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1. Introduction 
In infinite fields it is possible to compute the coefficients of the product of two 
polynomials of degree n in 2n + 1 nonscalar multiplications. It is known from [ 181 
that each algorithm for computing the above product in 2n + 1 nonscalar multi- 
plications must evaluate the multiplicands at a minimum of 2n distinct points, 
multiply the samples, and interpolate the result. However, in finite fields, this 
method fails if 2n exceeds the number of field elements. Thus, in general, the above 
bound cannot be achieved in finite fields. 

Let F, denote the q-element field and let M,(n) denote the number of multipli- 
cations required to compute the coefficients of the product of two polynomials of 
degree n over F, by means of bilinear algorithms. In this paper we prove that for 
any q we have M,(n) 2 3n - o(n). The best lower bound on M,(n) known from 
the literature, cf. [2], [3], [9], [l I], and [12], states that M,(n) is bounded from 
below by the minimum length of a linear code over F, of dimension n + 1 and 
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minimal distance n + l,l,’ which implies the following linear lower bounds on 
K(n). Mb) 2 (2 + l/tq - l))n - o(n), if q 2 3, and, for large values of n, 
k&(n) L 3.52n. However, an easy calculation based on the Gilbert-Varshamov 
upper bound on the length of linear codes, cf. [ 14, Theorem 4.7, p. 871, shows that 
for q r 7 there exist linear codes of dimension n + 1, minimal distance n + 1, and 
length 2.9n, say. (Actually, it is not hard to show that there exists a linear code of 
dimension n + 1, minimal distance n + 1, and length (2 + 0( l/in q))n. Hence, 
the constant factor of the linear lower bound established in [2], [3], [9], [ 1 I], and 
[ 121 tends to 2, when q tends to infinity.) Thus, if q I 7, the 3n - o(n) lower bound 
cannot be achieved by the previously known technique. For q = 3, 4, 5, it is 
unknown whether or not there exist linear codes of dimension n + 1, minimal 
distance n i- 1, and length less than 3n; but the best-known lower bound on the 
length of such codes is (2 + l/(q - 1))n - o(n). Therefore, in these cases, the 
3n - o(n) lower bound on M,(n) can be considered as an improvement of the 
known one as well. The only case where the 3n - o(n) lower bound is worse than 
the bound given by the code length is that of q = 2. However, in this case, our 
technique also allows to obtain an alternative proof of the known lower bound. 

If q/2 < n 5 q + 1, the method we use provides the tight bound of M,(n) = 3n 
+ 1 - Lq/2A. (As it has been mentioned earlier, if n 5 q/2, then M,(n) = 2n + 1.) 
All these tight bounds are new and cannot be achieved by the technique based on 
coding theory. 

Although we consider only bilinear algorithms and the lower bound we present 
is linear, the result seems to be of interest, since the constant factor of that bound 
is independent on q, and in view of quasi-linear upper bound offu(n) . n, established 
in [ 111. Here f,(n) is a very slowly growing function of n defined recursively as 
follows 

(1) f,(l) andS,W = 5. 
(2) f2(3) = h(3) = 2 and f,(3) = +, if q > 3. 
(3) If n r 4, thenf,(n) = 2f,(flog,2(q - 1)nl). 

In fact, the asymptotic behavior off,(n) is similar to the behavior of the function 
21°gj”, where log,*n is the inverse of the function G,(n), defined recursively by 
G,(O) = q and G,(n + 1) = qGJn). 

It is known from [ 161 that if a set of bilinear forms over an infinite field can be 
computed in t multiplications/divisions, then it can be computed in t multiplica- 
tions by a bilinear algorithm whose total number of operations differs from that of 
the original one by a factor of a small constant. But it is unknown whether a similar 
result holds for finite fields. However, one can easily prove that bilinear algorithms 
for computing a set of bilinear forms are optimal within the algorithms without 
divisions. Also we would like to note that all the algorithms for polynomial 

’ The definitions of a linear code can be found in the end of Section 7. 
2 Actually, the bound established in [9] and [ 1 l] concerns the number of multiplications required 
to compute the product of two polynomials of degree n modulo an irreducible polynomial of degree 
n + 1. It is unknown whether this bound follows from the same bound on M,(n), since, unlike in the 
case of infinite fields, it is unknown whether computing the product modulo an irreducible polynomial 
requires less multiplications than computing the product itself, cf. [ 1 I]. In any case, the above bound 
on the number of multiplications required to compute the product of two polynomials modulo an 
irreducible polynomial, and even a more general result, can be easily obtained by our method, cf. 
Corollary 5 to Lemma 7 in the end of Section 7. 
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multiplication over finite fields known from the literature are bilinear, cf. [ 1 I] 
and [15]. 

The proofs are based on the theory of linear recurring sequences and an analysis 
of Hankel matrices3 representing bilinear forms defined by linear combinations of 
the coefficients of the product of two polynomials. This technique can be also 
applied to analysis of algorithms for multiplication of polynomials modulo a 
polynomial. 

The paper is organized as follows. In the next section we give the statements of 
the main results. In Section 3 we introduce some notation and definitions, and 
prove the major auxiliary technical lemmas. The proofs of the main results are 
presented in Sections 4, 5, and 6. In Section 7 we consider some applications of 
our method to analysis of algorithms for multiplication of polynomials modulo a 
polynomial. Finally, in Appendix A we present an upper bound on the number of 
distinct irreducible factors of a polynomial over a finite field, and in Appendix B 
we present an optimal algorithm for computing the product of two polynomials of 
degree not exceeding q + 1 over FQ. 

2. Statements of Main Results 

In this paper we restrict ourselves to bilinear algorithms, which are defined below. 
Let x and y be column vectors of indeterminates. A bilinear algorithm for 

computing a set of bilinear forms of x and y is a straight-line algorithm whose 
nonscalar multiplications are of the form L(x) = L’(y), where L(x) and L’(y) are 
linear forms of x and y, respectively, and each bilinear form is obtained by 
computing a linear combination of these products. 

We remind the reader that F, denotes the q-element field and M,(n) denotes the 
number of multiplications required to compute the coefficients of the product of 
two polynomials of degree n over F4 by means of bilinear algorithms. 

The main results of the paper are given by Theorems 1 and 2 below. 

THEOREM 1. For any q > 3 we have M,(n) > 3n - n/(log,n - 3). 

We recall that it is known from [3] that for sufficiently large n we have 
J&(n) > 3.52n. 

THEOREM 2. For any q and q/2 < n 5 q + 1 we have M,(n) = 312 + 1 - 
Lq/2J. 

3. Notation and Auxiliary Lemmas ’ 
In this section we introduce some notation and prove the major auxiliary lemmas 
needed for the proofs of Theorems 1 and 2. 

Let k be a positive integer and let UC,, . . . , a&l be given elements of a field F. 
A sequence c = so, sl, . . . , si of elements of F satisfying the relation 

&+k = ak-1sn+k-l + ak-2sn+k-2 + ” ’ + a&, n=O, l,...,l-k 

is called a (finite kth-order homogeneous) linear recurring sequence in F. The 
terms so, sI, . . . , Sk-, are referred to as initial values. The polynomial 

f(a) = ak - akmlak- - akm2akm2 - * - * - a0 E F[a] 

is called a characteristic polynomial of u. Proposition 1 below shows that if a finite 
linear recurring sequence is “sufficiently long,” then it possesses an important 
property of infinite linear recurring sequences. 

’ The definition of Hankel matrices is given in Section 3. 
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PROPOSITION 1. Let u and f(a) be as above, and let fo(a) be a characteristic 
polynomial of u of the minimal degree. Zf degf,(cy) + deg f(a) 5 1 + 1, thenf,(a) 
divides f (a). 

