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Alternatives to the k-means algorithm that �nd better lusterings

Greg Hamerly ghamerly�s.usd.edu

Charles Elkan elkan�s.usd.edu

Department of Computer Siene and Engineering, University of California, San Diego, La Jolla, CA 92093

Abstrat

We investigate here the behavior of the

standard k-means lustering algorithm

and several alternatives to it: the k-

harmoni means algorithm due to Zhang

and olleagues, fuzzy k-means, Gaussian

expetation-maximization, and two new

variants of k-harmoni means. Our aim is

to �nd whih aspets of these algorithms

ontribute to �nding good lusterings, as

opposed to onverging to a low-quality loal

optimum. We desribe eah algorithm in a

uni�ed framework that introdues separate

luster membership and data weight fun-

tions. We then show that the algorithms do

behave very di�erently from eah other on

simple low-dimensional syntheti datasets,

and that the k-harmoni means method

is superior. Having a soft membership

funtion is essential for �nding high-quality

lusterings, but having a non-onstant data

weight funtion is useful also.

1. Introdution

Data lustering, whih is the task of �nding natural

groupings in data, is an important task in mahine

learning and pattern reognition. Typially in luster-

ing there is no one perfet solution to the problem, but

algorithms seek to minimize a ertain mathematial

riterion (whih varies between algorithms). Minimiz-

ing suh riteria is known to be NP-hard for the general

problem of partitioning d-dimensional data into k sets

(Ostrovsky & Rabani, 2000; Drineas et al., 1999). Al-

gorithms like k-means seek loal rather than the global

minimum solutions, but an get stuk at poor solu-

tions. In these ases we onsider that a solution whih

better minimizes the mathematial riterion (for the

same number of enters) to be a better-quality lus-

tering.

We use the term \enter-based lustering" to refer to

the family of algorithms suh as k-means and Gaussian

expetation-maximization, sine they use a number of

\enters" to represent and/or partition the input data.

Eah enter de�nes a luster with a entral point and

perhaps a ovariane matrix. Center-based lustering

algorithms begin with a guess about the solution, and

then re�ne the positions of enters until a loal opti-

mum is reahed. These methods an work well, but

they an also onverge to a loal minimum that is far

from the global minimum, i.e. the lustering that has

the highest quality aording to the riterion in use.

Converging to bad loal optima is related to sensitiv-

ity to initialization, and is a primary problem of data

lustering.

The goal of this work is to understand and extend

enter-based lustering algorithms to �nd good-quality

lusterings in spatial data. Reently, many wrap-

per methods have been proposed to improve luster-

ing solutions. A wrapper method is one that trans-

forms the input or output of the lustering algorithm,

and/or uses the algorithm multiple times. One wrap-

per method is simply running the lustering algo-

rithm several times from di�erent starting points (of-

ten alled random restart), and taking the best solu-

tion (Jain et al., 1999). This is a ommon tehnique,

and methods suh as used in (Likas et al., 2001) push

this tehnique to its extreme, at the ost of ompu-

tation. Another wrapper method to �nding quality

lusterings is using the best initializations possible;

this has been looked at in (Pe~na et al., 1999; Me��la

& Hekerman, 2001; Bradley & Fayyad, 1998). This

is fruitful researh, as many lustering algorithms are

sensitive to their initializations. Other researh (Sand

& Moore, 2001; Pelleg & Moore, 2000) has been look-

ing at �nding the appropriate number of lusters, and

analyzing the di�erene between the luster solution

and the dataset. This is useful when the appropri-

ate number of enters is unknown, or the algorithm is

stuk at a sub-optimal solution.

These approahes are bene�ial, but they are attempt-

ing to �x the problems of lustering algorithms exter-

nally, rather than to improve the lustering algorithms

themselves. We are interested in improving the lus-

tering algorithms diretly to make them less sensitive

to initializations and give better solutions. Of ourse,



any lustering algorithm developed ould bene�t from

wrapper methods.

