, and k-harmonic means
are in the family of center-based clustering algorithms.
They each have their own objective function, which
defines how good a clustering solution is. The goal of
each algorithm is to minimize its objective function.
Since these objective functions cannot be minimized
directly, we use iterative update algorithms which con-
verge on local minima.

2.1 General iterative clustering

We can formulate a general form for the family of
clustering algorithms that use iterative optimization
(Kalton et al., 2001), and use this framework to
make comparisons between algorithms. Define a d-
dimensional set of n data points X = {z1,...,z,} as
the data to be clustered. Define a d-dimensional set
of k centers C' = {cy,...,c} as the clustering solution
that an iterative algorithm refines.

A membership function m(c;|z;) defines the propor-
tion of data point x; that belongs to center ¢; with con-
straints m(c;|z;) > 0 and 25:1 m(cjlz;) = 1. Some
algorithms use a hard membership function, meaning
m(cj|z;) € {0,1}, while others use a soft membership
function, meaning 0 < m(cj|z;) < 1. Kearns and col-
leagues have analyzed the differences between hard
and soft membership from an information-theoretic
standpoint (Kearns et al., 1997). One of the rea-
sons that k-means can converge to poor solutions is
due to its hard membership function. However, the

hard membership function makes possible many com-
putational optimizations that do not affect accuracy of
the algorithm, such as using kd-trees (Pelleg & Moore,
1999).

A weight function w(z;) defines how much influence
data point x; has in recomputing the center parame-
ters in the next iteration, with constraint w(z;) > 0.
This weight function was introduced in (Zhang, 2000).
Giving variable influence to data in clustering has
analogies to boosting in supervised learning (Freund
& Schapire, 1999). Each approach gives more weight
to data points that are not “well-covered” by the cur-
rent solution. However, unlike boosting in supervised
learning, this approach does not create an ensemble of
solutions.

Now we can define a general form of iterative, center-
based clustering. The steps are:

1. Initialize the algorithm with guessed centers C'.

2. For each data point x;, compute its membership
m(cj|z;) in each center ¢; and its weight w(z;).

3. For each center cj, recompute its location from
all data points x; according to their memberships
and weights:

Z?:1 m(Cj |zi)w(z;)z;
Yo miejlzi)w(z;) (1)

Cj =

4. Repeat steps 2 and 3 until convergence.

Now we can compare algorithms based on their mem-
bership and weight functions. An alternative initial-
ization procedure is to guess an initial partition, and
then start the algorithm from step 3. The computa-
tional complexity of each algorithm in this paper is
O(nkd) for each update iteration (Equation 1). The
algorithms vary by constant factors but have the same
order complexity.

2.2 The k-means algorithm

The k-means algorithm (KM) (MacQueen, 1967) par-
titions data into k sets. The solution is then a set of k
centers, each of which is located at the centroid of the
data for which it is the closest center. For the mem-
bership function, each data point belongs to its nearest
center, forming a Voronoi partition of the data. The
objective function that the KM algorithm optimizes is

n

KM(X,C) = i i —cill? 2
(X,0) iZIjEr{ql_?k}llw a1l (2)



This objective function gives an algorithm which mini-
mizes the within-cluster variance (the squared distance
between each center and its assigned data points).

The membership and weight functions for KM are:
1; if | = argmin; ||2z; — cj||2(3)
0 ; otherwise

wrym (i) = 1 (4)
KM has a hard membership function, and a constant
weight function that gives all data points equal im-

portance. KM is easy to understand and implement,
making it a popular algorithm for clustering.

mrMm(cl|z) = {

2.3 The Gaussian expectation-maximization
algorithm

The Gaussian expectation-maximization (GEM) algo-
rithm for clustering uses a linear combination of d-
dimensional Gaussian distributions as the centers. It
minimizes the objective function

n k
GEM(X,C) = —Zlog Zp(l"ﬂcj)p(cj) ()
i=1 j=1

where p(x;|c;) is the probability of z; given that it is
generated by the Gaussian distribution with center c;,
and p(c;) is the prior probability of center ¢;. We use a
logarithm to make the math easier (while not changing
the solution), and we negate the value so that we can
minimize the quantity (as we do with the other algo-
rithms we investigate). See (Bishop, 1995, pages 59—
73) for more about this algorithm. The membership
and weight functions of GEM are

p(zilc;)p(c;)
p(wi) ©
wGEM(wi) = 1 (7)

maem(cjlzi) =

Bayes’ rule is used to compute the soft membership,
and mgga is a probability since the factors in Equa-
tion 6 are probabilities. GEM has a constant weight
function that gives all data points equally importance,
like KM. Note that wg g (z;) is not the same as p(z;).

