
OPERATORS IN AN APh

CONTAININ_~NESTED ARRAYS

by M. A. Jenkins and Jean Michel

Abstract

Formal definitions of several func-
tions and operators for manipulating
nested arrays are presented. Three
operators that control the application of
a function to the items or groups of items
of an array are defined. In addition, the
definition of current APL operators is
extended to nested arrays. A proposal is
presented to accept°some of the ideas for
the present APL and others for an APL
extended to include heterogeneous nested
arrays.

Introduction

Adding nested arrays to APL* will
require both the extension of some exist-

*Proposals for nested arrays in APL differ
in their treatment of the relation between
basic scalars and items of basic arrays.
In system I, the items of a basic array,
including the item of a basic scalar
array, are numbers or characters and are
outside the universe of arrays. In
system O, a number or character is treated
as an array that contains itself as its
sole item. In set theoretic terms, the
arrays of system 0 are equivalence classes
of the arrays of system I under the
smallest equivalence relation satisfying
that

o a scalar array is equivalent to the
array of rank zero that contains it
as sole item, and

o two arrays are equivalent if they
have the same shape and if corre-
sponding items are equivalent.

The classification of the proposals for
nested arrays is discussed by Gull and
Jenkins [4].

ing functions and operators ("function-
als") of APL and the addition of new ones.
Proposals for system 0 arrays appeared in
Brown's paper [I] and in Ghandour and
Mezei's article [2] -- the latter largely
based on ideas of More [3]. Gull and
Jenkins [4] present a smaller set of
proposals for system i arrays, concentra-
ting mainly on functions to manipulate
nesting levels and selection. We present
a systematic development of a unified
collection of operators and functions for
system I, based on the concept of symmetry
of definition with respect to the axes.
In addition, we describe a restricted form
of the proposal that is compatible with
present APL. The discussion is for the
universe ~ of heterogeneous arrays
without tags [4], leaving the extension to
tagged generalizations (systems A and B in
[6]) for later study.

This paper summarizes the results of
a study of the structure of APL arrays and
of the APL functions and operators carried
out as part of a language design project
that is still underway.

1. Preliminary Definitions

First we present a definition of ~,
the universe of nested arrays with numbers
and characters as their basic elements.
The development follows that given in [4].
For any set S, let

S* = uS k

k~O

where S k denotes the union of tuples of
length k with components that are elements
of S. Thus, S* is the union of all such
tuples of finite length. A t~S is a tuple
belonging to some S k, and we denote its
length by len(t) = k.

For any set D, we define the set of
arrays with items in D by

fen(s)
A(D) : {(s,d)¢~*×D*llen(d):~1 si}

where~={O,i,2,...}, the set of nonnega-
tire numbers.

-8-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F586050.586054&domain=pdf&date_stamp=1978-12-01

If x=(s,d) is an array, we define
these terms:

the items of x : components of d
the g_hgp_g of x = s
the list of x = d
the dimen.gig_~9_of x = components of s
the rank of x = len(s)
the cqunt of x = fen(d)

Let B be the set of basic (or simple)
data, namely the set of numbers and
characters of APL. Then A(B) is a set of
arrays that contains the arrays of current
APL.

For example,

t5 = (I,(1,2,3,4,5))
2 2p'ABCD' = ((2 , 2 , (' A ' , ' B ' , ' C ' , ' D '))

3 = (~ , 3)

where ~ denotes the empty set. This
definition of arrays includes only one
empty array of each shape. The array

(2,('A',5))

is a member of A(B) but is not a valid APL
object in current systems.

We may define arrays over other sets
with the above definition; indeed, our
purpose here is to define a universe of
arrays with items that may themselves be
arrays. For example, the set A(BuA(B)) is
the set of arrays with items that are
numbers, characters, or arrays of numbers
or characters. Applying this process
iteratively, we define the sequence of
sets

b ,
[i+l : A(Bu[i) for i:0,I,2,...

Then Lie and we define Ul to be
the least upper bound of this sequence:

Before proceeding to our development
of new operators, we introduce some
additional terminology. El= A(B) is the
set of basic arrays. For any x~U1 we say
that x is

a scalar if rank(x)=O
a vector if rank(x)=1
a matrix if rank(x)=2.

A scalar that is an element of Ills
called a basic scalar, similarly basic
vector and basic matrix. The set of basic
scalars is in one-to-one correspondence
with B by the mapping that sends a scalar
to the item it holds. An array x is empty
if count(x)=O. We denote the empty vector
by e.

