
JUNK CONSIDERED HARMFUL

Open letter to the APL community --

A frequent criticism leveled against APL
is that APL programs are esoteric and
unreadable. For years many of us have
been trying to convince people to the
contrary through education, writing, and
promotion. At the same time, we
ourselves are perpetuating and
emphasizing the belief in the
hermeticism of APL with the programs
published in APL Quote Quad. Quote Quad
has printed some of the worst examples
of APL programming I've ever seen.
Their very appearance here implies to
readers, both sympathetic and hostile,
that these examples are good and
reasonable and something to be proud of.

If the algorithms in Quote Quad are
considered to be reasonable or even
exemplary instances of Ai~ programs, it
is hardly surprising that some people
refuse to take APL seriously.
Furthermore, if Quote Quad publishes the
best of what is available, I shudder to
imagine what the rest looks like.

While these comments are critical, I do
not intend them to be directed to amy
particular set of individuals. To the
extent that a problem exists in APL
style, the burden of guilt must be borne
by all of us. In spreading the good
word about APL, we have apparently
neglected to emphasize the main point:
programs must be readable b~people.
Unless we can im~se some Simple aspects
of stylistic programming on the process
of using APL, we might as well throw
away our typespheres and go back to
COBOL.

I would like to offer what I think are
some conmDnsense suggestions to improve
the readability of APL programs,
particularly those destined for
publ icat ion.

i. Use comments. The lamp syTnbol ~ was
put--~6~ the language to allow
program writers to include
illuminating text. Such text can
contain explanations of what the
program does, restrictions on the
arguments or environment, a record of
changes, names of global cbjects, and
so forth. Why is it that most
functions in Quot__e Quad have no
comments at all?

2. Structure. No process is so complex
or monol ith ic that it can be
expressed only by a function 188
lines long. Even 40 lines is often
excess ire, especial ly in an
expository context such as a
publication. It is easy to write
subfunctions in APL. Long programs
should be structured so that the
reader can follow the flow. Where a
longer function is required, sections
of the program should be clearly
delimited with comments explaining
each part.

3. Flow of control. Control flow in APL
Is typically expressed by function
calls or by branching. As mentioned
above, better use should be made of
functions. Where branches are
necessary, all branch destinations
should be labels. ~here is no excuse
whatever for absolute branches to
i ine numbers in APL programs.
Conditional branch statements can be
rendered more readable by use of
simple functions such as IF. Similar
functions can be used to express
testing and reaction to exception or
error conditions.

One often-used "justification" for
abstruse branching conventions is the
"efficiency" of a particular APL
implementation. If that is a problem
in your installation, please don't
burden the rest of us with it. If
absolute branches or funny
conditionals turn you on, write a
function to eliminate labels and
"con~ile" your IF's. But please
don't subject readers of your source
program to the agony and ambiguity of
reading that kind of nonsense.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F585987.585989&domain=pdf&date_stamp=1976-09-01

4. Naminc[° I know of no contemporary
APL system that limits users to
one-character identifiers.
Nonetheless, most functions published
in Quote Quad use nothing but. APL
allows longer names. Restrictions to
six-character identifiers disappeared
with FORTRAN II. Especially in
published functions, use of
well-chosen names with mnemonic value
enhances readability.

5. Ir~olementation. dependen. ~. In
production programs, it would be
folly not to take advantage of the
unique or proprietary features of
your host APL system. In exposition
of algorithms destined for
information interchange or education,
such use is self-defeating. The
absence of language standards does
little to simplify the task of
preparing a program for publication.
Even so, published programs should be
"sanitized" to the extent that they
are readable by APL'ers usinq a
system other than your own. If it is
necessary to use the rare
undocumented private feature, it is
con~on courtesy to include an
explanation of its use and effect as
corsnents in the program.

6o Gluing. Gluing is the practice of
putting multiple, generally related,
statements on the same line usinq
artificial means. Though the
stylistic motivation to group related
short expressions is admirable, the
result is an unreada61e function.
What's worse is that gluing is often
dependent on the order of execution,
rendering a statement not only
unreadable but thoroughly ambiguous.
In the absence of an accepted
statement separator in APL, use of
functions such as those below will
yield the desired effect and make the
programs readable.

