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Abstract 

Formal definitions of several func- 
tions and operators for manipulating 
nested arrays are presented. Three 
operators that control the application of 
a function to the items or groups of items 
of an array are defined. In addition, the 
definition of current APL operators is 
extended to nested arrays. A proposal is 
presented to accept°some of the ideas for 
the present APL and others for an APL 
extended to include heterogeneous nested 
arrays. 

Introduction 

Adding nested arrays to APL* will 
require both the extension of some exist- 

*Proposals for nested arrays in APL differ 
in their treatment of the relation between 
basic scalars and items of basic arrays. 
In system I, the items of a basic array, 
including the item of a basic scalar 
array, are numbers or characters and are 
outside the universe of arrays. In 
system O, a number or character is treated 
as an array that contains itself as its 
sole item. In set theoretic terms, the 
arrays of system 0 are equivalence classes 
of the arrays of system I under the 
smallest equivalence relation satisfying 
that 

o a scalar array is equivalent to the 
array of rank zero that contains it 
as sole item, and 

o two arrays are equivalent if they 
have the same shape and if corre- 
sponding items are equivalent. 

The classification of the proposals for 
nested arrays is discussed by Gull and 
Jenkins [4]. 

ing functions and operators ("function- 
als") of APL and the addition of new ones. 
Proposals for system 0 arrays appeared in 
Brown's paper [I] and in Ghandour and 
Mezei's article [2] -- the latter largely 
based on ideas of More [3]. Gull and 
Jenkins [4] present a smaller set of 
proposals for system i arrays, concentra- 
ting mainly on functions to manipulate 
nesting levels and selection. We present 
a systematic development of a unified 
collection of operators and functions for 
system I, based on the concept of symmetry 
of definition with respect to the axes. 
In addition, we describe a restricted form 
of the proposal that is compatible with 
present APL. The discussion is for the 
universe ~ of heterogeneous arrays 
without tags [4], leaving the extension to 
tagged generalizations (systems A and B in 
[6]) for later study. 

This paper summarizes the results of 
a study of the structure of APL arrays and 
of the APL functions and operators carried 
out as part of a language design project 
that is still underway. 

1. Preliminary Definitions 

First we present a definition of ~, 
the universe of nested arrays with numbers 
and characters as their basic elements. 
The development follows that given in [4]. 
For any set S, let 

S* = uS k 

k~O 

where S k denotes the union of tuples of 
length k with components that are elements 
of S. Thus, S* is the union of all such 
tuples of finite length. A t~S is a tuple 
belonging to some S k, and we denote its 
length by len(t) = k. 

For any set D, we define the set of 
arrays with items in D by 

fen(s) 
A(D) : {(s,d)¢~*×D*llen(d):~1 si} 

where~={O,i,2,...}, the set of nonnega- 
tire numbers. 
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If x=(s,d) is an array, we define 
these terms: 

the items of x : components of d 
the g_hgp_g of x = s 
the list of x = d 
the dimen.gig_~9_of x = components of s 
the rank of x = len(s) 
the cqunt of x = fen(d) 

Let B be the set of basic (or simple) 
data, namely the set of numbers and 
characters of APL. Then A(B) is a set of 
arrays that contains the arrays of current 
APL. 

For example, 

t5 = (I,(1,2,3,4,5)) 
2 2p'ABCD' = ( ( 2 , 2 , ( ' A ' , ' B ' , ' C ' , ' D ' ) )  

3 = ( ~ , 3 )  

where ~ denotes the empty set. This 
definition of arrays includes only one 
empty array of each shape. The array 

(2,('A',5)) 

is a member of A(B) but is not a valid APL 
object in current systems. 

We may define arrays over other sets 
with the above definition; indeed, our 
purpose here is to define a universe of 
arrays with items that may themselves be 
arrays. For example, the set A(BuA(B)) is 
the set of arrays with items that are 
numbers, characters, or arrays of numbers 
or characters. Applying this process 
iteratively, we define the sequence of 
sets 

b ,  
[i+l : A(Bu[i) for i:0,I,2,... 

Then Lie and we define Ul to be 
the least upper bound of this sequence: 

Before proceeding to our development 
of new operators, we introduce some 
additional terminology. El= A(B) is the 
set of basic arrays. For any x~U1 we say 
that x is 

a scalar if rank(x)=O 
a vector if rank(x)=1 
a matrix if rank(x)=2. 

A scalar that is an element of Ills 
called a basic scalar, similarly basic 
vector and basic matrix. The set of basic 
scalars is in one-to-one correspondence 
with B by the mapping that sends a scalar 
to the item it holds. An array x is empty 
if count(x)=O. We denote the empty vector 
by e. 