PROOF. Let deg f(a) = m. Consider the system of linear equations in wo, 
~l,-*~,~m-l 

(1) 

Since, by definition, J(cY) is the minimal polynomial of the infinite sequence 
extending u and satisfying the recurrence defined by f,(a), the rank of the 
(1 - m + 1) x m matrix in (1) is equal to deg fb(a), cf. [ 13, Theorem 8.51, 
p. 422].4 (Here we use the condition degf,(cw) + deg f(a) 5 I+ 1.) 

It follows that the dimension of the affine space of the solutions of (1) is equal 
to m - degf,(cu). On the other hand, for each manic polynomial Q(a) = am - 
Cg;’ b, (Y’ divisible by fo(a), the vector (bO, b, , . . . , b,-I)T is a solution for (l), cf. 
[ 13, Theorem 8.42, p. 4 181. Since the dimension of the alline space over F consisting 
of such polynomials is equal to m - deg f,(a), this space contains f(a). Hence f(a) 
is divisible byf,(Lu). q 

A uniquely determined manic polynomialf,(a) E F[a] given by Proposition 1 
is called the minimal polynomial of Q. 

For a sequence (I = (so, . . . , s2,,J we define the (n + 1) x (n + 1) Hankel matrix 
H(u) by 

LetH’denotethe(i+ l)strowofH,i=O, l,...,n.IfrankH<n+ l,letkbe 
the minimal positive integer such that there exist a, . . . , a&, E F satisfying 

k-l 

C aiHi = Hk. 
i=o 

We define CT = (So, SI, . . . , SZ,, ) by the recurrence 

a?i+k = ak-,?;+k-l + ak-&+k-2 + * * * + &Si, 

with initial values Si = Si, i = 0, . . . , k - 1. 
Let a = u - a. We shall denote H(G) and H(a) = H - H(Z) by fi and D, 

respectively. Let fH(a) = ak - 2 !:,j aia i, that is, fH(a!) is a characteristic polynomial 
of 2. (In fact, fH(a) = f;(a), since, by definition, fH(a) is a characteristic polynomial 
of the minimal degree.) 

It follows from the above definition that rank H 5 deg fH(a) + rank R. 
Proposition 2 below shows that, actually, rank H = deg fH(a) + rank If. 

4 The proofs in [ 131 do not use the finiteness of the underlying field. 
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PROPOSITION 2. Let H(a) be an (n + 1) x (n + 1) Hankel matrix ofrank not 
exceeding n. Then the set of vectors consisting of the first deg f&a) and the last 
rank R rows of H is linearly independent. 

PROOF. By the definition of fi and R it suffices to prove that the set of vectors 
consisting of the first deg f"(a) rows of H and the last rank R rows of I? is linearly 
independent. Let deg fH(a) = k. Since deg fH(a) = deg f;(a) (=k), the rank of the 
k x k upper left submatrix of H is equal to k, cf. [ 13, Theorem 8.5 1, p. 4221. Since 
R is a Hankel matrix whose first row is the zero vector, the last rank If rows of R 
are linearly independent. Now the result follows from the fact that the first k 
components of the rows of il are equal to zero. 0 

Lets= {Ho, H I,..., H,J be an (s + I)-element set of (n + 1) x (n + 1) Hankel 
matrices of rank not exceeding n. Define fs(a) = lcm(fH,(a) ] i = 0, 1, . . . , s),’ - 
ds = deg fs(a) and rs = max(rank H; ] i = 0, 1, . . . , s]. 

The proofs of Theorems 1 and 2 are based on Lemmas 1, 2, and 3 below. 
Let V be a vector space over F, vI, v2, . . . , v, E V. [v,, VZ, . . . , vm) denotes the 

linear subspace of V spanned by vl, ~2, . . . , v,. 

LEMMA 1. Let S = {H,, H,, . . . , H,] be a set of(n + 1) x (n + 1) Hankel 
matrices of rank not exceeding n. Then dim[S] 5 ds + rs. 

Let x = (x0, xl, . . . , xJT and y = ( yo, y,, . . . , Y,)~ be column vectors of 
indeterminates. 

LEMMA 2. Let S = (Ho, HI, . . . , H,) be a set of (n + 1) x (n + 1) Hankel 
matrices of rank not exceeding n. If ds + rs 2 n + 1, then computing the set of 
bilinear forms of x and y defined by xTHoy, xTHl y, . . . , x’H,y requires at least 
n + I multiplications. 

LEMMA 3. Let S = (Ho, H,, . . . , H,) be a set of (n + 1) x (n + 1) Hankel 
matrices of rank not exceeding n. If ds + rs % n, then computing the set of bilinear 
forms of x and y’ defined by xTHoy, x~H, y, . . . , xTH,y requires at least ds + rs 
multiplications. 

At this point we advise the reader to postpone reading the proofs of Lemmas 
l-3 and directly move to the next sections that contain the proofs of the main 
results. 

PROOF OF LEMMA 1. Let Hi = H(ai), i = 0, 1, . . . , S. Obviously, [HO, HI, . . . , 
Hs] is isomorphic to [uo, CT], . . . , a,]. Since ci = Zi + Gi, i = 0, 1, . . . , S, it suffices 
to show that dim[Co, a,, . . . , Gs] I ds, and dim[&, Cl, . . . , a,] I rs. 

To prove dim[go, a,, . . . , a,] I ds, we observe that, by Proposition 1, f&a) is a 
characteristic polynomial of Zi, i = 0, 1, . . . , s. Hence each of those sequences is 
determined by the ds-dimensional vector of its first ds elements. This proves the 
inequality concerning ds . 

To prove dim[Go, a,, . . . , a,] zz rs, we observe that the first (2n + 1 - rs) 
elements of 6i are zero, i = 0, 1, . . . , s. Hence each of the above sequences is 
determined by an rs-dimensional vector of its last rs elements. This proves the 
inequality concerning rs. El 

5 km is an abbreviation for “the least common multiple”. 



Multiplicative Complexity of Polynomial Multiplication over Finite Fields 155 

PROOF OF LEMMA 2. Let z = (zO, zl, . . . , z,)~ be a column vector of new 
indeterminates. Consider the dual set of bilinear forms of y and z defined by the 
components of the vector C & zj Hj y. Computing the above set of bilinear forms 
requires the same number of multiplications as computing the original set xTHOy, 
xTH,y, . . . . xTHsy, cf. [5]. Hence for the proof of the lemma it suffices to show 
that the rows of the matrix C&O z, Hj are linearly independent over F, cf. [ 171. 
Assume, by contradiction, that the first k rows of C&o zjHj are linearly independent, 
but the first (k + 1) rows are linearly dependent: 

k 

2 a,(zOHh + zIH1 + - - - + z,H:) = 0, 
i=O 

where & = 1. Since ZO, zI, . . . , z, are indeterminates, the above identity is 
equivalent to 

C a&=0, j=O, l,..., S. (2) 
i=O 

Hence, by Proposition 2, k < n + 1 - rank Rj, j = 0, 1, . . . , s, which implies 

k<n+ 1 - maxirank Rjlj = 0, 1, . . . , sJ = n + 1 - rs. (3) 

Since deg$, 5 n, it follows from (2) and Proposition 1 thatfHl(a) =&,(a) divides 
CL0 a,a’, j = 0, 1, . . . , s. Thusf&a) divides Et0 a,x’. Hence ds 5 k, which, 
together with (3), implies ds + rs < n + 1. This contradiction completes the proof 
of Lemma 2. Cl 

PROOF OF LEMMA 3. By the argument at the beginning of the proof of Lemma 
2, in the same notation, it suffices to show that the first ds and the last rs rows of 
C&o zj Hj are linearly independent over F. We break the proof of linear indepen- 
dence of the above set of rows into two stages. First we prove that the first ds rows 
of Cj=, zjH, are linearly independent. Then we prove that no nonzero linear 
combination over F of the last rs rows of C&o zjHj can be equal to a linear 
combination of its first ds rows. 

