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Abstract

Recent work in data integration has shown the importance of statistical information about

the coverage and overlap of sources for efficient query processing. Despite this recognition

there are no effective approaches for learning the needed statistics. The key challenge in learn-

ing such statistics is keeping the number of needed statistics low enough to have the storage

and learning costs manageable. Naive approaches can become infeasible very quickly. In this

paper we present a set of connected techniques that estimate the coverage and overlap statis-

tics while keeping the needed statistics tightly under control. Our approach uses a hierarchical

classification of the queries, and threshold based variants of familiar data mining techniques

to dynamically decide the level of resolution at which to learn the statistics. We describe the

details of our method, and present experimental results demonstrating the efficiency of the

learning algorithms and the effectiveness of the learned statistics.

Keywords: Webmining to support query optimization,
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1 Introduction

With the vast number of autonomous information sources available on the Internet today, users

have access to a large variety of data sources. Data integration systems [CGHI94, LRO96, ACPS96,

LKG99, PL00] are being developed to provide a uniform interface to a multitude of information

sources, query the relevant sources automatically and restructure the information from different

sources. In a data integration scenario, a user interacts with a mediator system via a mediated

schema. A mediated schema is a set of virtual relations, which are effectively stored across mul-

tiple and potentially overlapping data sources, each of which only contain a partial extension of

the relation. Query optimization in data integration [FKL97, DL99, NLF99, NK01 ] thus requires

the ability to figure out what sources are most relevant to the given query, and in what order those

sources should be accessed. For this purpose, the query optimizer needs to access statistics about

the coverage of the individual sources with respect to the given query, as well as the degree to

which the answers they export overlap. We illustrate the need for these statistics with an example.

Example 1: Consider a Simple Mediator that integrates autonomous Internet sources exporting

information about publications in Computer Science. Let there be a single relation in the global

schema of the mediator: paper(title, author, conference, year). There are hundreds of Internet

sources, each exporting a subset of the global relation. Some sources may only contain publications

in AI, others may focus on Databases, while some others on Bioinformatics etc. To efficiently

answer users’ queries, we need to find and access the most relevant subset of the sources for the

given query.1 Suppose, the user asks a selection query:

Q(title,author) :� paper(title, author, conference, year),

conference=“AAAI”.

To answer this query efficiently, we need to know the coverage of each source S with respect

to the query Q, i.e. P (SjQ), the probability that a random answer tuple for query Q belongs to

source S. Given this information, we can rank all the sources in descending order of P (SjQ). The

first source in the ranking is the one we want to access first while answering query Q. Although
1Although in the following example, as well as in the subsequent discussion the sources are seen as directly using

the mediator schema, in practice, the sources may have different schemas, with varying relation as well as attribute

names. We ignore this issue in our discussion as all data integration frameworks assume that the mapping between the

source and mediator ontology is supplied by the source-mediator relations [DGL00,LRO96].
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Figure 1: StatMiner Architecture

ranking seems to provide the complete order in which to access the sources, this is unfortunately

not true in general. It is quite possible that the two sources with the highest coverage with respect

to Q happen to mirror each others’ contents. Clearly, calling both sources is not going to give

any more information than calling just one source. Therefore, after we access the source S 0 with

the maximum coverage P (S 0jQ), we need to access as the second source, the source S 00 that has

the highest residual coverage (i.e., provides the maximum number of those answers that are not

provided by the first source S 0). Specifically we need to pick the source S 00 that has next best rank

to S 0 in terms of P (SjQ) but has minimal overlap (common tuples) with S 0.

Given that sources tend to be autonomous in a Web data integration scenario and that the

mediation may or may not be authorized, it is impractical to assume that the sources will automat-

ically export coverage and overlap statistics. Consequently, Web data integration systems should

be able to learn the necessary statistics. Although previous work has addressed the issue of how

to model these statistics (c.f. [FKL97]), and how to use them as part of query optimization (c.f.

[DL99,NLF99,NK01]), there has not been any work on effectively learning the statistics in the first

place.
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1.1 The StatMiner approach

In this paper, we address the problem of learning the coverage and overlap statistics for sources

with respect to user queries. A naive approach may involve learning the coverages and overlaps

of all sources with respect to all queries. This will necessitate Nq � 2NS different statistics, where

Nq is the number of different queries that the mediator needs to handle and NS is the number of

data sources that are integrated by the mediator. An important challenge is to keep the number of

statistics under control, while still retaining their advantages.

In this paper, we present StatMiner (see Figure 1), a statistics mining module for web based

data integration. StatMiner is being developed as part of the Havasu data integration project at

Arizona State University [KNNV02]. StatMiner comprises of a set of connected techniques that

estimate the coverage and overlap statistics while keeping the amount of needed statistics tightly

under control. Since the number of potential user queries can be quite high, StatMiner aims to

learn the required statistics for query classes i.e. groups of queries. A query class is an instantiated

subset of the global relation and contains only the attributes for which a hierarchical classification

of instances (values) can be generated. Thus for the global relation paper in Example 1, StatMiner

may generate query classes using the attributes conference and year. By selectively deciding

the level of generality of the query classes with respect to which the coverage statistics are learnt,

StatMiner can tightly control the number of needed statistics (at the expense of loss of accuracy).

The loss of accuracy may not be a critical issue for us as it is the relative rather than the absolute

values of the coverage statistics that are more important in ranking the sources.

The coverage statistics learning is done using the LCS algorithm, and the overlap statistics

using a variant of the Apriori algorithm [AS94]. LCS algorithm does two things: it identifies the

query classes which have large enough support, and it computes the coverages of the individual

sources with respect to these identified large classes. The resolution of the learned statistics is

controlled in an adaptive manner with the help of two thresholds. The threshold �c is used to

decide whether a query class has large enough support to be remembered. When a particular query

class doesn’t satisfy the minimum support threshold, StatMiner, in effect, stores statistics only with

respect to some abstraction (generalization) of that class. Another threshold �o is used to decide

whether or not the overlap statistics between a set of sources and a remembered query class should

be stored.
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Specifically, StatMiner probes the Web sources exporting the mediator relation. Using LCS we

then classify the results obtained into the query classes and dynamically identify “large” classes for

which the number of results mapped are above the specified threshold �c. We learn and store statis-

tics only w.r.t. these identified large classes. When the mediator, in our case Havasu, encouters

a new user query, it maps the query to one of the query classes for which statistics are available.

Since we use thresholds to control the set of query classes for which statistics are maintained, it

is possible that there is no query class that exactly matches the user query. In this case, we map

the query to the nearest abstract query class that has available statistics. The loss of accuracy in

statistics entailed by this step should be seen as the cost we pay for keeping the amount of stored

statistics low. Once the query class corresponding to the user query is determined, the mediator

uses the learned coverage and overlap statistics to rank the data sources that are most relevant to

answering the query.

In order to make this approach practical, we need to carefully control three types of costs: (1)

cost of getting the training data from the sources (i.e., “probing costs”) (2) the cost of processing

the data to compute coverage and overlap statistics (i.e., “mining costs”) and (3) the online cost of

using the coverage and overlap statistics to rank sources. In the rest of the paper, we shall explain

how we control these costs. Briefly, the probing costs are controlled through sampling techniques.