Reently, Zhang et al. introdued a new lustering al-

gorithm alled k-harmoni means (KHM) that arises

from an optimization riterion based on the harmoni

mean (Zhang et al., 1999; Zhang, 2000). This algo-

rithm shows promise in �nding good lustering so-

lutions quikly, and outperforms k-means (KM) and

Gaussian expetation-maximization (GEM) in many

tests. The KHM algorithm also has a novel feature

that gives more inuene to data points that are not

well-modeled by the lustering solution, but is un-

known how important this feature is. Our work is a

�rst answer to this question.

In this paper, we present a uni�ed framework for look-

ing at enter-based lustering algorithms, and then de-

rive two new algorithms that are based on properties

of KM and KHM. The algorithms are ompared ana-

lytially and empirially.

2. Center-based lustering algorithms

The algorithms k-means, Gaussian expetation-

maximization, fuzzy k-means, and k-harmoni means

are in the family of enter-based lustering algorithms.

They eah have their own objetive funtion, whih

de�nes how good a lustering solution is. The goal of

eah algorithm is to minimize its objetive funtion.

Sine these objetive funtions annot be minimized

diretly, we use iterative update algorithms whih on-

verge on loal minima.

2.1 General iterative lustering

We an formulate a general form for the family of

lustering algorithms that use iterative optimization

(Kalton et al., 2001), and use this framework to

make omparisons between algorithms. De�ne a d-

dimensional set of n data points X = fx

1

; : : : ; x

n

g as

the data to be lustered. De�ne a d-dimensional set

of k enters C = f

1

; : : : ; 

k

g as the lustering solution

that an iterative algorithm re�nes.

A membership funtion m(

j

jx

i

) de�nes the propor-

tion of data point x

i

that belongs to enter 

j

with on-

straints m(

j

jx

i

) � 0 and

P

k

j=1

m(

j

jx

i

) = 1. Some

algorithms use a hard membership funtion, meaning

m(

j

jx

i

) 2 f0; 1g, while others use a soft membership

funtion, meaning 0 � m(

j

jx

i

) � 1. Kearns and ol-

leagues have analyzed the di�erenes between hard

and soft membership from an information-theoreti

standpoint (Kearns et al., 1997). One of the rea-

sons that k-means an onverge to poor solutions is

due to its hard membership funtion. However, the

hard membership funtion makes possible many om-

putational optimizations that do not a�et auray of

the algorithm, suh as using kd-trees (Pelleg & Moore,

1999).

A weight funtion w(x

i

) de�nes how muh inuene

data point x

i

has in reomputing the enter parame-

ters in the next iteration, with onstraint w(x

i

) > 0.

This weight funtion was introdued in (Zhang, 2000).

Giving variable inuene to data in lustering has

analogies to boosting in supervised learning (Freund

& Shapire, 1999). Eah approah gives more weight

to data points that are not \well-overed" by the ur-

rent solution. However, unlike boosting in supervised

learning, this approah does not reate an ensemble of

solutions.

Now we an de�ne a general form of iterative, enter-

based lustering. The steps are:

1. Initialize the algorithm with guessed enters C.

2. For eah data point x

i

, ompute its membership

m(

j

jx

i

) in eah enter 

j

and its weight w(x

i

).

3. For eah enter 

j

, reompute its loation from

all data points x

i

aording to their memberships

and weights:



j

=

P

n

i=1

m(

j

jx

i

)w(x

i

)x

i

P

n

i=1

m(

j

jx

i

)w(x

i

)

(1)

4. Repeat steps 2 and 3 until onvergene.

Now we an ompare algorithms based on their mem-

bership and weight funtions. An alternative initial-

ization proedure is to guess an initial partition, and

then start the algorithm from step 3. The omputa-

tional omplexity of eah algorithm in this paper is

O(nkd) for eah update iteration (Equation 1). The

algorithms vary by onstant fators but have the same

order omplexity.