If x has shape s=(sl,...,Sr) , where 
r=rank(x), then the sets of subscripts for 
x are 

{(il,...,i r) ~rl 1~ik~Sk, k=1,...,r} 

We define a map called subscripting from 
the subscripts for x to the set of items 
of x by listing all the subscripts in 
lexicographic order and pairing them with 
the corresponding components in the list 
of x. By lexicographic order we mean that 

(il,...,i r) precedes (Jl,..-,Jr) if there 
exists an n such that ik=Jkfor every k<n 

and in<Jn. 

An index for x is a basic vector 
(r,(il,...,in)) , where r is the rank of x 
and (il,...,i n) is a subscript for x. The 
array p_~ ~ii indices for x is the array of 
the same shape as x whose items are the 
indices of the corresponding items of x. 
Thus, the array of all indices for x is an 
element of[2and its llst is the tuple of 
the indices of x in lexicographic order. 
We say that dj is the item of x indexed by 
I if E is the index whose item is mapped 
to dj by subscrlpting. 

In subsequent sections, we use 
mathematical notation as a metalanguage to 
define precisely the primitive functions 
of APL. We have adopted the following 
conventions: the roman letters x and y 
are used as variables over Ulor subsets 
of U1; the letter f is used to denote an 
arbitrary monadic or dyadic function; and 
the APL letters 5, J, and E are used to 
denote arrays that are constrained to 
satisfy some specified relationship to a 
variable. Further, the symbol *-~ is used 
to indicate that the entire expression to 
the left has the same meaning as the 
entire expression to the right. It is 
used both to illustrate examples and to 

-9- 



define equations for functions. We use 
APL syntax rules in such equations~ 
however, we define monadic operators to be 
right monadic and use juxtaposition of 
operators to denote successive application 

• o .. 

of two operators. Thus, f is analogous 
to ÷÷x. 

2. Some Primitive Functions 

For x~U1 we define the shape func- 

tion, P: Ui ÷ U1 by 

px ~-+ (rank(x),shape(x)) 

from which it follows that 

ppx ++ (1,rank(x)) 

We also define the ravel function, 
, : Ui÷Ui by 

,x ~-+ (count(x),list(x)) 

Next we define the odometer function [7], 
denoted l, to be the function that maps 
Px into the array of all indices for x. 

Let J be any array with items that 
are indices for xcU I. Then we 

H 

define 
choose indexing, denoted o, such that Jox 
is the array of the same shape as J whose 
items are the items of x indexed by the 
indices in J. The relationship among 
shape, odometer, and choose is expressed 
by the identity x *-* (!px)ox for every 
x~U~ 

In addition, we define for xEU 1 the 
seal (or enclose or conceal) function, 
denoted <, by 

<x ~ ($,x) 

That is, <x is a scalar array with the 
array x as its item. The unseal (or 
disclose or reveal) function, denoted >, 
is defined by 

>($,x) ~x 

The definition of unseal imposes the 
constraint that >y is defined only if 
there exists an x such that y=<x. In 
general, we will not explicitly discuss 
all the domain constraints imposea by our 

definitions, but leave them to the reader 
to discern. Clearly, our definitions 
imply that unseal is the inverse of seal, 
namely 

><x *-~x 

<>y *-~y 

Some examples: 

for xcU 1 

for y~domain of unseal 

i~'ABC' *-* (<,I),(<,2),<,3 

12 2 *-*2 2p(<I I),(41 2),(<2 I),<2 2 

((<2),<i)°(<3 4 5),4,'X',6 ~-+ 4,<3 4 5 

193 ~-+ <0 

3. By-scalar 

We define a new operator, by-scalar, 
denoted by T, which applies to both 
monadic and dyadic functions. If f is 
monadic, 

(<l)oTf x ~-~ f(<l)ox 

for any index I for x. If f is dyadic, 
and provided shape(x)=shape(y), 

(<l)oxTf y ~-~ ((<l)ox)f(<l)oy 

for any index I for x (or y). We extend 
the definition in the dyadic case when x 
is scalar to 

(<l)oxyf y ~-* x f (<l)oy 

for any index I for y, and similarly if y 
is scalar. 