To show that the first ds rows of C&o zjHj are linearly independent over F we 
proceed exactly as in the proof of Lemma 2. Assume, by contradiction, that for 
some k < ds we have 

C a,(z,H& + z,H’i + . -. + z,Hi.) = 0, 
i=O 

where ak = 1. Since ZO, zI, . . . , z, are indeterminates, the above identity is 
equivalent to 

C aiH: = 0, j=O,l,..., s. (4) 
i=O 

By Proposition 1, it follows from (4) thatf&(a) =&,(a) divides Cfao aia’, i = 0, 
1 * * 3 S. Thus f&a) divides Cf& ai@‘. Hence ds 5 k, which contradicts our 
a&.tmption and proves that the first ds rows of CjZo zjHj are linearly independent 
over F. 

To show that no nonzero linear combination over F of the last rs rows of 
CfEo zjHj can be equal to a linear combination of its first ds rows, assume, by 



156 M. KAMINSKI AND N. H. BSHOUTY 

contradiction, that 
d,-1 

2 a;(zoH& + z,H’I + * * * + z,Hj) 
i=O 

n 

+ C bi(ZOH6 +Z,H{ + **’ +Z.yH:)=O, 
i=n-rs+ 1 

wherenotallb;,i=n-rs+ l,..., n, are zero. Without loss of generality we may 
assume that rs = rank Eo. Since zo, zl, . . . , z, are indeterminates, in particular, 
we have 

ds-1 

C UiH& + i biHb = 0. 
i=O i=n+ 1 --rank& 

Since deg f&,(a) I dS, and dS + rank R. < yt + 1, it follows from the definition of 
& and R. that the first dS rows of Ho are linear combinations of its first 
degf,&,(~) rows. Hence, by (5), we have 

de&Vii,,(a)- 1 
c CiH6 + i biH6 = 0, 

i=O i=n+ I -rank& 

for some constants CO, cl, . . . , cdeg&&)-I. Since not all b;, i = n + 1 - rs, 
. . . ) n + 1, are zero, the last equality contradicts Proposition 2. This completes the 
proof of Lemma 3, because each linear combination of the above rows either 
includes or does not include last rows. Cl 

4. Proof of Theorem 1 
Actually, Theorem 1 is a corollary of another general result given by Lemma 4 
below. First, we introduce one more notation that will be frequently used in this 
section. We denote the maximal possible number of distinct factors of a polynomial 
of degree n over Fq by i,(n). It is shown in Appendix A that for q I 3 we have 
i,(n) < n/(log,n - 3). 

LEMMA 4. Let S = (Ho, HI, . . . , Hnj be a set of(n + 1) x (n + 1) Hankel 
matrices that are linearly independent over F,. Then there exists a subset S’ of S 
containing i,(n) + 1 orfewer elements such that computing the set of bilinearforms 
defined by (x’Hy) nESj requires at least n + 1 multiplications. 

PROOF. If some H E S is of rank n + 1, the lemma, is, trivially, true, since we 
can take S ’ = (H ). Otherwise, by Lemma 1, we have dS + rs I IZ + 1, which 
implies deg -&(a) 2 n + 1 - rs. Let fs((u) = I’If=, p:(a) be the decomposition 
of f&a) into irreducible factors p](a), p2(cy), . . . , p,(a) such that deg p](a) z 
deg PI(a) 2 . . . 2 degp,(ct). Let m 5 1 be such that deg nJE1 p?(a) 2 n + 1 - rs, 
and deg fl,M=;’ p,“,(a) < n + 1 - rs. 

We construct a subset S ’ of S, inductively, as follows: So = (Hi, ), where rank 
Rio = rs, if rs > 0, and So = 0, otherwise. 

Assume Sj, j < m, has been constructed. Choose an HG,, such that fH,,+I(a) . . . d,+, is divisible by pj+l ((Y) and put S,,, = Sj U (HG,,]. 
Let S’ = S,. By the construction above,&,(a) is divisible by njE1 P,“,<(Y), hence 

ds, 2 n + 1 - rs. This together with rank pi,, = rs = rs, implies ds, + rsj z n + 1. 
It follows from Lemma 2 that computing the set of bilinear forms defined by 
(xTHyjnEsj requires at least y1 + 1 multiplications. 
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In order to complete the proof of Lemma 4, it remains to show that the 
number of the elements of S’ does not exceed i,(n) + 1. We contend that 
m 5 i,(n + 1 - rs). If deg n,zl p?(a) = n + 1 - rs, there is nothing to prove. 
If deg pm(a) = 1, then, by the definition of m, there exists a 1 5 dL 5 d, such that 
deg(n,“=;’ py(~~)))p$(a) = n + 1 - rs, and the result follows. Otherwise, that is, 
degpj(a)>l,j= 1,2,...,m,thepolynomial 

has m irreducible factors and is of degree n + 1 - rs. Hence m 5 i,(n + 1 - rs), 
which proves our contention. 

Obviously, the number of elements of S’ is bounded by m + 1. Hence the 
number of the elements of S’ does not exceed i,(n + I), if rs = 0, and does not 
exceed &(n + 1 - rs) + 1, otherwise. In both cases, the number of the elements of 
S’isboundedbym5i,(n)+ 1. 0 

Now Theorem 1 is implied by Lemma 4 in a standard manner, cf. [ 1 l] and [ 181, 
as follows. 

PROOF OF THEOREM 1. We have to compute zk = zk(x, y) = Ci+jzk xiyi, 
k = 0, . . . ) 2n. Let 2 = (zo, ZI, . . . ) Zzn)T. Assume that M,(n) = t, that is, all the 
bilinear forms defined by the components of z can be computed in t multiplications, 
namely there exist t linear forms L,(x), . . . , L,(x) of x and t linear forms L;(y), 

L:(y) of y such that each zk is a linear combination of the products 
L&L:(y), . . .) L,(x)L,! (y). It is known from [4] that t L 2n + 1. Let p = 
(LwL;(Y), * * . , L,(x)L: (y))‘. By the definition of bilinear algorithms there exists 
a (2n + 1) X t matrix U whose entries are constants from F, such that z = Up. 

We contend first that rank U = 2n + 1. Obviously, zk(x, y) = xTAky, where 
Ak = (a;,j,k) is an (n + 1) X (n + 1) Hankel matrix defined by 

ai,j,k = 
{ 

1, if i+j=k+2, 
0 

9 otherwise. 

Since the matrices Ao, A,, . . . , AZn are linearly independent, the rows of U are 
independent as well. This proves our contention. 

Permuting the components of p, if necessary, we may assume that the first (2n 
+ 1) columns of U are linearly independent. Hence, there exist a nonsingular 
(2n + 1) x (2n + 1) matrix Wand (2n + 1) x (t - 2n - 1) matrix V/such that 

wz = (L+,, VP, 

where I*,,+ 1 denotes the (2n + 1) x (2n + 1) identity matrix. That is, the first 
(2n + 1) columns of the product WU are those of Zz,,+, . 

By Lemma 4, there exist i,(n) + 1 components of Wz ,which define bilinear 
forms whose multiplicative complexity is at least n + 1. Without loss of generality 
we may assume that the above bilinear forms are defined by the last compo- 
nents of Wz. Since the first 2n - i,(n) components of the last i,(n) + 1 rows of 
(L+ I , V) are zero, we have t - (2n - i,(n)) 2 n + 1. This implies t 2 3n + 1 - 
i,(n). Using the n/(log,n - 3) upper bound on i,(n), cf. Appendix A, we obtain 
M,(n) = t > 3n - n/(log,n - 3). Cl 

Remark. Applying the argument used in the proof of Lemma 4 to 2n + 1 
linearly independent Hankel matrices Ho, H, , . . . , Hzn, and assuming that deg 
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p+(a) 2 deg @$(a) z . . - 5 deg p?(a), one can improve the lower bound given 
by Theorem 1 by O(n/log$z). The proof requires a more involved counting 
argument than that in Appendix A and will be omitted. 