2.2 The k-means algorithm

The k-means algorithm (KM) (MaQueen, 1967) par-

titions data into k sets. The solution is then a set of k

enters, eah of whih is loated at the entroid of the

data for whih it is the losest enter. For the mem-

bership funtion, eah data point belongs to its nearest

enter, forming a Voronoi partition of the data. The

objetive funtion that the KM algorithm optimizes is

KM(X;C) =

n

X

i=1

min

j2f1:::kg

jjx

i

� 

j

jj

2

(2)



This objetive funtion gives an algorithm whih mini-

mizes the within-luster variane (the squared distane

between eah enter and its assigned data points).

The membership and weight funtions for KM are:

m

KM

(

l

jx

i

) =

�

1 ; if l = argmin

j

jjx

i

� 

j

jj

2

0 ; otherwise

(3)

w

KM

(x

i

) = 1 (4)

KM has a hard membership funtion, and a onstant

weight funtion that gives all data points equal im-

portane. KM is easy to understand and implement,

making it a popular algorithm for lustering.

2.3 The Gaussian expetation-maximization

algorithm

The Gaussian expetation-maximization (GEM) algo-

rithm for lustering uses a linear ombination of d-

dimensional Gaussian distributions as the enters. It

minimizes the objetive funtion

GEM(X;C) = �

n

X

i=1

log

0

�

k

X

j=1

p(x

i

j

j

)p(

j

)

1

A

(5)

where p(x

i

j

j

) is the probability of x

i

given that it is

generated by the Gaussian distribution with enter 

j

,

and p(

j

) is the prior probability of enter 

j

. We use a

logarithm to make the math easier (while not hanging

the solution), and we negate the value so that we an

minimize the quantity (as we do with the other algo-

rithms we investigate). See (Bishop, 1995, pages 59{

73) for more about this algorithm. The membership

and weight funtions of GEM are

m

GEM

(

j

jx

i

) =

p(x

i

j

j

)p(

j

)

p(x

i

)

(6)

w

GEM

(x

i

) = 1 (7)

Bayes' rule is used to ompute the soft membership,

and m

GEM

is a probability sine the fators in Equa-

tion 6 are probabilities. GEM has a onstant weight

funtion that gives all data points equally importane,

like KM. Note that w

GEM

(x

i

) is not the same as p(x

i

).

2.4 The fuzzy k-means algorithm

The fuzzy k-means algorithm (FKM; also alled fuzzy

-means) (Bezdek, 1981) is an adaptation of the KM

algorithm that uses a soft membership funtion. Un-

like KM whih assigns eah data point to its losest

enter, the FKM algorithm allows a data point to be-

long partly to all enters, like GEM.

FKM(X;C) =

n

X

i=1

k

X

j=1

u

r

ij

jjx

i

� 

j

jj

2

(8)

The parameter u

ij

denotes the proportion of data

point x

i

that is assigned to enter 

j

, and is under

the onstraints

P

k

j=1

u

ij

= 1 for all i and u

ij

� 0.

The parameter r has the onstraint r � 1. A larger

value for r makes the method \more fuzzy."

Bezdek and others give separate update funtions for

u

ij

and 

j

. The u

ij

update equation depends only on

C and X , so we inorporate its update funtion into

the update for 

j

. Then we an represent FKM in

the form of the general iterative update of Equation 1.

The membership and weight funtions for FKM are:

m

FKM

(

j

jx

i

) =

jjx

i

� 

j

jj

�2=(r�1)

P

k

j=1

jjx

i

� 

j

jj

�2=(r�1)

(9)

w

FKM

(x

i

) = 1 (10)

so FKM has a soft membership funtion, and a on-

stant weight funtion. As r tends toward 1 from above,

the algorithm behaves more like standard k-means,

and the enters share the data points less.

2.5 k-harmoni means

The k-harmoni means algorithm (KHM) is a method

similar to KM that arises from a di�erent objetive

funtion (Zhang, 2000). The KHM objetive funtion

uses the harmoni mean of the distane from eah data

point to all enters.

KHM(X;C) =

n

X

i=1

k

P

k

j=1

1

jjx

i

�

j

jj

p

(11)

Here p is an input parameter, and typially p � 2.