Notice that these definitions imply 
that f maps scalars to scalars in its 
domain of definition. By-scalar is 
closely related to the concept of scalar 
functions in APL. Indeed, we call a 
monadic function f a scalar function o_D_ 
xd~.inAnc~if Tf x ~-~ f x f°r every 

~yadic function is scalar on 
if x'[f y 4-~ X f y for every (x,y)~ 

By-scalar may be used to define the 
monadic raise and lower primitive 
functions given by Gull and Jenkins 
[4, Table I]. 
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RaM, denoted by ±, is defined by 

±~T< 

and ~ower, denoted ±, is defined by 

H 

The domain of raise is U~ while that of 
lower is the set of arrays with items that 
are scalars (rank-0 arrays). Lower is 
undefined on a basic array. (Lower is 
naturally generalized to arrays with items 
that are arrays all of the same shape; we 
defer the definition to Section 8.) 

The identity 

x ~ i . ~ x  

for every X~l,follows from the definition 
of T and the identity for < and >. It 
holds for empty arrays because there is 
only one empty array of each shape in Ui. 

Examples: 

Let F be the function X F Y ~-+ +/XIIY. 
Then 

4 3 2TF 9 8 7 ~ 13 9 4 

!13 ~-+ (<I),(<2),<3 

applies its function to the items (which 
must be arrays) of the argument(s); 
whereas, by-scalar applies its function to 
the scalar arrays constructed to hold the 
items of the argument(s). This statement 
is made explicit by the identity 

Tf x ~-~±"f±x 

for all x in the domain of Tf. Note 
that by-scalar is an idempotent operator; 
that is, 

TTf -~- Tf 

However, by-item is not idempotent since 
.... f x applies f to the items of the items 
of x. 

Examples: 

(±2 3)",±4 5 ~-~ ((<2),<3)",(<4),<5 
~-+ (<2 4),<3 5 

" 'p" l~t3 4-+ " 'p " t (<1) , (<2) ,<3  
* -+ "p (< ,1 ) , (<1  2),<1 2 3 
~-+ (<,I),(<,2),<,3 

""p<±t3 ~-+ .... p<(<I),(<2),<3 
4-~ <(<e),(<e),<e 

4. By-item 

We may now use by-scalar to define 
It 

, of Gull the by-item operator, denoted 
and Jenkins [4]. 

If f is monadic, 

"f x ~-~Tf' x 

where f' is the function 
if f is dyadic, 

x"f y 4-~xT~ y 

,here ~ is the function 

x ~ y ~ <(>x)f>y 

The fundamental distinction between 
by-item and by-scalar is that by-ltem 

f'x ~-+ <f>x, and 

5. Bv-slice 

We define now an operator that is an 
extension of by-scalar and of the present 
APL axis. It applies a function to slices 
of APL arrays, a concept we proceed to 
formalize. 

For brevity in writing formulas and 
examples, we extend the domain of choose, 
odometer, and catenate (defined below) to 
accept scalars as arguments where one-item 
vectors would otherwise be required. In 
particular, scalars are permitted as the 
index for a vector in choose indexing. 
Then we may define indexing for vectors by 

x[l] ~ (±l)ox 

where x is a vector and I is an array with 
items that are subscripts for x. For 
example: 
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5 3 8[2] ~ (~2)o5 3 8 
(<2)o5 3 8 
(<)2)o5 3 8 

+-+'3 

5 3 8[3 I] <-+ (±3 I)o5 3 8 
((<3),<I)o5 3 8 

4-+ ((<,3),<,i)o5 3 8 
~-+ 8 5 

We define catenate for vectors by 

x,y ~-+ (n,d) 

where n=count(x)+count(y) and d is the 
n-tuple with the items of x followed by 
the items of y, and we extend it to 
scalars as noted above. 

A slice sDeciflcation for x is a 
scalar or vector I with integer items 
designating axes of x without repetition. 
That is, the items of I are a subset of 
{1,2,...,rank(x)}. Let I' denote the 
vector with items that are the complement 
set of axes of x in ascending order, and 
let I'' be the permutation of ,ppx that 
under indexing reorders I',I to Ippx 
(I"4-+~I',I). Then, for a slice speci- 
fication I of x, we define a dyadic 
generalization of raise called slice-raise 
(which differs from Gull and Jenkins' 
dyadic form of ± [4]) as follows: I±x 
is the array of shape (px)[l'] whose items 
are arrays of shape (px)[l] such that if J 
is an item of !(Px)[l'] and K is an item 
of l(Px)[l] then 

(<K) o>(<J)ol±x ~-+ (<(K,J)[l''])ox 

One may verify that 

e÷x ~-~ ÷x and ( lppx)~x .H- <x 

Examples of the use of slice-raise are 

1±2 3pt6 ~ (<1 4) , (<2 5),<3 6 

2±2 3p16 ~ (<1 2 3),<4 5 6 

2±0 2pl + + e  

2 3!0 3 2p'A' .l-+ e 

Note that slice-ralse may map empty arrays 
of different shapes to the same object. 