2.4 The fuzzy k-means algorithm

The fuzzy k-means algorithm (FKM; also called fuzzy
c-means) (Bezdek, 1981) is an adaptation of the KM
algorithm that uses a soft membership function. Un-
like KM which assigns each data point to its closest
center, the FKM algorithm allows a data point to be-
long partly to all centers, like GEM.

n k
FKM(X,0) = Y > ujllzi—¢l*  (8)

i=1 j=1

The parameter u;; denotes the proportion of data
point x; that is assigned to center c¢j, and is under
the constraints Z?:l u;; = 1 for all ¢ and u;; > 0.
The parameter r has the constraint » > 1. A larger
value for r makes the method “more fuzzy.”

Bezdek and others give separate update functions for
u;; and ¢;. The u;; update equation depends only on
C and X, so we incorporate its update function into
the update for c¢;. Then we can represent FKM in
the form of the general iterative update of Equation 1.
The membership and weight functions for FKM are:

[lrs — ]| 7>/
St s — g2/
wrprm(zi)) = 1 (10)
so FKM has a soft membership function, and a con-
stant weight function. Asr tends toward 1 from above,

the algorithm behaves more like standard k-means,
and the centers share the data points less.

mrrm(cjlri) =

2.5 k-harmonic means

The k-harmonic means algorithm (KHM) is a method
similar to KM that arises from a different objective
function (Zhang, 2000). The KHM objective function
uses the harmonic mean of the distance from each data
point to all centers.

KHM(X,C) = i+ (11)

k
i=1 2j=1 erma TP

Here p is an input parameter, and typically p > 2.
The harmonic mean gives a good (low) score for each
data point when that data point is close to any one
center. This is a property of the harmonic mean; it is
similar to the minimum function used by KM, but it
is a smooth differentiable function.

The membership and weight functions for KHM are:

z; — ;|| 7P
(Gl = ZkH l||a: j||c||p2 (12)
j=1 110t —Cj

k €
Sh Il — ol
k 2
(s s = el 7)

Note that KHM has a soft membership function, and
also a varying weight function. This weight function
gives higher weight to points that are far away from
every center, which aids the centers in spreading to
cover the data.

’LUKHM(ZL“i) (13)

The implementation of KHM needs to deal with the
case where z; = ¢;. In this case we follow Zhang us-
ing max(||z; — ¢;||,€) and use a small positive value



of e. We also apply this technique for FKM and the
algorithms discussed in Section 3. We have not en-
countered any numerical problems in any of our tests.

3. New clustering algorithms

We are interested in the properties of the new algo-
rithm KHM. It has a soft membership function and a
varying weight function, which makes it unique among
the algorithms we have encountered. KHM has been
shown to be less sensitive to initialization on synthetic
data (Zhang, 2000).

Here we analyze two aspects of KHM (the member-
ship and the weight functions) and define two new al-
gorithms we call Hybrid 1 and Hybrid 2. They are
named for the fact that they are hybrid algorithms
that combine features of KM and KHM. The purpose
for creating these algorithms is to find out what effects
the membership and weight functions of KHM have by
themselves.

3.1 Hybrid 1: hard membership, varying
weights

Hybrid 1 (H1) uses the hard membership function of
KM. Every point belongs only to its closest center.
What makes H1 different from KM is the KHM weight
function, which gives more weight to points that are
far from every center. We expect that this algorithm
should converge more quickly than KM due to the
weights, but will still have problems related to the
hard membership function. As far as we know, adding
weights in this manner to KM is a new idea.

The definitions of the membership and weight func-
tions for H1 are:

1; if I = argmin; ||z; — ;|3
M1 (cl|l’i) = { 0: otherwii ! || ’ J|| (14)
k —p—2
" — e
le(xi) — Ejfl || 2 ]|| (15)

k 2
(5l = il17)

3.2 Hybrid 2: soft membership, constant
weights

Hybrid 2 (H2) uses the soft membership function of
KHM, and the constant weight function of KM. The
definitions of the membership and weight functions for
H2 are:

T — cq||7P2
mH2(0j|-Ti) — k|| z J|| — (16)
2 g llzi = 5|72

’LUHQ(ZL“i) =1 (17)

Note that H2 resembles FKM. In fact, for certain val-
ues of 7 and p they are mathematically equivalent.
It is interesting to note, then, that the membership
function of KHM (from which we get H2) and FKM
are also very similar. We investigate H2 and FKM
as separate entities to keep clear the fact that we are
investigating the membership and weight functions of
KHM separately.

