
Three Steps to Distribution:
Partitioning, Configuring and Adapting

Judy M Bishop
Computer Science Department
University of the Witwatersrand

Johannesburg 2050

1. Introduction

In the community concerned with distributed Ada, partitioning and configuring are emerging as two actions that
are required when a single Ada program is to be run on several processors.

Partitioning is the process of dividing the program up into units which could run on independent processors.
Configuring is the process of allocating those units to the processors, not necessarily in a one-to-one

fashion.

The current feeling is that the programmer will have to be aware of the partitioning process during the design of
his program, but that configuring should be an independent phase, relying only on the results of the partition and
the hardware available DVellings 19871.

Our experience is that this is not the whole picture. By remaining configuration independent, the
programmer may assume that each partitioned unit can interface with any other in the normal way, that is, through
shared memory or via procedure or entry calls. If the target configuration consists of multi-processors without
shared memory and with limited physical links between them (such as a transputer array) then the program will
actually have to modified before it can run. Furthermore, we have found that a program that runs on n processors
may need to be changed when more processors are used. We therefore propose an intermediite phase as follows:

Adapting is the process of modifying a partitioned program to ensure that partitioned units can still
communicate as required on a given hardware configuration.

All the three steps should be able to handled by tools in the future. This position paper provides further
motivation for the adaptation process, with examples, and describes a tool which can adapt certain kinds of Ada
programs by means of source translation.

2. The need to adapt programs

The realisation that distributing a program involves more than partitioning into virtual nodes, and configuring
these onto the available processors, was a result of work done on programming transputer arrays at Southampton
University. Transputers are processors that have their own on-chip memory and that communicate with each other
via serial full-duplex links. Thus a program destined for a transputer array cannot make use of shared memory to
communicate between units which may end up on different transputers. This is problem number one, and falls
squarely into the scope of the design-cum-partitioning phase. The programmer will have to be aware of the
memory structure of the target multi-processor configuration and to design the program accordingly. It may be
that a tool could be devised which will take a shared memory program and convert it to a non-shared memory one,
but we have not tackled this problem yet.

Assuming that a program has been partitioned into virtual nodes, and that communication between these
nodes is via subprogram or entry calls, one would imagine that a Configurer would have the freedom to place the

Permission to copy without fee all or pan of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice
and the title orthe publication and its date appear. and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.
0 1988 ACMO-89791~295-O/88/0006/0097$1.50

Ada Letters, 1988 Special Edition page 97 Volume VIII, Number 7

http://crossmark.crossref.org/dialog/?doi=10.1145%2F59368.59380&domain=pdf&date_stamp=1988-06-01

nodes on a given set of processors in the most efficient way. This is problem number two. Processors, such as
transputers. will have a fixed number of physical links. Therefore, any processor may communicate directly with
only a certain number of others. If it is necessary to communicate with a further processor, then the
communication has to be routed through one of those that are directly connected. In other words, routing software
has to be added. The need for routing software arises for two distinct reasons:

1. Broadcasting. Often one node, such as a host, has to broadcast data or commands to all nodes, but is not
physically connected to all of them.

2. Overloading. A processor may be able to communicate directly with a certain number of neighbours, but
when the processor configuration is increased, it needs to communicale with more, and cannot do so
directly.

As an example, consider the problem of sorting by dimensional collapse. A host node distributes values among
all participating processors. Each processor sorts its sublist, and then merges it with that of its rightmost
neighbour. The left neighbours become passive, and the merging process is repeated until a single sorted list
emerges. If one uses 1 host processor and 4 workers, then the communication between nodes is described in
Figure la. Given that each processor has four physical links, a partitioned version of the program could be
configured in a one-to-one way with the hardware, and there is no need for adapting. If the number of worker
processors is doubled to 8 then the communication should follow that of Figure la, but in fact the physical link
limitation causes a problem with broadcasting, which is solved by the configuration in Figure lb. The
communication between the host and the 8 workers is split into four “crescents” going from H-0-1, H-2-3 etc.
When the number of processors is increased to 32, then overloading occurs, since processors 15 and 31, which
already have 4 links each, will have to communicate. The problem can be overcome by routing through 14 and
30.

H

& 0 1 2 3

1 a. Possible configuration
with 5 processors

1 b. Possible configuration
with 9 processors and some
links replaced by indirect
routing on existing links

Figure 1 Communication configurations for processors with four physical links

An approach to this problem is to assume that routing software will be resident on each processor, and that the
compiler will generate code to make use of it. Disadvantages of this approach are that there may not be room for
generalised routing software on each processor, and that the program which is actually running will have a
synchronisation pattern which is quite different to that of the source program, and not visible or controllable by
the porgrammer. Testing and debugging distributed systems is difficult enough, and such a layer of opaqueness
will add considerably to the complexity. Moreover, for embedded systems, and for large scale simulations where
performance is important, it is desirable that run-time software be kept simple and small [Hey er al 19861.