We define a complementary function 
slice-lower to reverse (where possible) 
the effect of a slice=raise. Thus, I~x 
is the unique array y if it exists, such 
that I!y ~-~ x. Then O±x ~-~ ix and 
(Ippx)±x ~-~ >x. For x nonempty, the 
identity x ++I±l±x holds for every I 
that is a slice specification for x. This 
identity can be extended to the entire 
universe only if U1 is extended to include 
more empty arrays [5]. 

We now define the operator by-slice, 
which is denoted by indexing the function 
with a list of two or three slice specifi- 
cations. If f is monad±c, 

f[J;K]x ~-+K!"f Jix 

and if f is dyadic, 

x f[I;J;K]y 4-+K±(T÷_x)"f J~y 

By-slice applies the function to the 
slices of the argument(s) indicated by the 
first (two) slice specification(s) and 
packs the results in a single array using 
the final slice specification to indicate 
the positions to put the axes of the 
result values. 

Examples: 

Let A÷2 2 2 2p~16. 
Then 

2 3±A ~ 2 2p(<2 2pl 3 5 7) ,  
(<2 2p2 4 6 8),<2 2p9 11 13 15), 
<2 2plO 12 14 16 

Ax[2 3;I 2;2 3]2 2pO I 0 I ~-~ 
2 2 2 2pO 0 3 It 0 0 7 8, 
0 0 ii 12 0 0 15 16 

For any monadic function f and any array A 
in its domain, 

f A ~-+ >"f<A ~-+ f[Ip0A;e]A 

Notice that the slice-lower in the 
definition of by-slice implies that the 
function to which by-slice is applied must 
yield an array of the same shape for each 
slice to which it is applied. Since 

Tf x ~-+ +-f÷x 
- -  oo- 

~e! fe±x 
~-~ f[e;e]x 
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we see that by-scalar is just by-slice 
over slices specified by no axes, that is, 
over the set of scalars that hold the 
items of x. 

The definitions of raise and lower, 

~x+-~ T<x 

.~X ~ T>x 

generalize to the identities, 

I±x ~ <[l;e]x 

I±x ~-* >[e;l]x 

which can be easily verified. Note that 
this indicates that by-slice with seal 
makes raise and slice-raise redundant; by 
postulating by-slice directly they could 
be eliminated. It shows also that slice- 
raise and slice-lower are closely related 
to the indexed conceal and reveal func- 
tions defined by Brown [1]; that is, 
<[I;e]x is equivalent to Brown's c[l]x 
except for system 0 versus system I 
considerations. 

(<I,J)ox ~f y*-~ (<I,J)o(ippx)+(<x)~f' y 
~-~ (<I)o>(<J)o(<~)'If, Y 
~. (<I)o>(<x)f' (<j)oy 
.-, (<I)o><(><x) ~f (<j)oy 
,-* (<l)ox~f(<j)oy 
~-. ((<l)ox) f (<J)oy 

The above definition of outer product 
is compatible with the outer product 
operator of present APL (except in syntax) 
when applied to a scalar function. More- 
over, if Tf is defined for a function f, 
then 

9Tf ~-~ 9f 

because both reduce to the same definition 
by the idempotency of ~. 

Outer product can be applied to the 
by-item of a more general function to 
operate on the items of the arguments. 
For example, 

((<1 1),<2 3) 9"',<3 
*-* ((<1 1)",<3),(<2 3)",<3 
*-* (<1 1 3),<2 3 3 

6. Outer Product and Reduction 

We now define the outer product 
operator, denoted 9, by 

x ~f y*-~ (ippx)±(<x)Tf'y 

where f' is the function 

x f' y~-. <(>x)Tf Y 

Outer product applies f to the scalars 
that hold the items of each argument and 
stores the items of the function values as 
items of the result. 

Since x 9f y is defined by an 
~ppx slice-lower, we have 

px 9f y ~-+ (px),p(<x)Tf'y 
~-* (px),py 

Let I be an index for x and J be an 
index for y. Then I,J is an index for 
x 9f y and 

Thus, with this definition of outer 
product, we control explicitly the level 
at which we apply a function by combining 
outer product with by-item. Since thls 
combination occurs frequently, we might 
wish to give it a special notation such as 

