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Abstra
t

We investigate here the behavior of the

standard k-means 
lustering algorithm

and several alternatives to it: the k-

harmoni
 means algorithm due to Zhang

and 
olleagues, fuzzy k-means, Gaussian

expe
tation-maximization, and two new

variants of k-harmoni
 means. Our aim is

to �nd whi
h aspe
ts of these algorithms


ontribute to �nding good 
lusterings, as

opposed to 
onverging to a low-quality lo
al

optimum. We des
ribe ea
h algorithm in a

uni�ed framework that introdu
es separate


luster membership and data weight fun
-

tions. We then show that the algorithms do

behave very di�erently from ea
h other on

simple low-dimensional syntheti
 datasets,

and that the k-harmoni
 means method

is superior. Having a soft membership

fun
tion is essential for �nding high-quality


lusterings, but having a non-
onstant data

weight fun
tion is useful also.

1. Introdu
tion

Data 
lustering, whi
h is the task of �nding natural

groupings in data, is an important task in ma
hine

learning and pattern re
ognition. Typi
ally in 
luster-

ing there is no one perfe
t solution to the problem, but

algorithms seek to minimize a 
ertain mathemati
al


riterion (whi
h varies between algorithms). Minimiz-

ing su
h 
riteria is known to be NP-hard for the general

problem of partitioning d-dimensional data into k sets

(Ostrovsky & Rabani, 2000; Drineas et al., 1999). Al-

gorithms like k-means seek lo
al rather than the global

minimum solutions, but 
an get stu
k at poor solu-

tions. In these 
ases we 
onsider that a solution whi
h

better minimizes the mathemati
al 
riterion (for the

same number of 
enters) to be a better-quality 
lus-

tering.

We use the term \
enter-based 
lustering" to refer to

the family of algorithms su
h as k-means and Gaussian

expe
tation-maximization, sin
e they use a number of

\
enters" to represent and/or partition the input data.

Ea
h 
enter de�nes a 
luster with a 
entral point and

perhaps a 
ovarian
e matrix. Center-based 
lustering

algorithms begin with a guess about the solution, and

then re�ne the positions of 
enters until a lo
al opti-

mum is rea
hed. These methods 
an work well, but

they 
an also 
onverge to a lo
al minimum that is far

from the global minimum, i.e. the 
lustering that has

the highest quality a

ording to the 
riterion in use.

Converging to bad lo
al optima is related to sensitiv-

ity to initialization, and is a primary problem of data


lustering.

The goal of this work is to understand and extend


enter-based 
lustering algorithms to �nd good-quality


lusterings in spatial data. Re
ently, many wrap-

per methods have been proposed to improve 
luster-

ing solutions. A wrapper method is one that trans-

forms the input or output of the 
lustering algorithm,

and/or uses the algorithm multiple times. One wrap-

per method is simply running the 
lustering algo-

rithm several times from di�erent starting points (of-

ten 
alled random restart), and taking the best solu-

tion (Jain et al., 1999). This is a 
ommon te
hnique,

and methods su
h as used in (Likas et al., 2001) push

this te
hnique to its extreme, at the 
ost of 
ompu-

tation. Another wrapper method to �nding quality


lusterings is using the best initializations possible;

this has been looked at in (Pe~na et al., 1999; Me��la

& He
kerman, 2001; Bradley & Fayyad, 1998). This

is fruitful resear
h, as many 
lustering algorithms are

sensitive to their initializations. Other resear
h (Sand

& Moore, 2001; Pelleg & Moore, 2000) has been look-

ing at �nding the appropriate number of 
lusters, and

analyzing the di�eren
e between the 
luster solution

and the dataset. This is useful when the appropri-

ate number of 
enters is unknown, or the algorithm is

stu
k at a sub-optimal solution.