The “mining costs” are controlled with the help of support and overlap thresholds. The “usage

costs” are controlled with the help of an efficient algorithm for computing the residual coverage.

We will demonstrate the effectiveness of these mechanisms through empirical studies.

Although we focus purely on source selection order and thus, in effect, consider cost models

based purely on coverage, the learned statistics can also be used in cost models that are based

both on coverage and response time [NLF99,DL99,NK01]. Indeed the work on StatMiner was

motivated by our earlier work([NK01]) on joint optimization of cost and coverage for query plans

in data integration. In that work, we develop elaborate cost models for comparing query plans

given a variety of cost/coverage tradeoffs. These cost models are, for example, able to handle the

tradeoffs presented by high-coverage sources with slow response times vs. low-coverage sources

with fast response times. The earlier work assumed the existence of coverage-related statistics,

while in this work we explicitly consider how to learn them.

The rest of the paper is organized as follows. In the next section, we discuss the related work.

Section 3 gives an overview of StatMiner. Section 4 describes the methodology used for extracting
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and processing training data from autonomous Web sources. In Section 5, we give the algorithms

for learning coverage and overlap statistics. Then, in Section 6, we discuss how to efficiently use

the leaned statistics to rank the sources for a given query. This is followed, in Section 7, by a

detailed description of our experimental setup, and in Section 8, by the results we obtained demon-

strating the efficiency of our learning algorithms and the effectiveness of the learned statistics.

Section 9 contains a discussion of some practical issues regarding the realization of the StatMiner

approach. We present our conclusions in Section 10.

2 Related Work

Researchers in data integration have long noted the difficulty of obtaining relevant source statistics

for use in query optimization. There have broadly been two approaches for dealing with this

difficulty. Some approaches, such as those in [LRO96,DGL00,LKG99] develop heuristic query

optimization methods that either do not use any statistics, or can get by with very coarse statistics

about the sources. Others, such as [NLF99,DL99,NK01], develop optimization approaches that are

fully statistics (cost) based. While these approaches assume a variety of coverage and response-

time statistics, they do not however address the issue of learning the statistics in the first place–

which is the main focus of the current paper.

There has been some previous work on using probing techniques to learn database statistics

both in multi-database literature and data integration literature. Zhu and Larson [ZL96] describe

techniques for developing regression cost models for multi-database systems by selective querying.

Adali et. al [ACPS96] discuss how keeping track of rudimentary access statistics can help in doing

cost-based optimizations. More recently, the work by Gruser et. al. [GRZ+00] considers mining

response time statistics for sources in data integration scenario. Given that both coverage and

response time statistics are important for query optimization (c.f. [DL99,NK01]), our work can be

seen as complementary to theirs.

The utility of quantitative coverage statistics in ranking the sources is first explored by Florescu

et. al. [FKL97]. The primary aim of both these efforts was however was on the “use” of coverage

statistics, and they do not discuss how such coverage statistics could be learned. In contrast,

our main aim in this paper is to provide a framework for learning the required statistics. We do

share their goal of keeping the set of statistics compact. Florescu et. al. [FKL97] achieve the
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compactness by assuming that each source is identified with a single primary class of queries that

it exports. They “factorize” the coverage of a source with respect to an arbitrary class in terms of

(a) the coverage of that source with respect to its primary class and (b) the statistics about inter-

class overlap. In contrast, we consider and learn statistics about a source’s coverage with respect

to any arbitrary query class. We achieve compactness by dynamically identifying “big” query

classes, and keeping coverage statistics only with respect to these classes. From a learning point

of view, we believe that our approach makes better sense since inter-class overlap statistics cannot

be learned directly.2

There has also been some work on ranking text databases in the context of key word queries

submitted to meta-search engines. Recent work ([WMY00], [IGS01]) considers the problem of

classifying text databases into a topic hierarchy. While our approach is similar to these approaches

in terms of using concept hierarchies, and using probing and counting methods, it differs in several

significant ways. First, the text database work uses a single topic hierarchy and does not have

to deal with computation of overlap statistics. In contrast we deal with classes made up from

the cartesian product of multiple AV hierarchies, and are also interested in overlap statistics. This

makes the issue of space consumed by the statistics quite critical for us, necessitating our threshold-

based approaches for controlling the resolution of the statistics.

3 Modeling Coverage and Overlap w.r.t. Query Classes

Our approach consists of grouping queries into abstract classes. In order to better illustrate the

novel aspects of our association rule mining approach, we purposely limit the queries to just pro-

jection and selection queries.

3.1 Classifying Mediator Queries

Since we are considering selection queries, we can classify the queries in terms of the selected

attributes and their values. To abstract the classes further we assume that the mediator has access
2They would have to be estimated in terms of statistics about the coverages of the corresponding query classes by

various sources, as well as the inter-source overlap statistics. In this sense, the statistics in [FKL97] can be thought of

as a post-processing factorization of the statistics learned in our framework.
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Figure 2: AV Hierarchies and the Corresponding Query Class Hierarchy

to the so-called “attribute value hierarchies” for a subset of the attributes of each mediated relation.

Attribute Value Hierarchies: An AV hierarchy (or attribute value hierarchy) over an attribute A

is a hierarchical classification of the values of the attribute A. The leaf nodes of the hierarchy

correspond to specific concrete values of A(Note that, for numerical attributes, we can take value

ranges as leaf nodes), while the non-leaf nodes are abstract values that correspond to the union of

values below them. Figure 2 shows the AV hierarchies for the “conference” and “year” attributes

of the “paper” relation. It is instructive to note that AV hierarchies can exist for both categorical

and quantitative (numerical) attributes. In the case of the latter, the abstract values in the hierarchy

may correspond to ranges of attribute values.

Note that hierarchies do not have to exist for every attribute, but rather only for those attributes

over which queries are classified. We call these attributes the classificatory attributes. If we know

the domains (or representative values) of multiple attributes, we can choose as the classificatory

attribute the best k attributes whose values differentiate the sources the most, where the number k

is decided based on a tradeoff between prediction performance versus computational complexity

of learning the statistics by using these k attributes.

The selection of the classificatory attributes may either be done by the mediator designer or

using automated techniques. In the latter case, we can, for instance, use decision tree learning

techniques [HK00] to rank attributes in terms of their information gain in classifying the sources.

For example, suppose the mediator system in Example 1 just has three sources: source S1 only

has papers in conference AAAI, S2 only has papers in conference IJCAI, and S3 only has papers

in conference SIGMOD. In order to rank access to these sources, we need only choose the “con-
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ference” attribute as the classificatory attribute, even if we know the domain of the “year” attribute.

Once the classificatory attributes are selected, the AV hierarchies for those attributes can either

be provided by the mediator designer (using existing domain ontologies, c.f.[WMY00;IGS01]),

or be automatically generated through clustering techniques. In the following discussion, we will

assume that AV hiearchies are made available. We discuss the issues involved in the hierarchy

generation in Section 9.