The harmoni mean gives a good (low) sore for eah

data point when that data point is lose to any one

enter. This is a property of the harmoni mean; it is

similar to the minimum funtion used by KM, but it

is a smooth di�erentiable funtion.

The membership and weight funtions for KHM are:

m

KHM

(

j

jx

i

) =

jjx

i

� 

j

jj

�p�2

P

k

j=1

jjx

i

� 

j

jj

�p�2

(12)

w

KHM

(x

i

) =

P

k

j=1

jjx

i

� 

j

jj

�p�2

�

P

k

j=1

jjx

i

� 

j

jj

�p

�

2

(13)

Note that KHM has a soft membership funtion, and

also a varying weight funtion. This weight funtion

gives higher weight to points that are far away from

every enter, whih aids the enters in spreading to

over the data.

The implementation of KHM needs to deal with the

ase where x

i

= 

j

. In this ase we follow Zhang us-

ing max(jjx

i

� 

j

jj; �) and use a small positive value



of �. We also apply this tehnique for FKM and the

algorithms disussed in Setion 3. We have not en-

ountered any numerial problems in any of our tests.

3. New lustering algorithms

We are interested in the properties of the new algo-

rithm KHM. It has a soft membership funtion and a

varying weight funtion, whih makes it unique among

the algorithms we have enountered. KHM has been

shown to be less sensitive to initialization on syntheti

data (Zhang, 2000).

Here we analyze two aspets of KHM (the member-

ship and the weight funtions) and de�ne two new al-

gorithms we all Hybrid 1 and Hybrid 2. They are

named for the fat that they are hybrid algorithms

that ombine features of KM and KHM. The purpose

for reating these algorithms is to �nd out what e�ets

the membership and weight funtions of KHM have by

themselves.

3.1 Hybrid 1: hard membership, varying

weights

Hybrid 1 (H1) uses the hard membership funtion of

KM. Every point belongs only to its losest enter.

What makes H1 di�erent from KM is the KHM weight

funtion, whih gives more weight to points that are

far from every enter. We expet that this algorithm

should onverge more quikly than KM due to the

weights, but will still have problems related to the

hard membership funtion. As far as we know, adding

weights in this manner to KM is a new idea.

The de�nitions of the membership and weight fun-

tions for H1 are:

m

H1

(

l

jx

i

) =

�

1 ; if l = argmin

j

jjx

i

� 

j

jj

2

0 ; otherwise

(14)

w

H1

(x

i

) =

P

k

j=1

jjx

i

� 

j

jj

�p�2

�

P

k

j=1

jjx

i

� 

j

jj

�p

�

2

(15)

3.2 Hybrid 2: soft membership, onstant

weights

Hybrid 2 (H2) uses the soft membership funtion of

KHM, and the onstant weight funtion of KM. The

de�nitions of the membership and weight funtions for

H2 are:

m

H2

(

j

jx

i

) =

jjx

i

� 

j

jj

�p�2

P

k

j=1

jjx

i

� 

j

jj

�p�2

(16)

w

H2

(x

i

) = 1 (17)

Note that H2 resembles FKM. In fat, for ertain val-

ues of r and p they are mathematially equivalent.

It is interesting to note, then, that the membership

funtion of KHM (from whih we get H2) and FKM

are also very similar. We investigate H2 and FKM

as separate entities to keep lear the fat that we are

investigating the membership and weight funtions of

KHM separately.

4. Experimental setup

We perform two sets of experiments to demonstrate

the properties of the algorithms desribed in Setions

2 and 3. We want to answer several questions: how

do di�erent initializations a�et eah algorithm, what

is the inuene of soft versus hard membership, and

what is the bene�t of using varying versus onstant

weights.

Though eah algorithm minimizes a di�erent obje-

tive funtion, we measure the quality of eah lustering

solution by the square-root of the k-means objetive

funtion in Equation 2. It is a reasonable metri by

whih to judge luster quality, and by using a single

metri we an ompare di�erent algorithms. We use

the square root beause of the squared distane term in

the funtion whih an exaggerate the severity of poor

solutions. We onsidered running KM on the output

of eah algorithm, so that the KM objetive funtion

ould be better minimized. We found that this did not

help signi�antly, so we do not do this here.

