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Abstract. Let M, (n) denote the number of multiplications required to compute the coefficients of the
product of two polynomials of degree n over a g-element field by means of bilinear algorithms. It is
shown that M,(n) = 3n - o(n). In particular, if g/2 < n < g + 1, we establish the tight bound
M,(n)=3n+1-1Lg/2). The techniqué we use can be applied to analysis of algorithms for multiplication
of polynomials modulo a polynomial as well.
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1. Introduction

In infinite fields it is possible to compute the coefficients of the product of two
polynomials of degree # in 2n + 1 nonscalar multiplications. It is known from [18]
that each algorithm for computing the above product in 2z + 1 nonscalar multi-
plications must evaluate the multiplicands at a minimum of 27 distinct points,
multiply the samples, and interpolate the result. However, in finite fields, this
method fails if 27 exceeds the number of field elements. Thus, in general, the above
bound cannot be achieved in finite fields.

Let F, denote the g-element field and let M, (n) denote the number of multipli-
cations required to compute the coefficients of the product of two polynomials of
degree n over F, by means of bilinear algorithms. In this paper we prove that for
any g we have M,(n) = 3n — o(n). The best lower bound on A, (n) known from
the literature, cf. [2], [3], [9], [11], and [12], states that M, (n) is bounded from
below by the minimum length of a linear code over F, of dimension » + 1 and
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minimal distance n + 1,2 which implies the following linear lower bounds on
My (n). M;(n) =2 (2 + 1/(qg — ))n — of(n), if g = 3, and, for large values of #,
M>(n) = 3.52n. However, an easy calculation based on the Gilbert~Varshamov
upper bound on the length of linear codes, cf. [14, Theorem 4.7, p. 87], shows that
for g = 7 there exist linear codes of dimension » + 1, minimal distance n + I, and
length 2.9#, say. (Actually, it is not hard to show that there exists a linear code of
dimension n + 1, minimal distance » + 1, and length (2 + O(1/In g))n. Hence,
the constant factor of the linear lower bound established in {2], [3], [9], [11], and
[12] tends to 2, when g tends to infinity.) Thus, if ¢ = 7, the 3n — o(n) lower bound
cannot be achieved by the previously known technique. For ¢ = 3, 4, 5, it is
unknown whether or not there exist linear codes of dimension » + 1, minimal
distance n + 1, and length less than 3#; but the best-known lower bound on the
length of such codes is (2 + 1/(g — 1))n — o(n). Therefore, in these cases, the
3n — o(n) lower bound on M, (n) can be considered as an improvement of the
known one as well. The only case where the 3n — o(n) lower bound is worse than
the bound given by the code length is that of ¢ = 2. However, in this case, our
technique also allows to obtain an alternative proof of the known lower bound.

If g/2 < n =< g + 1, the method we use provides the tight bound of M,(n) = 3n
+ 1 ~ Lg/21. (As it has been mentioned earlier, if #n < ¢/2, then M,(n) =2n+ 1.)
All these tight bounds are new and cannot be achieved by the technique based on
coding theory.

Although we consider only bilinear algorithms and the lower bound we present
is linear, the result seems to be of interest, since the constant factor of that bound
isindependent on g, and in view of quasi-linear upper bound of f,(#n) - n, established
in [11]. Here f,(n) is a very slowly growing function of n defined recursively as
follows

(1) f(1)and £,(2) = 3.
2 LB =f£B)=2andf,(3) =2, ifg>3.
(3) If n = 4, then f,(n) = 2f,(Tog,2(g — nl).

In fact, the asymptotic behavior of f,(n) is similar to the behavior of the function
2'°#i" where log}n is the inverse of the function G,(n), defined recursively by
G,(0) =g and G,(n + 1) = g%,

It is known from [16] that if a set of bilinear forms over an infinite field can be
computed in ¢ multiplications/divisions, then it can be computed in ¢ multiplica-
tions by a bilinear algorithm whose total number of operations differs from that of
the original one by a factor of a small constant. But it is unknown whether a similar
result holds for finite fields. However, one can easily prove that bilinear algorithms
for computing a set of bilinear forms are optimal within the algorithms without
divisions. Also we would like to note that all the algorithms for polynomial

' The definitions of a linear code can be found in the end of Section 7.

? Actually, the bound established in [9] and [11] concerns the number of multiplications required
to compute the product of two polynomials of degree n modulo an irreducible polynomial of degree
n + 1. It is unknown whether this bound follows from the same bound on M, (n), since, unlike in the
case of infinite fields, it is unknown whether computing the product modulo an irreducible polynomial
requires less multiplications than computing the product itself, cf. [11]. In any case, the above bound
on the number of multiplications required to compute the product of two polynomials modulo an
irreducible polynomial, and even a more general result, can be easily obtained by our method, cf.
Corollary S to Lemma 7 in the end of Section 7.
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multiplication over finite fields known from the literature are bilinear, cf. [11]
and [15].

The proofs are based on the theory of linear recurring sequences and an analysis
of Hankel matrices® representing bilinear forms defined by linear combinations of
the coefficients of the product of two polynomials. This technique can be also
applied to analysis of algorithms for multiplication of polynomials modulo a
polynomial.

The paper is organized as follows. In the next section we give the statements of
the main results. In Section 3 we introduce some notation and definitions, and
prove the major auxiliary technical lemmas. The proofs of the main results are
presented in Sections 4, 5, and 6. In Section 7 we consider some applications of
our method to analysis of algorithms for multiplication of polynomials modulo a
polynomial. Finally, in Appendix A we present an upper bound on the number of
distinct irreducible factors of a polynomial over a finite field, and in Appendix B
we present an optimal algorithm for computing the product of two polynomials of
degree not exceeding g + 1 over F,.

2. Statements of Main Results

In this paper we restrict ourselves to bilinear algorithms, which are defined below.

Let x and y be column vectors of indeterminates. A bilinear algorithm for
computing a set of bilinear forms of x and y is a straight-line algorithm whose
nonscalar multiplications are of the form L(x) - L’(y), where L(x) and L’(y) are
linear forms of x and y, respectively, and each bilinear form is obtained by
computing a linear combination of these products.

We remind the reader that F, denotes the g-element field and M,(r) denotes the
number of multiplications required to compute the coefficients of the product of
two polynomials of degree n over F, by means of bilinear algorithms.

The main results of the paper are given by Theorems 1 and 2 below.

THEOREM 1. For any q = 3 we have M,(n) > 3n — n/(log,n — 3).
We recall that it is known from [3] that for sufficiently large n we have
My(n) > 3.52n.

THEOREM 2. For any q and q/2 < n = q + 1 we have M,(n) = 3n + 1 —
Lg/2l.

3. Notation and Auxiliary Lemmas

In this section we introduce some notation and prove the major auxiliary lemmas
needed for the proofs of Theorems 1 and 2.

Let k be a positive integer and let ao, ..., a-1 be given elements of a field F.
A sequence o = o, §1, . - . , 8 of elements of F satisfying the relation

Sutke = Qp—1Snrkm1 + Qp2Spap—2 + o+ + oSn, n=0,1,...,1—k
is called a (finite kth-order homogeneous) linear recurring sequence in F. The
terms So, S1, . . . , Si—1 are referred to as initial values. The polynomial
fla) = a* — @r_1a* ' — qppa® 2 — ... = ay € Fla]

is called a characteristic polynomial of o. Proposition 1 below shows that if a finite
linear recurring sequence is “sufficiently long,” then it possesses an important
property of infinite linear recurring sequences.