If x has shape s=(sl,...,Sr) , where
r=rank(x), then the sets of subscripts for
x are

{(il,...,i r) ~rl 1~ik~Sk, k=1,...,r}

We define a map called subscripting from
the subscripts for x to the set of items
of x by listing all the subscripts in
lexicographic order and pairing them with
the corresponding components in the list
of x. By lexicographic order we mean that

(il,...,i r) precedes (Jl,..-,Jr) if there
exists an n such that ik=Jkfor every k<n

and in<Jn.

An index for x is a basic vector
(r,(il,...,in)) , where r is the rank of x
and (il,...,i n) is a subscript for x. The
array p_~ ~ii indices for x is the array of
the same shape as x whose items are the
indices of the corresponding items of x.
Thus, the array of all indices for x is an
element of[2and its llst is the tuple of
the indices of x in lexicographic order.
We say that dj is the item of x indexed by
I if E is the index whose item is mapped
to dj by subscrlpting.

In subsequent sections, we use
mathematical notation as a metalanguage to
define precisely the primitive functions
of APL. We have adopted the following
conventions: the roman letters x and y
are used as variables over Ulor subsets
of U1; the letter f is used to denote an
arbitrary monadic or dyadic function; and
the APL letters 5, J, and E are used to
denote arrays that are constrained to
satisfy some specified relationship to a
variable. Further, the symbol *-~ is used
to indicate that the entire expression to
the left has the same meaning as the
entire expression to the right. It is
used both to illustrate examples and to

-9-

define equations for functions. We use
APL syntax rules in such equations~
however, we define monadic operators to be
right monadic and use juxtaposition of
operators to denote successive application

• o ..

of two operators. Thus, f is analogous
to ÷÷x.

2. Some Primitive Functions

For x~U1 we define the shape func-

tion, P: Ui ÷ U1 by

px ~-+ (rank(x),shape(x))

from which it follows that

ppx ++ (1,rank(x))

We also define the ravel function,
, : Ui÷Ui by

,x ~-+ (count(x),list(x))

Next we define the odometer function [7],
denoted l, to be the function that maps
Px into the array of all indices for x.

Let J be any array with items that
are indices for xcU I. Then we

H

define
choose indexing, denoted o, such that Jox
is the array of the same shape as J whose
items are the items of x indexed by the
indices in J. The relationship among
shape, odometer, and choose is expressed
by the identity x *-* (!px)ox for every
x~U~

In addition, we define for xEU 1 the
seal (or enclose or conceal) function,
denoted <, by

<x ~ ($,x)

That is, <x is a scalar array with the
array x as its item. The unseal (or
disclose or reveal) function, denoted >,
is defined by

>($,x) ~x

The definition of unseal imposes the
constraint that >y is defined only if
there exists an x such that y=<x. In
general, we will not explicitly discuss
all the domain constraints imposea by our

definitions, but leave them to the reader
to discern. Clearly, our definitions
imply that unseal is the inverse of seal,
namely

><x *-~x

<>y *-~y

Some examples:

for xcU 1

for y~domain of unseal

i~'ABC' *-* (<,I),(<,2),<,3

12 2 *-*2 2p(<I I),(41 2),(<2 I),<2 2

((<2),<i)°(<3 4 5),4,'X',6 ~-+ 4,<3 4 5

193 ~-+ <0

3. By-scalar

We define a new operator, by-scalar,
denoted by T, which applies to both
monadic and dyadic functions. If f is
monadic,

(<l)oTf x ~-~ f(<l)ox

for any index I for x. If f is dyadic,
and provided shape(x)=shape(y),

(<l)oxTf y ~-~ ((<l)ox)f(<l)oy

for any index I for x (or y). We extend
the definition in the dyadic case when x
is scalar to

(<l)oxyf y ~-* x f (<l)oy

for any index I for y, and similarly if y
is scalar.

Notice that these definitions imply
that f maps scalars to scalars in its
domain of definition. By-scalar is
closely related to the concept of scalar
functions in APL. Indeed, we call a
monadic function f a scalar function o_D_
xd~.inAnc~if Tf x ~-~ f x f°r every

~yadic function is scalar on
if x'[f y 4-~ X f y for every (x,y)~

By-scalar may be used to define the
monadic raise and lower primitive
functions given by Gull and Jenkins
[4, Table I].

-10-

RaM, denoted by ±, is defined by

±~T<

and ~ower, denoted ±, is defined by

H

The domain of raise is U~ while that of
lower is the set of arrays with items that
are scalars (rank-0 arrays). Lower is
undefined on a basic array. (Lower is
naturally generalized to arrays with items
that are arrays all of the same shape; we
defer the definition to Section 8.)

