
Contributed Amities 

A TREE REPRESENTATION IN APk 

by Seth R. Alpert 

This paper describes a scheme for 
representing trees as integer vectors and 
a set of functions for processing these 
trees. The technique evolved during the 
programming of a large management informa- 
tion system for one of our time sharing 
customers. In this system, the tree 
structure represented the organizational 
hierarchy associated with the firm's many 
subsidiaries, areas, regions, and divi- 
sions. In practice, this tree contained 
approximately 1500 nodes and 9 levels. 
The APL representation and functions 
described here were able to handle all 
system requirements conveniently and 
efficiently. For publication purposes, 
some of the functions have been modified 
to improve their readability. 

Before discussing this representation 
scheme, it is useful to review some termi- 
nology. A directed graph, or digraph, G 
consists of a set V of nodes and a set E 
of distinct ordered pairs of elements of V 
called edges. An edge (u,v) of a directed 
graph has initial node u and terminal node 
v. Any sequence of edges of a digraph 
such that the terminal node of any edge in 
the sequence is the initial node of the 
next edge (if any) appearing in the 
sequence is called a path of the graph. A 
path originates at the initial node of its 
first edge and terminates at the terminal 
node of its last edge. A path with the 
same initial and terminal node is called a 
cycle. The indegree of any node v is the 

number of edges for which v is the 
terminal node; the outdegree is the number 
of edges for which v is the initial node. 

A directed tree is a directed graph 
that has no cycles and has one node of 
indegree 0 called the root and all other 

nodes of indegree I. A node of a directed 
tree that has outdegree 0 is called a 
terminal node, or a leaf. The level of 
any node is the number of edges in its 
path from the root. Thus, the level of 
the root is 0. If there is an edge with 
initial node u and terminal node v, then u 
is the father of v, and v is a son of u. 
Similarly, if there is a path with initial 
node u and terminal node v, then v is a 
descendant of its ancestor u. The path 
descends from u to v and ascends from v to 
u. Note that (perhaps perversely) 
descending means going from lower to 
higher level numbers, with the converse 
true for ascending. Finally, a forest is 
a collection of disjoint trees. 

The following simple scheme may be 
used to represent any forest, although the 
discussion will be in terms of trees. The 
nodes of the tree are represented by the 
integers iN, where N is the number of 
nodes. The tree itself is represented by 
an integer vector T, where T[I] is the 
father of node I; and if K is a root node, 
then T[K] is 0. 

For example, consider the tree repre- 
sented in Figure I. 

Figure I. 

7 

Under the present scheme, the APL 
representation for this tree is 

T~6 6 9 9 10 11 11 12 12 14 14 15 16 15 0 

-25- 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F586058.586060&domain=pdf&date_stamp=1979-03-01


The simplicity of this idea may bely 
its power. The most common tree opera- 
tions, namely, ascending and descending, 
are accomplished by APL primitives. Thus, 
the father of node I is T[I] and the sons 
of node I are (T:I)/ipT. bsing this and 
the fact that root nodes are represented 
0y a zero, we may write a series of tree 
utilities to find fathers, sons, all 
descendants, and all ancestors: 

V R÷TFATHERS N 
[i] ~FOR DIRECTED TREE <T>, FIND FATHERS 
[2] ~OF NODES <N>. RESULT IS EMPTY 
/3] ~IF <N> IS A ROOT NODE. 
[4] R+T[N] 0 H÷(×R)/R 

? 

? R÷T SONS N 
[I] ~FOR DIRECTED TREE <T>, FIND SONS OF 
[2] aNODES <N>. RESULT IS EMPTY IF ALL 
[3] ~NODES IN <N> ARE TERMINAL. 
[4] R÷(T~N)/IpT 

V 

V R÷T DESCENDANTS N 
[i] gFOR DIRECTED TREE <T>, FIND THE 
[2] ~NODES OF THE ENTIRE SUBTREE 
/3] ~ATTACHED TO NODE <N>. 
[4] -~0 IF O=pR÷T SONS N 
[5] R÷R,T DESCENDANTS R 