3 The definition of Hankel matrices is given in Section 3.
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PROPOSITION 1. Let o and f(a) be as above, and let f.(a) be a characteristic
polynomial of o of the minimal degree. If deg f,(a) + deg f(a) < | + 1, then f,(a)

ividoe £\
Vials j \a .

Q.

m. Consider the system of linear equations in wy,

PrOOF. Let deg f(a)

/So 1 Wo /Sm\
Sy §2 Wi Sm+1
[0 )( M7} e
\S/—m Si—m+1 cr0 S /\Wm 1/ \Sl/

Since, by definition, f.(«) is the minimal polynomial of the infinite sequence
extending o and satisfying the recurrence defined by f,(«), the rank of the
(! — m + 1) x m matrix in (1) is equal to deg f.(a), cf. [13, Theorem 8.51,
p. 422].* (Here we use the condition deg f,(«) + deg f(a) =/ + 1.)

It follows that the dimension of the affine space of the solutions of (1) is equal
to m — deg f.(«). On the other hand, for each monic polynomial Q(a) = a™ —
75! biat divisible by f,(«), the vector (b, by, . .., bm-1)" is a solution for (1), cf.

[13, Thenrem 8.42, p. 418]. Since the dimension of the affine space over F consisting

of such polynomlals is equal to m — deg f.(«), this space contains f(«). Hence f(«)
is divisible by f.(«). O

A uniquely determined monic polynomial f,(«) € F[«] given by Proposition 1
is called the minimal polynomial of o.
For a sequence o = {5, ..., 52,} we define the (n + 1) % (n + 1) Hankel matrix

H(s) by

7

So M
Sy $2 s S+

\Un Sn—l

Let H' denote the (i + 1)strow of H, i = 0, 1, ,nIlfrank H<n+1,letkbe
the minimal positive integer such that there exist ao, . . ., gx- € F sati sf'y’“lg
k—1 )
Z a,»H’ = Hk

We define 6 = {5, 51, ..., $2.} by the recurrence
Sivk = Qem18ivk—r + G28ivk—2 + -+ + S,

values §;=s5;,i=0,..., k— 1.
Let 6 = ¢ — 0. We shall denote H(a) and H(s) = H — H(5) by H and H,
respectively. Let fy(a) = o — T4 a,a’, that is, f(«) is a characteristic polynomial
of 6. (In fact, fi(a) = f3(a), since, by definition, f;(«) is a characteristic polynomial
of the minimal degree.)
It follows from the above defini tha, ;9___1: H < de fn(a) + rank

Proposition 2 below shows that, actually, ran deg f;;(a) + rank H.

=

4 The nroofc in 1131 do not use the finiteness of the underlvine field
I'ne proois 1n [13] do not use the fimteness of the underlying field.
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PROPOSITION 2. Let H(o) be an (n + 1) x (n + 1) Hankel matrix of rank not
exceeding n. Then the set of vectors consisting of the first deg fu(e) and the last
rank H rows of H is linearly independent.

PROOF. By the definition of A and H it suffices to prove that the set of vectors
consisting of the first deg fi;(«) rows of H and the last rank & rows of H is linearly
independent. Let deg fu(a) = k. Since deg fi(a) = deg f;(a) (=k), the rank of the
k x k upper left submatrix of H is equal to k, cf. [13, Theorem 8.51, p. 422]. Since
H is a Hankel matrix whose first row is the zero vector, the last rank H rows of H
are linearly independent. Now the result follows from the fact that the first &
components of the rows of H are equal to zero. [

LetS={Hy, H\, ..., H} be an (s + 1)-element set of (n + 1) x (n + 1) Hankel
matrices of rank not exceeding n. Define fs(a) = lem{fy (a)|i=0, 1, ..., s},
ds = deg fs(a) and rs = max{rank H;|i=0, 1, ..., s}.

The proofs of Theorems 1 and 2 are based on Lemmas 1, 2, and 3 below.

Let V be a vector space over F, vi, va, ..., v,, € V. [vi, V2, ..., Vin} denotes the
linear subspace of V spanned by v;, v2, ..., V.

LEMMA |. Let S = {Hy, H\, ..., H} be a set of (n + 1) X (n + 1) Hankel
matrices of rank not exceeding n. Then dim[S] < ds + 7s.

Let x = (X0, X1, ..., x,)" and y = (Jo, V1, ..., ¥a)' be column vectors of
indeterminates.

LeMMA 2. Let S = {Hy, H,, ..., H,} be a set of (n + 1) x (n + 1) Hankel
matrices of rank not exceeding n. If ds + rs = n + 1, then computing the set of
bilinear forms of x and y defined by x"Hoy, x"'Hyy, ..., X' H,y requires at least
n + | multiplications.

LemMMa 3. Let S = {Hy, Hy, ..., H} be a set of (n + 1) x (n + 1) Hankel
matrices of rank not exceeding n. If ds + rs < n, then computing the set of bilinear
forms of x and y defined by x"Hyy, x"H,y, ..., X'H,y requires at least ds + s
multiplications.

At this point we advise the reader to postpone reading the proofs of Lemmas
1-3 and directly move to the next sections that contain the proofs of the main
results.

PROOF OF LEMMA 1. Let H;= H(o;),i=0, 1, ..., s. Obviously, [Hy, H, ...,
H,] is isomorphic to [go, 61, ..., o). Since o, =6, + 65, i =0, 1, .. ., 5, it suffices
to show that dim[6,, 6., ..., 0;] < ds, and dim[Go, 51, . .., 05] < rs.

To prove dim[éo, 61, ..., 65] =< ds, we observe that, by Proposition 1, fs{«) is a
characteristic polynomial of 6;, i = 0, 1, ..., s. Hence each of those sequences is
determined by the ds-dimensional vector of its first ds elements. This proves the
inequality concerning ds.

To prove dim[do, &1, ..., 6;] = rs, we observe that the first 2n + 1 — rs)
elements of ¢; are zero, i = 0, 1, ..., 5. Hence each of the above sequences is
determined by an rs-dimensional vector of its last rs elements. This proves the
inequality concerning rs. [

*lcm is an abbreviation for “the least common multiple”.
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PrROOF OF LEMMA 2. Let z = (2o, z1, ..., 2,)' be a column vector of new
indeterminates. Consider the dual set of bilinear forms of y and z defined by the
components of the vector Y}, z;H;y. Computing the above set of bilinear forms
requires the same number of multiplications as computing the original set x* Hyy,
x"Hyy, .. xTHSy, cf. (51 Hence for the proof of the lemma it suffices to show
that the rows of the matrix } %o z;H, are linearly independent over F, cf. {17].
Assume, by contradiction, that the first k rows of 3, j—¢ z; H; are linearly 1ndependent,

but the first (k + 1) rows are linearly dependent:
k
2 Z()H()+21H| .- +ZAH’5)=0

where a, = 1. Since z, z;, ..., z, are indeterminates, the above identity is

amiitvalan 4 4
Cquivaiciit 1o

aH'=0, j=0,1,...,s.

J b J

¥
M=
—
()
S’

Hence, by Proposition 2, k<n+ 1 —rank H;,j=0, 1, ..., s, which implies
k<n+1-—maxfrank H;|j=0,1,...,s}=n+1-rs. 3)

Since deg Js, = n, it follows from (2) and Proposmon 1 that jH () j,, (o) divides
Sho aial, j=0, 1, , 5. Thus fs(«) divides Y5, a;x'. Hence ds < k, which,
together W1th 3), 1mp11es ds + rs < n + 1. This contradiction completes the proof
of Lemma2. 0O

ProOF OF LEMMA 3. By the argument at the beginning of the proof of Lemma
2, in the same notation, it suf’ﬁces to show that the first ds and the last rs rows of
¥ %o z; H; are linearly independent over F. We break the proof of linear indepen-
dence of the above set of rows into two stages. First we prove that the first ds rows
of ¥.5-0 z;H; are linearly independent. Then we prove that no nonzero linear
combination over F of the last rs rows of Y3, zH; can be equal to a linear
combination of its first ds rows.