These approa
hes are bene�
ial, but they are attempt-

ing to �x the problems of 
lustering algorithms exter-

nally, rather than to improve the 
lustering algorithms

themselves. We are interested in improving the 
lus-

tering algorithms dire
tly to make them less sensitive

to initializations and give better solutions. Of 
ourse,



any 
lustering algorithm developed 
ould bene�t from

wrapper methods.

Re
ently, Zhang et al. introdu
ed a new 
lustering al-

gorithm 
alled k-harmoni
 means (KHM) that arises

from an optimization 
riterion based on the harmoni


mean (Zhang et al., 1999; Zhang, 2000). This algo-

rithm shows promise in �nding good 
lustering so-

lutions qui
kly, and outperforms k-means (KM) and

Gaussian expe
tation-maximization (GEM) in many

tests. The KHM algorithm also has a novel feature

that gives more in
uen
e to data points that are not

well-modeled by the 
lustering solution, but is un-

known how important this feature is. Our work is a

�rst answer to this question.

In this paper, we present a uni�ed framework for look-

ing at 
enter-based 
lustering algorithms, and then de-

rive two new algorithms that are based on properties

of KM and KHM. The algorithms are 
ompared ana-

lyti
ally and empiri
ally.

2. Center-based 
lustering algorithms

The algorithms k-means, Gaussian expe
tation-

maximization, fuzzy k-means, and k-harmoni
 means

are in the family of 
enter-based 
lustering algorithms.

They ea
h have their own obje
tive fun
tion, whi
h

de�nes how good a 
lustering solution is. The goal of

ea
h algorithm is to minimize its obje
tive fun
tion.

Sin
e these obje
tive fun
tions 
annot be minimized

dire
tly, we use iterative update algorithms whi
h 
on-

verge on lo
al minima.

2.1 General iterative 
lustering

We 
an formulate a general form for the family of


lustering algorithms that use iterative optimization

(Kalton et al., 2001), and use this framework to

make 
omparisons between algorithms. De�ne a d-

dimensional set of n data points X = fx

1

; : : : ; x

n

g as

the data to be 
lustered. De�ne a d-dimensional set

of k 
enters C = f


1

; : : : ; 


k

g as the 
lustering solution

that an iterative algorithm re�nes.

A membership fun
tion m(


j

jx

i

) de�nes the propor-

tion of data point x

i

that belongs to 
enter 


j

with 
on-

straints m(


j

jx

i

) � 0 and

P

k

j=1

m(


j

jx

i

) = 1. Some

algorithms use a hard membership fun
tion, meaning

m(


j

jx

i

) 2 f0; 1g, while others use a soft membership

fun
tion, meaning 0 � m(


j

jx

i

) � 1. Kearns and 
ol-

leagues have analyzed the di�eren
es between hard

and soft membership from an information-theoreti


standpoint (Kearns et al., 1997). One of the rea-

sons that k-means 
an 
onverge to poor solutions is

due to its hard membership fun
tion. However, the

hard membership fun
tion makes possible many 
om-

putational optimizations that do not a�e
t a

ura
y of

the algorithm, su
h as using kd-trees (Pelleg & Moore,

1999).

A weight fun
tion w(x

i

) de�nes how mu
h in
uen
e

data point x

i

has in re
omputing the 
enter parame-

ters in the next iteration, with 
onstraint w(x

i

) > 0.

This weight fun
tion was introdu
ed in (Zhang, 2000).

Giving variable in
uen
e to data in 
lustering has

analogies to boosting in supervised learning (Freund

& S
hapire, 1999). Ea
h approa
h gives more weight

to data points that are not \well-
overed" by the 
ur-

rent solution. However, unlike boosting in supervised

learning, this approa
h does not 
reate an ensemble of

solutions.

Now we 
an de�ne a general form of iterative, 
enter-

based 
lustering. The steps are:

1. Initialize the algorithm with guessed 
enters C.

2. For ea
h data point x

i

, 
ompute its membership

m(


j

jx

i

) in ea
h 
enter 


j

and its weight w(x

i

).