The identity

x ~ i . ~ x

for every X~l,follows from the definition
of T and the identity for < and >. It
holds for empty arrays because there is
only one empty array of each shape in Ui.

Examples:

Let F be the function X F Y ~-+ +/XIIY.
Then

4 3 2TF 9 8 7 ~ 13 9 4

!13 ~-+ (<I),(<2),<3

applies its function to the items (which
must be arrays) of the argument(s);
whereas, by-scalar applies its function to
the scalar arrays constructed to hold the
items of the argument(s). This statement
is made explicit by the identity

Tf x ~-~±"f±x

for all x in the domain of Tf. Note
that by-scalar is an idempotent operator;
that is,

TTf -~- Tf

However, by-item is not idempotent since
.... f x applies f to the items of the items
of x.

Examples:

(±2 3)",±4 5 ~-~ ((<2),<3)",(<4),<5
~-+ (<2 4),<3 5

" 'p" l~t3 4-+ " 'p " t (<1) , (<2) ,<3
* -+ "p (< ,1) , (<1 2),<1 2 3
~-+ (<,I),(<,2),<,3

""p<±t3 ~-+ p<(<I),(<2),<3
4-~ <(<e),(<e),<e

4. By-item

We may now use by-scalar to define
It

, of Gull the by-item operator, denoted
and Jenkins [4].

If f is monadic,

"f x ~-~Tf' x

where f' is the function
if f is dyadic,

x"f y 4-~xT~ y

,here ~ is the function

x ~ y ~ <(>x)f>y

The fundamental distinction between
by-item and by-scalar is that by-ltem

f'x ~-+ <f>x, and

5. Bv-slice

We define now an operator that is an
extension of by-scalar and of the present
APL axis. It applies a function to slices
of APL arrays, a concept we proceed to
formalize.

For brevity in writing formulas and
examples, we extend the domain of choose,
odometer, and catenate (defined below) to
accept scalars as arguments where one-item
vectors would otherwise be required. In
particular, scalars are permitted as the
index for a vector in choose indexing.
Then we may define indexing for vectors by

x[l] ~ (±l)ox

where x is a vector and I is an array with
items that are subscripts for x. For
example:

-11-

5 3 8[2] ~ (~2)o5 3 8
(<2)o5 3 8
(<)2)o5 3 8

+-+'3

5 3 8[3 I] <-+ (±3 I)o5 3 8
((<3),<I)o5 3 8

4-+ ((<,3),<,i)o5 3 8
~-+ 8 5

We define catenate for vectors by

x,y ~-+ (n,d)

where n=count(x)+count(y) and d is the
n-tuple with the items of x followed by
the items of y, and we extend it to
scalars as noted above.

A slice sDeciflcation for x is a
scalar or vector I with integer items
designating axes of x without repetition.
That is, the items of I are a subset of
{1,2,...,rank(x)}. Let I' denote the
vector with items that are the complement
set of axes of x in ascending order, and
let I'' be the permutation of ,ppx that
under indexing reorders I',I to Ippx
(I"4-+~I',I). Then, for a slice speci-
fication I of x, we define a dyadic
generalization of raise called slice-raise
(which differs from Gull and Jenkins'
dyadic form of ± [4]) as follows: I±x
is the array of shape (px)[l'] whose items
are arrays of shape (px)[l] such that if J
is an item of !(Px)[l'] and K is an item
of l(Px)[l] then

(<K) o>(<J)ol±x ~-+ (<(K,J)[l''])ox

One may verify that

e÷x ~-~ ÷x and (lppx)~x .H- <x

Examples of the use of slice-raise are

1±2 3pt6 ~ (<1 4) , (<2 5),<3 6

2±2 3p16 ~ (<1 2 3),<4 5 6

2±0 2pl + + e

2 3!0 3 2p'A' .l-+ e

Note that slice-ralse may map empty arrays
of different shapes to the same object.

We define a complementary function
slice-lower to reverse (where possible)
the effect of a slice=raise. Thus, I~x
is the unique array y if it exists, such
that I!y ~-~ x. Then O±x ~-~ ix and
(Ippx)±x ~-~ >x. For x nonempty, the
identity x ++I±l±x holds for every I
that is a slice specification for x. This
identity can be extended to the entire
universe only if U1 is extended to include
more empty arrays [5].