5. Proof of Theorem 2 
Let x(a) = C$‘=o x,a’ and y(a) = CL0 yia’. Similarly to [ 181, computing the 
coefficients of the product x(LY)~((Y) in 3n + 1 - 1 q/21 multiplications can be easily 
done by computing X(CX)~(CY) modulo linear and quadratic polynomials, cf. Appen- 
dix B. In order to prove the lower bound we proceed as follows. 

Let Fq = (e,, e2, . . . , e,). Without loss of generality we may assume that 
L;(x)L,f(y) = x(e;)y(e;), i = 1, 2, . . . , q, and L,+, (x)&+~ (y) = x,,y,, cf. [ 1, Exercise 
12.9, p. 4451. Using the same notation as in the proof of Theorem 1 we have 
wz = U2n+l, V)p, where the first q + 1 rows of Vare zero. Let Hi be the Hankel 
matrix representing the bilinear forms defined by the ith component of Wz, i = 1, 
2 * * 9 2n + 1. Let S = (H4+2, Hq+3,. . . , H2n+l). The proofofthe 3n + 1 - Lq/2J 
lower bound is based on the following lemma. 

LEMMA 5. Either there exists a subset S’ of S containing L(2n - q)/2J or 
fewer elements such that computing the set of bilinear forms defined by 
(x~HY)~~~, requires at least (2n - q) multiplications, or there exists a subset S’ of 
S containing r(2n - q)/21 elements such that computing the set of bilinear forms 
dejned by (xTHy] hES’ requires at least 2n - q + I multiplications. 

The proof of Lemma 5 is rather long and technical, and, for the sake of continuity, 
is postponed to the next section. 

PROOF OF THEOREM 2. The proof is similar to the proof of Theorem 1. By 
Lemma 5, either there exist L(2n - q)/2J components of Wz that define bilinear 
forms whose multiplicative complexity is at least 2n - q, or there exist r(2n - 
q)/21 components of Wz that define bilinear forms whose multiplicative complex- 
ity is at least 2n - q + 1. Without loss of generality in both cases we may restrict 
ourselves to the last components of Wz. 

In the former case, since the first 2n + 1 - L(2n - q)/2J components of the last 
L(2n - q)/2J rows of (12,,+, , V) are zero, we have 

M,(n)-(2n+ 1 -[FJ)z2n-q. 

(Recall that (12,+ 1, V) is a (2n + 1) x M,(n) matrix.) Therefore 

2n - q 
M,(n) L 4n + 1 - q - 2 

L 1 
=3n+l- q+ -4 =3n+l- :. 

( L J) LJ 

In the latter case, since the tirst 2n + 1 - f(2n - q)/21 components of the last 
r(2n - q)/21 rows of (12,,+, , V) are zero, we have 

i&(n)-(2n+ 1 -[q])r2n-q+ 1. 

Therefore 

2n - q 
M,(n) 2 4n + 2 - q - - 1 1 

=3n+ 1 -(q+[-;I- l)n3n+ I -[;J. •l 
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6. Proof of Lemma 5 
In order to prove Lemma 5 we need some preliminary facts. First we observe that 
rank H, I n, i = q + 2, . . . , 2n + 1. Were there an Hi of rank n + 1, similarly to 
the proof of Theorem 1, we would have M,(n) > 3n, which contradicts the upper 
bound at the beginning of this section. 

By Lemma 1, we have ds + rs L 2n - q, which implies degfS(cY) L 2n - q - rs. 
Let&(a) = n I-, pf(cu) be the decomposition of&(a) into irreducible factorsp, (a), 
Pz(~), *. * , P/((Y) such that deg p?(a) I deg p$(a) 2 . . . L deg p;“(a). Write 

Ma) = iI, PS) = (iI P,(a))(ij+, Pi(a)), 

where ~k+~b), ~k+da), . . . , p,(a) are all the linear factors off&a) of multiplic- 
ity 1. 

PROPOSITION 3. WehavedegnfXlp$(a)L2n-q-rs. 

PROOF. Assume, by contradiction, that deg n f=, p?(a) < 2n - q - rs and 
consider the set of Hankel matrices S” = S U (HiJ+,,2,..,,g. Obviously rs,, = rs and 
degf&(a) 5 q + deg ~PI p:(a). Hence ds- + rs,, < q + 2n - q - rs + rs = 2n. 
The last inequality contradicts Lemma 1, because dim[S” ] = dim[H, , . . . , H4, 
H q+2, * . . , H2n+,] = 2n. 0 

Let m be such that deg ng;“=;l p$(cu) < 2n - q - rs, and deg nE, p?(a) r 
2n - q - rs. 

PROPOSITION 4. Ifq is even, or rs 2 3, or deg p$(cu) 2 3, then we have 

if deg E PE 2 2n - q, 
i==l 

if deg fi p?(a) % 2n - q - 1. 
i=l 

PROOF. Assume that deg n ZI p?(a) r 2n - q. If degp;“(cu) I 3, then 

and if q is even, then 

m=2n-q= Zn-q 
2 L I 2 * 

If deg fl g, p?(a) < 2n - q, then rs 2 1. We shall consider the cases of rs = 1, 
rs = 2, and rs 2: 3 separately. 

Case of rs = 1. In this case deg n Z, pf(cz) = 2n - q - 1. Assume that q is odd 
and deg p?(a) 2 3. Since q is odd, 2n - q - 1 is even. Hence either deg p;‘l(~r) 2 
4 or deg ~$(a!) = 3. In the case of deg p$(cu) r 4 we have 

mKl+ (2n-q-l)-4 
- L 2 ]=pf+ 1, 
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and in the case of deg p+(a) = 3 we have 

m12+ 
L 
W-q; W]=[2y+ 1. 

If q is even, then 2n - q - 1 is odd. Hence deg p:‘l ((Y) 2 3, which implies 

m51+(2n-q-W-3= Zn-q -1 
2 L I 2 . 

Case of rs = 2. If deg p$ (a) r 3, then 

and if q is even, then 

,<2n-q--2= 2n-q -1 
2 I I 2 * 

Case of rs 2 3. We have 

This completes the proof of Proposition 4. Cl 

PROPOSITION 5. If q is even, or rs L 3, or deg p;‘((c~) 2 3, then there exists a 
subset S’ of S containing L(2n - q)/2J or fewer elements such that computing the 
set of bilinearforms defined by {xTHy] nEs’ requires at least 2n - q multiplications. 

PROOF. Since q P n - 1, we have 2n - q 5 n + 1. Therefore, by Lemmas 2 
and 3, it suffices to show that there exists a subset S ’ of S containing L(2n - q)/2J 
or fewer elements such that dsT + rs, r 2n - q. Similarly to the proof of Lemma 4 
we shall construct S’ inductively as follows. 

If deg n Z, p?(a) 2 2n - q, then So = 0; and if deg n Z, p$(cz) 5 2n - q - 1, 
then ,S, = (Hi, ), where rank pj,, = rs. 

Assume Sj 3 j < m, has been constructed. If there exists an H E Sj such that f”(a) 
is divisible by p*/(a), then Sj+, = Sj. Otherwise, choose an Hh,, such that 
fH,,+,(a) is divisible by ~$+,‘(a) and put S,+, = Sj U (H,,, 1. 

Let S’ = S,. By the construction above, fsr(a) is divisible by flz, p:(a), hence 
d sj z 2n - q - rs. This together with rank PI, = rs implies dsj + rs, 2 
2n - q. 

Obviously, the number of elements of S’ does not exceed m, if deg n Zil p?(a) 
L 2n - q; and does not exceed m + 1, otherwise. Thus the bound on the number 
of the elements of S’ follows from Proposition 4. 0 

PROPOSITION 6. If rs = 1, and deg p;“(a) = 2, then there exists a subset S’ of S 
containing L(2n - q)/2 J or fewer elements such that computing the set of bilinear 
forms defined by (xTHyJnEs~ requires at least 2n - q multiplications. 