3. For ea
h 
enter 


j

, re
ompute its lo
ation from

all data points x

i

a

ording to their memberships

and weights:




j

=

P

n

i=1

m(


j

jx

i

)w(x

i

)x

i

P

n

i=1

m(


j

jx

i

)w(x

i

)

(1)

4. Repeat steps 2 and 3 until 
onvergen
e.

Now we 
an 
ompare algorithms based on their mem-

bership and weight fun
tions. An alternative initial-

ization pro
edure is to guess an initial partition, and

then start the algorithm from step 3. The 
omputa-

tional 
omplexity of ea
h algorithm in this paper is

O(nkd) for ea
h update iteration (Equation 1). The

algorithms vary by 
onstant fa
tors but have the same

order 
omplexity.

2.2 The k-means algorithm

The k-means algorithm (KM) (Ma
Queen, 1967) par-

titions data into k sets. The solution is then a set of k


enters, ea
h of whi
h is lo
ated at the 
entroid of the

data for whi
h it is the 
losest 
enter. For the mem-

bership fun
tion, ea
h data point belongs to its nearest


enter, forming a Voronoi partition of the data. The

obje
tive fun
tion that the KM algorithm optimizes is

KM(X;C) =

n

X

i=1

min

j2f1:::kg

jjx

i

� 


j

jj

2

(2)



This obje
tive fun
tion gives an algorithm whi
h mini-

mizes the within-
luster varian
e (the squared distan
e

between ea
h 
enter and its assigned data points).

The membership and weight fun
tions for KM are:

m

KM

(


l

jx

i

) =

�

1 ; if l = argmin

j

jjx

i

� 


j

jj

2

0 ; otherwise

(3)

w

KM

(x

i

) = 1 (4)

KM has a hard membership fun
tion, and a 
onstant

weight fun
tion that gives all data points equal im-

portan
e. KM is easy to understand and implement,

making it a popular algorithm for 
lustering.

2.3 The Gaussian expe
tation-maximization

algorithm

The Gaussian expe
tation-maximization (GEM) algo-

rithm for 
lustering uses a linear 
ombination of d-

dimensional Gaussian distributions as the 
enters. It

minimizes the obje
tive fun
tion

GEM(X;C) = �

n

X

i=1

log

0

�

k

X

j=1

p(x

i

j


j

)p(


j

)

1

A

(5)

where p(x

i

j


j

) is the probability of x

i

given that it is

generated by the Gaussian distribution with 
enter 


j

,

and p(


j

) is the prior probability of 
enter 


j

. We use a

logarithm to make the math easier (while not 
hanging

the solution), and we negate the value so that we 
an

minimize the quantity (as we do with the other algo-

rithms we investigate). See (Bishop, 1995, pages 59{

73) for more about this algorithm. The membership

and weight fun
tions of GEM are

m

GEM

(


j

jx

i

) =

p(x

i

j


j

)p(


j

)

p(x

i

)

(6)

w

GEM

(x

i

) = 1 (7)

Bayes' rule is used to 
ompute the soft membership,

and m

GEM

is a probability sin
e the fa
tors in Equa-

tion 6 are probabilities. GEM has a 
onstant weight

fun
tion that gives all data points equally importan
e,

like KM. Note that w

GEM

(x

i

) is not the same as p(x

i

).

2.4 The fuzzy k-means algorithm

The fuzzy k-means algorithm (FKM; also 
alled fuzzy


-means) (Bezdek, 1981) is an adaptation of the KM

algorithm that uses a soft membership fun
tion. Un-

like KM whi
h assigns ea
h data point to its 
losest


enter, the FKM algorithm allows a data point to be-

long partly to all 
enters, like GEM.