To show that the first ds rows of ¥, %—y z;H; are linearly independent over F we

nrnr\pprl Pvar\ﬂv as in the nroof of Lemma 2. Assume. by contradiction, that for
pr n S by contragiclion, that Ior

ma \ssume, by ¢
some k < ds we have

k
E a,-(Zon) + ZlHli + ... + Zst;-) = 0,
i=0

where a, = 1. Since z, zi, ..., Z, are indeterminaies, the above identity is
equivalent to

b

§ =0, j=0,1,... (4)

By Proposition 1, it follows from (4) that fi; (a) = f; (@) divides 35 a;a’, i = 0
1, ..., s. Thus fs(a) divides ¥, a;a’. Hence ds < k, which contradlc ts 0
z:H. are linearly indepnende

1y iiiavpv ndaen

nccnmnfi on and proves that the first ds rows of S‘S

uuuuu 10n and ves that 1nc Irst ds 1o =0 Z;42;
over F .

To show that no nonzero linear combination over F of the last rs rows of
Y40 z;H; can be equal to a linear combination of its first ds rows, assume, by
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contradiction, that
dg—1 ) ] )
2 a,‘(ZoI‘H) +z Hi+ -« + ZsHi-)
i=0

n

+ Y bi(zH) +zH + .- +z,H)=0

i=n—rg+1
where notall b, i=n—rs+ 1, ..., n, are zero. Without loss of generality we may
assume that rs = rank H,. Since zy, zj, ..., z, are indeterminates, in particular,
we have
ds—1 ) n )
> aHy + > b:Hy = 0. &)
i=0 i=n+1-rankH,

Since deg fu,(«) < ds, and ds + rank H, < n + 1, it follows from the definition of
H, and H, that the first ds rows of H, are hnear combinations of its first
deg fi,(a) rows. Hence, by (5), we have
dengo(zx)—l n

Y GHy+ x biH) =0,

i=0 i=n+l-mnk1~_10
for some constants ¢y, ¢, ..., Cdeg fyy(e)-1- Since not all b;, i = n + 1 — rs,

, n + 1, are zero, the last equality contradicts Proposition 2. This completes the

proof of Lemma 3, because each linear combination of the above rows either
includes or does not include last rows. L[]

4. Proof of Theorem 1

Actually, Theorem 1 is a corollary of another general result given by Lemma 4
below. First, we introduce one more notation that will be frequently used in this
section. We denote the maximal possible number of distinct factors of a polynomial
of degree n over F, by i,(n). It is shown in Appendix A that for g = 3 we have
i;(n) < n/(log,n — 3).

LEMMA 4. Let S = {Hy, H,, ..., H,} be a set of (n + 1) X (n + 1) Hankel
matrices that are linearly independent over ¥,. Then there exists a subset S’ of S
containing i,(n) + 1 or fewer elements such that computing the set of bilinear forms
defined by {x" Hy}yes requires at least n + 1 multiplications.

Proor. If some H € Sis of rank n + 1, the lemma, is, trivially, true, since we
can take S’ = {H]}. Otherwise, by Lemma 1, we have ds + rs = n + 1, which
implies deg fs(a) = n + 1 — rs. Let fs(a) = [[%= pj‘-’f(a) be the decomposition
of fs(a) into irreducible factors p,(a), p(a), ..., pi(a) such that deg p;(a) =
deg p2(a) = .- - = deg pi(a). Let m < [ be such that deg [] 7, pjf(a) =n+1-~rs,
and deg [ 7 p/(a)<n+ 1 —rs.

We construct a subset S’ of S, inductively, as follows: So = {H,,}, where rank
H, =rs,ifrs >0, and Sy = &, otherwise.

Assume S;, j < m, has been constructed. Choose an H;, such that fH,._H(a)
is divisible by pi%(a) and put S;1, = S, U {H,,,]. ’

Let S’ = S,.. By the construction above, fs-(«) is divisible by [] j2, p “(e), hence
ds- = n + 1 — rs. This together with rank H,0 =rs=rs impliesds + r¢ 2 n+ 1.
It follows from Lemma 2 that computing the set of bilinear forms defined by
{xXTHy}nes- requires at least #n + 1 multiplications.
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In order to complete the proof of Lemma 4, it remains to show that the
number of the elements of S’ does not exceed i,(n) + 1. We contend that
m=im+1-—rs) If deg IT;” 1 Dj (n\ = n + 1 — rs, there is nothing to prove.
If deg pm(a) =1, then by the deﬁnition of m, there exists a 1 < d,,, = d,, such that
deg(I12' p jf(a)) p(a) =n+ 1 — rs, and the result follows. Otherwise, that is,

deg pi(a)>1,j=1,2,..., m, the polynomial

m—1
aln+1-r) — deg(TT = p"’(a)){ ndi(
11 ¥j N

Jj=1 /
has m irreducible factors and is of degree n + 1 — rs. Hence m = iyj(n + 1 — rs),
which proves our contention.

Obviously, the number of elements of S’ is bounded by m + 1. Hence the

mhar Af ’ -
number of the elements of S’ does not exceed lq(u + 1), if s = n, and does not

exceed i,(n + 1 — rs) + 1, otherwise. In both cases, the number of the elements of
S’ isbounded by m <i,(n)+ 1. O

Now Theorem 1 is implied by Lemma 4 in a standard manner, cf. [11] and [18],
as follows.

PROOF OF THEOREM 1. We have to compute z, = zi(X, ¥) = Xijmk Xi)j»
k=0,...,2n Letz = (2o, 2\, . .., Z2n)". Assume that M, (n) = ¢, that is, all the
bilinear forms defined by the components of z can be computed in  multiplications,

namely there exist ¢ linear forms L,(x), ..., L,(x) of x and ¢ linear forms L{(y),
, L/(v) of vy such that each z is a linear combination of the products

Lix)L;(y), -.., L{(x)L(y). It is known from [4] that t = 2n + 1. Let p

(Li(X)L{(y), . - ., Li(x)L] (y))". By the definition of bilinear algorithms there exists

a(2n + 1) X ¢t matrix U whose entries are constants from F, such that z = Up.
We contend first that rank U = 2n + 1. Obviously, zi(x, y) = x"A4,y, where
¢ =(a;;1)is an (n + 1) x (n + 1) Hankel matrix defined by

. _{1, if P4 j=k+2,
“k710,  otherwise.

Since the matrices Ao, Ay, ..., A2, are linearly independent, the rows of U are
independent as well. This proves our contention.

Permuting the components of p, if necessary, we may assume that the first 2n
+ 1) columns of U are linearly independent Hence, there exist a nonsingular

On+ 1) X 1\ snndeiy D17 _ _ 1/ aiieh tha
(L7 1) X \LH + 1) matrix w and \Lll + l} X \L 2n 1; matrix ¥ such that

WZ = (12n+ls V)pa

where I,,.; denotes the 2n + 1) X (2n + 1) identity matrix. That is, the first
(2n + 1) columns of the product WU are those of I+, .