We define reduction in a similar way. 
We use red to denote the reduction opera- 
tor to avoid confusion wlth the left 
monadic notation of APL. For a vector x 
we define 

red,, f x = 
I x[lJf red f x[l+~-l+ppx] if l<px 
x[l] if l=px 
neutral(f) if O=px 

where neutral(f) is the neutral for f if 
one exists. If f has a neutral m, then we 
define m to be the neutral of 9f and 
Tf also, and <a to be the neutral of "f. 
For example, 
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red+l 2 3 ++ l+red+2 3 
~-+ 1+2+red+, 3 
*-* 1+2+3 
~-~ 1+5 
4-.6 

red",(<3),(<l),<4 ~-+ (<3)",red",(<l),<4 
*-* (<3)",(<l)",red",,<4 
*-* (<3)",(<i)",<4 
*-~ (<3)",<1 4 
~-+ <3 1 4 

With this extension of reduction, we 
explicitly control the level of applica- 
tion of the argument function by using by- 
item, just as in outer product. We might 
consider the notation 7f to denote 
red"f. The effect of redTf is the same 
as red f. For example, if px ~-* 3, 

redTf x *-* x[1][f red[f x[2 3] 
~-+ x[l]~f x[2]red~f,x[3] 
~-~x[l]Tf x[2]Tf x[3] 
+-~ x[l]Tf (x[2]f x[3]) 
*-* x[l]f x[2]f x[3] 
*-*red f x 

The definitions for scan and inner 
product follow directly from the defini- 
tions of reduction and outer product, so 
we omit the details. As an example of the 
definitional power of these operators, we 
apply them in the following definition of 
slice indexing, denoted #: 

I~x 4-, (<7~,"±l) ox 

Let us explain the defining identity for 
slice indexing. Its purpose is to ensure 
that if 

Z:(k,(I1,...,/k)) 

where ~, j=1,...,k is an array of 
subscripts along the jth axis, then 

I ~ x  ~+ x [ I 1  ; . . .  ; /k  ] 

The function ~, builds all the possible 
pairwise catenations of the items of its 
arguments. It is applied successively to 
the ±Ij, obtained through ±I, by doing 
the reduction of its by-item. Thus the 
result of >7~,"±I is an array 
whose items are vectors il,...,i r where 
is an item of ~ ; that is, they are the 
indices for x that choose the desired 
items. This definition is closely related 

to the definition for slice indexing 
described by Haegi [8]. 

Let us show that the definition 
satisfies the identity 

e~x ~-~ (<e)ox 

when x is a scalar. 

e~ ~ (>TZ,"±e)ox 
~-* (>Tg,O) ox since "f O*-* O 
~-. (>red"9"'e)o x 
~-, (>neutral("9"',))o x 
~-* (>(<<O))ox since neutral(,)=O 

and the above rules 
~-~ (<e)ox 

7. Symmetry and Compatibility with ApL 

The definitions of several primitive 
functions of APL, as well as the defini- 
tions of the operators scan and reduction, 
are not symmetric with respect to the 
axes; this limits the number of useful 
identities between them. (For example, 
the APL catenate, reduction, reverse, and 
so on, use the last axis by default if no 
other axis is given.) 

It is possible to achieve the seman- 
tics of the nonsymmetric APL functions by 
defining symmetric versions and using by- 
slice. We proceed to give a possible set 
of such symmetric functions together with 
the appropriate by-slice applications 
which yield the corresponding APL seman- 
tics. We use APL expressions on the right 
of the following identities. 

Let red f x ~-. f/,x. 

Then (red f)[l;O]x ~-* f/[l]x 

and we have identities such as: 

(red f)[l,J;O]x *-~ f/[I]f/[J]x 

if f is associative and I<g. 

Let scan f x ~-, f\x but limit the 
domain to vectors. 

Then (scan f)[l;l)x ~-+ f\[l]x. 
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o Let rev x ++ (px)p@,x. 

Then re v[l;l]x ++ $[l]x. 

Let x r_Qi y +-~ xCy but limit the 
domain to x scalar, y vector. 

Then x f_Q![~;l;l]y ~-~ xQ[l]y. 

Let x cad y ~-~ (,x),(,y)o 

If ppx~-+ ppy, 

then x cat[I;I;I]y ~-~ x,[l]y. 

I f  ppx  ~ ( p p Y ) - I  o r  ppx ~-+ O, 

then x ca~[~;l;l]y ~-~ x,[l]y and 

x eat[e;e;l]y~+ x,[l-.5]y. 

o Let x cQmp y ÷+ (,x)/,y. 

Then x Qomo[l;l;l]y ~+ x/[l]y. 

o Let x eXD y ~+ (,x)\,y. 

Then x exp[l;I;I]y~+x\[I]y. 

Note that red, rev, cat, comp, and exp, 
which are variations of reduction, 
reverse, eatenate, compress, and expand, 
respectively, ravel their argument(s) to 
remove the asymmetric treatment of the 
axes. 