PROOF. Like in the proof of Proposition 5, it suffices to show there exists a 
subset S ’ of S containing L(2n - q)/2J or fewer elements such that dsT + rs, 2 2n 
-q.PickansE(q+2,q+3 ,..., 2n + 1) such that rank j!& = 1. We contend 
that there exists an i, 1 I i I k such that fH5(a) is divisible by p!(a). Since any 
(n + 1) x (n + 1) Hankel matrix H with rank R = 1 such that fH(a) divides 
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n{=k+, p;(a) belongs to [HI, Hz, . . . , H4+,], cf. [13, Theorem 8.55, p. 4251, for 
some i, 1 5 i 5 k,fHJa) is divisible by p:(a), where t 5 di and deg pi(a) L 2. Since 
deg p;‘l = 2, we have deg p?(a) = 2, which implies t = di. This completes the proof 
of our contention. Without loss of generality we may assume thatfHs(a) is divisible 
by p;‘l (Ly j. Then S’ can be constructed as follows. 

Let S, = (H,). Assume I!$, j < m, has been constructed. If there exists an H E Sj 
such thatfH(a) is divisible by p%;(a), then Sj+, = Sj. Otherwise, choose an Hi,,, 
such thatfHG+,(a) is divisible by p:;,‘(a) and put Sj+, = Sj U (H,,+,}. 

Let S’ = S,. By the construction above,fs,(a) is divisible by n F, p?(a). Since 
H, E S’, it follows that ds, + rs, = ds, + 1 = 2n - q. Obviously, the number of 
the elements of S ’ does not exceed m. Therefore, by the definition of m, we have 

PROPOSITION 7. Let q be odd, rs = 2, and deg P$(CY) = 2. If there is an H, E S 
such that rank Rs = 2 and deg &J(Y) 2 1, then there exists a subset S’ of S 
containing L(2n - q)/21 or fewer elements such that computing the set of bilinear 
forms defined by (xTHyj nEsfl requires at least 2n - q multiplications. 

PROOF. It suffices to show there exists a subset S’ of S containing L(2n - q)/21 
or fewer elements such that ds, + rsr I 2n - q. Let rank ns = 2 and deg fHs(a) 1 
1. If for no i, k < i I 1, J;I,(a) is divisible by p;(a), then, without loss of generality, 
we may assume that fN(a) is divisible by p, (cy). We construct S’ as follows. 

Let S, = (H,). Assume Sj, j < m, has been constructed. If there exists an H E Sj 
such that fH(a) is divisible by p,“:;l(cy), then Sj+, = Sj. Otherwise, choose an H,,, 
such that fHG+I(a) is divisible by ~72,’ ((u) and put Sj+ 1 = Sj U (Hb,, ). 

Let S’ = S,. By the construction above,&(a) is divisible by pj(a) n Zn=2 p:(a), 
where j = 1, or j > k. Since 

deg fi p?(a) = 2n - q - rs -1=2n-q-3, 
i=2 

we have dsT L 2n - q - 2. Therefore, dsj + rsT = dsj + 2 2 2n - q. Obviously, the 
number of the elements of S’ does not exceed m. Since q is odd, we have 

PROPOSITION 8. Let q be odd, rs = 0, and deg p;‘l (a) = 2. Zf there is an H, E S 
such that deg fH,(a) I 3, then there exists a subset S’ of S containing L(2n - q)/2J 
or fewer elements such that computing the set of bilinear forms defined by 
(x~HY)~~~, requires at least 2n - q multiplications. 

PROOF. It suffices to show there exists a subset S ’ of S containing L(2n - q)/2J 
or fewer elements such that ds, + rs, L 2n - q. Let deg fH,(a) 2 3. Exactly as in 
the proof of Proposition 7, one can show that there exists an i, 1 5 i 5 k, such that 
f",,(a) is divisible by p?(a). It will be convenient to assume that fH,(a) is divisible 
by p?(a). If for no i, k < i 5 1, fHs(a) is divisible by p;(a), then we may assume 
that fHs(a) is divisible by p,(a). We construct S ’ as follows. 

Let S2 = (H,). Assume S, , j < m, has been constructed. If there exists an H E S, 
such that fn(cz) is divisible by pi”:;‘(a), then Sj+, = Sj. Otherwise, choose an 
Hh,, such that fH,,+,(a) is divisible by p,“:;I(cy) and put Sj+, = Sj U (H,,+, ). 

Let S’ = S,. By the construction above,&,(a) is divisible by Pi(a) n En_2 p:“(a), 
where j = 1, or j > k. Since deg n Zn,z p?(a) = 2n - q - 1, we have ds, 2 2n - q. 
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Obviously, the number of the elements of S ’ does not exceed m - 1. Since q is 
odd, we have 

In view of Propositions 5-8, we may assume that q is odd, deg p?(a) = 2, and 
rs = 0; or q is odd, deg p$ (a) = 2, rs = 2, and for any H E S, if rank i7 = 2, then 
R = H. The above two cases are treated by Propositions 9 and 10 below. 

PROPOSITION 9. If q is odd, deg p;‘l (CC) = 2, and rs = 0, then there exists a subset 
S ’ of S containing r(2tt - q)/27 elements such that computing the set of 
bilinearforms defined by {xTHyjHEs, requires at least 2n - q + I multiplications. 

PROOF. Since q is odd, we have m = r(2n - q)/21. We may assume that 
&iy;2 ;$$ gr l,Z . . . , m. 

= fHznj. Since deg fHzn(a) = 2, it follows that rank Hzn = 2. 
Hence computing xTHzn y requires two multiplications. 

If 2n - q = 3, let S’ = {Hznel, HZ,,). The inequality q r 3, implies n + 1 r 4. 
Hence, by Lemmas 2 and 3, computing (xTHzn-, y, xTHln y) requires at least four 
multiplications. 

Let 2n - q 2 5. The set of bilinear forms (x~H~&~ can be computed by 

(xTH2n--m+, y, ~~&n-m+2~, . . . , x~HI,Y)’ = Go VP, 

where Uconsists of the last m rows of V. (Recall that Wz = (L+,, V)p.) We have 
to prove that U has at least m columns. Assume, by contradiction, that U has at 
most 2n - q - m = m - 1 columns.6 Let 

u = (ui,j)i=l,..., m . 
j=l,...,m-I 

Since computing each xTHi y, i = 2n - m + 1,2n - m + 2, . . . ,2n, requires at 
least two multiplications and the number of columns of U is less than m, the 
matrix U has a column with two nonzero components. Permuting the columns 
and rows of U, if necessary, we may assume that u~-~,,,-~ and u,,,- I are not equal 
to zero. Then there exist nonzero a2, a3, . . . , a, E F, such that x$L aiui,m-l = 0. 

Consider the matrix H defined by H = CZ2 aiH2n-m+i. Since for i = 2n - q + 
1 2n, r%. is the zero matrix, R is the zero matrix as well. Then, in view of 
P&&tion 1, we have fH(a) = fl E2 p+(a), cf. [13, Theorem 8.57, p. 4261. It 
follows from Proposition 2 that rank H = 2n - q - 1. On the other hand, the 
bilinear form xTHy can be computed in 2n - q - 2 multiplications by 

xTHy = (0, a2, . . . , am-l, a,)(L, WP, 

because the first and the last component of (0, az, . , . , a,,,-I, a,)(I,,,, U) are zero. 
This contradiction completes the proof of Proposition 9. Cl 

PROPOSITION 10. Let q be odd, deg I? = 2, rs = 2, and for any H E S, 
if rank I7 = 2, then R = H. Then there exists a subset S’ of S containing 
r(2n - q)/21 elements such that computing the set of bilinear forms defined by 
bTHy I *ES~ requires at least 2n - q + 1 multiplications. 