We now define the operator by-slice,
which is denoted by indexing the function
with a list of two or three slice specifi-
cations. If f is monad±c,

f[J;K]x ~-+K!"f Jix

and if f is dyadic,

x f[I;J;K]y 4-+K±(T÷_x)"f J~y

By-slice applies the function to the
slices of the argument(s) indicated by the
first (two) slice specification(s) and
packs the results in a single array using
the final slice specification to indicate
the positions to put the axes of the
result values.

Examples:

Let A÷2 2 2 2p~16.
Then

2 3±A ~ 2 2p(<2 2pl 3 5 7) ,
(<2 2p2 4 6 8),<2 2p9 11 13 15),
<2 2plO 12 14 16

Ax[2 3;I 2;2 3]2 2pO I 0 I ~-~
2 2 2 2pO 0 3 It 0 0 7 8,
0 0 ii 12 0 0 15 16

For any monadic function f and any array A
in its domain,

f A ~-+ >"f<A ~-+ f[Ip0A;e]A

Notice that the slice-lower in the
definition of by-slice implies that the
function to which by-slice is applied must
yield an array of the same shape for each
slice to which it is applied. Since

Tf x ~-+ +-f÷x
- - oo-

~e! fe±x
~-~ f[e;e]x

-12-

we see that by-scalar is just by-slice
over slices specified by no axes, that is,
over the set of scalars that hold the
items of x.

The definitions of raise and lower,

~x+-~ T<x

.~X ~ T>x

generalize to the identities,

I±x ~ <[l;e]x

I±x ~-* >[e;l]x

which can be easily verified. Note that
this indicates that by-slice with seal
makes raise and slice-raise redundant; by
postulating by-slice directly they could
be eliminated. It shows also that slice-
raise and slice-lower are closely related
to the indexed conceal and reveal func-
tions defined by Brown [1]; that is,
<[I;e]x is equivalent to Brown's c[l]x
except for system 0 versus system I
considerations.

(<I,J)ox ~f y*-~ (<I,J)o(ippx)+(<x)~f' y
~-~ (<I)o>(<J)o(<~)'If, Y
~. (<I)o>(<x)f' (<j)oy
.-, (<I)o><(><x) ~f (<j)oy
,-* (<l)ox~f(<j)oy
~-. ((<l)ox) f (<J)oy

The above definition of outer product
is compatible with the outer product
operator of present APL (except in syntax)
when applied to a scalar function. More-
over, if Tf is defined for a function f,
then

9Tf ~-~ 9f

because both reduce to the same definition
by the idempotency of ~.

Outer product can be applied to the
by-item of a more general function to
operate on the items of the arguments.
For example,

((<1 1),<2 3) 9"',<3
- ((<1 1)",<3),(<2 3)",<3
- (<1 1 3),<2 3 3

6. Outer Product and Reduction

We now define the outer product
operator, denoted 9, by

x ~f y*-~ (ippx)±(<x)Tf'y

where f' is the function

x f' y~-. <(>x)Tf Y

Outer product applies f to the scalars
that hold the items of each argument and
stores the items of the function values as
items of the result.

Since x 9f y is defined by an
~ppx slice-lower, we have

px 9f y ~-+ (px),p(<x)Tf'y
~-* (px),py

Let I be an index for x and J be an
index for y. Then I,J is an index for
x 9f y and

Thus, with this definition of outer
product, we control explicitly the level
at which we apply a function by combining
outer product with by-item. Since thls
combination occurs frequently, we might
wish to give it a special notation such as

We define reduction in a similar way.
We use red to denote the reduction opera-
tor to avoid confusion wlth the left
monadic notation of APL. For a vector x
we define

red,, f x =
I x[lJf red f x[l+~-l+ppx] if l<px
x[l] if l=px
neutral(f) if O=px

where neutral(f) is the neutral for f if
one exists. If f has a neutral m, then we
define m to be the neutral of 9f and
Tf also, and <a to be the neutral of "f.
For example,

-13-

red+l 2 3 ++ l+red+2 3
~-+ 1+2+red+, 3
- 1+2+3
~-~ 1+5
4-.6

red",(<3),(<l),<4 ~-+ (<3)",red",(<l),<4
- (<3)",(<l)",red",,<4
- (<3)",(<i)",<4
*-~ (<3)",<1 4
~-+ <3 1 4

With this extension of reduction, we
explicitly control the level of applica-
tion of the argument function by using by-
item, just as in outer product. We might
consider the notation 7f to denote
red"f. The effect of redTf is the same
as red f. For example, if px ~-* 3,

redTf x *-* x[1][f red[f x[2 3]
~-+ x[l]~f x[2]red~f,x[3]
~-~x[l]Tf x[2]Tf x[3]
+-~ x[l]Tf (x[2]f x[3])
- x[l]f x[2]f x[3]
*-*red f x

