
Technical Notes

CoflatinE Long Rows of a Character Matrix

This note presents an eff ic ient APL function of general u t i l i t y
in sorting the rows of a character matrix M according to the
collating sequence given in a character vector A. Of course,
for a character matrix with short rows and a short collating
sequence, the one-liner

,/'÷,~, (2.p4).I.~A tM

is perfectly suitable, yielding 14[.Z;] as the collated matrix.
This one-liner is the essence of the function SORT discussed by
Charmonman (1) and Koegel (2). Nhen long-rowed character
matrices or long collating sequences are involved, more
precisely, when {2+pA)*i+pM is greater than the largest
representable consecutive integer(2*56 FOR APL\360)then the
one-liner is inadequate, since the least significant columns of
H are effectively ignored. I f fact, i f (L/iO)<(2+pA),I+pM is
true, then an attempt to execute the one-liner w i l l generally
result in a domain error for ± .

The solution proposed by Charmonman (1) is relat ively expensive
in execution time, as shown by Koegel (2). Two solutions
proposed by Koegel, SORTC and SORTG, are reasonably economical,
and noticeably more elegant. Koegel notes that SORTC is
applicable for collating vectors of any length, an advantage
offset by the need to re-interpret a loop of code for every 9
columns of the input matrix. Comparison tests on the author's

55.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F585882.585892&domain=pdf&date_stamp=1974-12-31

shared var iable system show SORTC to ~au i re 1o5 times as much
processing time as SORTG~ notwithstandiny Koegel's report of
approximately equal time° The performance adw~tage of SORTG
over SORTC on the author's system is presumably caus=a hV the
s i gn i f i can t l y smaller amount of in terpretat ion required for Lh~
former funct ion. Unfortunately~ SORTG must be modified i f the
length of the co l la t ing vector changes°

The function COLLATE given below combines the speed of SORTG and
the general i ty of SORTC with some other advantages°

[1]
[2]
[3]
[4]

V

V I÷A COLLATE M;B;J
J~-(-JL L (B~-2+pA)o2147483647) + ~J÷1 + pM
I÷11~pM
I÷I[~B±~4 IM[I;J]]
÷3x xpJ÷(J>_ 11)/J+J-pJ

In particular, the following points should be noted:

1. The function COLLATE simulates the one- l iner in the extended
domain including long-rmved matrices and long co1]ating
sequences. More precisely~ COLLATE yie lds the vector I of
indices such that the rows o f M[I ;] are in lexicographical
order according to the order of characters in the character
vector A. Characters of M not contained in A are a l l treated as
i f they were las t in order, af ter a l l characters in A. (For
example, the value of " COLLATM is ~1÷pM for any matrix M.)
In su~0ary, COLLATE acts as the one-l iner would i f large
integers were represented with i n f i n i t e precision. The index
vector I can be used to sort an array of data associated with
the rows of [i, thus preserving the association.

2. The algorithm for COLLATE is to sort M by pJ columns at a
time, beginning with the least significant columns. Line (1)
computes pJ to be as large as possible, but small enough so
that the results of base value in line (3) are always less than

56.

2"31o (Using 2"31 rather than 2*56 avoids f loat ing point values
for ± in APL/360, thereby noticeably improving speed of
execution°) For suf f ic ient ly short rows and col lat ing sequences
the operation of COLLATE reduces essentially to that of the
one-l iner, in the sense that only one execution of each line is
requiredo

3o The function COLLATE is more versati le than previously
proposed functions:

a) Like the one-l iner, COLLATE operates in ei ther 0 or 1
origin. Bo th Charmonman's (I) and Koegel's (2) functions
requi re 1 ori gino

b) Like the one-l iner, COLLATE handles empty arguments
(O=pA AND~OR o=×/pH)correctlyo Both Chamonman~s and Koegel's
functions become suspended with index errors i f O=i+pM is true,
while COLLATE yields li÷pM.

4o The function COLLATE requires slightly less execution time
than SORTG on the author's shared variable system, thus making
i t the fastest of the proposed functions.

(I)

(2)

REFERENCES
Charmonman, S., "Numeric sort by binary search and insertion,"
AP_..L. UO~QUAD , 4_ No. 3 (April 1973), pp. 19-21.

Koegel, J. Eo, Short ~Iote (technical), in APL QUOTE QUAD 5,
No. i /3 (Spring 1974), pp. 35-37. ~ " -

William B. Rubin
Poughkeepsie Laboratory
IBH Corp.
Poughkeepsie, NY

57.