’ It follows from Lemma 2 that U has at least 2n - q - m columns. 
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PROOF. We may assume that 2n - q L 5. The case of 2n - q s 3 can be 
treated exactly as in the proof of Proposition 9. Since q is odd, we have 
m = r(2n - q)/21 - 1. We may assume that for some j, 2n - m 5 j s 2n, 
rank Hj = 2, and that for each i = 1, 2, . . . , m there exists a ji, 2n - m 5 
ji zz 2n such thatfHI,(a) = p:(a). Then we have 

(xTH2,,-,,,y, xTH+,,,+zy, . . . , xTHz,y)’ = (I,,,+,, U)p, 

where U consists of the last m + 1 rows of V. 
We have to prove that U has at least m + 1 columns. Assume, by contradiction, 

that U has 2n - 4 - (m + 1) = m columns. Let U= (Ui,j)i=l,_,,, m+I,j=l,,,,, m. Since 
computing each XTHiy, i = 2n - m, 2n - m + 1, . . . , 2n, requires at least two 
multiplications and the number of columns of U is equal to m, the matrix U has a 
column with two nonzero components. Permuting the columns and rows U, if 
necessary, we may assume that u,,, and u,,,+~,,,, are not equal to zero. If rank &,,-, 
= 2, then we proceed exactly as in the proof of Proposition 9. Otherwise we may 
assume that J&,-,((Y) = p?(a) and rank j??z,-,+, = 2. There exist nonzero a2, 

a,,, E F, such that Ca2 aiui,,-, = 0. Consider the matrix H defined by 
2’: ii, aiHln-,,,+i. 

Sincefori=2n-q-m+ l,..., 2n, rank Ri 5 1, it follows that rank i? 5 2. 
Thenfj(cu) = fl ,“=;I p?(a), and, by Proposition 2, we have rank H = 2n - q - 1. 
On the other hand, exactly as in the proof of Proposition 9, it can be shown that 
the bilinear form x*Hy can be computed in 2n - q - 2 multiplications. This 
contradiction completes the proof of Proposition 10. Cl 

Now the reader can easily convince himself that Lemma 5 follows from Propo- 
sitions 5- 10. 

Notice that if n = q + 1, then in the conditions of Propositions 9 or 10 we have 
the tight n + 2 bound on the number of multiplications required to compute 
(XTH;yli=3n/2,...,2n. This bound exceeds the lower bound given by Lemma 2. 

7. Multiplication of Polynomials Module a Polynomial 
Here we consider an application of the technique developed in the previous sections 
to multiplication of polynomials modulo a polynomial. All the results obtained in 
this section are easy corollaries of Lemma 6 below. To proceed we need one more 
notation. For polynomials z(a) and P(a) we denote by res(z(cr), P(a)) the minimal 
degree residue of z(a) modulo P(a). 

LEMMA 6. Let x(a) = Ca0 xiai and y(a) = CY=‘=o y~~j be polynomials with 
indeterminate coejkients, and let P(a) = (Y” - C Zj’ aia’ be a fixed polynomial 
over F of degree m > n. Let xTHy be a bilinearform defined by a linear combination 
of the coeficients of res(x(cy)y(a), P(a)), Zf rank H 5 2n + 1 - m, then fH(a) divides 
P(a), and rank R = 0. 

PROOF. Let xTHy be a bilinear form defined by a linear combination of the 
coefftcients of res(x(a)y(cu), P(a)). First we contend that if H = H(a), then P(a) is 
a characteristic polynomial of U. Since the set of all linear recurring sequences 
satisfying the same recurrence is a linear space over F, we may assume that xTHy 
is defined by a coefficient of res(x(a), y(a), P(a)). Let x(a)y(‘~) = z(a) = C:Z, ziai, 
and let res(z(a), P(a)) = J$z<’ Uiai, where U; = C$& Si,jZj, i = 0, 1, . . . , m - 1. 
We have to prove that P(a) is a characteristic polynomial of bi = s;,~, Si,, , . . . , si,2,,, 
i=O, l,..., m- 1. 
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Let P(a) = am - CZj’ aicy’ and let Cp denote the companion matrix of P(a), 
that is, 

cp = 0 1 -a - 0 a2 . 
. . . . 

I J 

. . . . 

. . . . 

0 0 a** 1 a,-, 

Let gi,k = (Si.k, &,k+l, . . . , S;&+m-l ) be the kth m-dimensional state vector of di, 
i=o, I,..., m- l;k=O, l,..., 2n - m + 1. In order to prove our contention 
it suffices to show that U;,k = u;.~C;, or, since, trivially, @i,o is equal to the ith row 
of I,, it suffices to show that (Tj,k is equal to the (i + 1)st row of C$. 

Using the regular matrix representation of the algebra F[(Y]/(P(~)), cf. [6, p. 
4241, we obtain that the column vector of the coefficients of res(z(cy), P(a)) is 
equal to 

(zo, Zl) . . . , zm-2, z,-,)T + 5 Zkc~-;-m+‘(o, 0, . . . , 0, l)T. 
k=n 

Therefore, if k 1 m, then S;,k is the i th component of the last row of C$-“” . Now 
the contention follows from the fact that the vector of the first M - 1 components 
of the ith row of C$ is equal to the vector of the last m - 1 components of the ith 
row of C$+’ . 

Since, rank H 5 2n - m + 1, by Proposition 2, we have degfH(a) + rank B 5 
2n+ 1 -m,whichimpliesdeg&(a)l2n+ 1 -rankR-m=I-m+ l.Now 
the divisibility of P(a) byfH(cr) follows from Proposition 1. 

It remains to show that rank fl= 0. j,,(a) divides P(a), which implies that P(a) 
is a characteristic polynomial of 2 = u - d, cf. [ 13, Theorem 8.55, p. 4251. Since u 
and i have the same first rn elements, 5 is the zero sequence. Hence R is the zero 
matrix. Cl 

Next we present some corollaries to Lemma 6. Whereas Corollaries 1 and 2 were 
established in [ 181 in a more general form, Corollaries 3 and 4 are new and cannot 
be obtained by the technique used in [ 181. 

COROLLARY 1. Let the field of constants be injmite, and let P(o) = 
n$, p:(a) be a fixed polynomial of degree n + 1 with its factorization into 
irreducible factors p1 (a), PZ(CY), . . . , pk((Y). Let x(a) and y(o) be polynomials of 
degree n with indeterminate coeficients. Then computing res(x(a)y(cY), P(o)) 
requires exactly (2n + 2 - k) multiplications. 

PROOF. Computing res(x(a)y(a), P(a)) can be performed in 2n + 2 - k 
multiplications by means of Chinese Remainder Theorem, cf. [ 181. To prove the 
lower bound stated in the corollary we proceed as follows. Assume that computing 
res(x(a)y(a), P(a)) can be performed in t multiplications. Let res(x(cY)y(cY), 
P(o)) = x:=0 u;cyi, IJ = (z&J, UI, . . . , u,)~, and let p be a t-dimensional vector of 
products of linear forms of x and y such that II = Up, where U is an (n + 1) x t 
constant matrix. We have to prove that t 2 2n + 2 - k. Exactly as in the proof 
of Theorem 1, it can be shown that there exists a nonsingular matrix W such 
that Wu = (I,+, , V)p. 
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LetS=(&,H,,.. . , H, ) be the set of Hankel matrices representing the bilinear 
forms defined by the components of Wu. If there exists an H E S such that rank 
H = n + 1, then V must have at least n columns, which implies t = 2n + 1 z 
2n+2-k.IfrankHj5n,i=0, l,..., ir2, then it follows from Lemmas 1 and 6 
thatf&a) = P(a) and rs = 0. Exactly as in the proof of Lemma 4, we can find 
a subset S’ of S containing at most k elements such that ds, = n + 1. Then, 
exactly as in the proof of Theorem 1, we have t - (n + 1 - k) 2 n + 1, or 
tr2n+2-k. 0 

The following corollary is a partial case of the direct sum conjecture conjectured 
by Strassen in [ 161. 

Let B = B(x, y) be a finite set of bilinear forms of x and y over a field F. &B) 
denotes the minimal number of multiplications required to compute all the forms 
of B by means of bilinear algorithms over F. 