The definitions for scan and inner
product follow directly from the defini-
tions of reduction and outer product, so
we omit the details. As an example of the
definitional power of these operators, we
apply them in the following definition of
slice indexing, denoted #:

I~x 4-, (<7~,"±l) ox

Let us explain the defining identity for
slice indexing. Its purpose is to ensure
that if

Z:(k,(I1,...,/k))

where ~, j=1,...,k is an array of
subscripts along the jth axis, then

I ~ x ~+ x [I 1 ; . . . ; /k]

The function ~, builds all the possible
pairwise catenations of the items of its
arguments. It is applied successively to
the ±Ij, obtained through ±I, by doing
the reduction of its by-item. Thus the
result of >7~,"±I is an array
whose items are vectors il,...,i r where
is an item of ~ ; that is, they are the
indices for x that choose the desired
items. This definition is closely related

to the definition for slice indexing
described by Haegi [8].

Let us show that the definition
satisfies the identity

e~x ~-~ (<e)ox

when x is a scalar.

e~ ~ (>TZ,"±e)ox
~-* (>Tg,O) ox since "f O*-* O
~-. (>red"9"'e)o x
~-, (>neutral("9"',))o x
~-* (>(<<O))ox since neutral(,)=O

and the above rules
~-~ (<e)ox

7. Symmetry and Compatibility with ApL

The definitions of several primitive
functions of APL, as well as the defini-
tions of the operators scan and reduction,
are not symmetric with respect to the
axes; this limits the number of useful
identities between them. (For example,
the APL catenate, reduction, reverse, and
so on, use the last axis by default if no
other axis is given.)

It is possible to achieve the seman-
tics of the nonsymmetric APL functions by
defining symmetric versions and using by-
slice. We proceed to give a possible set
of such symmetric functions together with
the appropriate by-slice applications
which yield the corresponding APL seman-
tics. We use APL expressions on the right
of the following identities.

Let red f x ~-. f/,x.

Then (red f)[l;O]x ~-* f/[l]x

and we have identities such as:

(red f)[l,J;O]x *-~ f/[I]f/[J]x

if f is associative and I<g.

Let scan f x ~-, f\x but limit the
domain to vectors.

Then (scan f)[l;l)x ~-+ f\[l]x.

-14-

o Let rev x ++ (px)p@,x.

Then re v[l;l]x ++ $[l]x.

Let x r_Qi y +-~ xCy but limit the
domain to x scalar, y vector.

Then x f_Q![~;l;l]y ~-~ xQ[l]y.

Let x cad y ~-~ (,x),(,y)o

If ppx~-+ ppy,

then x cat[I;I;I]y ~-~ x,[l]y.

I f ppx ~ (p p Y) - I o r ppx ~-+ O,

then x ca~[~;l;l]y ~-~ x,[l]y and

x eat[e;e;l]y~+ x,[l-.5]y.

o Let x cQmp y ÷+ (,x)/,y.

Then x Qomo[l;l;l]y ~+ x/[l]y.

o Let x eXD y ~+ (,x)\,y.

Then x exp[l;I;I]y~+x\[I]y.

Note that red, rev, cat, comp, and exp,
which are variations of reduction,
reverse, eatenate, compress, and expand,
respectively, ravel their argument(s) to
remove the asymmetric treatment of the
axes.

Brown [I] and Ghandour and Mezei [2]
give generalizations of axis, applied to
the above functions (and others), which
use a vector of axes and apply the func-
tion to the indicated slices; however, the
semantics are function-dependent in that
separate semantics have to be specified
for each function or operator. Our
definition of by-slice is an attempt to
provide an operator that has the semantic
power of a generalized axis with a
function-independent meaning (which allows
it to be applied to user-defined
functions).

It would be ideal if default values
for the fields of by-slice could be

determined in all the above cases so that
axis could be treated as just a special
case of by-slice. Indeed, for monadic
functions, we may use the default rule:

(a) When f is monadic, f[I] is inter-
preted as f[l;l] (resp. f[l;e])
if the rank of the result of
applying f to a slice along I is pI
(resp. 0).

Similarly, for dyadic functions, we
want a default rule such that

x f[l]y ++ x f[I';J';K']y

will be satisfied for rotate, catenate,
compress, and expand. Unfortunately,
these are conflicting requirements.
Catenate (with a non-fractional index) and
rotate suggest the rule:

(b) If the arguments are of the same
rank, then take I'+J'÷K'÷I.
Otherwise, if (ppx)> ppy
(resp. <), take I'÷I and J'~
(resp. I'~ and J'÷l) and K'÷I.