Query Classes: Since we focus on selection queries, a typical query will have values of some

set of attributes bound. We group such queries into query classes using the AV hierarchies of

the classificatory attributes that are bound by the query. To classify queries that do not bind any

classificatory attribute, we would have to learn simple associations 3 between the values of the

non-classificatory and classificatory attributes. A query class feature is defined as the assignment

of a specific value to a classificatory attribute from its AV hierarchy. A feature is “abstract” if the

attribute is assigned an abstract (non-leaf) value from its AV hierarchy. Sets of features are used to

define query classes. Specifically, a query class is a set of (selection) queries sharing a particular

set of features. A query class having no abstract features is called a leaf class. The space of query

classes over which we learn the coverage and overlap statistics is just the cartesian product of the

AV hierarchies of all the classificatory attributes. Specifically, let Hi be the set of features derived

from the AV hierarchy of the ith classificatory attribute. Then the set of all query classes (called

classSet) is simply H1 �H2 � :::�Hn.

The AV hierarchies induce subsumption relations among the query classes. A class Ci is sub-

sumed by class Cj if every feature in Ci is equal to, or a specialization of, the same dimension

feature in Cj. A query Q belongs to a class C if the values of the classificatory attributes in Q are

equal to or are specializations of the features defining C.

Example 2: Figure 2 shows an example class hierarchy for a very simple mediator with the two

example AV hierarchies. The query classes are all the classes shown in the bottom half, along

with the subsumption relations between the classes. For example, the class (SIGMOD; 2001)

refers to all the SIGMOD 2001 papers, and the class (DB; 2001) refers to all the database papers
3A simple association would be Author = J:Ullman ! Conference = Databases where Author is non-

classificatory while Conference is a classificatory attribute
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published in year 2001. As we can see the former is subsumed by the latter. Where the query class

includes the root of a hierarchy (meaning that any value of that particular attribute is allowed in

the query class), we suppress the root. The class (SIGMOD;RT ) is written as (SIGMOD). 2

3.2 Source Coverage and Overlap w.r.t. Query Classes

The coverage of a data source S with respect to a class C, denoted by P (SjC), is the probability

that a random tuple belonging to the class C is present in source S. We assume that the union of

the contents of the available sources within the system covers 100% of the class. In other words,

coverage is measured relative to the available sources. The overlap among a set bS of sources with

respect to a class C, denoted by P ( bSjC), is the probability that a random tuple belonging to the

class C is present in each source S 2 bS.

The coverage and overlap can be conveniently computed using an association rule mining

approach. Specifically, we are interested in the class-source association rules of the form C ! bS,

where C is a query class, and bS is a (possibly singleton) set of data sources. The overlap (or

coverage when bS is a singleton) statistic P ( bSjC) is simply the “confidence” of such an association

rule.4 Examples of such association rules include: AAAI ! S1, AI ! S1, AI&2001 ! S1 and

2001! S1 ^ S2.

3.3 Controlling the number of stored statistics

From the foregoing, we see that all we need to do to gather the coverage and overlap statistics is

to (a) get some representative data from the sources, and categorize the data into query classes (b)

mine the class source association rules from this base data. We introduce two important changes

to this basic plan to control the amount of statistics learned:

Limiting statistics to “large” classes: As we discussed in Section 1, it may be prohibitively ex-

pensive to learn and store the coverage and overlap statistics for every possible query class. In

4Support and confidence are two measures of a rule’s significance. The support of the rule C ! bS (denoted by

P (C \ bS)) refers to the percentage of the tuples in the global relation that are common to all the sources in set bS and

belong to class C. The confidence of the rule (denoted by P ( bSjC) = P (C\bS)
P (C) ) refers to the percentage of the tuples in

the class C that are common to all the sources in sourceSet bS.
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order to keep the number of association rules low, we would like to prune “small” classes. We

use a threshold on the support of a class (i.e., percentage of the base data that falls into that class),

called �c, to identify large classes. Coverage and overlap statistics are learned only with respect to

these large classes. In this paper we present an algorithm to efficiently discover the large classes

by using the anti-monotone property5([HK00]).

Limiting Coverage and Overlap Statistics: Another way we use to control the number of statis-

tics is to only remember coverage and overlap statistics only when they are above a threshold

parameter, �o. While the thresholds �c and �o reduce the number of stored statistics, they also in-

troduce complications when the mediator is using the stored statistics to rank sources with respect

to a query. Briefly, when a query Q belonging to a class C is posed to the mediator, and there are

no statistics for C (because C was not identified as a large class), the mediator has to make do

with statistics from a generalization of C that has statistics. Similarly, when a source set bS has no

overlap statistics with respect to a class C, the mediator has to assume that the sources in set bS are

in effect disjoint with respect to that query class. In Section 6, we describe how these assumptions

are used in ranking the sources with respect to a user query. Before doing so, we first give the

specifics of base data generation, discovery of large classes and coverage and overlap statistics.

In the paper, we discuss how to use the Apriori algorithm([AS94]) to discover strongly corre-

lated source sets for all the large classes.

4 Gathering Base Data

In order to use association rule mining approach to learn the coverage and overlap statistics, we

need to first collect a representative sample of the data stored in the sources. Since the sources

in the data integration scenario are autonomous, this will involve “probing” the sources with a

representative set of “probing queries.” The results of the probing queries need to be organized

into a form suitable for statistics mining. We discuss both these issues in this section.
5If a set cannot pass a test, all of its supersets will fail the same test as well.
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4.1 Probing queries

We note at the outset, that the details of the rest of the steps of statistics mining do not depend

on how the probing queries are selected. The probing queries can, however, affect the accuracy

of the learned statistics in answering the queries encountered in actual practice. There are two

possible ways of generating “representative” probing queries. We could either (1) pick our sample

of queries from a set of “spanning queries”–i.e., queries which together cover all the tuples stored

in the data sources or (2) pick the sample from the set of actual queries that are directed at the

mediator over a period of time. Although the second approach is more sensitive to the actual

queries that are encountered, it has a “chicken-and-egg” problem as no statistics can be learned

until the mediator has processed a sufficient number of user queries.

For the purposes of this paper, we shall assume that the probing queries are selected from a

set of spanning queries (the second approach can still be used for “refining” the statistics later).

Spanning queries can be generated by considering a cartesian product of the leaf node features of

all the classificatory attributes (for which AV hierarchies are available), and generating selection

queries that bind attributes using the corresponding values of the members of the cartesian prod-

uct. Every member in the cartesian product is a “least general query” that we can generate using

the classificatory attributes and their AV-hierarchies. Given multiple classificatory attributes, such

queries will bind more than one attribute and hence we believe they would be satisfy the “binding

restrictions” imposed by most autonomous Web sources. Although a query binding single classifi-

catory attribute will generate larger resultsets, most often such queries will not satisfy the binding

restrictions of Web sources as they are too general and may extract a large part of the source’s

data. The “less general” the query (more attributes bound), more likely it will be accepted by

autonomous Web sources. But reducing the generality of the query does entail an increase in the

number of spanning queries leading to larger probing costs if sampling is not done.

Once we decide the issue of the space from which the probing queries are selected (in our case,

a set of spanning queries), the next question is how to pick a representative sample of these queries.