FKM(X;C) =

n

X

i=1

k

X

j=1

u

r

ij

jjx

i

� 


j

jj

2

(8)

The parameter u

ij

denotes the proportion of data

point x

i

that is assigned to 
enter 


j

, and is under

the 
onstraints

P

k

j=1

u

ij

= 1 for all i and u

ij

� 0.

The parameter r has the 
onstraint r � 1. A larger

value for r makes the method \more fuzzy."

Bezdek and others give separate update fun
tions for

u

ij

and 


j

. The u

ij

update equation depends only on

C and X , so we in
orporate its update fun
tion into

the update for 


j

. Then we 
an represent FKM in

the form of the general iterative update of Equation 1.

The membership and weight fun
tions for FKM are:

m

FKM

(


j

jx

i

) =

jjx

i

� 


j

jj

�2=(r�1)

P

k

j=1

jjx

i

� 


j

jj

�2=(r�1)

(9)

w

FKM

(x

i

) = 1 (10)

so FKM has a soft membership fun
tion, and a 
on-

stant weight fun
tion. As r tends toward 1 from above,

the algorithm behaves more like standard k-means,

and the 
enters share the data points less.

2.5 k-harmoni
 means

The k-harmoni
 means algorithm (KHM) is a method

similar to KM that arises from a di�erent obje
tive

fun
tion (Zhang, 2000). The KHM obje
tive fun
tion

uses the harmoni
 mean of the distan
e from ea
h data

point to all 
enters.

KHM(X;C) =

n

X

i=1

k

P

k

j=1

1

jjx

i

�


j

jj

p

(11)

Here p is an input parameter, and typi
ally p � 2.

The harmoni
 mean gives a good (low) s
ore for ea
h

data point when that data point is 
lose to any one


enter. This is a property of the harmoni
 mean; it is

similar to the minimum fun
tion used by KM, but it

is a smooth di�erentiable fun
tion.

The membership and weight fun
tions for KHM are:

m

KHM

(


j

jx

i

) =

jjx

i

� 


j

jj

�p�2

P

k

j=1

jjx

i

� 


j

jj

�p�2

(12)

w

KHM

(x

i

) =

P

k

j=1

jjx

i

� 


j

jj

�p�2

�

P

k

j=1

jjx

i

� 


j

jj

�p

�

2

(13)

Note that KHM has a soft membership fun
tion, and

also a varying weight fun
tion. This weight fun
tion

gives higher weight to points that are far away from

every 
enter, whi
h aids the 
enters in spreading to


over the data.

The implementation of KHM needs to deal with the


ase where x

i

= 


j

. In this 
ase we follow Zhang us-

ing max(jjx

i

� 


j

jj; �) and use a small positive value



of �. We also apply this te
hnique for FKM and the

algorithms dis
ussed in Se
tion 3. We have not en-


ountered any numeri
al problems in any of our tests.

3. New 
lustering algorithms

We are interested in the properties of the new algo-

rithm KHM. It has a soft membership fun
tion and a

varying weight fun
tion, whi
h makes it unique among

the algorithms we have en
ountered. KHM has been

shown to be less sensitive to initialization on syntheti


data (Zhang, 2000).

Here we analyze two aspe
ts of KHM (the member-

ship and the weight fun
tions) and de�ne two new al-

gorithms we 
all Hybrid 1 and Hybrid 2. They are

named for the fa
t that they are hybrid algorithms

that 
ombine features of KM and KHM. The purpose

for 
reating these algorithms is to �nd out what e�e
ts

the membership and weight fun
tions of KHM have by

themselves.

3.1 Hybrid 1: hard membership, varying

weights

Hybrid 1 (H1) uses the hard membership fun
tion of

KM. Every point belongs only to its 
losest 
enter.

What makes H1 di�erent from KM is the KHM weight

fun
tion, whi
h gives more weight to points that are

far from every 
enter. We expe
t that this algorithm

should 
onverge more qui
kly than KM due to the

weights, but will still have problems related to the

hard membership fun
tion. As far as we know, adding

weights in this manner to KM is a new idea.