4. Experimental setup

We perform two sets of experiments to demonstrate
the properties of the algorithms described in Sections
2 and 3. We want to answer several questions: how
do different initializations affect each algorithm, what
is the influence of soft versus hard membership, and
what is the benefit of using varying versus constant
weights.

Though each algorithm minimizes a different objec-
tive function, we measure the quality of each clustering
solution by the square-root of the k-means objective
function in Equation 2. It is a reasonable metric by
which to judge cluster quality, and by using a single
metric we can compare different algorithms. We use
the square root because of the squared distance term in
the function which can exaggerate the severity of poor
solutions. We considered running KM on the output
of each algorithm, so that the KM objective function
could be better minimized. We found that this did not
help significantly, so we do not do this here.

Our experiments use two datasets already used in re-
cent empirical work on clustering algorithms (Zhang
et al., 1997; Pelleg & Moore, 1999). The algorithms
we test are KM, KHM, FKM, H1, H2, and GEM. The
code for each of these algorithms is our own, except
for GEM. Our code is written in Matlab; for GEM we
used the FastMix implementation provided by (Sand
& Moore, 2002). We need to supply the the KHM,
H1, and H2 with the parameter p, and FKM with r.
We set p = 3.5 for all tests, as that was the best value
found by Zhang. We set r = 1.3, as that is the best
value we found based on our preliminary tests.

The two initializations we use are the Forgy and Ran-
dom Partition methods (Pefa et al., 1999). The Forgy
method simply chooses k£ data points from the dataset
at random and uses them as the initial centers. The
Random Partition method assigns each data point to
a random center, then computes the initial location of
each center as the centroid of its assigned points. The
Forgy method tends to spread centers out in the data,
while the Random Partition method tends to place the
centers in a small area near the middle of the dataset.



Figure 1. Experiment 1: Forgy (left) and Random Parti-
tion (right) initializations for the BIRCH dataset. Centers
are shown in the dark color, data points in the light color.
This dataset has a grid of 10x10 natural clusters.

Random Partition was found to be a preferable initial-
ization method for its simplicity and quality in (Pena
et al., 1999; Meila & Heckerman, 2001). For GEM, we
also initialize p(c;) = 1/k and initialize the covariance
to be 0.21, where I is the identity matrix.

Before clustering, all datasets used in both experi-
ments are shifted and re-scaled to give each dimension
zero mean and unit variance. This is the standard z-
score transformation. This can be a good idea before
using algorithms based on distance metrics (as these
are), as it allows each dimension to have the same influ-
ence. Without such scaling, computed distances may
be more influenced by some dimensions.

4.1 Experiment 1: BIRCH

The purpose of our first experiment is to illustrate the
convergence properties of the different algorithms, and
to show the need to improve clustering algorithms.
We use a randomly generated synthetic dataset we
call BIRCH, as defined by (Zhang et al., 1997). This
dataset has k£ = 100 true clusters arranged in a 10x10
grid in d = 2 dimensions. Each cluster generates 100
data points from its own Gaussian distribution, for a
total of n = 10,000 data points. The distance between
two adjacent cluster means is 4v/2 with cluster radius
of v/2 (meaning the variance in each dimension is 1).
We run each algorithm twice, once with the Forgy ini-
tialization, and once with the Random Partition ini-
tialization. Figure 1 shows the two initializations. We
use the same randomly chosen initializations for all al-
gorithms. All our results are similar for other random
initializations.

4.2 Experiment 2: Pelleg and Moore data

The second experiment uses a synthetic dataset based
on work by (Pelleg & Moore, 1999). Here we run many
tests to determine the average-case behavior of the al-

gorithms. We test datasets of dimensions 2, 4, and
6 to show that all these algorithms work well in low
dimensions. Each dataset has k¥ = 50 true natural
clusters which generate n = 2500 total data points.
The true cluster centers are chosen at random in the
unit hypercube, then 2500 data points are generated
by choosing a cluster randomly, and generating a data
point according to a Gaussian distribution with stan-
dard deviation s = d x 0.012 and mean at the true
cluster center. We generate data that is more sep-
arated (clusters have less overlap) than the work by
Pelleg and Moore (who used s = d x 0.025), because
this presents a more difficult task to the clustering al-
gorithms. This is because it is harder for centers to
move freely through the whole dataset due to gaps
between natural clusters. See figure 2 for a simple ex-
ample.