This rule gives an interesting interpreta-
tion for axis on scalar functions as the
examples below illustrate.

2 3p16 +[110 5 I0 ~-~ 2 3pl 7 13 4 10 16

2 3pt6 +•2]0 5 ÷+ 2 3pl 2 3 9 I0 11

Alas, rule (b) fails on compress and
expand, and while other defaults might be
chosen, no function-independent default
can satisfy the requirements to make
present axis a special case of by-slice
for both compress and rotate. The basic
reason is that, for V a vector and M a
matrix, the interpretations in present APL
of V/[I]M and V$[I]M are inconsistent,
being V comp[l;l;l]M and V rot[e;1;1]M,
respectively.

8. PrODOSals

Which (if any) of the ideas in the
previous section can or should be accepted
for present APL or for an APL with nested
heterogeneous arrays? First we suggest
that by-scalar and by-slice should be
included in present APL and be applicable

-15-

to any primitive or user-defined function
that produces values of the same shape for
the slices to which it is applied.
Despite the discussion of the last sec-
tion, it is possible to include by-slice
in a compatible extension in the sense of
using the axis notation to have its
current meaning in all cases where it is
defined, but to systematically extend by
by-slice. The reason is that axis, as
used in present APL, needs the definitions
of the functions to which it is applied
only for vectors. These coincide with the
symmetric versions for that restricted
domain, and hence there is no conflict
between axis and by-slice.

For example, the present interpreta-
tion of +/[I]x is compatible with the
definition of by-slice applied to the
present function "+/". To extend axis
wlth by-slice without changing the seman-
tics of current APL, the following conven-
tions can be followed:

Compress, expand, and lamination
(catenate with a fractional index)
must be treated as special cases.

Otherwise, follow default rule (a)
for monadic functions and default
rule (b) for dyadic functions.

Use the current definitions of
reduction, reverse, and so on when no
axis is specified, and use the
symmetric versions with by-sllce
otherwise.

Then the by-slice notation could be
used, and it would be consistent wlth axls
wherever the semantics of axis have been
extended. This approach (admittedly a
"kludge") is compatible wlth current APL,
yet yields the benefit of the symmetric
definitions.

Extending axis and adding by-slice in
this manner and allowing their use on
user-defined functions would greatly
enhanoe the expressive power of the
language, perhaps leading to entirely new
approaches to solving many problems.
Extending the remaining APL operators
(reduction, scan, outer product, and inner
product) to handle any functions that map
scalars to scalars would also be
beneficial.

It is also possible to add a version
of odometer and choose to APL without
nested arrays. Since, for an array, all
indices are vectors of the same length, an
array of indices can be represented by an
array of integers of one rank higher~
Thus, I could be extended to generate the
array of all indices for an arbitrary
array such that

plpA +-+ (pA)~ppA

and choose could be defined to accept
arrays of indices represented in this way.
Hence, we propose that i be defined so
that

(lpA) -~-~ (I+ppA)..+.&pA

and a "choose" be defined such that

I "choose" A ~-+ ((l+ppA)±l)oA

If heterogeneous nested system I
arrays are added to APL, we suggest
extending the above proposal to include
(in addition to by-scalar and by-slice)
the functions seal, unseal, raise, lower,
choose, slice, and odometer, as well as
the operator by-item. Moreover, reduc-
tion, scan, outer product, and inner
product should be defined with the seman-
tics we have presented. All the operators
should be applicable to the primitive or
user-defined functions that meet the
domain constraints, and function expres-
sions should be allowed. Neutral elements
should be defined for those primitive
functions that have them; then reduction
on an empty array should be defined only
for those primitive functions (or for
functions derived from them using
operators).

Other functions or extensions of
functions could be added for convenience.
For example, slice-raise and slice-choose,
and lower (monadic ±) could be extended
to arrays whose items are all arrays of
the same shape:

i x ~ ((PX)+ lPP>(< i) ° ,X)±X

In the appendices, we propose defini-
tions for the format of a nested array
(v), a mesh operator, and index-finder
(dyadic !), which may also be of interest
as possible extensions.

