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Abstract

We discuss the design of a quasi-statically typed language for XML in which data may be

associated with di�erent structures and di�erent algebras in di�erent scopes, whilst preserving

identity. In declarative scopes, data are trees and may be queried with the full 
exibility associated

with XML query algebras. In procedural scopes, data have more conventional structures, such

as records and sets, and can be manipulated with the constructs normally found in mainstream

languages.

For its original form of structural polymorphism, the language o�ers integrated support for

the development of hybrid applications over XML, where data change form to re
ect programming

expectations and enable their enforcement.

1 Introduction

To date, programming over XML is essentially programming over labelled trees, according to the
standard interpretation of the format [7]. This can be done in a procedural algebra, such as DOM's [8],
or in the declarative algebras of dedicated query languages, XQuery's before others [3].

Based on powerful path expressions, declarative algebras o�er unrivalled 
exibility for retrieving
and transforming the data, in the spirit of query languages. They may also o�er computational
completeness and, as in the case of XQuery, an appropriate notion of static typing. On the other
hand, procedural algebras �t into a well known computational model inclusive of update. Embedded
in mainstream languages via language-speci�c bindings, they also promise full integration with existing
computational facilities (e.g. I/O, user interfaces, legacy code), a large user base, as well as proven
and familiar development tools.

For their di�erent qualities, the two approaches are complementary and would integrate well
within, say, the same object-oriented language. In spite of their 
exibility, however, labelled tree
structures cannot be expected to be adequate choices for all computational tasks. More familiar
programming abstractions - such as pairs, tuples, records, sets, relations - may better re
ect the
required interpretation of the data. In fact, the view of XML as a universal format for the exchange
of data suggests that large part of that data will originate in standard programming languages and
database systems. How many employees live within programs and databases as labelled trees?

1.1 XML and Data Structures

Ignoring for a moment issues of eÆciency, inadequate data structures induce linguistic problems:
programs become soon harder to write, read, and thus maintain. As a simple example, consider
an employee record e materialised at the receiver as a labelled tree. The relationship between the
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employee and its name becomes one between two nodes and their labels, whereas it was originally one
between a record and its �eld name. The sender accesses the name by writing the expression:

e.name

whereas the receiver using, say, a DOM implementation must resort to something like:

NodeList children = e.getChildNodes();

for (int j=0;j<children.getLength();j++) {

Node child = children.item(j);

if (child.getNodeType() == Node.ELEMENT_NODE) {

String tagName=((Element) child).getTagName();

if (tagName.equals("name")) ...

((characterData) child.getFirstChild()).getData()...}}

Of course language speci�c APIs may better tune the algebra to the particular host language
(e.g. [13]). Similarly, a stronger orientation towards data (as opposed to documents) may also help
to ease the linguistic problem. It should be clear, however, that the tree structure does not directly
re
ect the data semantics required by the receiver and, in this case, that originally intended by the
sender. When the receiver is statically typed, the problem is further aggravated by a loss of safety:
name was meta-data within the record structure and has become data within the tree structure. As
such, it escapes the static knowledge of the system and its correct use may not be detected before
program execution or, worse, not detected at all (e.g. when a misspelled label accidentally identi�es
another).

Declarative algebras alleviate partly the problem by hiding the tree structure under a navigational
syntax, thereby achieving succinct and clear programs. The choice of data structures, however, extends
its impact on semantics: as the procedural XML programmer, the declarative one is still forced to
perceive employees as trees in spite of more intuitive models of the data.

It should also be noted that the problem here is not related to labelled trees, which remain the
preferred structures for a variety of computational tasks: document manipulation, semistructured data
management (cf. [11]), structural queries, 
exible browsing, etc. Similar problems would surface with
any structure imposed by the wire format and, in general, with any incarnation of the one-size-�ts-all
approach to data modelling.

The example of the SAX programming model and algebra is here appropriate [9]. With SAX, the
XML data is a string served to the programmer as a temporal sequence of tokens and the induced
programming model is based on callbacks for parsing events. Compared with DOM, SAX makes it
easier to specify computations that interpret the data as the text in which it is encoded (e.g. token
counts, deep queries, etc.). Nonetheless, it is easy to see that the linguistic and safety problems
associated with DOM computations surface unsolved for SAX programmers.

1.2 A Language for Hybrid Applications

Motivated by the previous observations, we advocate the importance of applications in which the same
data are subject to di�erent structural views and are manipulated according to di�erent algebras
in order to facilitate di�erent programming tasks. For example, some components of such hybrid

applications, as we may call them, may bene�t from a tree view over the data and from the 
exibility
of a query algebra. Other components may instead be safer and simpler by, say, a view based on
record and set abstractions and their associated algebras.