Clearly, sending all potential queries to the sources is too costly. We use sampling techniques for

keeping the number of probing queries under control. Two well-known sampling techniques are ap-

plicable to our scenario: (a) Simple Random Sampling and (b) Stratified Random Sampling [M82].

Simple random sampling gives equal probability of being selected to each query in the collection
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of sample queries. Stratified random sampling requires that the sample population be divisible

into several subgroups. Then for each subgroup a simple random sampling is done to derive the

samples. We evaluate both these approaches experimentally to study the effect of sampling on our

learning approach.

4.2 Efficiently managing results of probing

Once we decide on a set of sample probing queries, these queries are submitted to all the data

sources. The results returned by the sources are then organized in a form suitable for mining large

classes, coverage and overlap statistics. Specifically the result dataset consists of two tables,

classInfo(CID,Ac1 ,...,Acn , Count) and sourceInfo(CID, Source, Count), where Acj refers to the

jth classificatory attribute. The leaf classes with at least one tuple in the sources are given a class

identifier, CID. The total number of distinct tuples for each leaf class are entered into classInfo,

and a separate table sourceInfo keeps track of which tuples come from which sources. If multiple

sources have the same tuples in a leaf class then we just need to remember the total number of

common tuples for that overlapped source set. An entry in the table sourceInfo for a class C and

sourceset bS keeps track of the number of objects that are not reported for any superset of bS. In the

worst case, we have to keep the counts for all the possible subsets for each class(2n of them, where

n is the number of sources which have answers for the query)6.

Example 3: Continuing the example in Section 1, we shall assume the following query is the first

probing query:

Q(title, author, conference, year) :� paper(title, author, conference, year), conference=”ICDE”.

Then we can update these tuples into the dataset: classInfo(see Table 1) and sourceInfo (see Ta-

ble 2). In the table classInfo, we use attribute CID to keep the id of the class, attributes “confer-

ence” and “year” to keep the classificatory attribute values, and attribute Count to keep the total

number of distinct tuples of the class. In the table sourceInfo, we use attribute CID to keep the id

of the class, attribute Source to keep the overlap sources in the class, and attribute Count to keep

the number of overlapped tuples of the sources. For example, in the leaf class with class CID=2,
6Although in practice the worst case is not likely to happen, if the results are too many to remember, we can do

one of the following: use a single scan mining algorithm(see Section 4.1.2), then we can count query by query during

probing, in this way we just need to remember the results for the current query; just remember the counts for the higher

level abstract classes; or just remember overlap counts for upto k-sourceSets, where k is a predefined value(k < n).
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CID Conference Year Count

1 ICDE 2002 79

2 ICDE 2001 67

Table 1: Tuples in the table classInfo

CID Source Count

1 (S2; S7) 79

2 (S1; S2; S3) 38

2 (S1; S2) 20

2 S3 9

Table 2: Tuples in the table sourceInfo

we have three subsets of overlapped sources which disjointly export the total 67 tuples. As we

can see, all the sources in the set (S1; S2; S3) export 38 tuples in common, all the sources in the

set (S1; S2) export another 20 tuples in common, and the single source S3 itself export another 9

tuples.

5 Algorithms for Learning Coverage and Overlap

In terms of the mining algorithms used, we already noted that the source overlap information

is learned using a variant of the Apriori algorithm [AS94]. The source coverage as well as the

large class identification is done simultaneously using the LCS algorithm which we developed.

Although the LCS algorithm shares some commonalities with multi-level association rule mining

approaches, it differs in two important ways. The multi-level association rule mining approaches

typically assume that there is only one hierarchy, and mine strong associations between the items

within that hierarchy. In contrast, the LCS algorithm assumes that there are multiple hierarchies,

and discovers large query classes with one attribute value from each hierarchy. It also mines

associations between the discovered large classes and the sources.
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5.1 The LCS Algorithm

The LCS algorithm (see Figure 3) dynamically discovers the large classes inside a mediator system

and compute coverage statistics for these discovered large classes. As mentioned earlier, in order

to avoid too many small classes, we can set support count thresholds to prune the classes with

support count below the threshold. We dynamically prune classes during counting and use the

anti-monotone property to avoid generating classes which are supersets of the pruned classes. A

procedure genClassSet is used to efficiently generate potentially large candidate ancestor class set

for each leaf class by pruning small candidate classes using anti-monotone property.

The LCS algorithm requires the dataset: classInfo and sourceInfo, the AV hierarchies, and the

minimum support as inputs. As we can see, the LCS algorithm makes multiple passes over the

data. Specifically, we first find all the large classes with just one feature, then we find all the large

classes with two features using the previous results and the anti-monotone property to efficiently

prune classes before we start counting, and so on. We continue until we get all the large classes

with all the n features. For each tuple in the k-th pass, we find the set of k feature classes it falls in,

increase the count support(C) for each classC in the set, and increase the count support(rc!s) for

each source S with this tuple. We prune the classes with total support count less than the minimum

support count. After identifying the large classes, we can easily compute the coverage of each

source S for every large class C as follows:

confidence(rc!s) =
support(rc!s)

support(C)

In the genClassSet algorithm(see Figure 4), we find all the candidate ancestor classes with k

features for a leaf class lc using procedure genClassSet. The procedure prunes small classes using

the large class set classSet found in the previous (k�1) passes. In order to improve the efficiency

of the algorithm, we dynamically prune small classes during the cartesian product procedure.

Example 4: Assume we have a leaf class lc=f1, ICDE, 2001, 67g and k=2. We first extract

the feature values fAc1 = ICDE;Ac2 = 2001g from the leaf class. Then for each feature, we

generate a feature set which includes all the ancestors of the feature. Then we will get two feature

sets: ftSet1 = fICDE;DBg and ftSet2 = f2001g. Suppose the class with the single feature

“ICDE” is not a large class in the previous results, then any class with the feature “ICDE” can not

15



Algorithm LCS(classInfo; sourceInfo; �c : minimum support; n : # of classifica-

tory attributes)

classSet = fg, ruleSet = fg;

for(k = 1; k <= n; k ++)

Let classSetk = fg;

for(each leaf class lc 2 classInfo)

Clc = genClassSet(k; lc; :::);

for(each class c 2 Clc)

if(c =2 classSetk)

then classSetk = classSetk [ fcg;

c:count = c:count+ lc:Count;

for (each source S 2 lc)

if (rule rc!s =2 ruleSet)

then ruleSet = ruleSet [ frc!sg;

rc!s:count = rc!s:count+

# of tuples from source S and in class lc;

end for

end for

end for

classSetk = fc 2 classSetkjc:count >= �cg;

remove rules with low support classes from ruleSet;

classSet = classSet [ classSetk;

end for

for(each rule rc!s 2 ruleSet)

do rc!s:confidence =
rc!s:count
c:count

;

return ruleSet;

End LCS;

Figure 3: Learning Coverage Statistics algorithm
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Procedure genClassSet(k : number of features;lc : the leaf class; classSet : dis-

covered large class set; AV hierarchies)

for (each feature fi 2 lc)

ftSeti = ffig;

ftSeti = ftSeti [ (fancestor(fi)g � frootg);

end for

candidateSet=fg;

for (each k feature combination (ftSetj1 ; :::; ftSetjk))

tempSet = ftSetj1 ;

for (i = 1; i < k; i++)

remove any class C =2 classSeti from tempSet;

tempSet = tempSet� ftSetji+1;

end for

remove any class C =2 classSetk�1 from tempSet;

candidateSet = candidateSet [ tempSet;

end for

return candidateSet;