By Lemma 4, there exist i,(n) + 1 components of Wz which define bilinea

AT iiiitaa LAVIN VALSL 29 1 COILPUACIS which delinge buinear

forms whose multiplicative complex1ty is at least # + 1. Without loss of generality
we may assume that the above bilinear forms are defined by the last compo-
nents of Wz. Since the first 2n — i,(n) components of the last i,(n) + 1 rows of
(Isn+1, V) are zero, we have t — (2n — i,(n)) = n + 1. This impliest = 3n+ 1 —
i;(n). Using the n/(log,n — 3) upper bound on i,(n), cf. Appendix A, we obtain
M, n)=1t>3n—-n/log,n—3). O

Remark. Applying the argument used in the proof of Lemma 4 to 2n + 1
linearly independent Hankel matrices Hy, H,, ..., H.,, and assuming that deg
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pi(a) = deg p%(a) = --- = deg p¥(a), one can improve the lower bound given
by Theorem 1 by O(n/login). The proof requires a more involved counting
argument than that in Appendix A and will be omitted.

5. Proof of Theorem 2

Let x(a) = Y% x;a' and y(a) = Y7o yia'. Similarly to [18], computing the
coefficients of the product x(a)y(a) in 37 + 1 — L g/21 multiplications can be easily
done by computing x(a)y(«) modulo linear and quadratic polynomials, cf. Appen-
dix B. In order to prove the lower bound we proceed as follows.

Let F, = e, e, ..., gq} Without loss of generality we may assume e that
L:(x)L/(y) =x(e)y(e.),i=1,2,...,4,and Lqﬂ(x)Lq“(y) XnVns of. [1, Exercise

12.9, p. 445). Using the same notation as in the proof of Theorem 1 we have
Wz = (I1.+1, V)p, where the first ¢ + 1 rows of V are zero. Let H; be the Hankel
matrix representing the bilinear forms defined by the ith component of Wz, i = 1,

2,....2n+ 1. LetS={H ., Hys, ..., Hyuo ). The proof of the 3n + 1 — I.a/2J

lower bound is based on the followmg lemma.

LEMMA 5. Either there exists a subset S’ of S containing L(2n — q)/21 or
Sfewer elements such that computing the set of bilinear forms defined by
{x THylues requires at least (2n — q) multiplications, or there exists a subset S’ of

PRSP, P P nly thet nneraen Lo opt nf hiliwmons fAr

S Luiuumtng l\./.n - q}/LI eiements sucn that wmpuung the set of ouiinear jorms

defined by {x"Hy}yes' requires at least 2n — q + 1 multiplications.

Tha aeanf LT L3 i
11i€ proo1 o1 Lemma 5 is rather lo ng and technical

is postponed to the next section.

Doy - T 2%
Proor oF THEOREM 2. The proof is similar to the proof of Theorem 1. By

Lemma 5, either there exist L(2n — ¢)/2] components of Wz that define blhnear
forms whose multiplicative complexity is at least 2n — g, or there exist [(2n —
q)/21 components of Wz that define bilinear forms whose multiplicative complex-
ity is at least 2n — g + 1. Without loss of generality in both cases we may restrict
ourselves to the last components of Wz,

In the former case, since the first 2n + 1 — L(2n — g)/2) components of the last
L2n — q)/21 rows of (I,,+1, V) are zero, we have

M,(n) - (Zn +1- [2}12— qJ) =2n-—gq.

(Recall that (L>,+1, V) is a 2n + 1) * M,(n) matrix.) Therefore

[27 — 4] { [ al\ Ia'
Mq(n)24n+1—q—[_” "J=3n+1—kq+|.—-=_| =3n+1—r.
2 2 2
In the latter case, since the first 2n + 1 —~ [(2n — g)/21 components of the last
f(2n — q)/21 rows of (1,41, V') are zero, we have

M, (n) - \2n+1—|r2n_

1I)zZn-—q+1.

Mq(n)z4n+2-q—[2”’q]
I I

=3n+1—(q+[—§]—1)z3n+1—|§I.
AN “1 / L=d

)
O
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6. Proof of Lemma 5

In order to prove Lemma 5 we need some preliminary facts. First we observe that
rank H;=n,i=¢q+2,...,2n+ 1. Were there an H; of rank n + 1, similarly to
the proof of Theorem 1, we would have M, (n) > 3n, which contradicts the upper
bound at the beginning of this section.

By Lemma 1 we have ds + rs = 2n — g, which implies deg fs(a) = 2n — g — rs.
Let fs(a) = [1'~1 p¥(«) be the decomposition of fs(«) into 1rreduc1ble factors Di(a),
Dp2Aa), ..., pi(a) such that deg p% () = deg p2(a) = - - - = deg pfi(a). Write

1 k /
Js(a) = gl pi(a) = (EI1 P?’(@)( I1 Pi(a)),

i=k+1

where pis1(a), Draa(a), ..., pi(a) are all the linear factors of fs(«) of multiplic-
ity 1.
PROPOSITION 3. We have deg [1%, p“(a) = 2n—~ g — rs.

PROOF. Assume, by contradiction, that deg [[%; p%(a) < 2n — ¢ — rs and
consider the set of Hankel matrices S” =S U {H,};=1,...,. Obviously rs- = rs and
deg fs-(a) < q + deg [[1 p%(a). Hence ds- + rs- <q+2n- ~rs+rs=2n
The last inequality contradicts Lemma 1, because dim[S”] = dim[H,, ..., H,,
Hq+2, ey H2n+1] =2n 0O

Let m be such that deg [I77' p%(a) < 2n — g — rs, and deg M= péi(a) =
2n —q —rs.

PROPOSITION 4.  If q is even, or rs = 3, or deg p{'(a) = 3, then we have

2 —_ m
[ n2 qJ, if deg Il pi(a) = 2n — g,
i=1

m=

2n — m
[nz qJ-l, if deg [] pfta)<2n—gq~ 1.
i=1

PROOF. Assume that deg [ 7, p%(a) = 2n — q. If deg p?(a) = 3, then

2n—q -3 _|2n—g—-1] {2n—g¢g
’"S[ 2 ]“‘[ 2 ]‘[2J’

and if ¢ is even, then

2n—q |2n—gq
nsize_|nod

If deg J1 72, p%(a) < 2n — g, then rs = 1. We shall consider the cases of rg = 1,
rs = 2, and rs = 3 separately.

Case of rs=1. In this case deg [I 2, p¥(a) = 2n — q — 1. Assume that ¢ is odd
and deg p{'(a) = 3. Since ¢ is odd, 2n — g — 1 is even. Hence either deg p?(a) =
4 or deg p%(«) = 3. In the case of deg p{'(a) = 4 we have

@Rn—g—-1)—-4] [2n—-g ]
2 L2 ’

m_<_1+[
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and in the case of deg p%*(«) = 3 we have

- @n—g-1)—-6[_|[2n—q]| _
wazsf@2zeznzl mog

If ¢ is even, then 2n — g — 1 is odd. Hence deg p{i(a) = 3, which implies

(2n—q-—1)—3_[2n—q 4
2 L2 '

Case of rs = 2. Ifdeg pf'(a) = 3, then

- @Rn—-q-2)-31\ |2n—g—-1] . [2n—q|
e (14 [P 2R <[t - e

and if g is even, then

m=<1+

- 2 2

Case of rs = 3. We have

2n—q—1rs 2n—q-3|_|2n—-g -1} _2n—q__
e e e e e s

This completes the proof of Proposition 4, [l

m<2n—q-—2=[2n—qJ_1'

PROPOSITION 5. If q is even, or rs = 3, or deg pf:(a) = 3, then there exists a
subset S’ of S containing L(2n — q)/21 or fewer elements such that computing the
set of bilinear forms defined by {x" Hy}yes' requires at least 2n — q multiplications.