For each d € {2,4,6} we generate 100 datasets, and
two initializations (Random Partition and Forgy) for
each dataset. Then we test each algorithm from both
of these initializations. For each algorithm we allow
it to run for 100 iterations, which is plenty for the
algorithms to converge.

4.3 Dimensionality reduction

Clustering in high dimensions is difficult. Most clus-
tering algorithms that are based on distance metrics
fail to find good clusterings in high dimensions, be-
cause the distance to all data points increases with in-
creasing dimension, making it harder to discriminate
between points of different clusters when a center is
far away.

Some clustering methods are designed for high dimen-
sional data, such as text clustering described in (Zhao
& Karypis, 2001). This method uses the cosine dis-
tance (normalized dot product) to determine the dis-
tance between data points. However, methods based
on this metric fail to use the magnitude of the data
points, making it impossible to discriminate between
clusters that lie along the same vector from the origin.

Recent research indicates that it may be preferable
to use dimensionality reduction techniques prior to
clustering, rather than clustering directly in high di-
mensions. In (Dasgupta, 2000) the author shows that
highly eccentric clusters in high dimensions tend to
become more spherical in lower dimensions while re-
maining well-separated, even when the dimension re-
duction done is a random linear projection. This fact
makes the clustering task even easier, and at the cost
of a very inexpensive operation (linear projection).
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Figure 2. Here k-means has converged to a local optimum
which it would be able to escape if the clusters had more
overlap. Without overlap, one of the “trapped” centers
on the top-right cannot move to a cluster on the bottom
or left because of the hard assignment function. Thus, a
clustering problem is harder when clusters have less over-
lap, because the probability of finding bad local optima is
higher.

Table 1. Experiment 1: Quality of solutions for one run on
the BIRCH dataset, using Forgy and Random Partition
initializations. Lower quality scores are better. “Clusters
found” is the number of true clusters (maximum 100) in
which the algorithm placed at least one center.

VKM quality | Clusters found

Forgy RP Forgy RP
GEM | 15.530 | 24.399 77 49
KM 12.771 | 18.396 83 60
H1 12.159 | 15.242 86 72
FKM | 11.612 | 10.441 89 93
H2 10.670 | 9.908 92 95
KHM | 10.255 | 9.999 94 95

5. Experimental results
5.1 Experiment 1: BIRCH

Running each algorithm on the BIRCH dataset once
gives an intuition for how each behaves. Figure 1
shows the two initializations we use. Then the end
results of each algorithm’s run is shown in Figure 3
and the cluster qualities are shown in Table 1. FKM,
H2, and KHM all found good clusterings for both types
of initializations, and they are all soft membership al-
gorithms.

We can see that the two hard membership algorithms,
KM and H1, have distinctly different behavior for the
two initializations. The Forgy initialization provides
reasonably good behavior for those two algorithms,
but the Random Partition tends to leave a density of
centers in the middle of the dataset that are “trapped”.
This is because the hard membership function prevents
centers from moving if they do not own enough points,
which is why hard membership can be called “winner
take all”. In Table 1 we show the number of true clus-

ters found, which is the number of true clusters (out
of 100) that received a center by the algorithm.

Although GEM has a soft membership function, it
does poorly on this dataset due to some centers hav-
ing variance that is too large and taking over several
clusters. Note that the result of Random Partition
for GEM appears to have more density concentrated
in the middle of the dataset, where the centers be-
gan. This is similar to the hard membership results.
The FastMix implementation we used for GEM started
with 100 centers and would remove centers whose prior
became too small. For this reason, it ended with 98
and 81 centers for the Forgy and Random Partition
initializations, respectively. One feature of FastMix is
its ability to determine the number of centers through
density estimation. We tried starting FastMix without
a pre-defined number of centers, and it found 23.