The de�nitions of the membership and weight fun
-

tions for H1 are:

m

H1

(


l

jx

i

) =

�

1 ; if l = argmin

j

jjx

i

� 


j

jj

2

0 ; otherwise

(14)

w

H1

(x

i

) =

P

k

j=1

jjx

i

� 


j

jj

�p�2

�

P

k

j=1

jjx

i

� 


j

jj

�p

�

2

(15)

3.2 Hybrid 2: soft membership, 
onstant

weights

Hybrid 2 (H2) uses the soft membership fun
tion of

KHM, and the 
onstant weight fun
tion of KM. The

de�nitions of the membership and weight fun
tions for

H2 are:

m

H2

(


j

jx

i

) =

jjx

i

� 


j

jj

�p�2

P

k

j=1

jjx

i

� 


j

jj

�p�2

(16)

w

H2

(x

i

) = 1 (17)

Note that H2 resembles FKM. In fa
t, for 
ertain val-

ues of r and p they are mathemati
ally equivalent.

It is interesting to note, then, that the membership

fun
tion of KHM (from whi
h we get H2) and FKM

are also very similar. We investigate H2 and FKM

as separate entities to keep 
lear the fa
t that we are

investigating the membership and weight fun
tions of

KHM separately.

4. Experimental setup

We perform two sets of experiments to demonstrate

the properties of the algorithms des
ribed in Se
tions

2 and 3. We want to answer several questions: how

do di�erent initializations a�e
t ea
h algorithm, what

is the in
uen
e of soft versus hard membership, and

what is the bene�t of using varying versus 
onstant

weights.

Though ea
h algorithm minimizes a di�erent obje
-

tive fun
tion, we measure the quality of ea
h 
lustering

solution by the square-root of the k-means obje
tive

fun
tion in Equation 2. It is a reasonable metri
 by

whi
h to judge 
luster quality, and by using a single

metri
 we 
an 
ompare di�erent algorithms. We use

the square root be
ause of the squared distan
e term in

the fun
tion whi
h 
an exaggerate the severity of poor

solutions. We 
onsidered running KM on the output

of ea
h algorithm, so that the KM obje
tive fun
tion


ould be better minimized. We found that this did not

help signi�
antly, so we do not do this here.

Our experiments use two datasets already used in re-


ent empiri
al work on 
lustering algorithms (Zhang

et al., 1997; Pelleg & Moore, 1999). The algorithms

we test are KM, KHM, FKM, H1, H2, and GEM. The


ode for ea
h of these algorithms is our own, ex
ept

for GEM. Our 
ode is written in Matlab; for GEM we

used the FastMix implementation provided by (Sand

& Moore, 2002). We need to supply the the KHM,

H1, and H2 with the parameter p, and FKM with r.

We set p = 3:5 for all tests, as that was the best value

found by Zhang. We set r = 1:3, as that is the best

value we found based on our preliminary tests.

The two initializations we use are the Forgy and Ran-

dom Partition methods (Pe~na et al., 1999). The Forgy

method simply 
hooses k data points from the dataset

at random and uses them as the initial 
enters. The

Random Partition method assigns ea
h data point to

a random 
enter, then 
omputes the initial lo
ation of

ea
h 
enter as the 
entroid of its assigned points. The

Forgy method tends to spread 
enters out in the data,

while the Random Partition method tends to pla
e the


enters in a small area near the middle of the dataset.
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Figure 1. Experiment 1: Forgy (left) and Random Parti-

tion (right) initializations for the BIRCH dataset. Centers

are shown in the dark 
olor, data points in the light 
olor.

This dataset has a grid of 10x10 natural 
lusters.

Random Partition was found to be a preferable initial-

ization method for its simpli
ity and quality in (Pe~na

et al., 1999; Me��la & He
kerman, 2001). For GEM, we

also initialize p(


j

) = 1=k and initialize the 
ovarian
e

to be 0:2I , where I is the identity matrix.