PROOF. Since g = n — 1, we have 2n — g < n + 1. Therefore, by Lemmas 2
and 3, it suffices to show that there exists a subset S’ of S containing L(2n — g)/21
or fewer elements such that ds- + rs- = 2n — g. Similarly to the proof of Lemma 4
we shall construct S’ inductively as follows.

If deg [I 721 p%(a) = 2n — g, then So = @; and if deg I] 2, pi(a) = 2n—q — 1,
then Sy = {H,,}, where rank A, = rs.

Assume S;, j < m, has been constructed. If there exists an H € S; such that fu(«)
is divisible by p%(a), then S;.; = S;. Otherwise, choose an H,, such that
inm(a) is divisible by pj‘-”fl‘ (e) and put S, = S; U {H, }.

Let S’ = S,,. By the construction above, fs-(«) is divisible by [] 7, p%(a), hence
dss = 2n — q — rs. This together with rank H, = rs implies ds: + rs: =
2n—gqg.

Obviously, the number of elements of S’ does not exceed m, if deg I] 72, pf(e)
= 2n — gq; and does not exceed m + 1, otherwise. Thus the bound on the number
of the elements of S’ follows from Proposition 4. O

PROPOSITION 6. Ifrs = 1, and deg p¥'(«) = 2, then there exists a subset S’ of S
containing L(2n — q)/21 or fewer elements such that computing the set of bilinear
forms defined by {xTHy}ues- requires at least 2n — q multiplications.

PrROOF. Like in the proof of Proposition 5, it suffices to show there exists a
subset S’ of S containing L(2n — q)/21 or fewer elements such that ds- + rs- = 2n
—g. Pickans€{g+2,qg+3,...,2n+ 1} such that rank A, = 1. We contend
that there exists an I, 1 < i < k such that f; («) is divisible by p%(a). Since any
(n + 1) x (n + 1) Hankel matrix H with rank H = 1 such that fi(a) divides
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I1=k+1 Di() belongs to [H,, H,, ..., H,+], cf. [13, Theorem 8.55, p. 425], for
some i, | =i =<Kk, fy(a) is divisible by pj(a), where ¢ < d; and deg pi(«) = 2. Since

dy — i = i 1 1 = A Thi latag th f
deg pi' = 2, we have deg p{(«) = 2, which implies ¢ = d;. This completes the proof

of our contention. Without loss of generality we may assume that fy; () is divisible
by p{:(«). Then S’ can be constructed as follows.
Let S, = {H,}. Assume S;, j < m, has been constructed. If there exists an H € S;

such that fy(«) is divisible by p/*‘(a) then S;., = ;. Otherwise, choose an H,
such that f («) is divisible by P J+‘(nr\ and putS;,, =S UiH.: !}

SUCI s S A3 QAVINIVIL DY QUL PRy LR /S

LetS’ = S By the constructlon above, fs-(a) is lelSlble by [17: p%(a). Since
H, e S’, it follows that ds- + rs- = ds- + 1 = 2n — g. Obviously, the number of
the elements of S’ does not exceed m. Therefore, by the definition of m, we have

msI—Zn—q—1‘|=l2n—q|. O
|2 [ 1 2]
PROPOSITION 7. Let q be odd, rs = 2, and deg p?'(a) = 2. If there is an H, € S

such that rank H, = 2 and deg fi(a) = 1, then there exists a subset S’ of S
containing L(2n — q)/21 or fewer elements such that computing the set of bilinear

fnrm(‘ defined bv fv Hvl, .. ro/nnrov at least 2n — g m11/t1nh/'nt1nnc

W LOLRCE U <1 yIHES Yeubr $5 Lt Choe & g rivivereprvellveesy

ProOOF. It suffices to show there exists a subset S’ of S containing L(2n — ¢)/2.
or fewer elements such that ds- + rs- = 21 — ¢. Let rank A, = 2 and deg f; (o) =
I.Ifforno i, k < i<, fy (a) is divisible by p;(a), then, without loss of generality,
we may assume that fi; (a) is divisible by p, (a). We construct S’ as follows.

Let S, = {H,}. Assume S;, j < m has been constructed. If there exists an H € S;
such that fy(a) is divisible by p ,1:1‘ (), then S;4, = S;. Otherwise, choose an H;
such that fn (e) is divisible by p? %(a) and put S, = S; U {H,,

LetS’' = S By the construction above, fs-(«) is divisible by p, (a) 17, pé(a),
where j = 1, or j > k. Since

deg [T p(a)=2n~q—rs—1=2n—~gq-3,
i=2

we have ds- = 2n — g — 2. Therefore, ds- + rs: = ds + 2 = 2n — q. Obviously, the
number of the elements of S’ does not exceed m. Since ¢ is odd, we have
[2n — qg—2

- ) 20 - 4l
a-2) [ ; J 0

PROPOSITION 8. Let q be odd, rs = 0, and deg p¥'(a) = 2. If there is an H, € S
such that deg fi; (o) = 3, then there exists a subset S’ of S containing L(2n — q)/2)

or fewer elements such that computing the set of bilinear forms defined by

x7 H Yines requires at least 2n — q multiplications.

m=

cte 2 enheat Q7 Af Q€ ~an

evig inin
L INURUY 11 SUITICCs 10 Snow TNCre €Xists a suovset S o1 S COor l iK1 x \1-1 qjjad

or fewer elements such that ds- + 7s = 2n — q. Let deg fy («) = 3. Exactly as in
the proof of Proposition 7, one can show that there exists an i, 1 < i < k, such that
fH_‘,(a) is divisible by p%(«). It will be convenient to assume that Jufe) is divisible
by p%(e). If for no i, k < i < I, fu () is divisible by p;(a), then we may assume
that f;, (o) is divisible by p,(a). We construct S’ as follows.

Let Sz {H,}. Assume S;, j < m, has been constructed. If there exists an H € S,
such that fH(a) is divisible by p j“‘(a), then Sj+1 = S;. Otherwise, choose an
H,, such that fy, («) is divisible by péi{e) and put S, =S; U {H,, ]

LetS’ =8,,. By the construction above, fs-(«) is divisible by p;(«) [1 7, p* (a),

where j = 1, or j > k. Since deg [[ 72, pP(a) =2n— g — 1, we have ds- = 2n — g

Proor. It suffices to show there {0 — 2D

i
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Obviously, the number of the elements of S’ does not exceed m — 1. Since q is
odd, we have

2n ~¢q _|2n=g-2| |2n—g¢g
mls[z]l_[z]_[zj. o

In view of Propositions 5-8, we may assume that g is odd, deg pi‘l(g) = 2, and
1s = 0; or ¢ is odd, deg p{'(a) = 2, rs = 2, and for any H € S, if rank H = 2, then

H = H. The above two cases are treated by Propositions 9 and 10 below.

PROPOSITION 9. Ifq is odd, deg p{'(a) = 2, and rs = 0, then there exists a subset
S’ of S containing T(2n ~ q)/21 elements such that computing the set of
bilinear forms defined by {x" Hy}nes requires at least 2n — q + 1 multiplications.

PrROOF. Since g is odd, we have m = [(2n — ¢)/21. We may assume that
szn—m-ﬂ’(a) =p7’(a), [= 13 2,... , M.

If2n—q=1,let S’ = {H,,}. Since deg f3;, (a) = 2, it follows that rank H,, = 2.
Hence computing x" H,,y requires two multiplications.

If2n — g =3,1et S’ = {H,,~,, H,,}. The inequality ¢ = 3, implies n + 1 = 4.
Hence, by Lemmas 2 and 3, computing {x" H,,_,y, x' H,,y} requires at least four
multiplications.