In practice, hybrid applications are common and yet the integration of their components is essen-
tially unsupported. XML programmers must associate components with di�erent tools and computa-
tional environments (e.g. a mainstream programming language and a query engine) and share data
between them through the the �le system or the network. This forces interactions between components
to be `o�-line' (i.e. planned in advance of execution) and strictly sequential (a component's output
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becomes another's input). Lack of integration becomes also lack of eÆciency, due to the unnecessary
operations of input/output and parsing of the data. Updates occur only at the �le level while sharing
between components require ad-hoc conversions between data structures which are prone to errors
and always irrelevant to application semantics. Overall, the XML programmer is entirely responsi-
ble for understanding and maintaining the mapping between the application design and its scattered
implementation.

In our research, we explore the possibility of writing hybrid applications within the context of
a single programming language, where the imposition of structure over the data is transparent and
entirely under the programmer's control. In this paper, in particular, we experiment with two di�erent
interpretations of the data and associate them with di�erent scopes in the program. In declarative

scopes, the data are labelled trees and can be manipulated with a simple query algebra based on XPath
expressions [2]. In procedural scopes, the structure of the data is a recursive composition of records
and sets and can be manipulated with conventional algebras. In the latter case, programmers may
also count on a selection of the basic types and programming constructs found in most procedural
languages.

Programs can then be partitioned according to the view which is syntactically in scope, with data
changing form upon entering and exiting scopes whilst preserving identity. The passage to a declarative
scope is straightforward, for the data can always be interpreted as a labelled tree. Di�erent is the
opposite case, when more constrained structures must be projected over trees with the possibility of
failure.

We solve these problems by resorting to a quasi-statically typed language and interpreting structural
projections as type assertions attached to program variables. Noticeably, type assertions are veri�ed
dynamically, when variables are bound to trees, and yet their scope within the program can be
statically typechecked. Accordingly, the approach extends the practice of dynamic typing within
otherwise statically typed programming languages (cf. [1]). In particular, it admits data which is
completely untyped and yet suÆciently self-describing to allow type-checking.

The rest of the paper is organised as follows. Section 2 introduces our model for type projections
while Section 3 discusses the language design by way of example. Finally, Section 5 draws some
conclusions and outlines further work.

2 Type Projections

We have successfully investigated the problem of type projections over labelled tree data in SNAQue, an
architecture for binding quasi-statically typed programming languages to XML data which emanate
from outside their context. SNAQue is formally de�ned in [4, 5], while an implementation speci�c to
the Java language is discussed in [10], where it is also thoroughly compared with related approaches,
such as JAXB [12].

With SNAQue, the programmer projects a type over an XML �le in an attempt to materialise the
content of the latter as a value of the former, and thus derive the bene�ts discussed in Section 1.
This requires parsing the �le into a temporary tree structure and establishing whether the tree is an
encoding of a value of the projected type, according to a pre-de�ned mapping between language values
and labelled trees. If this is the case, the value is materialised from the tree and may be subject to
application-speci�c programming, otherwise an indication of failure is returned to the programmer.

For generality, we have studied type projections in the context of a canonical language de�ned
around a value notation, a type language, and a relationship of typing between the two. In particular,
we have chosen a selection of structural types commonly found in existing procedural languages: built
from a set of atomic types, they include include record, collection, and untagged union types, possibly
recursively de�ned. Speci�cally, a type T is one of a �nite set of atomic types Bi, a record type
[l1 : T1; : : : ; ln : Tn], a collection type coll(T ), a union type T1 + T2, or a recursive type �X:T , where
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X is a type variable and the operator � binds occurrences of X in T 1.

Canonical values mirror the available types. A value v is an atomic value bk 2 Bk, a record value
[l1 = v1; : : : ; ln = vn], a collection value fv1; : : : ; vng, or the empty collection fg. The typing relation
is inductively de�ned in a standard fashion. An atomic value bk has the corresponding type Bk, while
a record [l1 = v1; : : : ; ln = vn] has the type [l1 : T1; : : : ; ln : Tn] only if each vi has type Ti. A collection
fv1; v2; : : : ; vng has the type coll(T ) only if all the vi have type T , while the empty collection has the
type coll(T ) for all T . A value v has type T1 + T2 if v has type T1 or type T2 and, �nally, v has type
�X:T if v has the type obtained by substituting �X:T for all the bound occurrences of X in T .

For parsing purposes, we have considered a tree interpretation of XML data which abstracts
over the document-oriented features of the format (e.g. ordering, processing instructions, etc.) and
concentrates on the data-oriented features (e.g. naming and nesting)2. Figure 1 gives a visual example
of the tree interpretation of a sample XML document.