End genClassSet;

Figure 4: Ancestor class set generation procedure

be a large class according to the anti-monotone property. We can prune the feature “ICDE” from

ftSet1, then we get the candidate 2-feature class set for the leaf class lc,

candidateSet = ftSet1 � ftSet2 = fDB&2001g:

Complexity: In the LCS algorithm, we assume that the number of classes will be high. In order

to avoid considering a large number of classes, we prune classes during counting. By doing so, we

have to scan the dataset n times, where n is the number of classificatory attributes. The number of

classes we can prune will depend on the threshold. A very low threshold will not benefit too much

from the pruning. In the worst case where the threshold equal to zero, we still have to keep all the

classes(
Qn

i=1 jHij, where Hi is the ith AV hierarchy.).

However if the number of classes are small and the cost of scanning the whole dataset is very
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expensive, then we can use a one pass algorithm. For each leaf class lc of every probing query’s

results, the algorithm has to generate an complete candidate class set of lc, increase the counts of

each class in the set. By doing so, we have to remember the counts for all the possible classes

during the counting, but we don’t need to remember all the probing query results.

5.2 Learning Overlap among Sources

Once we discover large classes in the mediator, we can learn the overlap between sources for each

large class. Here we also use the dataset: classInfo and sourceInfo. In this section we discuss how

to learn the overlap information between sources for a given class.

From the table classInfo we can classify the leaf classes into the large classes we learned using

LCS. A leaf class can be mapped into multiple classes. For example, a leaf class about a publication

in Conference:“AAAI”, and Year:”2001”, can be classified into the following classes: (AAAI,RT),

(AI,RT), (RT,2001), (AAAI,2001), (AI,2001), (RT,RT), provided all these classes are determined

to be large classes in the mediator by LCS.

After we classify the leaf classes in classInfo, for each discovered large class C, we can get

its descendent leaf classes, which can be used to generate a new table sourceInfoc by selecting

relative tuples for its descendent leaf classes from sourceInfo.

Next we apply the Apriori ([AS94]) algorithm to find strongly correlated source sets. In order

to apply the Apriori on our data in sourceInfoc, we do a minor change to the algorithm. Usually

Apriori takes as input a list of transactions, while in our case it is a list of source sets with common

tuple counts. So every time when an itemset appears in a transaction, the count of the itemset is

increased by 1, while in our case, every time we find a superset of a sourceSet in sourceInfoc, the

count of the sourceSet is increased by the actual count of the superset.

The candidate source sets will include all the combinations of the sources, with 1-sourceSets

, 2-sourceSets,...,n-sourceSets, where n is the total number of sources. In order to use Apriori,

we have to decide a minimum support threshold, which will be used to prune uncorrelated source

sets.

Once the frequent source sets from the table sourceInfoc have been found, it is straightforward

to calculate the overlap statistics for these combination of strongly correlated sources. We can

compute the overlap probability of these correlated sources fS1; S2; :::; Skg in class C by using the
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following formula:

P ((S1 ^ S2 ^ ::: ^ Sk)jC) =
support count(fS1; S2; :::; Skg)

support count(C)

Here the support count(C) is just the total number of tuples in the table sourceInfoc.

6 Using the Learned Statistics

In this section, we consider the question of how, given a user query, we can rank order the sources

to be accessed, using the learned statistics.

6.1 Mapping users’ queries to abstract classes

After we run the LCS algorithm, we will get a set of large classes and there is a hierarchical

structure between these classes. The classes shown in Figure 2 with solid frame lines are discovered

large classes. As we can see some classes may have multiple ancestor classes. For example, the

class (ICDE,01) has both the class (DB,01) and class (ICDE,RT) as it’s parent class. In order to

use the learned coverage and overlap statistics of the large classes, we need to map a user’s query

to a discovered large class. Then the coverage and overlap statistics for the corresponding class

can be used to predict the coverage of the sources and overlap among the sources for the query.

The mapping is done according to the following algorithm.

1. If the classificatory attributes are bound in the query, then find the lowest ancestor abstraction

class with statistics7 for the features of the query.

2. If no classificatory attribute is bound in the query, then we do one of the following,

� Check whether we have learned some association rules between the non-classificatory

features in the query with classificatory features8. If we did, we use these features as

features of the query to get statistics, go to step 1;
7If we have multiple ancestor classes, the lowest ancestor class with statistics means the ancestor class with lowest

support counts among all the discovered large classes.
8In order to simplify the problem, we did not discuss this kind of association rule mining in this paper, but it is just a

typical association rule mining problem. A simple example would be to learn the rules like:J:Ullman! Databases

with high enough confidence and support.
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� Present the discovered classes to the user, and take the user’s feedback to select a class;

� Use the root of the hierarchy as the class of the query.

6.2 Computing residual coverage

In this section we discuss how we compute the residual coverages in order to rank the sources for

the class C (to which the user’s query has been mapped), using the learned statistics. In order to

find a plan with top k sources, we start by selecting the source with the highest coverage ([FKL97])

as the first source. We then we use the overlap statistics to compute the residual coverages of the

rest of the sources to find the second best, given the first; the third best, given the first and second,

and so on, until we get a plan with the desired coverage.

In particular, after selecting the first and second best sources S1 and S2 for the class C,, the

residual coverage of a third source S3 can be computed as:

P (S3 ^ :S1 ^ :S2jC) = P (S3jC)� P (S3 ^ S1jC)� P (S3 ^ S2jC) + P (S3 ^ S2 ^ S1jC)

where, P (Si ^ :Sj) is the probability that a random tuple belongs to Si but not to Sj . In the

general case, after we had already selected the best n sources bS = fS1; S2; :::; Sng, the residual

coverage of an additional source S can be expressed as:

P (S ^ : bSjC) = P (SjC) +
nX

k=1

[(�1)k
X

bSk�bS^jbSkj=k

P (S ^ bSkjC)]

where P (S ^ : bSjC) is shorthand for P (S ^ :S1 ^ :S2 ^ ::: ^ :SnjC) .

A naive evaluation of this formula would require 2n accesses to the database of learned statis-

tics, corresponding to the overlap of each possible subset of the n sources with source S. It is

however possible to make this computation more efficient by exploiting the structure of the stored

statistics. Specifically, recall that we only keep overlap statistics for correlated source sets with

sufficient number of overlap tuples, and assume that source sets without overlap statistics are dis-

joint (thus their probability of overlap is zero). Furthermore, if the overlap is zero for a source set

bS, we can ignore looking up the overlap statistics for supersets of bS, since they will all be zero by

the anti-monotone property.