Before 
lustering, all datasets used in both experi-

ments are shifted and re-s
aled to give ea
h dimension

zero mean and unit varian
e. This is the standard z-

s
ore transformation. This 
an be a good idea before

using algorithms based on distan
e metri
s (as these

are), as it allows ea
h dimension to have the same in
u-

en
e. Without su
h s
aling, 
omputed distan
es may

be more in
uen
ed by some dimensions.

4.1 Experiment 1: BIRCH

The purpose of our �rst experiment is to illustrate the


onvergen
e properties of the di�erent algorithms, and

to show the need to improve 
lustering algorithms.

We use a randomly generated syntheti
 dataset we


all BIRCH, as de�ned by (Zhang et al., 1997). This

dataset has k = 100 true 
lusters arranged in a 10x10

grid in d = 2 dimensions. Ea
h 
luster generates 100

data points from its own Gaussian distribution, for a

total of n = 10; 000 data points. The distan
e between

two adja
ent 
luster means is 4

p

2 with 
luster radius

of

p

2 (meaning the varian
e in ea
h dimension is 1).

We run ea
h algorithm twi
e, on
e with the Forgy ini-

tialization, and on
e with the Random Partition ini-

tialization. Figure 1 shows the two initializations. We

use the same randomly 
hosen initializations for all al-

gorithms. All our results are similar for other random

initializations.

4.2 Experiment 2: Pelleg and Moore data

The se
ond experiment uses a syntheti
 dataset based

on work by (Pelleg & Moore, 1999). Here we run many

tests to determine the average-
ase behavior of the al-

gorithms. We test datasets of dimensions 2, 4, and

6 to show that all these algorithms work well in low

dimensions. Ea
h dataset has k = 50 true natural


lusters whi
h generate n = 2500 total data points.

The true 
luster 
enters are 
hosen at random in the

unit hyper
ube, then 2500 data points are generated

by 
hoosing a 
luster randomly, and generating a data

point a

ording to a Gaussian distribution with stan-

dard deviation s = d � 0:012 and mean at the true


luster 
enter. We generate data that is more sep-

arated (
lusters have less overlap) than the work by

Pelleg and Moore (who used s = d � 0:025), be
ause

this presents a more diÆ
ult task to the 
lustering al-

gorithms. This is be
ause it is harder for 
enters to

move freely through the whole dataset due to gaps

between natural 
lusters. See �gure 2 for a simple ex-

ample.

For ea
h d 2 f2; 4; 6g we generate 100 datasets, and

two initializations (Random Partition and Forgy) for

ea
h dataset. Then we test ea
h algorithm from both

of these initializations. For ea
h algorithm we allow

it to run for 100 iterations, whi
h is plenty for the

algorithms to 
onverge.

4.3 Dimensionality redu
tion

Clustering in high dimensions is diÆ
ult. Most 
lus-

tering algorithms that are based on distan
e metri
s

fail to �nd good 
lusterings in high dimensions, be-


ause the distan
e to all data points in
reases with in-


reasing dimension, making it harder to dis
riminate

between points of di�erent 
lusters when a 
enter is

far away.

Some 
lustering methods are designed for high dimen-

sional data, su
h as text 
lustering des
ribed in (Zhao

& Karypis, 2001). This method uses the 
osine dis-

tan
e (normalized dot produ
t) to determine the dis-

tan
e between data points. However, methods based

on this metri
 fail to use the magnitude of the data

points, making it impossible to dis
riminate between


lusters that lie along the same ve
tor from the origin.