Our experiments use two datasets already used in re-

ent empirial work on lustering algorithms (Zhang

et al., 1997; Pelleg & Moore, 1999). The algorithms

we test are KM, KHM, FKM, H1, H2, and GEM. The

ode for eah of these algorithms is our own, exept

for GEM. Our ode is written in Matlab; for GEM we

used the FastMix implementation provided by (Sand

& Moore, 2002). We need to supply the the KHM,

H1, and H2 with the parameter p, and FKM with r.

We set p = 3:5 for all tests, as that was the best value

found by Zhang. We set r = 1:3, as that is the best

value we found based on our preliminary tests.

The two initializations we use are the Forgy and Ran-

dom Partition methods (Pe~na et al., 1999). The Forgy

method simply hooses k data points from the dataset

at random and uses them as the initial enters. The

Random Partition method assigns eah data point to

a random enter, then omputes the initial loation of

eah enter as the entroid of its assigned points. The

Forgy method tends to spread enters out in the data,

while the Random Partition method tends to plae the

enters in a small area near the middle of the dataset.
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Figure 1. Experiment 1: Forgy (left) and Random Parti-

tion (right) initializations for the BIRCH dataset. Centers

are shown in the dark olor, data points in the light olor.

This dataset has a grid of 10x10 natural lusters.

Random Partition was found to be a preferable initial-

ization method for its simpliity and quality in (Pe~na

et al., 1999; Me��la & Hekerman, 2001). For GEM, we

also initialize p(

j

) = 1=k and initialize the ovariane

to be 0:2I , where I is the identity matrix.

Before lustering, all datasets used in both experi-

ments are shifted and re-saled to give eah dimension

zero mean and unit variane. This is the standard z-

sore transformation. This an be a good idea before

using algorithms based on distane metris (as these

are), as it allows eah dimension to have the same inu-

ene. Without suh saling, omputed distanes may

be more inuened by some dimensions.

4.1 Experiment 1: BIRCH

The purpose of our �rst experiment is to illustrate the

onvergene properties of the di�erent algorithms, and

to show the need to improve lustering algorithms.

We use a randomly generated syntheti dataset we

all BIRCH, as de�ned by (Zhang et al., 1997). This

dataset has k = 100 true lusters arranged in a 10x10

grid in d = 2 dimensions. Eah luster generates 100

data points from its own Gaussian distribution, for a

total of n = 10; 000 data points. The distane between

two adjaent luster means is 4

p

2 with luster radius

of

p

2 (meaning the variane in eah dimension is 1).

We run eah algorithm twie, one with the Forgy ini-

tialization, and one with the Random Partition ini-

tialization. Figure 1 shows the two initializations. We

use the same randomly hosen initializations for all al-

gorithms. All our results are similar for other random

initializations.

4.2 Experiment 2: Pelleg and Moore data

The seond experiment uses a syntheti dataset based

on work by (Pelleg & Moore, 1999). Here we run many

tests to determine the average-ase behavior of the al-

gorithms. We test datasets of dimensions 2, 4, and

6 to show that all these algorithms work well in low

dimensions. Eah dataset has k = 50 true natural

lusters whih generate n = 2500 total data points.

The true luster enters are hosen at random in the

unit hyperube, then 2500 data points are generated

by hoosing a luster randomly, and generating a data

point aording to a Gaussian distribution with stan-

dard deviation s = d � 0:012 and mean at the true

luster enter. We generate data that is more sep-

arated (lusters have less overlap) than the work by

Pelleg and Moore (who used s = d � 0:025), beause

this presents a more diÆult task to the lustering al-

gorithms. This is beause it is harder for enters to

move freely through the whole dataset due to gaps

between natural lusters. See �gure 2 for a simple ex-

ample.

For eah d 2 f2; 4; 6g we generate 100 datasets, and

two initializations (Random Partition and Forgy) for

eah dataset. Then we test eah algorithm from both

of these initializations. For eah algorithm we allow

it to run for 100 iterations, whih is plenty for the

algorithms to onverge.