To illustrate the above, suppose S1,S2,S3 andS4 are sources exporting tuples for class C. Let

P (S1jC), P (S2jC) P (S3jC) and P (S4jC) be the learned coverage statistics, and P (S1 ^ S2jC)
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and P (S2 ^ S3jC) be the learned overlap statistics. The expression for computing the residual

coverage of S3 given that S1 and S2 are already selected is:

P (S3 ^ :S1 ^ :S2jC) = P (S3jC)� P (S3 ^ S1jC)| {z }
=0

�P (S3 ^ S2jC) + P (S3 ^ S1 ^ S2jC)| {z }
=0 since fS3;S1g�fS2;S1;S2g

We note that once we know P (S3^S1jC) is zero, we can avoid looking up P (S3^S1^S2jC),

since the latter set is a superset of the former.

In Figure 5, we present an algorithm that uses this structure to evaluate the residual coverage

in an efficient fashion. In particular, this algorithm will cut the number of statistics lookups from

2n to R + n, where R is the total number of overlap statistics remembered for class C and n

is the total number of sources already selected. This consequent efficiency is critical in practice

since computation of residual coverage forms the inner loop of any query processing algorithm

that considers source coverage.

The inputs to the algorithm in Figure 5 are the source s for which we are going to compute

the residual coverage, and the currently selected set of sources bSs. The auxiliary datastructure

bSc, initially set to ;, is used to restrict the source overlaps considered by the residualCoverage

algorithm. In each invocation, the algorithm first looks for the overlap statistics for fsg [ bSc. If

this statistic is among the learned (stored) statistics, the algorithm recursively invokes itself on

supersets of fsg [ bSc. Otherwise, the recursion stops in that branch (eliminating all the redundant

superset lookups).

7 Experimental Setup

We have implemented the statistics learning system StatMiner as part of Havasu [KNNV02], a

prototype system supporting query processing for Web data integration. Havasu system is designed

to support multi-objective query optimization [NK01], flexible execution and mining strategies for

learning autonomous Web source statistics. Given a global mediator schema and Web sources

exporting the schema, our approach for learning source statistics aims at capturing an approximate

distribution of the source data that would enable efficient processing of potential mediator queries.

We use the AV hierarchies provided for the global schema to generate a hierarchical classification

of potential queries and also to generate sample probing queries to learn the approximate data
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Algorithm residualCoverage (s: source; bSs: selected sources;

bSc: constraint source set)

n = the number of sources in bSs;

if ( bSc 6= ;) then p = the position of bSc’s last source in bSs;

else p=0;

Let resCoverage = 0;

if the overlap statistics for the source set bSc [ fsg

are present in the learned statistics;

//This means their overlap is > �o.

for (i = p+ 1; i � n; i++)

Let bS0c = bSc [ fthe i
th source in bSsg;

//keep order of sources in bS0c same as in bSs

resCoverage = resCoverage+residualCoverage(s; bSs; bS0c);
end for

resCoverage = resCoverage + (�1)jbScjoverlap;

end if

return resCoverage ;

End residualCoverage;

Figure 5: Algorithm for computing residual coverage

spread of the sources with respect to the classification. To evaluate our techniques we set up a set

of “remote” data sources accessible on the Internet. The sources were populated with two types

of data. The TPC sources were populated with synthetic data generated using the data generator

from TPC-W benchmark [TPC] (see below). The TPC sources support controlled experimentation

as their data distribution (and consequently the coverage and overlap among web sources) can be

varied by us. The second type of sources, called DBLP sources, were populated with data from the

DBLP repository [DBLP].
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7.1 Data Sources

TPC Sources: We designed 25 sources using 200000 tuples for the relation Books. We chose

Books(Bookid, Pubyear, Subject, Publisher, Cover) as the relation exported by our sources. The

decision to use Books as the sample schema was motivated by the fact that multiple autonomous

Internet sources projecting this relation exist, and in the absence of statistics about these sources,

only naive mediation services are currently provided. Pubyear, Subject and Cover are used as the

classificatory attributes in the relation Books. The hierarchies were designed as shown in Figures 6

and 7. To evaluate the effect of the resolution of the hierarchy on ranking accuracy we designed

two separate hierarchies for Subject, containing 180 and 40 leaf nodes respectively. Leaf node

values for Pubyear range from 1980 to 2001, while Cover is relatively small with only five leaf

nodes. The Subject hierarchy was modeled from the classification of books given by the online

bookstore Amazon [AM]. We populated the data sources exporting the mediator relation using

DataGen, the data generator from TPC-W Benchmark [TPC]. The distribution of data in these

sources was determined by controlling the values used to instantiate the classificatory attributes

Pubyear, Subject and Cover. For example, two sources S1 and S2 both providing tuples under ab-

stract feature “Databases” of Subject hierarchy, are designed to have varying overlap with source

S3, by selecting different subsets of features under “Databases” to instantiate the source tuples.

These subsets may be mutually exclusive, but they overlap with the subset of features selected

for populating source S3. Since the actual generation of data sources is done by using DataGen,

the above mentioned procedure gives us a macro level control over the design of overlap among

sources. In fact DataGen populates the sources by initializing each attribute of the Books relation

using a randomly chosen value from a list of seed values for that attribute. Hence we control the

query classes for which the sources provide answer tuples and may overlap with other sources but

not the actual values of coverage and overlap given by sources.

DBLP Sources: We generated 15 medium-sized data sources as materialized views over DBLP.

The views were designed to focus on publications in Artificial Intelligence and Database research

only. These sources export the mediator relation paper(title, author, conference, year). We de-

signed simple hierarchies for “conference” and “year” attribute. We use the DBLP sources to

evaluate our ability to learn an approximate data distribution from real Web data and also to test
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the effect of various probing techniques we use.

7.2 Probing Data Sources

To construct the data spread of autonomous Web sources we must probe these sources. As dis-

cussed in Section 4.1 we use the leaf values of the AV hierarchies to generate a set of spanning

mediator queries. Specifically we generate the sample queries by taking cartesian products of the

leaf node values. Although we are able to generate sample queries using the AV hierarchies, the

number of queries can become quite large for large sized or large number of hierarchies.

Query Sampling: As mentioned in Section 4.1, we generate the set of sample probing queries

using both Simple Random Sampling and Stratified Random Sampling [M82]. After generating

the set of spanning queries we use the two sampling approaches to extract a sample set of queries

to probe the data sources. Simple Random sampling picks the samples from the complete set of

queries, whereas to employ the Stratified Random sampling approach, we have to further classify

the queries into various strata. The strata is chosen as the abstract feature of any one classificatory

attribute say A1. All the queries that bind A1 using leaf values subsumed by a strata are mapped

to that strata. A strata based on an abstract feature that only subsumes leaf nodes will have fewer

queries mapped to it compared to the strata that is based on an abstract feature that subsumes

both the leaf nodes and other abstract features. Thus the level of abstraction at which we decide

a strata varies the number of queries that get mapped to the strata. The lowest abstraction is the

leaf node, while the root gives highest abstraction. Selecting root as the strata will make Stratified

Random Sampling equal to Simple Random, where selecting the leaf nodes as strata, will be equal

to issuing all the spanning queries. The cost of probing is directly proportional the number of

probing queries issued. Hence choosing a good strata that requires low probing while achieving a

good approximation of the data spread of sources becomes a challenge.