V 

V R÷T ANCESTORS N (parent nodes) 
/1] AFOR DIRECTED TREE <T>, FIND NODES 
[2] ~ONPATH FROM NODE <N> TO THE ROOT. 
[3] ~ASSUMES THAT <N> IS A SINGLETON. 
[4] ÷0 IF O=R÷TFATHER N 
[5] R÷R,T ANCESTORS N 

V 

It may be of interest to know whether 
or not a node is terminal, and this is 
easily accomplished, as follows: 

? R÷T TERMINALAORANOT N 
[1] AFOR DIRECTED TREE <T>, RETURN 1 IF 
[2] ~N IS A TERMINAL NODE, 0 OTHERWISE. 
[3] R~"NET 

V 

Then, finding all terminal nodes that 
are descendants of node I amounts to using 
this simple sequence: 

R÷T DESCENDANTS I 

R+(T TERMINALAORANOT R)/R 

The reader may note that the above 
functions have the additional property 
that the nodes are treated as being in 
increasing numeric order on each level. 
We can, of course, choose to ignore this 
ordering. In applications requiring 
ordered trees, however, this becomes a 
happy by-product of the representation, 
provided that we follow the convention of 
assigning increasing node numbers on each 
level. 

It is also worthwhile to briefly 
consider the two iterative functions 
introduced thus far -- DESCENDANTS and 
ANCESTORS. In each function one iteration 
corresponds to a single level of the tree. 
Thus, a tree with a large number of levels 
will force many iterations with a concomi- 
tant adverse effect on run times. In such 
a situation (one that I have not yet 
encountered in practice), the present 
scheme may prove to be unsuitable. 

The function DESCENDANTS provides a 
means of traversing the tree, that is, a 
well-defined progression through all of 
its nodes. Specifically, for any node I, 
T DESCENDANTS I simply lists all nodes in 
the subtree with root node I, with the 
result being built up one level at a time 
from the top down, and within each level 
nodes are listed in increasing numeric 
order. 

Many other types of tree traversal 
have been defined, and I would like to 
consider here a particular one that arose 
in actual practice. The following rule 
defines what is called the preor~er 
traversal of a tree [I]: List the root 
node; process the subtrees in left-to- 
right order. For the tree given in Figure 
1, a preorder traversal would yield the 
nodes in the following order: 

1S 12 8 9 3 4 13 14 S 11 6 1 2 7 

If the tree represents an organiza- 
tional hierarchy, then the preorder tra- 
versal of the tree provides the basis for 
an organization table. To see this, look 
at the preorder traversal of the above 
tree with node names written out, and each 

-26- 



name indented a number of spaces equal to 

five times the level of that node: 

Fifteen 
Twelve 

Eight 
Nine 

Three 
Four 

Thirteen 
Fourteen 

Ten 
Five 

Eleven 
Six 

One 
Two 

Seven 

The following function provides the 
data necessary to build an organization 
chart of this type. 

V R÷T PREORDER N 
/i] ~FOR DIRECTED TREE <T>, PERFORM 
[2] APREORDER TRAVERSAL OF THE SUBTREE 
[3] ~ATTACHED TO NODE <N>. ASSUMES THAT 
[4] ~I=oN. RETURNS VECTOR OF NODES IN 
[5] ~PREORDER TRAVERSAL ORDER. 
/6] ÷NEXTL IF 0~pN O R+t00 ~0 
[7] +NEXTL IF ~^/T TERMINALAORANOT N 0 

R+N 0 +0 
[8] R÷((i÷N),T PREORDER T SONS i÷N), 

T PREORDER i+N 
V 

The idea used here for counting 
levels is the same as that mentioned above 
-- level number corresponds to iteration 
number. That idea could easily be applied 
to produce functions that compute the 
level of any node or the set of all nodes 
on a given level. 

Up to now, all the ideas we have 
discussed deal with a fixed tree struc- 
ture. The tree representation in question 
proves to be well suited to modifications 
of the tree, as well. Let us consider 
three fundamental kinds of modifications 
of tree structure: deletion of a node, 
addition of a node, and change to existing 
structure. Deletion of a node is simple 
-- it means removing the node ana all 
edges incident upon it. This may, of 
course, result in more trees in the 
forest, but that does not affect our 
ability to represent the result. 