COROLLARY 2. Let thefield of constants F be infinite, and let Xi(a) and yi(a), 
i = 1, 2, . . . . k, be polynomials of degree ni with disjoint set of indeterminate 
coeficients. Let P,(a), P2(a), . . . , P,(a) be powers of distinct irreducible polyno- 
mials, deg Pi(a) = ni, i = 1, 2, . . . , k. Then 

PF ;i, res(xi(a)Yi(a), Pi(a)) = l5 PF(res(xi(a)yi(a)9 Pi(a))) = I! Qn, + 1). 
i=l i=l 

PROOF. The proof immediately follows from Corollary 1, because, by means of 
Chinese Remainder Theorem, each algorithm for computing UL, res(xi(a)yi(a), 
Pi(a)) can be transformed to an algorithm for multiplying the polynomials of 
degree z$=, ni - 1 modulo the product of the moduli. 17 

The above two proofs differ from those of Winograd in [ 181 in the following. In 
[ 181 the result concerning multiplication of polynomials modulo a polynomial 
implied by an instance of the direct sum conjecture, which was proved first. 

COROLLARY 3. Let the field of constants F be infinite, and let P(a) = 
n ?=, p$ (a) be a fixed polynomial of degree m with its factorization into irreducible 
factors plb), pda), . . . , pk(~). Let X((Y) and I be polynomials of degree n < m 
with indeterminate coeficients. If m - k z n, then computing res(x(ry)y(a), P(a)) 
requires 2n + 1 multiplications. 

PROOF. Obviously, computing res(x(cu)y(cy), P(a)) can be performed in 2n + 1 
multiplications by first computing the product x(cu)y(c~), and then reducing it 
modulo P(a). To prove the lower bound stated in the corollary we proceed as 
follows. Assume that computing res(x(a)y(a), P(a)) can be performed in t multi- 
plications. Let res(x(a)y(a), P(a)) = CZ’ Uia’, and let u = (UO, uI, . . . , u,-,)~. 
Let p be a t-dimensional vector of products of linear forms of x and y such that 
u = Up, where U is an m x t constant matrix. We have to prove that t 2 2n + 1. 
As in the previous proofs, it can be shown that there exists a nonsingular matrix 
W such that Wu = (Im, V)p. 

Let S = (HO, H,, . . . . H,,,-, 1 be the set of Hankel matrices representing the 
bilinear forms defined by the components of Wz. If there exists an Hi E S such 
that rank H, > 2n + 1 - m, then V must have at least 2n - m columns, which 
implies t r 2n + 1. Otherwise, by Lemmas 1 and 6, we have ds 1 m. Then, as in 
the proof of Lemma 4, one can show that there exists a subset S’ of S containing 
at most k elements such that ds, z n + 1. By Lemma 2, we have PF( (xTHy))~,~, 1 
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n + 1. Then, exactly as in the proof of Theorem 1, we have t - (m - k) 1 n + 1. 
Since m - k 1 n the above inequality implies t z (m - k) + (n + 1) z 2n + 1. Cl 

COROLLARY 4. Let the field of constants be infinite. Let n be even and let 
P(a) = n .W2 p?(a) be a fixed polynomial of degree n + 2 with its factoriza- 
tion into irreducible factors pl(cu), p2(~), . . . , P,+,,&(Y) such that deg p?(a) = 2, 
i = 1, 2, . . . . 1 + n/2. Let x((u) and y(a) be polynomials of degree n with 
indeterminate coeficients. Then computing res(x(a)y(a), P(a)) requires exactly 
3 + 3n/2 multiplications. 

The proof of Corollary 4 is similar to the proof of Proposition 9 and will be 
omitted. Notice that in Corollaries 3 and 4 the degree of the moduli is greater than 
n+ 1. 

In order to state one more corollary to Lemma 6 we need the following definition: 

Definition. Let Fk be the k-dimensional vector space over a field F, and let 
h, . . . , ek) be a fixed basis of Fk. Let v = CL, aie, E Fk. Define w(v), the weight 
of v, as the number of nonzero components ai of v. If L is a subspace of Fk of 
dimension I, we say that L is a linear code of dimension I and length k. Define 
w(L), the minimal distance of L, by w(L) = min (W(V) 10 # v E L]. 

COROLLARY 5. Let x(a) and y(cr) be polynomials with indeterminate coefi- 
cients of degree n over a field F, and let P(a) be a fixed polynomial of degree 
m > n. If P(a) has no factors of degree less than 2n + 2 - m, then the number of 
multiplications required to compute res(x(a)y(a), P(a)) by means of a bilinear 
algorithm over F is not smaller than the minimum code length of linear codes over 
F of minimal distance 2n + 2 - m and dimension m. In particular, $F is infinite, 
then computing res(x(cu), y(o), P(a)) requires exactly 2n + 1 multiplications. 

For an irreducible polynomial P(a) and m = n + 1; and for an irreducible 
polynomial P(a) and any m 2 n + 1 the above corollary was obtained in [ 1 l] and 
[9], respectively. 

PROOF. Let xTHy be a bilinear form defined by a linear combination of the 
coefficients of res(x(a)y(cu), P(a)). It suffices to show that rank H z 2n + 2 - m. 
Were rank H I 2n + 1 - m, by Proposition 2 and Lemma 6, P(a) would have a 
factor of degree less than 2n + 2 - m, which contradicts the conditions of the 
corollary. Cl 

Notice that the second part of Corollary 5 follows from Corollary 3 as well. 

Appendix A. The Number of Distinct Factors of a Polynomial over a Finite Field 
Let i,(n) denote the maximal possible number of distinct irreducible factors of a 
polynomial of degree n over Fq. In this appendix we prove the following upper 
bound on i,(n). 

LEMMA Al. If q 2 3, then i,(n) 5 n/(logqn - 3). 

Let N,(j) denote the number of manic irreducible polynomials of degreej over 
F,. It is well-known that N,(j) = (l/j) Cdli p(d)qjfd, where F(d) is Mobius function 
of d, cf. [ 13, Theorem 3.25, p. 931. 

For the proof of Lemma A 1 we need some preliminary results. 

PROPOSITION Al. Ifj 2 5 and q z 3, then ZN& - 1) 5 N,(j). 
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PROOF. We have 

iq'- j(4y 1) (4'j2 - 1) 5 N,(j) 5 f (4’ - q), 

cf. [ 13, Exercises 3.26 and 3.27, p. 1421. Hence, it suffkes to show that 

2g’-‘<d- 4 i/2 
j-l j j(q- 1)’ . 

Multiplying the above inequality of j/q’ and performing simple manipulations, 
we obtain that it is equivalent to 

1 
2 1+- 

( ) 
4 <q-- l-j/2 

j- 1 q-14 * 

Recalling the bounds on q and j we obtain 

PROPOSITION A2. Ifq 2 3 and k 2 2, then C$=I N,(j) < ll(k - 1) C$=I 
.iN,(j ). 

PROOF. We have 

Since 

j&(j) > j$, &(.A 
j=l 

it sufftces to show that if m z 3, then 

N,(m) < 1 In 
m-1 jC, jMj) - A z,’ i%(j). 

Multiplying the last inequality by (m - l)(m - 2) and performing simple 
manipulations, we obtain that it is equivalent to 
m-l 

C j&(j) < (m - W,(m) = j$5 [(j - W,(j) - (j - WW - 01 + 2~,(4). 
j=l 

Since for q L 3 we have 

i .P,W = q + (q2 
- q) + (43 - q) < v = 2~~ (4), 

j=l 

it sufftces to prove that if j z- 5, then 

(j - l)N,(j - 1) < (j - W,(j) - (j - W,(j - 1). 
The last inequality is equivalent to 

2NSj - 1) < N,(j), 
and the result follows from Proposition Al. q 
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PROOF OF LEMMA A 1. Let /z(a) = n I=, p?(a) be a polynomial of degree y1 over 
F, with its prime factorization. We have to prove that I < n/(lo&,n - 3). Let 
IZ = Cj”=;’ jZVJj) + km, where 0 5 m < N,(k). Increasing I, if necessary, we may 
assume that deg pi(a) % k and d, = 1, i = 1, 2, . . . , I; and that each irreducible 
polynomial of degree less than k divides h(a). Thus m is the number of irreducible 
factors of h(a) of degree k and I = C$,’ N,(j) + m. 