7.3 Learning Efficiency

To evaluate the accuracy of the statistics learnt by StatMiner we tested them using two simple

plan generation algorithms implemented as part of Havasu. Our mediator implements the Simple

Greedy and Greedy Select algorithms described in [FKL97] to generate query plans using the
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source coverage and overlap statistics learnt by StatMinerĠiven a query, Simple Greedy generates

a plan by assuming all sources are independent and greedily selects top k sources ranked according

to their coverages. On the other hand, Greedy Select generates query plans by selecting sources

with high residual coverages calculated using both the coverage and overlap statistics (see Sec-

tion 6.2). We evaluate the plans generated by both the planners for various sets of statistics learnt

by StatMiner for differing threshold values and AV hierarchies. We compare the precision of plans

generated by both the algorithms. We define the precision of a plan as a fraction of number of

sources in the plan which turn out to be true top k sources that can give the highest cumulative

coverage for the query. We determine the true top k sources by querying all the sources exporting

the mediator relation and ranking them in terms of the unique tuples they provide.

8 Experimental Results

In this section we present results of experiments conducted to study the variation in pruning power

and accuracy of our algorithms for different class size thresholds �c. In particular, given a set of

sources and probing queries, our aim is to show that we can trade time and space for accuracy

by increasing the threshold �c. Specifically by increasing threshold �c, the time (to identify large

classes) and space (number of large classes remembered) usage can be reduced with a reduction in

accuracy of the learnt estimates. All the experiments presented here were conducted on a 500MHZ
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Figure 9: Pruning of classes by LCS

Sun-Blade-100 systems with 256MB main memory running under Solaris 5.8. The sources in the

mediator are hosted on a Sun Ultra 5 Web server located on campus.

8.1 Results over TPC Sources

Effect of Hierarchies on Space and Time: To evaluate the performance of our statistics learner,

we varied �c and measured the number of large classes and the time utilized for learning source

coverage statistics for these large classes. Figure 8 compares the time taken by LCS to learn rules

for different values of �c. Figure 9 compares the number of pruned classes with increase in value

of �c. We represent �c as a percentage of the total number of tuples in the relation. The total tuples

in the relation is calculated as the number of unique tuples generated by the probing queries.

As can be seen from Figure 8, for lower values of threshold �c, LCS takes more time to learn

the rules. For lower values of �c, LCS will prune less number of classes and hence for each class in

ClassInfo, LCS will generate large number of rules. This in turn explains the increase in learning

time for lower threshold values.
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In Figure 9, with increase in value of �c, the number of small classes pruned increase and hence

we see a reduction in the number of large classes. For any value of �c greater than the support of the

largest abstract class in the classSet, LCS returns only the root as the class to remember. Figures 8

and 9 show LCS performing uniformly for both Small and Large hierarchy. For both hierarchies,

LCS generates large number of classes for small threshold values and requires more learning time.

From Figures 8 and 9, we can see that the amount of time used and classes generated (space

requirement) for the Large hierarchy is considerably higher than for Small hierarchy.

Accuracy of Estimated Coverages: To calculate the error in our coverage estimates, we used

the prototype implementations of “Simple Greedy” and “Greedy Select” algorithms under Havasu

Web data integration system and a subset of our probing queries as test queries. Since the test

queries will have classificatory attributes bound,from Section 6.1 we see that the integration engine

maps it to the lowest abstract class for which coverage statistics have been learnt. Once the query is

mapped to a class, the mediator then generates plans using the ranking algorithms, Simple Greedy
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and Greedy Select as described in Section 7.3. We compare the plans generated by these algorithms

with a naive plan generated by Random Select. Random select algorithm arbitrarily picks k

sources without using any statistics. The source rankings generated by all the three algorithms

is compared with the “true ranking” determined by querying all the sources. Figure 11 compares

the precision of plans generated by the three approaches with respect to the true ranking of the

sources.

Once a plan is chosen, the query engine then issues the query to sources in descending order of

their rank in the plan. Suppose the testing query is Subject = ORDBMS, and the statistics are

available for class Databases while class ORDBMS was pruned by LCS. From Figure 6 we can

see that Databases is the next lowest abstract class for the query and hence the coverage statistics

for Databases would be used to generate a plan.

As can be seen from Figure 10 for all values of �c Greedy Select gives the best plan, while

Simple Greedy is close second, but the Random Select performs poorly. The results are according

to our expectations, since Greedy Select generates plans by calculating residual coverage of sources

and thereby takes into account the amount of overlap among sources, while Simple Greedy calls

sources with high coverages thereby ignoring the overlap statistics and hence generates less number

of tuples.

In Figure 11 we compare the precision of plans generated by the three approaches. We define

the precision of a plan to be the fraction of sources in the estimated plan, which turn out to be the

real top k sources after we execute the query. Figure 11 shows the precision for the top 5 sources

in a plan. Again we can see that Greedy Select comes out the winner. The decrease in precision of

plans generated for higher values of threshold can be explained from Figure 9. As can be seen, for

larger values of threshold more number of leaf classes get pruned. A mediator query always maps

to a particular leaf class. But for higher thresholds, the leaf classes are pruned and hence queries

get mapped to higher level abstract classes. Therefore the statistics used to generate plans have

lower accuracy and in turn generates plans with lower precision.

Altogether the experiments show that our LCS algorithm uses the association mining based

approach effectively to control the number of statistics required for data integration. An ideal

threshold for a mediator relation would depend on the number and size of AV hierarchies. For

our sample Books mediator, an ideal threshold for LCS would be around 0:75%, for both the

hierarchies, where LCS effectively prunes a large number of small classes and yet the precision of
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plans generated is fairly high. We also bring forth the problems involved in trying to scale up the

algorithm to larger hierarchies.

8.2 Results over DBLP Sources

Effect of Probing Strategies: Given that the cost of probing tends to dominate the statistics gath-

ering approach, we wanted to see how accurate the learned statistics are with respect to the two

probing strategies. We used DBLP sources projecting the relation paper(title, author, conference,

year) for evaluating the probing strategies. We generated AV hierarchies for attributes “confer-

ence” and “year”. The set of probing queries are generated by taking a cartesian product of the

values of these AV hierarchies. The total number of queries generated is 225 and we call them the

set of “All queries” in our experiments. Initially we queried all the sources using “All queries”. We

then learn the coverage and overlap statistics for all the sources using LCS for different values of

thresholds �c. Once the values of coverage and overlap are determined we use them as a baseline

to evaluate the performance of our approach with respect to the different probing methods. Fig-

ure 12 compares the effect of different probing strategies on LCS in terms of its ability to prune

large classes. We generated probing queries containing either 48 or 96 queries using both the sam-

pling methods. For the experiments reported here we decided to use a limit on the total number of

queries selected for probing as a stopping criteria for sampling. Better approaches based on cost

of probing are currently being pursued.

As seen from Figure 12, for the probing queries under “Stratified 96”, LCS shows the closest

performance to that of “All queries”. Since stratified sampling selects the queries from the strata

or subclasses, it can ensure better representation for the classes in the AV hierarchies in terms of

the queries that are mapped to them. In doing so it is able to get a better approximation of the

data spread of the sources. In comparison, random sampling selects the queries from the entire set

of queries and therefore can be biased in terms of the classes represented by the selected queries.