Re
ent resear
h indi
ates that it may be preferable

to use dimensionality redu
tion te
hniques prior to


lustering, rather than 
lustering dire
tly in high di-

mensions. In (Dasgupta, 2000) the author shows that

highly e

entri
 
lusters in high dimensions tend to

be
ome more spheri
al in lower dimensions while re-

maining well-separated, even when the dimension re-

du
tion done is a random linear proje
tion. This fa
t

makes the 
lustering task even easier, and at the 
ost

of a very inexpensive operation (linear proje
tion).
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Figure 2. Here k-means has 
onverged to a lo
al optimum

whi
h it would be able to es
ape if the 
lusters had more

overlap. Without overlap, one of the \trapped" 
enters

on the top-right 
annot move to a 
luster on the bottom

or left be
ause of the hard assignment fun
tion. Thus, a


lustering problem is harder when 
lusters have less over-

lap, be
ause the probability of �nding bad lo
al optima is

higher.

Table 1. Experiment 1: Quality of solutions for one run on

the BIRCH dataset, using Forgy and Random Partition

initializations. Lower quality s
ores are better. \Clusters

found" is the number of true 
lusters (maximum 100) in

whi
h the algorithm pla
ed at least one 
enter.

p

KM quality Clusters found

Forgy RP Forgy RP

GEM 15.530 24.399 77 49

KM 12.771 18.396 83 60

H1 12.159 15.242 86 72

FKM 11.612 10.441 89 93

H2 10.670 9.908 92 95

KHM 10.255 9.999 94 95

5. Experimental results

5.1 Experiment 1: BIRCH

Running ea
h algorithm on the BIRCH dataset on
e

gives an intuition for how ea
h behaves. Figure 1

shows the two initializations we use. Then the end

results of ea
h algorithm's run is shown in Figure 3

and the 
luster qualities are shown in Table 1. FKM,

H2, and KHM all found good 
lusterings for both types

of initializations, and they are all soft membership al-

gorithms.

We 
an see that the two hard membership algorithms,

KM and H1, have distin
tly di�erent behavior for the

two initializations. The Forgy initialization provides

reasonably good behavior for those two algorithms,

but the Random Partition tends to leave a density of


enters in the middle of the dataset that are \trapped".

This is be
ause the hard membership fun
tion prevents


enters from moving if they do not own enough points,

whi
h is why hard membership 
an be 
alled \winner

take all". In Table 1 we show the number of true 
lus-

ters found, whi
h is the number of true 
lusters (out

of 100) that re
eived a 
enter by the algorithm.

Although GEM has a soft membership fun
tion, it

does poorly on this dataset due to some 
enters hav-

ing varian
e that is too large and taking over several


lusters. Note that the result of Random Partition

for GEM appears to have more density 
on
entrated

in the middle of the dataset, where the 
enters be-

gan. This is similar to the hard membership results.

The FastMix implementation we used for GEM started

with 100 
enters and would remove 
enters whose prior

be
ame too small. For this reason, it ended with 98

and 81 
enters for the Forgy and Random Partition

initializations, respe
tively. One feature of FastMix is

its ability to determine the number of 
enters through

density estimation. We tried starting FastMix without

a pre-de�ned number of 
enters, and it found 23.

5.2 Experiment 2: Pelleg and Moore data

Our se
ond experiment shows the average performan
e

of the algorithms 
ompared over many randomly gen-

erated data sets in several dimensions. For ea
h

dataset X

d;i

where d 2 f2; 4; 6g and 1 � i � 100 we


ompute the optimal KM partition O

d;i

by running

KM to 
onvergen
e starting with the 
enters that gen-

erated the data sets. Then we 
ompute the s
ore of a


lustering C

d;i

as the ratio

R

d;i

=

s

KM(X

d;i

; C

d;i

)

KM(X

d;i

; O

d;i

)

(18)

Table 2 shows the mean and standard deviation of R

d;i

for ea
h algorithm, 
omputed using 100 datasets in 2

dimensions. Table 3 shows the point-wise 
ompari-

son of ea
h algorithm for the same experiment. It is


lear from this as well that soft membership algorithms

(KHM, FKM, H2) perform better than hard member-

ship algorithms (KM, H1) in both average performan
e

and varian
e. The results for 4 and 6 dimensional

datasets are very similar, so we do not report them

here.