<store>
  <name> BooksRus </name>

<book>
     <author> John Backus </author>
     <author> Peter Naur </author>
     <title>XML Does Not Care </title>

  </book>
<book>

<fname> Stan </fname>
<sname> Lee </sname>

</store>

<book>
  </book>

  </book>

     <author>

</author>
     <title> The Annotated Spiderman </title>

     <title> The Bible </title>

XML ... The An ...

TheBible

name

store

BooksRus authorauthor author title

book

title

book book

fname sname

title

Peter ...John ...

LeeStan

Figure 1: XML Parsing

The tree encoding of values is illustrated by way of example in Figure 2, which shows the tree cor-
responding to the record v=[a=1,b=f"two,"three"g,c=[d="four",e=5],f=fg]. Essentially, atomic
values are encoded as leaf nodes, while the encoding of record and collection values is built on that
of their �elds and elements, respectively. Since language values are anonymous, however, it is not
immediately clear what labels should be used at the root nodes. For atomic values this is a textual
encoding of the values themselves, but for records and collections our choice is that the label may only
be provided by the context.

In Figure 2, a context for the entire v is missing and this explains the omitted label at the root
node. Di�erent is the case for, say, the root of the tree that encodes [d="four",e=5], which is labelled
with the �eld name c of v3. Finally, observe the encodings of the values in f"two,"three"g { which
take their label from the record �eld b { and the encoding of the value of �eld f { which extends the
previous rule to the extreme case of the empty collection.

In terms of type projections, the implications of the encoding scheme are essentially two: 1) tags of
root elements such as store in Figure 1 are irrelevant, and 2) collection types may only be successfully
projected within record types, where they never fail. For example, the projection of type Store over
the data in Figure 1, where:

1Recursive types do not need to appear such theoretical guise within program, but can be derived from self-referencing
type declarations.

2In practice, element attributes may be parsed as subelements.
3In previous work, we adopted a more convenient tree model where labels are on edges rather than nodes. We have

here maintained labels on nodes to rely later on standard query semantics (see Section 3).
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Store = [name:string,book:coll([title:string,author:coll(Author)]

Author = string+[fname:string,sname:string]

would result in the language value store, where:

store = [name="BookRus",book=fbook1,book2,book3g]
book1 = [title="XML Does Not Care",author=f"John Backus","Peter Naur"g]
book2 = [title="The Annotated Spiderman",author=f[fname="Stan",sname="Lee"]g]
book3 = [title="The Bible",authors=fg]

four

b ba c

ed1

5

threetwo

....

 [a = 1, b = {"two","three"}, c = [d = "four", e = 5], f = {} ]

Figure 2: Encoding example

3 Programs and Queries

Essentially, this work originates from the hypothesis of moving SNAQue bindings and tree data within
the language, rather than at its boundary with the �le system. At this early stage of investigation,
our aim is not to present a complete language, rather to explore design options. In particular, we
use a pseudo-syntax to illustrate a possible extension of the canonical language with value operators
(primitive operators, record and collection algebras, etc.), standard procedural constructs (e.g. type
declarations, static scoping, assignments, functional abstractions, control structures, etc.), and library
support (e.g. facilities for access to relational data). As a �rst example, the following function addBook
augments a collection of books:

type Book = [isbn:string,price:number]

fun void addBook(Book book, coll(Book) booklist){

for b in booklist

if (b.isbn = book.isbn) remove b from booklist

add book to booklist

}

The code should be self-explaining. In line with the assumption that data preserves identity across
scopes, addBook is applied under by-reference semantics. The new type void has the conventional
meaning while the operators for-in, add-to, and remove-from form the bulk of the collection algebra.
Type assertions are statically enforced and, though the issue will not arise, type equivalence may be
assumed to be structural to match the nature of type projections.

We then introduce XML in the language in the form of tree values and combine it with a query
algebra built on XPath expressions into a second form of functional abstraction. For example, the
following query findBooks takes an XML representation of an online bookshop's catalog and returns
the ISBN number and price of all the books scattered in the data:

query findBooks(catalog) {

for book in catalog//book union catalog/reviews/entry

return {

<book>
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book/isbn

book/price

</book>}

}

The query semantics is standard, and in any case its details have little relevance in this context,
where the focus is on the integration of programming paradigms. Accordingly, we assume the reader's
familiarity with XPath and FLWR-like expressions and point out only that the query processor embeds
the sequence of book elements produced by the return clause in a system-de�ned ROOT element, so
as to return well-formed XML, and thus trees, to the invoking scope.