Let 2n — q = 5. The set of bilinear forms {x" Hy}yes can be computed by

(X"Hypeme1¥s X Hopneme2ys - - 5 X' HanY) = (In, U)p,

where U consists of the last 7 rows of V. (Recall that Wz = (I,,,,, V)p.) We have
to prove that U has at least m columns. Assume, by contradiction, that U has at
most 2n — g — m = m — 1 columns.® Let

U= (ui,j)i=l ..... m
j=1

Since computing each x"H;y, i=2n—m+ 1,2n~m+ 2, ..., 2n, requires at
least two multiplications and the number of columns of U is less than m, the
matrix U has a column with two nonzero components. Permuting the columns
and rows of U, if necessary, we may assume that #,,_ 1 and w,, -, are not equal

to zero. Then there exist nonzero a,, 4s, . . ., a4, € F, such that 3%, a;u; -1 = 0.
Consider the matrix H defined by H = ¥, ajHz—m+:. Since for i = 2n — q +
1, ..., 2n, H; is the zero matrix, H is the zero matrix as well. Then, in view of

Proposition 1, we have fi(a) = [[ 2, p%(a), cf. [13, Theorem 8.57, p. 426]. It
follows from Proposition 2 that rank H = 2n — q — 1. On the other hand, the
bilinear form x” Hy can be computed in 2n — g — 2 multiplications by

X"Hy =(0, az, ..., Gu-1, Gm)m, U)P,

because the first and the last component of (0, a,, .. ., @&u-1, @u)(Im, U) are zero.
This contradiction completes the proof of Proposition 9. [

PROPOSITION 10. Let q be odd, deg p§(a) = 2, rs = 2, and for any H € S,
if rank H = 2, then H = H. Then there exists a subset S’ of S containing
[2n — q)/21 elements such that computing the set of bilinear forms defined by
{xTHy}yes requires at least 2n — q + 1 multiplications.

¢ It follows from Lemma 2 that U has at least 2n ~ ¢ — m columns.
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PrROOF. We may assume that 2n — g = 5. The case of 2n — ¢ < 3 can be
treated exactly as in the proof of Proposition 9. Since q is odd, we have
= [(2Zn — ¢)/27 — 1. We may assume that for some j, 2n —m < j <
rank H;, = 2, and that for each i = 1, 2, ..., m there exists a j;, 2n — m s

Ji = 2n such that f;; () = pf{a). Then we have

(X" Han-mY, X" Hopms2Vs -+« y X Hop¥)' = (Lsr, U)p,

where U consists of the last m + 1 rows of V.
We have to prove that U has at least m + 1 columns. Assume, by contradiction,

that U has '7n—n_{m-l- l\—mnn]nmnc Let Tf—(u Vi=1 L Since
i Viliia wij Ji=1i,..., m+i,j=1i,..., me Mriive
computing each x H Y, i= 2n -m2n—m+1, ..., 2n, requires at least two

multiplications and the number of columns of U is equal 10 m, the matrix U has a
column with two nonzero components. Permuting the columns and rows U, if
necessary, we may assume that u,, ,, and .+, » are not equal to zero. If rank H>,,,
= 2, then we proceed exactlv as in the proof of Proposition 9. Otherwise we may
assume that f, (a) = p{(a) and rank H,,_.... = 2. There exist nonzero a,,
as, ..., am € F, such that ¥, a;u;,,—, = 0. Consider the matrix H defined by
H = Z:;l aiHZn—m+i-

Since for i = 2n - q-m +1,...,2n rank H; < 1, it follows that rank A < 2.
Then fi(a) = 175" p%(a), and, bv Proposmon 2, we have rank H=2n—g¢g— 1.
On the other hand, exactly as in the proof of Proposition 9, it can be shown that
the bilinear form x"Hy can be computed in 2n — g — 2 multiplications. This

PR PRI, PP PNPUEPS FERERpy haiy ol 5 JPRSIRPI. P E. gy ]

quleUlbLlUll LCOILIIPICLICS UIC plUUl Ul rlUpUblllUll lU wJ

Now the reader can easily convince himself that Lemma 5 follows from Propo-
sitions 5-10.

Notice that if » = ¢ + 1, then in the conditions of Propositions 9 or 10 we have
the tight » + 2 bound on the number of multiplications required to compute

{XT"H;y}i=3n/2.... 2n. This bound exceeds the lower bound given by Lemma 2.

7. Multiplication of Polynomials Modulo a Polynomial

FeA 2] Ll feihed AUG WY E a4

Here we consider an application of the technique developed in the previous sections
to multiplication of polynomials modulo a polynomial. All the results obtained in
this section are easy corollaries of Lemma 6 below. To proceed we need one more
notation. For polynomials z(a) and P(a) we denote by res(z(a), P(«)) the minimal

Aageran vagidin ~F of

Uucglive resigue oI L\(X} 1uuuu1u [ \(x}

LeMMA 6. Let x(a) = Y7o x:a’ and y(a) Yo y,a " be polynomzals with
indeterminate coefficients, and let P(a) = o™ — T3 a;a’ be a fixed polynomial
over F of degree m> n. Let x" Hy be a bilinear form defined by a linear combination
of the coefficients of res(x(a)y(a), P(a)), If rank H < 2n + 1 — m, then fy(a) divides

P(a), and rank H = 0.

ProOOF. Let x"Hy be a bilinear form defined by a linear combination of the
coefficients of res(x(a)y(«), P(«)). First we contend that if H = H(s), then P(«) is
a characteristic polynomial of ¢. Since the set of all linear recurring sequences
qahcfvtno the same recurrence is a linear space over F, we may assume fhat X Hv

is deﬁned by a coefficient of res(x(a) y(a), P(a)). Let x(a)y(a) =z(a)=Y#, z, ;
and let res(z(a), P(a)) = 2, o wa!, where w; = ¥ 3%, 5ij2j5 1 =0,1, - 1.
We have to prove that P(a) is a characteristic polynomiai of o; = 5, , s,, Isenes si,z,,,
i=0,1,...,m—1.



164 M. KAMINSKI AND N. H. BSHOUTY

Let P(a) = o — 373! a;a’ and let Cpr denote the companion matrix of P(a),
that is,

r0 0 0 Ao )
1 0 0 a
CP - 0 1 0 a
\ 00 ... 1 Am—1J
Let o, = (Sik, Sik+1s - -+ » Sik+m—1) b€ the kth m-dimensional state vector of ¢,
i=0,1,...,m—1;k=0,1,...,2n— m+ 1. In order to prove our contention

it suffices to show that o,x = ¢,0C%, or, since, trivially, o;¢ is equal to the ith row
of I.,,, it suffices to show that g, is equal to the (i + 1)st row of C%.

Using the regular matrix representation of the algebra Fla]/(P(a)), cf. [6, p.
424], we obtain that the column vector of the coefficients of res(z(a), P(x)) is
equal to

(Z0s Z1s « oo Zme2y Zm—1)T + 2z CE™1(0, 0, ..., 0, DT,
k=n
Therefore, if k = m, then s, is the ith component of the last row of C%"*'. Now
the contention follows from the fact that the vector of the first m — 1 components
of the ith row of C% is equal to the vector of the last m — 1 components of the ith
row of C¢*'.

Since, rank H < 2n — m + 1, by Proposition 2, we have deg fi,(«) + rank H <
2n + 1 — m, which implies deg fi/(a) <2n+ 1 —rank H ~ m=/— m + 1. Now
the divisibility of P(a) by fi,(e) follows from Proposition 1.