Figure 12 also shows that the efficiency of learning can be improved given larger sized probing

queries which is intuitive. “Stratified 96” gives better pruning performance compared to “Stratified

48” but requires double the number of probing queries. The cost of probing is less for smaller set

of probing queries. Hence the improved pruning shown by LCS for “Stratified 96” entails a higher

cost of probing compared to “Stratified 48”.Hence we must achieve a delicate balance between
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Figure 12: Variation in Pruning Efficiency with Probing

the number of probing queries issued versus how closely we approximate the data spread of the

sources.

In Figure 13, we compare the accuracy of our approach in learning large classes based on the

results of probing queries generated by the both the Sampling strategies. Here we compared the

actual large classes learnt by LCS based on the probed results of the various sampling strategies

with that generated by issuing all the queries to the sources. We provide the number of large classes

to be learnt as the threshold to LCS. Figure 13 shows the difference in terms of the actual large

classes identified by LCS for the various sets of queries. As can be seen for queries in the set

“Stratified 96” LCS learns best i.e, it almost learns the same set of large classes as learnt for “All

queries”. When the number of large classes learnt remembered is 30, we get a mismatch of less

than 5 classes using our learning approach.

The above results are encouraging and show our approach is able to give good results even for

a smaller sample of probing queries. We are looking at better sampling strategies to use and also

at identifying better heuristics to decide the stopping criteria for the sampling criteria.

9 Discussion and Future Directions

In this section, we will discuss some practical issues regarding the realization of the StatMiner

approach, and outline several future directions for this work.

Generating AV Hierarchies: Classification hierarchies similar to AV hierarchies are assumed to

be available in other research efforts such as [WMY00,IGS01]. Nevertheless, generating the AV
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Figure 13: Variation in large class estimation with Pruning

hierarchies is a semi-manual activity, and can thus present practicial difficulties. In the following,

we discuss some factors that mitigate these difficulties. To begin with, hierarchy design will be

easy in cases where the attribute values correspond to an existing ontology([WMY00],[IGS01]).

Secondly, AV hierarchies are easy to build for quantitative attributes such as the Year attribute in

our example relation. Thirdly, we can use some existing clustering algorithms([HK00]) to auto-

matically generate AV hierarchies(especially for numerical attributes).9 Finally, we may not need

completely accurate AV hierarchies. We are currently extending our approach to support adap-

tively modifying a poor AV hierarchy as we get more user queries. The frequently asked queries

that are not in the AV hierarchies will be reported and included into the corresponding hierarchies.

Choosing the StatMiner threshold parameters: As discussed earlier, the StatMiner algorithms

take two threshold parameters: �c and �o. Both the parameters can be set by the administrator to

strike an appropriate balance between the amount of statistics remembered and the accuracy of

the statistics. In the following, we summarize some guidelines for setting the parameters. The

threshold �c is used to decide whether a query class has large enough support to be remembered.

If �c is set to be 0, then every possible query class will be remembered. In this way we can get the

most accurate coverage statistics. If �c is set to be 1, only the root class will be remembered. In this

way all the queries will be mapped to the root class, and the coverage estimation of some queries

may be very inaccurate. The administrator can select a number between 0 and 1 as �c according to

the space available for remembering the coverage statistics and the performance tradeoffs between
9It is of course possible to further automate the AV hierarchy generation–using agglomerative clustering techniques

[HK00], and we are in fact investigating such an alternative. One disadvantage of such a method however is that the

generated hierarchies may not have any meaning to the user of the mediator.
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the additional time need for searching the statistics for a query and the time gained by using more

accurate statistics to answer the query.

Another threshold �o is used to decide whether or not the overlap statistics between a set of

sources and a remembered query class should be stored. If �o is set to be 0, then for each discovered

large class, the overlap statistics for every source set will be remembered. If �o is set to be 1, then

for a discovered large class, at most one source set(if all the souces are completely overlaped for

the class) will be remembered. The above discussion for seting �c can also be applied to set the

parameter �o.

Statistics for Handling Join Queries: In this paper, we focussed on learning learn coverage and

overlap statistics of select and project queries. The techniques described in this paper can however

be extended to join queries. Specifically, we consider the join queries with the same subgoal

relations together. For the join queries with the same subgoal relations, we can classify them based

on their bound values and use similar techniques for selection queries to learn statistics for frequent

join query classes. Specifically, the following issues may have to be re-considered to support join

queries:

1. Classificatory attributes selection: Instead of selecting classificatory attributes from a single

relation, we will need to select attributes among all the relations in the join query;

2. Probing the sources: We can use the leaf nodes of a AV hierarchy to probe the sources of

the first relation, and use the results of the first relation to probe the sources of the second

relation, and so on. For each relation of the query, we use a classInfo and sourceInfo table to

remember the counts of the relation. We count only the tuples that are the join results of the

query. We can consider the join results as one big relation, and join query can be considered

as the select and project query of this big relation.

3. Discovering large join query classes: Once we have the classificatory attributes and the join

result relation, we can use the LCS algorithm to discover large classes.

4. Computing the coverage statistics for each relation: For each relation in the join query, we

can compute the coverage and overlap statistics using the corresponding result relation.

Combining Coverage and Response-time Statistics: In the current paper, we assumed a simple

coverage-based cost model to rank the available Websources for a query. However users may be

32



interested in plans that are optimal w.r.t. any of a variety of possible combinations of different

objectives. For example, some users may be interested in fast execution with reasonable coverage,

while others may require high coverage even if with higher execution cost. Users may also be in-

terested in plans that produce answer tuples at a steady clip (to support pipelined processing) rather

than all at once at the end. In [NK01], we present the Multi-R query planning framework, that uses

the gathered coverage and response time statistics to support multi-objective query optimization

in data integration. The query planning techniques used in Multi-R are able to output query plans

satisfying a variety of coverage and response-time tradeoffs, and still manage to keep “planning

time” (i.e. search for query plans) within reasonable limits, despite the increased complexity of

optimization. Our ongoing work on the Havasu prototype data integration system combines the

Multi-R query planning framework and the StatMiner statistics learning approach to provide a

comprehensive query processing methodology in the presence of Websources.

10 Conclusion

In this paper we motivated the need for automatically learning the coverage and overlap statistics

of sources for efficient query processing in a data integration scenario. We then presented a set of

connected techniques that estimate the coverage and overlap statistics while keeping the needed

statistics tightly under control. Our specific contributions include:

� A model for supporting a hierarchical classification of the set of queries.

� An approach for estimating the coverage and overlap statistics using association rule mining

techniques.

� A threshold-based modification of the mining techniques for dynamically controlling the

resolution of the learned statistics.

We described the details and implementation of our approach. We also presented an empirical

evaluation of the effectiveness of our approach in a realistic setting. Our experiments demonstrate

that:

� We can systematically trade time and space consumption of the statistics computation for

accuracy by varying the large class thresholds.
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� The learned statistics provide tangible improvements in the source ranking, and the improve-

ment is proportional to the type (coverage alone vs. coverage and accuracy) and granularity

of the learned statistics.
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