V DO STMTS;FUNC
[i] ~ STMTS IS A CHARACTER VECTOR
[2] ~ OR MATRIX OF STATEMENTS.
[3] A DO TRANSFORMS STMTS INTO A
[4] A FUNCTION 'FUNC' AND EXECUTES.
[5] A ORIGIN INDEPENDENT
[6] ~ GLOBALS: THEN (FN)
[7] I[3FX 'FUNC' THEN STMTS

4

V R÷SI THEN S2;OIM
[I] ~ $I IS A CHARACTER VECTOR.
[2] ~ $2 IS A CHARACTER VECTOR
[3] A OR MATRIX.
[q] A BOTH REPRESENT STATEMENTS.
[5] ~ THEN RETURNS A CHARACTER
[6] A MATRIX WITH S1 PRECEDING $2.
[7] ~ ORIGIN INDEPENDENT
[8] ~ GLOBALS: NONE
[9] DIt~--(pSl)r-l÷pS2
[10] +L IF 2:ppS2
,[11] S2÷(1,pS2)pS2
[12] L:R÷(DIM÷St),[[]IO]((i÷pS2),DIM)÷S2

q

Then instead of such glued statements
as

[3PW÷120x[]IO÷Z÷1,0pH÷~lO

we can write a readable version:

D0 '[3PW÷I20' THEN '[3IO÷Z÷I' THEN 'R÷110'

7. Side effects. One of the most
insidious sources of programming
errors as well as unreadability is
the dependence on side effects.
There are two kinds of side effects:
those that are linguistically correct
and those that derive from
peculiarities of an implementation.
Tne first class includes modification
of non-local names through assignment
or functions such as [3FX or OEX. The
second class is exenplified by what I
call "pornography" -- dependence on
the order of execution.

Astonishingly, it is still a matter
of debate whether statements in APL,
as a formal language, should have a
defined order of execution, and if
so, what it is. As a practical
matter, however, there are variances
in execution Order among the several
dozen currently used APL processors.
Hence, as with the other points
discussed in this letter, published
algorithms should not include
statements or expressions for which
the meaning depends on the order of
execution. In general, this includes
any expression in which a variable is
assigned and is also used outside the
scope of the assignment subexpression
as, for instance, QxQ÷R+2. Such
expressions should be decomposed on
several lines, to indicate ordering
dependencies explicitly. Alternately
an artifice such as the D0 and THEN
functions above should be used.

The suggestions made here are hardly an
exhaustive survey of how to write
readable programs. They simply point
out some of what I consider to be the
most blatant stylistic blunders that
have found their way into the APL
literature. ~ile I propose these ideas
primarily as a way to enhance the
quality of published algorithms, they
are also applicable in real prcgramming.

If we wish to win the respect of
professionals outside the APL community
and maintain our own self-respect, we
must clean up our own publications.

Phil ip S. Abrams
Vice President - Development
Scientific Time Sharing Corporation
7316 Wisconsin Ave.
Bethesda, MD 20014

CB$ WAS READY AND WAITING...

BUT DELEGATE PROFILES UNHEEDED

NEW YORK - Had last week's Democratic
National Convention been a contest like
the Republicans" is going to be, CBS-TV
oould have projected the voting behavior
of every delegate with a computer data
base it compiled weeks before the
convention even started.

The CBS Election and Survey Unit
interviewed every convention delegate
and stored those profiles in a data bank
accessible via rx~rtable terminals near
the convention floor, aooording to
Warren Mitofsky, director of the unit.

CBS has been using computers for years
to help bring viewers m o r e . detailed
coverage of national conventions, but
this is the first time its oomputar also
has been programmed to count roll call
votes, he said.

For this function, CBS" IBM 370/155
recorded and tabulated votes and then
output the results to a
minicomputer-driven character generator
which projected the numbers right on
viewers" TV screens.

To build the data base, CBS interviewers
contacted every oonventlon delegate and
asked each a series of about 40
questions. News analysts wanted to know
delegates" demographic characteristics
--race, sex and nationality, for
example--as wall as their positions on
the ~ques, Mitofsky said.

Since last week's chief unknown
concerned the selection of a
vlce-presidential candidate, "we also
wanted to know which vioe-presldential
contenders the delegates supported and
which candidates they could not
support," he sald.

5