It remains to show that rank A = 0. f;;(«) divides P(«), which implies that P(«)
is a characteristic polynomial of ¢ = ¢ — ¢, cf. [13, Theorem 8.55, p. 425]. Since o
and & have the same first m elements, ¢ is the zero sequence. Hence H is the zero
matrix. [J

Next we present some corollaries to Lemma 6. Whereas Corollaries 1 and 2 were
established in [18] in a more general form, Corollaries 3 and 4 are new and cannot
be obtained by the technique used in [18].

COROLLARY 1. Let the field of constants be infinite, and let P(a) =
[T, p%a) be a fixed polynomial of degree n + 1 with its factorization into
irreducible factors p\(a), p2(a), ..., p(a). Let x(a) and y(a) be polynomials of
degree n with indeterminate coefficients. Then computing res(x(a)y(a), P(a))
requires exactly (2n + 2 — k) multiplications.

Proor. Computing res(x(a)y(ce), P(a)) can be performed in 2n + 2 — k
multiplications by means of Chinese Remainder Theorem, cf. [18]. To prove the
lower bound stated in the corollary we proceed as follows. Assume that computing
res(x(a)y(a), P(a)) can be performed in ¢ multiplications. Let res(x(a)y(a),
P(a)) = X0 wia', u = (uo, Uy, ..., t,)", and let p be a t-dimensional vector of
products of linear forms of x and y such that u = Up, where Uisan (n + 1) X ¢
constant matrix. We have to prove that t = 2n + 2 — k. Exactly as in the proof
of Theorem 1, it can be shown that there exists a nonsingular matrix W such
that Wua = (1,41, V)p.
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Let S ={Ho, H,, ..., H,} be the set of Hankel matrices representing the bilinear
forms defined by the components of Wu. If there exists an H € S such that rank
H = n + 1, then V must have at least n columns, which implies t = 2n + 1 =
2n+ 2~k lfrank H;=n,i=0, 1, ..., n, then it follows from Lemmas 1 and 6
that fs(«) = P(«) and rs = 0. Exactly as in the proof of Lemma 4, we can find
a subset S’ of S containing at most k elements such that ds- = n + 1. Then,
exactly as in the proof of Theorem 1, we have t — (n + 1 — k) = n + 1, or
iz2n+2-k O

The following corollary is a partial case of the direct sum conjecture conjectured
by Strassen in [16].

Let B = B(x, y) be a finite set of bilinear forms of x and y over a field F. u-(B)
denotes the minimal number of multiplications required to compute all the forms
of B by means of bilinear algorithms over F.

COROLLARY 2. Let the field of constants F be infinite, and let x,(a) and y;(a),

=1, 2, ..., k, be polynomials of degree n; with disjoint set of indeterminate
coefficients. Let P,(«), P.(a), ..., P(a) be powers of distinct irreducible polyno-
mials, deg Play=n;,i=1,2,..., k. Then

k k k
.u.r(U res(x;(a)y:(a), Pf(a))) = ¥ wr(res(x;(a)y:(a), Pi(a))) = ¥ 2n; + 1).
i=1 i=1 i=1
ProOF. The proof immediately follows from Corollary 1, because, by means of
Chinese Remainder Theorem, each algorithm for computing U%, res(x;(a)y:(),
P;(a)) can be transformed to an algorithm for multiplying the polynomials of
degree Y, n; — 1 modulo the product of the moduli. O

The above two proofs differ from those of Winograd in [18] in the following. In
(18] the result concerning multiplication of polynomials modulo a polynomial
implied by an instance of the direct sum conjecture, which was proved first.

COROLLARY 3. Let the field of constants F be infinite, and let P(a) =

., p%(e) be a fixed polynomial of degree m with its factorization into irreducible
factors pi(a), p(a), ..., p(a). Let x(a) and y(a) be polynomials of degree n < m
with indeterminate coefficients. If m — k = n, then computing res(x(a)y(a), P(a))
requires 2n + 1 multiplications.

PRPS. SU PR ST

PROOF. UUVlUUbl)’, computing res(x(a)y{« }, P{a)) can be performed in 27 + 1
multiplications by first computing the product x(«)y(«), and then reducing it
modulo P(a). To prove the lower bound stated in the corollary we proceed as
follows. Assume that computing l’es(x(a)y(a) P(a)) can be performed in ¢ multi-
plications. Let res(x(a)y(a) P(a)) = 27" wia', and let u = (uo, Uy, . .., Umey)'.

Tat m ha a f . Aim al vectar of nraducte of linear farme of v and v cnn‘f\ that
l_l\i‘r l’ uv a L‘Ullllullolullal V\/\./I,Ul i leuuvto v llll\/ul lUllllD Ul A €iivgl ¥y Oouwvil blla‘-

u = Up, where U is an m X t constant matrix. We have to prove that t = 2n + 1.
As in the previous proofs, it can be shown that there exists a nonsingular matrix
W such that Wu = (.., V)p.

Let S = {Hy, H,, ..., H,_,} be the set of Hankel matrices representing the

bilinear forms defined by the components of Wz, If there exists an H; € S such
that rank H; > 2n + 1 — m, then V must have at least 2n — m columns, which
implies ¢ = 2n + 1. Otherwise, by Lemmas 1 and 6, we have ds = m. Then, as in
the proof of Lemma 4, one can show that there exists a subset S’ of S containing

at most k elements such that ds = n + 1. By Lemma 2, we have ur({x" Hy nes' =
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n + 1. Then, exactly as in the proof of Theorem 1, we have t — (m — k) = n + 1.
Since m — k = n the above inequality implies = (m - k) + (n+ 1) =2n+ 1. O

COROLLARY 4. Let the field of constants be infinite. Let n be even and let
P(a) = [1 2 pl(a) be a fixed polynomial of degree n + 2 with its factoriza-
tion into irreducible factors p,(a), pa(a), ..., Drenp(e) such that deg p%(a) = 2,
i=1,2,..., 1+ n/2. Let x(a) and y(a) be polynomials of degree n with
indeterminate coefficients. Then computing res(x(a)y(a), P(a)) requires exactly
3 + 3n/2 multiplications.

The proof of Corollary 4 is similar to the proof of Proposition 9 and will be
omitted. Notice that in Corollaries 3 and 4 the degree of the moduli is greater than
n+1.

In order to state one more corollary to Lemma 6 we need the following definition:

Definition. Let F* be the k-dimensional vector space over a field F, and let
fei, ..., e} be a fixed basis of F*. Let v = Y, a;e, € F*. Define w(v), the weight
of v, as the number of nonzero components a; of v. If L is a subspace of F* of
dimension /, we say that L is a linear code of dimension | and length k. Define
w(L), the minimal distance of L, by »(L) = min {w(v)|0# v € L].

COROLLARY 5. Let x(a) and y(a) be polynomials with indeterminate coeffi-
cients of degree n over a field F, and let P(a) be a fixed polynomial of degree
m > n. If P(a) has no factors of degree less than 2n + 2 — m, then the number of
multiplications required to compute res(x(a)y(a), P(a)) by means of a bilinear
algorithm over F is not smaller than the minimum code length of linear codes over
F of minimal distance 2n + 2 — m and dimension m. In particular, if F is infinite,
then computing res(x(a), y(a), P(a)) requires exactly 2n + 1 multiplications.

For an irreducible polynomial P(«) and m = n + 1; and for an irreducible
polynomial P(«) and any m = n + 1 the above corollary was obtained in [11] and
[9], respectively.