This brings us to query invocations, which represent boundaries between procedural and declarative
scopes and thus the points of polymorphic behaviour of data. Speci�cally, actual parameters are
encoded as trees before binding to formal variables while return values may be implicitly projected
over via assignments to typed variables. This is illustrated by the next example, where two trees enter
the same procedural scope. One is parsed from a local �le (via the primitive operation read) but exits
the scope immediately as the actual parameter of an invocation of findBooks. The other returns from
the query and remains in scope with a record form before being written back to �le (via the primitive
operation write):

type BookList [book:coll(Book)]

...

BookList books := findBooks(read("catalog.xml"))

...

write(books,"books.xml")

The example captures the essence of the language, for it shows that assignments may entail type
projections, implicitly. Here, the type BookList is projected over the tree output of findBooks with
the intention of binding the resulting record to the variable books. The model outlined in Section 2
and the body of findBooks ensure that the projection is successful. Had it not been, an error would
be returned to the programmer, such as a null value (of type void) or some kind of exception.

As a larger example, consider the case of a simple hybrid application that selects the cheapest
price for a list of books (cf. Figure 3). Assume that the list is scattered in a relational database and
comprises the recommended books for the courses o�ered by a university department. Suppose also
that two functions getRecBooks and updateRecBooks are available for accessing the course database
and, respectively, retrieve and update the list of recommended books. Finally, assume that information
on a list of online stores is locally available in an XML �le "stores.xml".

The application is very simple and the reader should compare it with the solutions currently
available. First, the list of recommended books is retrieved from the database as a collection value
recList. Book prices in recList are then initialised to some large constant to ensure that an update
will actually take place.

Similarly, the store list is read from"stores.xml" and assigned to variable stores. This entails
the projection of type StoreList, which asserts that, for each store, the �le contains a name and the
URL of a corresponding XML catalog. Assuming the assertion to be correct, the catalog of each store
is fetched from its URL (with an overloaded version of read) and passed to a query getLowerPrices.
The latter receives also the recList, after its value has been encoded as a tree upon entering the
declarative scope. This o�ers an example of a conventional language value that changes its form to
be queried.

In particular, the query �lters the books in the catalog which are recommended and currently
o�ered at a lower price. When returned to the procedural scope within the record value of catalog,
the new o�ers are re
ected in recList with repeated invocations of the function addBook de�ned
above. After all the catalogs have been so processed, recList is eventually written back to the
database.
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type Store = [name:string,catURL:string]

type StoreList = [store:coll(Store)]

// database access

fun coll(Book) geRecBooks() {...}

fun void updateRecBooks (coll(Book) rl) {...}

query getLowerPrices(list, catalog) {

for b1 in list, b2 in catalog//book

where b1/isbn = b2/isbn and b2/price < b1/price

return {

<book>

b2/isbn

b2/price

</book>

}

val coll(Book) recList := getRecBooks()

for b in recList

b.price := MAX_PRICE

val StoreList stores := getStores(read("stores.xml"))

for s in stores.store {

val BookList catalog = getLowerPrices(recList,read(s.catURL))

for b in catalog.book

addBook(b,recList)

}

updateRecBooks(recList)

Figure 3: A Simple Hybrid Application

4 Conclusions

We have discussed the design of a language for hybrid applications over XML. This requires a form
of structural polymorphism whereby data assume the form of a tree or that of more conventional
language values in order to adequately support programming expectations. By associating a query
algebra to the tree view and an imperative algebra to the procedural view of the data, the language
o�ers the best of declarative and procedural approaches to XML programmers.

At this stage of investigation, our interest is in experimenting with design options. Due to the nov-
elty of the approach, it is not yet clear what language features would best support hybrid applications.
Here, we can only hint at two lines of further development.

Our �rst concern is for partial type projections, whereby types are allowed to match subsets of the
data. This is already a feature of SNAQue, where it allows bindings to disciplined subsets of particularly
semistructured data, minimality of speci�cations, and program resilience to irrelevant changes in the
external data (cf. [10]).

Not only do the latter reasons reveal the strong analogy between partial projections and conven-
tional notions of record subtyping, and thus suggest they should coexist in the language. They also
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introduce similar problems of update which are well-known in the literature (cf. [6]). Among the
available solutions, we consider the static advantages of bounded universal quanti�cation for record
subtyping and investigate novel schemes for partial type projections which exploit their inherent dy-
namicity.

Finally, we plan to extend type projections to graphs, and thus face the problems raised by the
presence of cycles and sharing in the data. The �rst concern the termination of algorithms and appear
to push the formalisation into a co-inductive framework. The second are exactly those associated with
partial projections and will require a uniform solution.
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