4.3 Dimensionality redution

Clustering in high dimensions is diÆult. Most lus-

tering algorithms that are based on distane metris

fail to �nd good lusterings in high dimensions, be-

ause the distane to all data points inreases with in-

reasing dimension, making it harder to disriminate

between points of di�erent lusters when a enter is

far away.

Some lustering methods are designed for high dimen-

sional data, suh as text lustering desribed in (Zhao

& Karypis, 2001). This method uses the osine dis-

tane (normalized dot produt) to determine the dis-

tane between data points. However, methods based

on this metri fail to use the magnitude of the data

points, making it impossible to disriminate between

lusters that lie along the same vetor from the origin.

Reent researh indiates that it may be preferable

to use dimensionality redution tehniques prior to

lustering, rather than lustering diretly in high di-

mensions. In (Dasgupta, 2000) the author shows that

highly eentri lusters in high dimensions tend to

beome more spherial in lower dimensions while re-

maining well-separated, even when the dimension re-

dution done is a random linear projetion. This fat

makes the lustering task even easier, and at the ost

of a very inexpensive operation (linear projetion).
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Figure 2. Here k-means has onverged to a loal optimum

whih it would be able to esape if the lusters had more

overlap. Without overlap, one of the \trapped" enters

on the top-right annot move to a luster on the bottom

or left beause of the hard assignment funtion. Thus, a

lustering problem is harder when lusters have less over-

lap, beause the probability of �nding bad loal optima is

higher.

Table 1. Experiment 1: Quality of solutions for one run on

the BIRCH dataset, using Forgy and Random Partition

initializations. Lower quality sores are better. \Clusters

found" is the number of true lusters (maximum 100) in

whih the algorithm plaed at least one enter.

p

KM quality Clusters found

Forgy RP Forgy RP

GEM 15.530 24.399 77 49

KM 12.771 18.396 83 60

H1 12.159 15.242 86 72

FKM 11.612 10.441 89 93

H2 10.670 9.908 92 95

KHM 10.255 9.999 94 95

5. Experimental results

5.1 Experiment 1: BIRCH

Running eah algorithm on the BIRCH dataset one

gives an intuition for how eah behaves. Figure 1

shows the two initializations we use. Then the end

results of eah algorithm's run is shown in Figure 3

and the luster qualities are shown in Table 1. FKM,

H2, and KHM all found good lusterings for both types

of initializations, and they are all soft membership al-

gorithms.

We an see that the two hard membership algorithms,

KM and H1, have distintly di�erent behavior for the

two initializations. The Forgy initialization provides

reasonably good behavior for those two algorithms,

but the Random Partition tends to leave a density of

enters in the middle of the dataset that are \trapped".

This is beause the hard membership funtion prevents

enters from moving if they do not own enough points,

whih is why hard membership an be alled \winner

take all". In Table 1 we show the number of true lus-

ters found, whih is the number of true lusters (out

of 100) that reeived a enter by the algorithm.

Although GEM has a soft membership funtion, it

does poorly on this dataset due to some enters hav-

ing variane that is too large and taking over several

lusters. Note that the result of Random Partition

for GEM appears to have more density onentrated

in the middle of the dataset, where the enters be-

gan. This is similar to the hard membership results.

The FastMix implementation we used for GEM started

with 100 enters and would remove enters whose prior

beame too small. For this reason, it ended with 98

and 81 enters for the Forgy and Random Partition

initializations, respetively. One feature of FastMix is

its ability to determine the number of enters through

density estimation. We tried starting FastMix without

a pre-de�ned number of enters, and it found 23.