Figure 4 shows the speed of 
onvergen
e of ea
h al-

gorithm for d = 2 dimensions. The x-axis shows the

iteration number, and the y-axis shows the average k-

means quality ratio at that iteration, 
omputed using

the 100 datasets. We 
an see that GEM and KM are

uniformly inferior to every other algorithm, and that

the soft membership algorithms KHM, H2, and FKM

move qui
kly to �nd good solutions. Only the �nal re-

sult for GEM is plotted as we 
annot 
apture 
lustering

progress before the FastMix software terminates.

FastMix has the ability to add and remove 
enters to
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Figure 4. Experiment 2: Convergen
e 
urves starting from Forgy (top) and Random Partition (bottom) initializations on

2-d syntheti
 data. The x-axis shows the number of iterations, and the y-axis (log s
ale) shows average 
lustering quality

s
ore, where lower values are better. Only the �nal results for GEM are shown. Note that KM performs worse than every

other algorithm.

better �t its data. FastMix adds a 
enter to area where

the model underpredi
ts the data and removes a 
en-

ter if its prior probability is too low. We expe
t that

FastMix's ability to add 
enters would be helpful in a

dataset in whi
h 
lusters are well-separated. For ex-

periment 2, FastMix began with 50 
enters and only

removed 
enters. FastMix ended with an average of

48.39 
enters (Forgy) and 40.13 
enters (Random Par-

tition) in the 2-dimension test. This shows that GEM

is also sensitive to poor initializations.

Table 2. Experiment 2: The mean and standard deviation

of the ratio between the k-means quality and the optimum,

over 100 datasets, in 2 dimensions. The ratio is 
omputed

from the square root of the k-means quality divided by the

optimum k-means quality. Lower values are better. The

statisti
s for 4 and 6 dimensions are similar, and have the

same ranking.

Forgy Random Partition

GEM 1.3262 +/- 0.1342 2.3653 +/- 0.4497

KM 1.1909 +/- 0.0953 2.0905 +/- 0.2616

H1 1.1473 +/- 0.0650 1.7644 +/- 0.2403

FKM 1.1281 +/- 0.0637 1.0989 +/- 0.0499

H2 1.1077 +/- 0.0536 1.0788 +/- 0.0416

KHM 1.0705 +/- 0.0310 1.0605 +/- 0.0294

6. Con
lusions

Our experiments 
learly show the superiority of the

k-harmoni
 means algorithm (KHM) for �nding 
lus-

terings of high quality in low dimensions. Our algo-

rithms H1 and H2 let us study the e�e
ts of the KHM

weight and membership separately. They show that

soft membership is essential for �nding good 
luster-

ings, as H2 performs nearly as well as KHM, but that

varying weights are bene�
ial with a hard membership

fun
tion, sin
e H1 performs better than KM. Varying

weights are intuitively similar to the weights applied

to training examples by boosting (Freund & S
hapire,

1999). It remains to be seen whether this analogy 
an

be made pre
ise.

Previous work in initialization methods has 
on
luded

that the Random Partition method is good for GEM

and for KM, but our experiments do not 
on�rm this


on
lusion. The Forgy method of initialization (
hoos-

ing random points as initial 
enters) works best for

GEM, KM, and H1. Overall, our results suggest that

the best algorithms available today are FKM, H2, and

KHM, initialized by the Random Partition method.

Our future work will in
lude an investigation of per-

forman
e on high-dimensional data, and on real-world

datasets.
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Figure 3. Experiment 1: Final results for the BIRCH

dataset. From top to bottom: GEM, KM, KHM, FKM,

H1, H2. The plot for GEM was generated by the FastMix

software, showing the 1-sigma 
ontours.