Proor. Let x"Hy be a bilinear form defined by a linear combination of the
coefficients of res(x(a)y(a), P(a)). It suffices to show that rank H = 2n + 2 — m.
Were rank H < 2n + 1 — m, by Proposition 2 and Lemma 6, P(«) would have a
factor of degree less than 2n + 2 — m, which contradicts the conditions of the
corollary. O

Notice that the second part of Corollary 5 follows from Corollary 3 as well.

Appendix A. The Number of Distinct Factors of a Polynomial over a Finite Field

Let i,(n) denote the maximal possible number of distinct irreducible factors of a
polynomial of degree n over F,. In this appendix we prove the following upper
bound on i (n).

LemMa Al. Ifq = 3, theni,(n) < n/(log,n — 3).

Let N,(j) denote the number of monic irreducible polynomials of degree j over
F,. It is well-known that N,(j) = (1/)) ¥ 4, #(d)q’’%, where u(d) is Mébius function
of d, cf. [13, Theorem 3.25, p. 93].

For the proof of Lemma A1 we need some preliminary results.

PROPOSITION Al. Ifj =5 and q = 3, then 2N,(j — 1) < N,(j).
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PROOF. We have

L4 _.r_pN=nN(iv<liaio
59 j(q_l)(q )= q(J)—j(q q),

cf. [13, Exercises 3.26 and 3.27, p. 142]. Hence, it suffices to show that
i1 J

297 & __a

=1 j Jj@-1

Multiplying the above inequality of j/g’ and performing simple manipulations,

we nkf that it i¢c emnivalant tn
we obtain that it 1s Cyuivaiviit v

1 _ _i_ -2,
2(1 +j — 1) <gq —_— q
Recalling the bounds on ¢ and j we obtain
1 1 _ 35 — =i
2(1+ 1><2<1+4)s3 23 =qg-q . a
PROPOSITION A2. If q = 3 and k = 2, then T*., N,(j) < 1/(k - 1) T5,
IN,(J)-

PROOF. We have

g’

k 1 m 1 m=—1 2 ) )
T TN = T (;:—12 N =5 3, qu(n) + % NG

Since

ZJN(J)> Z N,(),

j= Jj=
it suffices to show that if m = 3, then

m—1

1 s 1 R
N,(m) < 'm—__‘fjgl ING) = 5 jgl JNG()).

Multiplying the last inequality by (m — 1)(m — 2) and performing simple
manipulations, we obtain that it is equivalent to

m—1

_Z JNg(j) < (m = 2)Ny(m) = ZS [(G = 2N,(j) = (J = 3N,(j — DI + 2N, (4).

Since for ¢ = 3 we have

3 - ¢
2 JNo(j) =g + (@* = @) +(@° = ) <T——— = 2N, (4),
P
it suffices to prove that if j = 5, then
(= DN = D<G=2NG) = (G = 3ING = D).
The last inequality is equivalent to

2N, (J — 1) < Ny(j),
and the result follows from Proposition Al. O
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PROOF OF LEMMA Al. Let A(a) = [] =1 p%“(«) be a polynomial of degree n over
F, with its prime factorization. We have to prove that / < n/(log,n — 3). Let
n= ¥ jN,j) + km, where 0 < m < N,(k). Increasing /, if necessary, we may
assume that deg p(a) = kand d,=1,i= 1,2, ..., [; and that each irreducible
polynomial of degree less than k divides A(«). Thus m is the number of irreducible
factors of #(a) of degree k and [ = 342! N,(j) + m.

By Proposition A2, we have

_S : YISl iN,(j) +km _ n
l—jgqu(j)+m< 7 =%_3"

The proof of Lemma Al will be completed if we show that £ + > log,n, or,
equivalently, if we show that n < ¢**'. Since n = 321 jN,(j) + km < T*_, iN,(j),
the desired inequality follows from the estimation below.

k —
S NG < S =TT e 0

Jj=1 j=1 qg—1

Appendix B. An Optimal Algorithm for Polynomial Multiplication

In this appendix we show that for n < g + 1 we have M,(n) = 3n+ 1 —1g/2). In
order to present the above bound uniformly we assume that » < 2 for g = 2. The
inequality of M,(3) < 9 follows from recursive application of the algorithm for
computing the product of two linear polynomials in three multiplications, which
1c cimilar tn the mathad of Karatenha and Ofman ~F 1 n 491

1s similar to the method of Karatsuba and Ofman, cf. [1, p. 62].

Let x(a) = Y1 x;a' and y(a) = ¥ yia’. Similarly to [18] computing the
coefficients of the product in x(a)y(a) in 3n# + 1 — Lg/2] multiplications can be
done by computing x(a)y(a) modulo linear and quadratic polynomials as follows.
Let u,(a), tx(e), . .., u,(a) be all the linear monic polynomials over F,, and let
U (@), uga(a), ..., Urpargyn(a) be [(2n — g)/21 quadratic monic irreducible
polynomlals over F,. Such polynomlals exist, because the number of quadratic
monic irreducible polynomials over F, is equal to (g — ¢)/2, cf. [13, Theorem

3.25,p.93],and forn =g+ i, g = 3 we have

¢-q Ag+D=q_2n—g

2 2 -2
We distinguish between the cases of odd and even q. If ¢ is odd, then
r2n+q)/21 - 2 — + 1
) degui(a)=q+2[2n2 q]=q+2—”——f———=2n+ L
i=1

This allows to compute the coefficients of the product x(«)y(«) as follows.
Fori=1,2,...,12n + ¢)/21 compute z;(a) = x(a)y(e) mod u;(a) and
reconstruct x(a)y(a) from the residues {z;(a)}i=.2, .. r@n+qy21 by means of Chinese
Remainder Theorem. Since reducing x(a) and y(e) modulo a fixed polynomial
and reconstructing the product requires no nonscalar multiplications, the above

111y LIk LU0CL TOLUITON NOISdlg

computation can be performed in

2n—g+1 4]
a+3T ==+ 1|5

multiplications: computing the product of zero degree polynomials can be per-
formed in one multiplication, and computing the product of linear polynomials
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can be performed in three multiplications over any field. Notice that deg z;,(«) =
0,if i = g, and deg z;(a) = 1, otherwise.

IPn.n ayvan

thna
1L Y 1> \-VDLI’ l.llCll

I(2n+q)/21 2” _
Y deg uifa) = g +2 =1

i=1

= 2n.

This allows to compute the coefficients of the product of x(a)y(«) as follows.
Fori=1,2,...,(2n — ¢g)/2 compute z;{a) = x(a)y(a) mod u;{(«). Then, by
means of Chinese Remainder Theorem, compute from the residues

£ NY

{Zzi{a)}i=12....an-a)2

the polynomial Z(«) such that Z(a) = x(a)y(a) mod []{¥7/? y;(). Similarly to
the case of an odd q one can show that the above computation can be performed
in 3n — Lg/2] multiplications. Notice that the polynomial []%{%/? u;(a) has no
multiple roots. Finally, compute x(a)y(a) by

(2n+q)/2

X(a)y(a) = Ha) + Xayu 11 u(e).

j=1

This computation requires one more muitiplication. Thus the total number of
multiplications involved is equal to 3n + 1 — Lg/2). Since for any root a of

H‘f;’*‘”/z u; () we have x(a)y(a) = #(a), the validity of the above computation
follows from [18, eq. 11]. This completes the proof of the 3n + 1 — Lg/21 upper
bound on iM,(n). O

NOTE ADDED IN PROOF. Recently Joos Heintz informed us that a slightly worse
bound

"
log,log,n

has been established by Walter Baur in 1985 by a different method. This result has
never been published.
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