5.2 Experiment 2: Pelleg and Moore data

Our second experiment shows the average performance
of the algorithms compared over many randomly gen-
erated data sets in several dimensions. For each
dataset Xgq,; where d € {2,4,6} and 1 <4 < 100 we
compute the optimal KM partition Og4; by running
KM to convergence starting with the centers that gen-
erated the data sets. Then we compute the score of a
clustering Cy; as the ratio

KM(Xa;,Cay;)
i = — 1
Ra, KM (Xq,i,04,) (18)

Table 2 shows the mean and standard deviation of Rg,;
for each algorithm, computed using 100 datasets in 2
dimensions. Table 3 shows the point-wise compari-
son of each algorithm for the same experiment. It is
clear from this as well that soft membership algorithms
(KHM, FKM, H2) perform better than hard member-
ship algorithms (KM, H1) in both average performance
and variance. The results for 4 and 6 dimensional
datasets are very similar, so we do not report them
here.

Figure 4 shows the speed of convergence of each al-
gorithm for d = 2 dimensions. The x-axis shows the
iteration number, and the y-axis shows the average k-
means quality ratio at that iteration, computed using
the 100 datasets. We can see that GEM and KM are
uniformly inferior to every other algorithm, and that
the soft membership algorithms KHM, H2, and FKM
move quickly to find good solutions. Only the final re-
sult for GEM is plotted as we cannot capture clustering
progress before the FastMix software terminates.

FastMix has the ability to add and remove centers to
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Figure 4. Experiment 2: Convergence curves starting from Forgy (top) and Random Partition (bottom) initializations on
2-d synthetic data. The x-axis shows the number of iterations, and the y-axis (log scale) shows average clustering quality
score, where lower values are better. Only the final results for GEM are shown. Note that KM performs worse than every

other algorithm.

better fit its data. FastMix adds a center to area where
the model underpredicts the data and removes a cen-
ter if its prior probability is too low. We expect that
FastMix’s ability to add centers would be helpful in a
dataset in which clusters are well-separated. For ex-
periment 2, FastMix began with 50 centers and only
removed centers. FastMix ended with an average of
48.39 centers (Forgy) and 40.13 centers (Random Par-
tition) in the 2-dimension test. This shows that GEM
is also sensitive to poor initializations.

Table 2. Experiment 2: The mean and standard deviation
of the ratio between the k-means quality and the optimum,
over 100 datasets, in 2 dimensions. The ratio is computed
from the square root of the k-means quality divided by the
optimum k-means quality. Lower values are better. The
statistics for 4 and 6 dimensions are similar, and have the
same ranking.

Forgy Random Partition
GEM | 1.3262 +/- 0.1342 | 2.3653 +/- 0.4497
KM 1.1909 +/- 0.0953 | 2.0905 +/- 0.2616
H1 1.1473 +/- 0.0650 | 1.7644 +/- 0.2403
FKM | 1.1281 +/- 0.0637 | 1.0989 +/- 0.0499
H2 1.1077 +/- 0.0536 | 1.0788 +/- 0.0416
KHM | 1.0705 +/- 0.0310 | 1.0605 +/- 0.0294

6. Conclusions

Our experiments clearly show the superiority of the
k-harmonic means algorithm (KHM) for finding clus-
terings of high quality in low dimensions.

Our algo-

rithms H1 and H2 let us study the effects of the KHM
weight and membership separately. They show that
soft membership is essential for finding good cluster-
ings, as H2 performs nearly as well as KHM, but that
varying weights are beneficial with a hard membership
function, since H1 performs better than KM. Varying
weights are intuitively similar to the weights applied
to training examples by boosting (Freund & Schapire,
1999). It remains to be seen whether this analogy can
be made precise.

Previous work in initialization methods has concluded
that the Random Partition method is good for GEM
and for KM, but our experiments do not confirm this
conclusion. The Forgy method of initialization (choos-
ing random points as initial centers) works best for
GEM, KM, and H1. Overall, our results suggest that
the best algorithms available today are FKM, H2, and
KHM, initialized by the Random Partition method.
Our future work will include an investigation of per-
formance on high-dimensional data, and on real-world
datasets.
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Table 3. Experiment 2: Competition matrix for 2-d synthetic data starting from Forgy (left) and Random Partition (right)
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Figure 3. Experiment 1:

Final results for the BIRCH

dataset. From top to bottom: GEM, KM, KHM, FKM,
H1, H2. The plot for GEM was generated by the FastMix
software, showing the 1-sigma contours.





