
~ITHE~THER~__~NTROLSTRUCTURES?

by Clark Wiedmann
APL Language Editor

The following paper, "Special Control
Structures for APL" by A. P. Reeves and J.
Besemer, is one of several that have
proposed extensions of APL to provide
control structures. As Language Editor of
.~p~ ~9_q~_~uad, I have endorsed publica-
tion of the paper because Quote Quad has
not served recently as a forum for discus-
sing control structures, and because the
paper contains some ideas that may be
improvements over past proposals. How-
ever, I cannot with good conscience let
the paper pass without noting that the
more fundamental question of whether
control structures improve the language
still has not been answered.

On the surface, it appears that
control structures would simplify program-
ming. Many of us have yearned for a
simple, foolproof way to perform some
statements N times (where N may be 0),
without needing to initialize counters,
increment counters, and compare counters,
and without involving four statements and
two labels in the task. But it is clear
that control structures would add some new
elements and rules to the language. The
question is whether the added complexity
of the language is justified by improved
clarity and reliability of programs.

A few years ago, control structures
experienced a great revival, and it
appeared to many that APL could not
survive without them. At that time, APL
was roundly denounced at gatherings of
computer scientists for its lack of
control structures, and many APL implemen-
ters looked favorably on adding control
structures to the language. But, time has
passed, and the control structure impera-
tive has faded. APL has survived, and
many of us are still eight times more
proauctive when programming in APL than in
the structured languages. The computing
community seems to have realized that
there is more to the art of programming

than merely using control structures, and

increased respect for APL has emerged

among computer scientists. In 1976, few
APL implementers still favored adding
conventional control structures to the
language° Instead, many favored further
exploration of alternative mechanisms such
as new data structures (general arrays),
operators, functions, and event control.
It remains to be seen if the rest of the
APL community feels that control struc-
tures are unimportant. Unless a need can
be demonstrated, I think further discus-
sion of what structures are best will be
pointless.

Experience with other languages may
not be relevant to APL; it has been
observed that control structures sometimes
divert APL programmers from more powerful
tools. In present APL the use of arrays
and array-oriented functions has elimi-
nated much of the need for control struc-
tures. That is, structure in our data has
taken the place of control structures in
our programs. Future extensions to the
language can be expected to further lessen
the utility of control structures. The
danger seems very real that programmers
would use control structures rather than
finding better solutions that involve
arrays. For example, one eminent member
of the APL community gave APLGOL an honest
try, but he was shocked to discover how
carried away he became -- he found he had
used nested loops to perform a matrix
product rather than using +.x.

As an example of improving a program
without the use of control structures,
consider the function M2 which has been
used in some papers to show the need for
control structures. The function first
appeared in a paper by Woodrum [I], then
in papers or memos by Jenkins [2], Orgass
[3], Foster [4], and now Reeves and
Besemer. The version shown below was
simplified by adopting slightly different
data structures. The original program
(see the end of the following paper) had
13 statements (7 branches), while this
version has 4 statements (I branch).
Incidentally, the version below corrects
two errors that have been propagated since
the Jenkins paper -- the more recent algo-
rithms would not actually work. Also,
this version performs the same number of
comparisons as the original, which is of

some importance since the original algo-

-21-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F586050.586055&domain=pdf&date_stamp=1978-12-01

rithm demonstrated sorting with minimal
comparing. The interface has been changed
in the version below. Rather than return-
ing an explicit result, the first link of
the result chain is stored in the last
element of P (an extra element to be
provided by the caller). Also, rather
than using two scalar arguments I and J,
a vector argument IJ is used. As in
Woodrum's paper [1], zero origin has been
assumed.

V M2 IJ;T;W
[I] T~A
[2] Li:T+PET]÷IJ[W÷z/A[IJ]]
[3] ~(2~IJ[W]~P[T])/Li
[4] P[2]~IJ[.~W]

V

References

I. Woodrum, L~ Jo
minimal comparing~
3, (1969).

Internal sorting with
I B M ~ o~nal ~,

2. Jenkins, M° A. A control structure
extension to APL~ Report No. 21,
Department of Computing and Information
Science, Queen's University, Kingston,
Ontario, Canada, 1973.

3. Orgass, R. Structured DECIO\APL
user's manual. Technical Report No.
APLAD3, Department of Computer Science,
University of Arizona, Tucson, June 1975,
revised 11 July 1975.

4. Foster, G. A. What lies beyond the
branch arrow? APL 75 Congress Proc.
(Pisa), ACM, New York, 1975, PP. 115-122.

-22-