-16-

9o Conclusions

The major new approach we have taken
is to separate the concepts of by-scalar,
by~item~ and by-leaf (defined below). We
feel this separation clarifies many
confusions surrounding earlier attempts to
define the role of "scalar functions" in
APL with nested arrays. In our terminol-
ogy, a function f is scalar if ~f +-~ f.
New scalar functions can be created by
since TTf *-~ Tf. The by-item of a
function in our definition can never be
identical to the function itself
("f*-~ f), because by-item constrains the
argument of the function it produces to
have items that are not basic, and
"'f ~-* f would imply an infinite descent.
Indeed, "'f is always a function that
descends exactly one level. In order to
descend many levels, Gull and Jenkins [4]
introduced the operator by-leaf, which may
be defined recursively by

'if x if all items of x are
arrays (x is a tree

"if x ~-~ array)
x otherwise

(here we have denoted by-leaf by ~ for
reasons stated below.) In the homogeneous
subset ~ c U~ this is an interesting
operator since descent continues until the
leaves of the trees are encountered, the
leaves being homogeneous arrays of numbers
or characters. If by-leaf is applied
after by-scalar (~Tf), then the func-
tion f is applied by-scalar to the leaves.

Note that for the heterogeneous
universe it is perhaps more natural to use
"if ~-+ ~f'x where

: ~ f y if y is a basic scalar
f'y

[[f>y otherwise.

Following More [3], we define a function f
to be oervaslve in a domain D if

"if x ~-+f x for every cUi.

In a system 0 context, the distinc-
tion between T and " is blurred. If x
is a basic array, then "f x ~-~ ~f x
provided f maps basic scalars to basic
scalars; but they are different if x is
not basic, even if f maps generalized

scalars to generalized scalars. Attempt-
ing to characterize a scalar function by
"f ~-+ f is possible in system 0 but also
yields "if ~-~ f; that is, a scalar func-
tion is always pervasive. (Here we are
inferring properties of system I defini-
tions in system O, using the mapping of UI
onto Uodefined by Gull and Jenkins [4].)

The definitions of operators we have
given for system I can be used in system
O. They achieve compatible semantics
(except for telescoping scalars) provided
they are intei~prete ~ in terms of the
mapping from Ulonto U O . The conceptual
separation achieved by defining by-ltem to
be distinct from by-scalar and by-leaf can
be used as well in system O. Moreover,
our definitions of outer product, reduc-
tion, and by-slice may also be used for
system 0 arrays and are compatible with
present usage. Note, however, that
because the map of system I onto system O
is not one-to-one, definitions given for
system 0 cannot always be lifted to
system I. (For instance, Brown's defini-
tion of reduction for a vector of length I
or greater:

f x ++ I <(>x[1])f>re~ f lax if l<~x
r~

[x[l] otherwise

is incompatible with system 1.)

We have chosen notations for by-item,
by-scalar, and by-leaf to correspond to
the notations for choose, slice, and
reach, respectively, to which they are
somewhat related.

choose o by-item
slice ~ T by-scalar

..

reach o _ by-leaf

By-leaf is not included in the
proposal ofSection 8 since the definition
which is natural for H (homogeneous
arrays) does not allow the function to
reach all the basic data in the hetero-
geneous case. Changing the definition as
noted does achieve complete descent but is
not very interesting. In a system of
tagged arrays with tags on the items
(system B in [6]), the tagging structure
could control the descent and an interest-
ing recursive control mechanism generated.

-17-

Finally we note that we have pre-
sented here a rigorous definition of APL
arrays, functions, and operators using
terminology and a formal framework that
makes it possible to discuss APL objects
precisely and without confusion. What we
have presented is the beginning of a
generating set of functions and operators
for defining APL. We believe that a
formal description of "the common APL
subset" can be defined in this formalism
and it could be an important aid to the
task of language standardization.

Appendix I -- Format for Nested Arrays

We propose a definition of format
(monadic w) for nested arrays, as an
example of the application of the opera-
tors and functions defined in the paper.

Often, while building the output of a
program, we encounter the problem of
placing in a rectangular display, a
collection of "boxes" containing data,
titles, or decorations. The difficulty is
that all the shapes must be adjusted
before printing. For example:

I MONTH I RAINFALL M.M. I

I JANUARY I

I FEBRUARY I

PARIS 98 1
l

LONDON 51 I
i

NEW YORK 101 I

Note that the same problem was encountered
while constructing the second box in the
second column and hence the problem is
essentially recursive. This and other
related problems can be solved automati-
cally if format is extended to nested
arrays properly: Format on an array is
defined to compute the format of its items
and then adjust the shapes so that they
fit together. Then, the problem is solved
by applying format to the nested array
containing the boxes. The scheme works

only if 2~pp~A for all A, since the
result of format must be adjustable to a
character matrix.

We now give a precise definition of
the v function.

Let A be an array to output. We
assume that A is a matrix; for higher rank
arrays the print image would be given with
inserted blank lines.