Brown [I] and Ghandour and Mezei [2] 
give generalizations of axis, applied to 
the above functions (and others), which 
use a vector of axes and apply the func- 
tion to the indicated slices; however, the 
semantics are function-dependent in that 
separate semantics have to be specified 
for each function or operator. Our 
definition of by-slice is an attempt to 
provide an operator that has the semantic 
power of a generalized axis with a 
function-independent meaning (which allows 
it to be applied to user-defined 
functions). 

It would be ideal if default values 
for the fields of by-slice could be 

determined in all the above cases so that 
axis could be treated as just a special 
case of by-slice. Indeed, for monadic 
functions, we may use the default rule: 

(a) When f is monadic, f[I] is inter- 
preted as f[l;l] (resp. f[l;e]) 
if the rank of the result of 
applying f to a slice along I is pI 
(resp. 0). 

Similarly, for dyadic functions, we 
want a default rule such that 

x f[l]y ++ x f[I';J';K']y 

will be satisfied for rotate, catenate, 
compress, and expand. Unfortunately, 
these are conflicting requirements. 
Catenate (with a non-fractional index) and 
rotate suggest the rule: 

(b) If the arguments are of the same 
rank, then take I'+J'÷K'÷I. 
Otherwise, if (ppx)> ppy 
(resp. <), take I'÷I and J'~ 
(resp. I'~ and J'÷l) and K'÷I. 

This rule gives an interesting interpreta- 
tion for axis on scalar functions as the 
examples below illustrate. 

2 3p16 +[110 5 I0 ~-~ 2 3pl 7 13 4 10 16 

2 3pt6 +•2]0 5 ÷+ 2 3pl 2 3 9 I0 11 

Alas, rule (b) fails on compress and 
expand, and while other defaults might be 
chosen, no function-independent default 
can satisfy the requirements to make 
present axis a special case of by-slice 
for both compress and rotate. The basic 
reason is that, for V a vector and M a 
matrix, the interpretations in present APL 
of V/[I]M and V$[I]M are inconsistent, 
being V comp[l;l;l]M and V rot[e;1;1]M, 
respectively. 

8. PrODOSals 

Which (if any) of the ideas in the 
previous section can or should be accepted 
for present APL or for an APL with nested 
heterogeneous arrays? First we suggest 
that by-scalar and by-slice should be 
included in present APL and be applicable 
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to any primitive or user-defined function 
that produces values of the same shape for 
the slices to which it is applied. 
Despite the discussion of the last sec- 
tion, it is possible to include by-slice 
in a compatible extension in the sense of 
using the axis notation to have its 
current meaning in all cases where it is 
defined, but to systematically extend by 
by-slice. The reason is that axis, as 
used in present APL, needs the definitions 
of the functions to which it is applied 
only for vectors. These coincide with the 
symmetric versions for that restricted 
domain, and hence there is no conflict 
between axis and by-slice. 

For example, the present interpreta- 
tion of +/[I]x is compatible with the 
definition of by-slice applied to the 
present function "+/". To extend axis 
wlth by-slice without changing the seman- 
tics of current APL, the following conven- 
tions can be followed: 

Compress, expand, and lamination 
(catenate with a fractional index) 
must be treated as special cases. 

Otherwise, follow default rule (a) 
for monadic functions and default 
rule (b) for dyadic functions. 

Use the current definitions of 
reduction, reverse, and so on when no 
axis is specified, and use the 
symmetric versions with by-sllce 
otherwise. 

Then the by-slice notation could be 
used, and it would be consistent wlth axls 
wherever the semantics of axis have been 
extended. This approach (admittedly a 
"kludge") is compatible wlth current APL, 
yet yields the benefit of the symmetric 
definitions. 

Extending axis and adding by-slice in 
this manner and allowing their use on 
user-defined functions would greatly 
enhanoe the expressive power of the 
language, perhaps leading to entirely new 
approaches to solving many problems. 
Extending the remaining APL operators 
(reduction, scan, outer product, and inner 
product) to handle any functions that map 
scalars to scalars would also be 
beneficial. 