By Proposition A2, we have 
k-1 

I= C N,(j) + m < 

C$Z: jN,(j) + km 
j=I 

k 2 =&. 

The proof of Lemma Al will be completed if we show that k + > lo&n, or, 
equivalently, if we show that n < qk+‘. Since n = C$f jN,(j) + km I C,“=, jlv,(j), 
the desired inequality follows from the estimation below. 

k k 
9 

k+l 

C P,(j) < C 4’ = 
-4 k+l 

j=l j=l 
q-l <q * 

cl 

Appendix B. An Optimal Algorithm for Polynomial Multiplication 
In this appendix we show that for n I q + 1 we have M,(n) P 3n + 1 - Lq/2J. In 
order to present the above bound uniformly we assume that n 5 2 for q = 2. The 
inequality of M2(3) I 9 follows from recursive application of the algorithm for 
computing the product of two linear polynomials in three multiplications, which 
is similar to the method of Karatsuba and Ofman, cf. [ 1, p. 621. 

Let x(a) = C& xia’ and y(a) = C:=,, y,&. Similarly to [ 181 computing the 
coefficients of the product in x(~y)y(a) in 3n + 1 - Lq/2J multiplications can be 
done by computing x(LY)~((Y) modulo linear and quadratic polynomials as follows. 
Let u,(a), u2(a), . . . , u,(a) be all the linear manic polynomials over F,, and let 
Uq+l((Y), uq+z(cy), . . . , u++~),~~((Y) be r(2n - q)/21 quadratic manic irreducible 
polynomials over F,. Such polynomials exist, because the number of quadratic 
manic irreducible polynomials over F, is equal to (q* - q)/2, cf. [ 13, Theorem 
3.25, p. 931, and for 12 I q + 1, q z- 3 we have 

q2 - 4 > 2(q + 1) - 4 ) 2 - 4 
2 2 -2. 

We distinguish between the cases of odd and even q. If q is odd, then 
r(2n+qy2i 

C deg ui(a) = q + 2 =q+2 2 2n-q+L2n+l 
i=l 

This allows to compute the coefficients of the product x(~y)y(a) as follows. 
For i = 1, 2, . . ., I(2n + q)/21 compute xi(a) = x(a)y(cz) mod Ui(a) and 

reconstruct x((Y)~(LY) from the residues (zi(~))i=1,2,... ,r(2n+q),21 by means of Chinese 
Remainder Theorem. Since reducing X((Y) and y(a) modulo a fixed polynomial 
and reconstructing the product requires no nonscalar multiplications, the above 
computation can be performed in 

q+3 
2n-q+ 1 

2 
=2n+l- z 

LJ 
multiplications: computing the product of zero degree polynomials can be per- 
formed in one multiplication, and computing the product of linear polynomials 
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can be performed in three multiplications over any field. Notice that deg zi(cy) = 
0, if i 5 q, and deg z;(a) = 1, otherwise. 

If q is even, then 
r(2n+qy2i 

2 
i=l 

deg Ui(a) = q + 2 y = 2~ 

This allows to compute the coeffkients of the product of x(cx)y(~y) as follows. 
Fori= 1, 2, . . . . (2n - q)/2 compute zi(a) E X(CY)Y((Y) mod Ui(a). Then, by 

means of Chinese Remainder Theorem, compute from the residues 

(zi(a))i=1,2....,(2n-q)/* 

the polynomial Z(a) such that Z(a) = x(a)y((~) mod nc:q)‘2 Ui(a). Similarly to 
the case of an odd q one can show that the above computation can be performed 
in 3n - 1 q/2 J multiplications. Notice that the polynomial n (;?=n:q)‘2 u, (LY) has no 
multiple roots. Finally, compute x(c~)y(a) by 

(2n+q)/2 

This computation requires one more multiplication. Thus the total number of 
multiplications involved is equal to 3n + 1 - 1 q/2J. Since for any root a of 
l-J gyN2 uj(a) we have x(a)y(a) = 5(a), the validity of the above computation 
follows from [ 18, eq. 1 I]. This completes the proof of the 3n + 1 - Lq/21 upper 
bound on M,(n). 0 

NOTE ADDED IN PROOF. Recently Joos Heintz informed us that a slightly worse 
bound 

M,(n) z 3n - log,n - n 
hJog,n 

has been established by Walter Baur in 1985 by a different method. This result has 
never been published. 

REFERENCES 

Note: References [7] and [8] are not cited in text. 
1. AHO, A. A., HOPCROFT, J. E., AND ULLMAN, J. D. The Design and Analysis of Computer 

Algorithms. Addison-Wesley, Reading, Mass., 1974. 
2. BROCKETT, R. W., AND DOBKIN, D. On the optimal evaluation of a set of bilinear forms. Linear 

Alg. Applic. 19 (1978), 207-235. 
3. BROWN, M. R., AND DOBKIN, D. P. An improved lower bound on polynomial multiplication. 

IEEE Trans. Comput. 29 (1980), 337-340. 
4. FEDUCCIA, C. M., AND ZALCSTEIN, Y. Algebras having linear multiplicative complexity. J. ACM 

24 (1977), 311-331. 
5. HOPCROFT, J., AND MUNSINSKI, J. Duality applied to the complexity of matrix multiplication. 

SIAM J. Comput. 2 (1973), 159-173. 
6. JACOBSON, N. Basic Algebra I. Freeman and Co., New York, 1985. 
7. JA’ JA’, J. Optimal evaluation of pairs of bilinear forms. SIAM J. Comput. 8 (1979), 443-462. 
8. JA’ JA’, J. Computation of bilinear forms over finite fields. J. ACM 27 (1980), 822-830. 
9. KAMINSKI, M. A lower bound for polynomial multiplication. Theoret. Comput. Sci. 40 (1985), 

3 19-322. 
10. KAMINSKI, M., AND BSHOUTY, N. H. Multiplicative complexity of polynomial multiplication over 

finite fields. In Proceedings of 28th Annual IEEE Symposium on Foundations of Computer Science. 
IEEE, New York, 1987, pp. 138-140. 



170 M. KAMINSKI AND N. H. BSHOUTY 

11. LEMPEL, A., SEROUSSI, G., AND WINOGRAD, S. On the complexity of multiplication in finite fields. 
Theoret. Comput. Sci. 22 (1983), 285-296. 

12. LEMPEL, A., AND WINOGRAD, S. A new approach to error-correcting codes. IEEE Trans. ZnJ 
Theory 23 (1977), 503-508. 

13. LIDL, R., AND NIEDERREITER, H. Finite fields. In Encyclopedia of Mathematics and Its 
Applications, Vol. 20, G.-C. Rota, Ed. Addison-Wesley, Reading, Mass., 1983. 

14. PETERSON, W. W., AND WELDDN, E. J. Error-Correcting Codes. MIT Press, Cambridge, Mass., 
1972. 

15. SCHONHAGE, A. Schnelle Multiplikation von Polynomen iiber Korpem der Charakteristik 2. Acta 
Inf: 7 (1977), 395-398. 

16. STRASSEN, V. Vermeidung von Divisionen. J. Reine Angew. Math. 264 (1973), 184-202. 
17. WINOGRAD, S. On the number of multiplications necessary to compute certain functions. 

Commun. Pure and Appl. Math. 23 (1970), 165-I 79. 
18. WINOGRAD, S. Some bilinear forms whose multiplicative complexity depends on the field 

constants. Math. Syst. Theory IO ( 1976/77), 169- 180. 

RECEIVED JUNE 1987; REVISED JANUARY 1988; ACCEPTED APRIL 1988 

Journal ofthe Association for Computing Machinery, Vol. 36. No. I, January 1989 