Let V ÷ "'MAT"vA

where MAT X +-, (-2+1 i,pX)pX is applied
to ensure that the collection of boxes
obtained from format are all matrices, and
v denotes the present format primitive.
Now we define

F I~-~ [/[I]±(<<I)"o"pV

which computes for I:I the maximum width
of boxes in each column and for I=2 the
maximum height of boxes in each line.
Then

S+7N,"F±i 2

is the matrix of adjusted shapes for each
item of V, and S"+V gives the collection
of adjusted boxes. We now have to join
the boxes together; it can be done in two
steps using the function

I GLUE V÷+7,[I] V

which "glues" a vector of arrays along
axis I. Then

VA ~-~ >I GLUE 2 GLUE S"+V

For example, the box in row 2, column 2
above would be displayed by

v((<'PARIS'),(<'LONDON'),
<'NEW YORK '),[2]±98 51 101

ADPendix 2 -- Expressions on the Left of
Assignment and Mesh

It has been suggested for years that
assignment in APL be extended to include
arbitrary selection expressions on the
left. For example,

-18-

(3÷A)÷~3
<BIA)÷i+IB

We will show how the desired seman-
tics can be obtained by a pure-value
expression. The idea is that a form:

(f A)÷B

where f is an expression amounting to a
selection function from A, be interpreted
as A÷Axf B where ~ is the operator mesh.

We proceed to define mesh, which,
when applied to a monadic selection
function, produces a dyadic function which
"meshes" the right argument into the left
argument in the pattern defined by the
selection function.

To give the definition, we first need
to introduce index finder A. For every
index J of x,

(<J)ox!y

is the first (in lexicographic order)
index I of y such that

(<l)oy ~-* (<d)ox

We may then define g ,-,xf by:

V Z~A g B;M
[I] M÷fioA
[2] 'INDEX' ERRORIF(pM)~pB
[3] Z÷T SELECT !OA

V

where £ denotes the not-identical func-
tion of Gull and Jenkins [4], and where
SELECT is

V Z+SELECT Z
[I] +(X~M)/SELECTFROMB
[2] Z÷XoA
[3] +0
[4] SELECTFROMB: Z÷(X!M)oB

V

For example, if F x ++ 3÷x and
G x 4-,B/x, then A÷A~F~3 and
A÷AxGi+/B give us the semantics we wish
for (3÷A)÷13 and (B/A)÷i+/B.

Indeed, the transformation

(F A)÷B gives A÷AxF B

is straightforward and purely mechanical;
it could be used to extend the syntax of
present APL to accept simple selection
expressions on the left of assignment.

References

I. Brown, J. A. A generalization of APL.
Ph.D. Thesis, Syracuse University, New
York, 1971.

2. Ghandour, Z., and Mezel, J.
Generalized arrays, operators, and
functions. IBM Journal of Research and
Development]3., 4 (1973), 335-372.

3. More, T. Types and prototypes in a
theory of arrays. Report 320-2113, IBM
Scientific Center, Cambridge,
Massachusetts, 1976. For a complete
bibliography of More's array theory, see
A~L Quote Quad ~, 4 (Winter 1977), 11-13,
and ApE Ouote Ouad 8, 2 (December 1978),
12-13.

4. Gull, W. E., and Jenkins, M. A.
Recursive Data Structures in APL.
ACM~, 2 (Feb. 1979), 79-96.

Comm,

5. Gull, W. E., and Jenkins, M. A.
Decisions for "type" in APL. Proc. of the
Sixth ACM Symposium on the Principles of
ProgrAmming Languages, San Antonio, Texas,
January 1979.

6. Jenkins, M. A., and Michel, J. On
types in reeursive data structures: A
study from the APL literature. Proc. of
the Third Jerusalem Conference on
Information Technology, August 1978,
523-529.

7. Abrams, P. S. An APL machine. Ph.D.
Thesis, TR-CS-70-158, Computer Science
Department, Stanford University, Calif.,
1970.

8. Haegi, H. R. The extension of APL to
tree-like data structures. APL Ouote Ouad
~, 2 (S-mmer 1976), 8-18.

-19-

(Note: This work was supported in part by
a grant A7892 from the National Research
Council of Canada. A preliminary version
of this paper was presented at the
Minnowbrook APL Workshop, September 1977.)

M. A. Jenkins
Computing and Information Science
Queen's University
Kingston, Ontario K7L 3N6
Canada

Jean Michel
Mathematique
Universite Paris XI (Orsay)
Orsay
France

-20-