It is also possible to add a version 
of odometer and choose to APL without 
nested arrays. Since, for an array, all 
indices are vectors of the same length, an 
array of indices can be represented by an 
array of integers of one rank higher~ 
Thus, I could be extended to generate the 
array of all indices for an arbitrary 
array such that 

plpA +-+ (pA)~ppA 

and choose could be defined to accept 
arrays of indices represented in this way. 
Hence, we propose that i be defined so 
that 

( lpA)  -~-~ (I+ppA)..+.&pA 

and a "choose" be defined such that 

I "choose" A ~-+ ((l+ppA)±l)oA 

If heterogeneous nested system I 
arrays are added to APL, we suggest 
extending the above proposal to include 
(in addition to by-scalar and by-slice) 
the functions seal, unseal, raise, lower, 
choose, slice, and odometer, as well as 
the operator by-item. Moreover, reduc- 
tion, scan, outer product, and inner 
product should be defined with the seman- 
tics we have presented. All the operators 
should be applicable to the primitive or 
user-defined functions that meet the 
domain constraints, and function expres- 
sions should be allowed. Neutral elements 
should be defined for those primitive 
functions that have them; then reduction 
on an empty array should be defined only 
for those primitive functions (or for 
functions derived from them using 
operators). 

Other functions or extensions of 
functions could be added for convenience. 
For example, slice-raise and slice-choose, 
and lower (monadic ±) could be extended 
to arrays whose items are all arrays of 
the same shape: 

i x  ~ ( (PX)+ lPP>(< i ) ° ,X )±X 

In the appendices, we propose defini- 
tions for the format of a nested array 
(v), a mesh operator, and index-finder 
(dyadic !), which may also be of interest 
as possible extensions. 
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9o Conclusions 

The major new approach we have taken 
is to separate the concepts of by-scalar, 
by~item~ and by-leaf (defined below). We 
feel this separation clarifies many 
confusions surrounding earlier attempts to 
define the role of "scalar functions" in 
APL with nested arrays. In our terminol- 
ogy, a function f is scalar if ~f +-~ f. 
New scalar functions can be created by 
since TTf *-~ Tf. The by-item of a 
function in our definition can never be 
identical to the function itself 
("f*-~ f), because by-item constrains the 
argument of the function it produces to 
have items that are not basic, and 
"'f ~-* f would imply an infinite descent. 
Indeed, "'f is always a function that 
descends exactly one level. In order to 
descend many levels, Gull and Jenkins [4] 
introduced the operator by-leaf, which may 
be defined recursively by 

'if x if all items of x are 
arrays (x is a tree 

"if x ~-~ array) 
x otherwise 

(here we have denoted by-leaf by ~ for 
reasons stated below.) In the homogeneous 
subset ~ c U~ this is an interesting 
operator since descent continues until the 
leaves of the trees are encountered, the 
leaves being homogeneous arrays of numbers 
or characters. If by-leaf is applied 
after by-scalar (~Tf), then the func- 
tion f is applied by-scalar to the leaves. 

Note that for the heterogeneous 
universe it is perhaps more natural to use 
"if ~-+ ~f'x where 

: ~ f y if y is a basic scalar 
f'y 

[ [f>y otherwise. 

Following More [3], we define a function f 
to be oervaslve in a domain D if 

"if x ~-+f x for every cUi. 

In a system 0 context, the distinc- 
tion between T and " is blurred. If x 
is a basic array, then "f x ~-~ ~f x 
provided f maps basic scalars to basic 
scalars; but they are different if x is 
not basic, even if f maps generalized 

scalars to generalized scalars. Attempt- 
ing to characterize a scalar function by 
"f ~-+ f is possible in system 0 but also 
yields "if ~-~ f; that is, a scalar func- 
tion is always pervasive. (Here we are 
inferring properties of system I defini- 
tions in system O, using the mapping of UI 
onto Uodefined by Gull and Jenkins [4].) 

The definitions of operators we have 
given for system I can be used in system 
O. They achieve compatible semantics 
(except for telescoping scalars) provided 
they are intei~prete ~ in terms of the 
mapping from Ulonto U O . The conceptual 
separation achieved by defining by-ltem to 
be distinct from by-scalar and by-leaf can 
be used as well in system O. Moreover, 
our definitions of outer product, reduc- 
tion, and by-slice may also be used for 
system 0 arrays and are compatible with 
present usage. Note, however, that 
because the map of system I onto system O 
is not one-to-one, definitions given for 
system 0 cannot always be lifted to 
system I. (For instance, Brown's defini- 
tion of reduction for a vector of length I 
or greater: 

f x ++ I <(>x[1])f>re~ f lax if l<~x 
r~ 

[ x[l] otherwise 

is incompatible with system 1.) 