If one of a tree's N nodes is deleted 
and we wish to represent the new struc- 
ture, then it will be necessary to 
renumber the nodes using the integers 
~N-i. The following utility does this. 

R÷T DROPNODE N 
[i] ~EXCISE NODE <N> FROM DIRECTED TREE 
[2] ~<T>. RESULT IS A FOREST WITH 
[3] nONE LESS NODE THAN <T> HAS. 
[4] ~ASSUMES THAT <N> IS A SINGLETON. 
[5] R÷(pT)pl 0 R[N]÷00 R÷R/T 
[6] AREMOVE EDGES FROM <N>. 
[7] R[(R=N/ipR]÷O~-I+R[(R>N)/ipR] 
[8] RRENUMBER REMAINING NODES 
[9] R[(R>N)/~R] 

? 

Adding a node could be somewhat 
complex if we tried to add all its new 
edges at the same time. Instead, let us 
restrict our attention to the edge that 
links the node to its father. For our 
purposes, then, adding a node amounts to 
catenating an integer to our tree vector, 
as follows: 

V R÷ADDNODE T 
[i] 'NEW NODE WILL BE NUMBER: ',~l+pT 
[2] INEWNODE REPORTS TO WHICH NODE? t 
/3] R~T,D 
[4] 'DONE' 

V 

Finally, we consider changing the 
existing relationships among nodes. Any 
set of such changes can be obtained by a 
sequence of changes at a single node. Of 
such changes, there are two basic types -- 
changing the node's father and changing 
its sons. Each is readily accomplished 
within the present framework. 

V R÷T CHANGEFATHER N 
[1] AFOR DIRECTED TREE <T>, CHANGE FATHER OF 
[2] ~NODE I÷N TO i~N. ASSUME THAT 2:pN. 
[3] R÷T 0 R[i÷N]~I~N 

V 

V R+T CHANGESONS N 
[I] nFOR DIRECTED TREE <T>, CHANGE SONS 
[2] AOF NODE i÷N TO i~N. OLD SONS 
[3] ~AREMADE SONS OF <i÷N>'S FATHER. 
[4] RWARNING: MAY RESULT IN NONTREE. 
[S] R÷T 0 R[(T=i÷N)/IoT]÷T[I÷N] 
/6] R[i~N]÷i÷N 

? 

-27- 



The reader will note that a drastic 
rearrangement in the trees such as that 
which might result from changing a node's 
father, is accomplished by altering one 
element in the vector representing the 
trees 

These utilities point out the need 
for one additional utility~ for there is 
nothing to guarantee that the result of 
CHANGEFATHER, for example, still repre- 
sents a tree. The question becomes how 
do we know if a given integer vector 
represents a tree. The algorithm below 
answers that question. 

V R÷TESTTREE T~A~B 
[1] nRETURN 1 IF <T> IS A VALID REPRESENTATION 
[2] ~OF A DIRECTED TREE~ ELSE RETURN 0o 
[3] R÷0 
[4] +(l~ppT)~0 AIS T A VECTOR? 
[5] ÷(O~I÷OoT)pO adS T NUMERIC? 
[6] ÷(v/(O>T),T>oT)pO AIS OsT~pT? 
[7] ÷(v/TzFT)pO AIS T INTEGER? 
[8] nTEST FOR CYCLES AND REACHABILITY FROM ROOTS° 
[9] A÷(T:O)/tpT 0 B÷A 
[I0] AGO TO L2 IF ALL NODES IN B ARE TERMINAL. 
[II] LI:B*-T SONS B 0 (÷O=pB)pL2 
[12] ~(v/B~A)pO RHAVE WE RETURNED TO ANY PRIOR NODES? 
[13] A~A,B 0 ~L1 ~CONTZNUE DESCENDZNG. 
[14] AHAVEALL NODES BEEN REACHED FROM THE ROOTS? 
[15] L2:~( (pT)~pA)pO 
[16] R~-I RT IS A TREE. 

V 

Reference 

I. Knuth, D. E. The Art of Computer 
Programming, Vol. I, Fundamental 
Algorithms. 2nd Ed. Addison-Wesley, 
Reading, ~ass., 1973. 

Seth R. Alpert 
Scientific Time Sharing Corporation 
747 Third Avenue 
New York, New York 10017 

-28- 