5.2 Experiment 2: Pelleg and Moore data

Our seond experiment shows the average performane

of the algorithms ompared over many randomly gen-

erated data sets in several dimensions. For eah

dataset X

d;i

where d 2 f2; 4; 6g and 1 � i � 100 we

ompute the optimal KM partition O

d;i

by running

KM to onvergene starting with the enters that gen-

erated the data sets. Then we ompute the sore of a

lustering C

d;i

as the ratio

R

d;i

=

s

KM(X

d;i

; C

d;i

)

KM(X

d;i

; O

d;i

)

(18)

Table 2 shows the mean and standard deviation of R

d;i

for eah algorithm, omputed using 100 datasets in 2

dimensions. Table 3 shows the point-wise ompari-

son of eah algorithm for the same experiment. It is

lear from this as well that soft membership algorithms

(KHM, FKM, H2) perform better than hard member-

ship algorithms (KM, H1) in both average performane

and variane. The results for 4 and 6 dimensional

datasets are very similar, so we do not report them

here.

Figure 4 shows the speed of onvergene of eah al-

gorithm for d = 2 dimensions. The x-axis shows the

iteration number, and the y-axis shows the average k-

means quality ratio at that iteration, omputed using

the 100 datasets. We an see that GEM and KM are

uniformly inferior to every other algorithm, and that

the soft membership algorithms KHM, H2, and FKM

move quikly to �nd good solutions. Only the �nal re-

sult for GEM is plotted as we annot apture lustering

progress before the FastMix software terminates.

FastMix has the ability to add and remove enters to
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Figure 4. Experiment 2: Convergene urves starting from Forgy (top) and Random Partition (bottom) initializations on

2-d syntheti data. The x-axis shows the number of iterations, and the y-axis (log sale) shows average lustering quality

sore, where lower values are better. Only the �nal results for GEM are shown. Note that KM performs worse than every

other algorithm.

better �t its data. FastMix adds a enter to area where

the model underpredits the data and removes a en-

ter if its prior probability is too low. We expet that

FastMix's ability to add enters would be helpful in a

dataset in whih lusters are well-separated. For ex-

periment 2, FastMix began with 50 enters and only

removed enters. FastMix ended with an average of

48.39 enters (Forgy) and 40.13 enters (Random Par-

tition) in the 2-dimension test. This shows that GEM

is also sensitive to poor initializations.

Table 2. Experiment 2: The mean and standard deviation

of the ratio between the k-means quality and the optimum,

over 100 datasets, in 2 dimensions. The ratio is omputed

from the square root of the k-means quality divided by the

optimum k-means quality. Lower values are better. The

statistis for 4 and 6 dimensions are similar, and have the

same ranking.

Forgy Random Partition

GEM 1.3262 +/- 0.1342 2.3653 +/- 0.4497

KM 1.1909 +/- 0.0953 2.0905 +/- 0.2616

H1 1.1473 +/- 0.0650 1.7644 +/- 0.2403

FKM 1.1281 +/- 0.0637 1.0989 +/- 0.0499

H2 1.1077 +/- 0.0536 1.0788 +/- 0.0416

KHM 1.0705 +/- 0.0310 1.0605 +/- 0.0294

6. Conlusions

Our experiments learly show the superiority of the

k-harmoni means algorithm (KHM) for �nding lus-

terings of high quality in low dimensions. Our algo-

rithms H1 and H2 let us study the e�ets of the KHM

weight and membership separately. They show that

soft membership is essential for �nding good luster-

ings, as H2 performs nearly as well as KHM, but that

varying weights are bene�ial with a hard membership

funtion, sine H1 performs better than KM. Varying

weights are intuitively similar to the weights applied

to training examples by boosting (Freund & Shapire,

1999). It remains to be seen whether this analogy an

be made preise.

Previous work in initialization methods has onluded

that the Random Partition method is good for GEM

and for KM, but our experiments do not on�rm this

onlusion. The Forgy method of initialization (hoos-

ing random points as initial enters) works best for

GEM, KM, and H1. Overall, our results suggest that

the best algorithms available today are FKM, H2, and

KHM, initialized by the Random Partition method.

Our future work will inlude an investigation of per-

formane on high-dimensional data, and on real-world

datasets.
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Figure 3. Experiment 1: Final results for the BIRCH

dataset. From top to bottom: GEM, KM, KHM, FKM,

H1, H2. The plot for GEM was generated by the FastMix

software, showing the 1-sigma ontours.