We have chosen notations for by-item, 
by-scalar, and by-leaf to correspond to 
the notations for choose, slice, and 
reach, respectively, to which they are 
somewhat related. 

choose o by-item 
slice ~ T by-scalar 

.. 

reach o _ by-leaf 

By-leaf is not included in the 
proposal ofSection 8 since the definition 
which is natural for H (homogeneous 
arrays) does not allow the function to 
reach all the basic data in the hetero- 
geneous case. Changing the definition as 
noted does achieve complete descent but is 
not very interesting. In a system of 
tagged arrays with tags on the items 
(system B in [6]), the tagging structure 
could control the descent and an interest- 
ing recursive control mechanism generated. 
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Finally we note that we have pre- 
sented here a rigorous definition of APL 
arrays, functions, and operators using 
terminology and a formal framework that 
makes it possible to discuss APL objects 
precisely and without confusion. What we 
have presented is the beginning of a 
generating set of functions and operators 
for defining APL. We believe that a 
formal description of "the common APL 
subset" can be defined in this formalism 
and it could be an important aid to the 
task of language standardization. 

Appendix I -- Format for Nested Arrays 

We propose a definition of format 
(monadic w) for nested arrays, as an 
example of the application of the opera- 
tors and functions defined in the paper. 

Often, while building the output of a 
program, we encounter the problem of 
placing in a rectangular display, a 
collection of "boxes" containing data, 
titles, or decorations. The difficulty is 
that all the shapes must be adjusted 
before printing. For example: 

I MONTH I RAINFALL M.M. I 

I JANUARY I 

I FEBRUARY I 

PARIS 98 1 
l 

LONDON 51 I 
i 

NEW YORK 101 I 

Note that the same problem was encountered 
while constructing the second box in the 
second column and hence the problem is 
essentially recursive. This and other 
related problems can be solved automati- 
cally if format is extended to nested 
arrays properly: Format on an array is 
defined to compute the format of its items 
and then adjust the shapes so that they 
fit together. Then, the problem is solved 
by applying format to the nested array 
containing the boxes. The scheme works 

only if 2~pp~A for all A, since the 
result of format must be adjustable to a 
character matrix. 

We now give a precise definition of 
the v function. 

Let A be an array to output. We 
assume that A is a matrix; for higher rank 
arrays the print image would be given with 
inserted blank lines. 

Let V ÷ "'MAT"vA 

where MAT X +-, (-2+1 i,pX)pX is applied 
to ensure that the collection of boxes 
obtained from format are all matrices, and 
v denotes the present format primitive. 
Now we define 

F I~-~ [/[I]±(<<I)"o"pV 

which computes for I:I the maximum width 
of boxes in each column and for I=2 the 
maximum height of boxes in each line. 
Then 

S+7N,"F±i 2 

is the matrix of adjusted shapes for each 
item of V, and S"+V gives the collection 
of adjusted boxes. We now have to join 
the boxes together; it can be done in two 
steps using the function 

I GLUE V÷+7,[I] V 

which "glues" a vector of arrays along 
axis I. Then 

VA ~-~ >I GLUE 2 GLUE S"+V 

For example, the box in row 2, column 2 
above would be displayed by 

v((<'PARIS'),(<'LONDON'), 
<'NEW YORK '),[2]±98 51 101 

ADPendix 2 -- Expressions on the Left of 
Assignment and Mesh 

It has been suggested for years that 
assignment in APL be extended to include 
arbitrary selection expressions on the 
left. For example, 
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(3÷A)÷~3 
<BIA)÷i+IB 

We will show how the desired seman- 
tics can be obtained by a pure-value 
expression. The idea is that a form: 

(f A)÷B 

where f is an expression amounting to a 
selection function from A, be interpreted 
as A÷Axf B where ~ is the operator mesh. 

We proceed to define mesh, which, 
when applied to a monadic selection 
function, produces a dyadic function which 
"meshes" the right argument into the left 
argument in the pattern defined by the 
selection function. 

To give the definition, we first need 
to introduce index finder A. For every 
index J of x, 

(<J)ox!y 

is the first (in lexicographic order) 
index I of y such that 

(<l)oy ~-* (<d)ox 

We may then define g ,-,xf by: 

V Z~A g B;M 
[I] M÷fioA 
[2] 'INDEX' ERRORIF(pM)~pB 
[3] Z÷T SELECT !OA 

V 

where £ denotes the not-identical func- 
tion of Gull and Jenkins [4], and where 
SELECT is 

V Z+SELECT Z 
[I] +(X~M)/SELECTFROMB 
[2] Z÷XoA 
[3] +0 
[4] SELECTFROMB: Z÷(X!M)oB 

V 

For example, if F x ++ 3÷x and 
G x 4-,B/x, then A÷A~F~3 and 
A÷AxGi+/B give us the semantics we wish 
for (3÷A)÷13 and (B/A)÷i+/B. 

Indeed, the transformation 

(F A)÷B gives  A÷AxF B 

is straightforward and purely mechanical; 
it could be used to extend the syntax of 
present APL to accept simple selection 
expressions on the left of assignment. 
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