Ada Letters, 1988 Special Edition l%ge 98 Volume VIII, Number 7

3. The Adapter approach

The approach we have taken is to recognise that the re-routing of links usually follows set patterns, depending on
the initial communication configuration. Thus broadcasting can be replaced by sets of crescents, overloading by
using neighbours, and so on. An initial set of such patterns has been identified and embodied in a methodology
described in Bishop et al [1986]. This methodology has now been translated into a tool which will take an Ada
source program, analyse its structure in terms of virtual nodes, add to it the necessary routing software to enable it
to run on a configuration with limited links, and produce new Ada source for a distributed version of the program.

To obtain the distributed version, tasks are designated as virtual nodes, packages are encapsulated inside new
tasks, forming additional virtual nodes, and communication is set up between the virtual nodes so as to keep the
number of communication lines to a minimum, say two or three. Thus the communication algorithms that have
been developed will be applicable to a wide range of multiprocessor system configurations.

The basis of the communication is the insertion of a controller task in every virtual node. Calls across
virtual nodes are redirected to the controller task, which is then responsible for sending the information on in the
form of a discriminated record (one version for every parameter set). Very little change has to be made to the
original program, since entry and subprogram calls are syntactically equivalent. In fact the only change within the
body of a package or task would be a RENAMES clause, to redirect calls to a controller. For example, if a
package contains a call:

collector.sign-off (id, penetrations);

where the task collector is in a different virtual node, then the following declaration will be inserted in the
package:

DECLARE collector : controllers RENAMES processor(id).control;

where processor is an array of records of which one field is the control task for each processor; the other fields
reflect the original units of each virtual node. The methodology is described in full, with examples, in Bishop et
al [1987].

4. Advantages of adapting by source translation

The major advantages of adapting programs by source translation are that it is possible, cheap, and immediately
available. It does not rely on expensive compiler technology. Naturally, a distributed compiler is required, but by
distributing the control of the communication between virtual nodes to special controller tasks within each virtual
node, the demands made on the compiler are kept to a minimum. These demands are the abilities to

l generate code in a multiple address space
l handle a rendezvous between two directly connected nodes.

The Ada runtime system that will be resident at each site will not have to take care of a rendezvous with remote
sites further down a line: this is all incorporated at the source level.

A further advantage is that our particular methodolgy allows both packages and tasks to be virtual nodes.
Tasks are important for replication. The client-server models under consideration rely heavily on multiple
instances of the same code. Arrays of tasks, or even dynamically created tasks, will be an essential component of
such programs. Packages are essential for encapsulating data types, providing state machines and generally as the
building blocks of large Ada systems. The Adapter methodology copes with packages in the full, including
generic and library packages. An important advantage of our Adapter approach is that library and generic routines
can be incorporated into the distributed system without alteration. This is vital if essentially system packages
such as text-io or mathematical software are to be available, not to mention the advantages that accrue from
re-using tried and tested packages. This point has not been addressed by most other writers [Mudge 1987,
Hutcheon et al 19871.

Ada Letters, 1988 Special Edition Page 99 Volume VIII, Number 7

5. Status of the project

The first version of the automatic Adapter has been written and tested. It consists of a front end, which scans the
original concurrent program, detecting the presence of tasks and packages and their interactions. Such interactions
stem from the presence of WITH and USE clauses, as well as from the normal visibility present through the order
of declaration. In fact, visibility of this latter sort is the only basis for interaction between tasks, there being no
task equivalent of the WITH statement.

The front end builds up a data structure representing the interaction between units of the program and also
writes the actual text out to a temporary file. The back end of the Adapter then uses the data structure to drive the
merge of this text with that of the skeleton control and communication routines stored on a permanent file.

Attention is now being given to extending the repetoire of patterns that the Adapter can recognise and
transform, and to introducing a limited (and probably interactive) form of configuration language. At the moment,
the Adapter handles programs that consist only of actors or servers, not transducers. The problem with transducer
tasks - those that have entry points and entry calls - is in handling an accept via a controller task. A feasible
method would be to have a synchronisation variable which becomes true when a process signals to its controller
that it is ready for an accept. This variable then causes a corresponding conditional accept in the controller to
become open. The difficulty is that a call for such as accept may have to circulate if no process is ready for it, and
this may clog up the ring, causing deadlock. Work on further algorithms is proceeding.

Acknowledgements

This work was done in conjunction with ESPRIT Project 1085 (Reconfigurable Transputer Processor Supemode),
and Craig Faasen helped with development of the Adapter program.

References

Bishop J M, Adams S R and Pritchard D J, Distributing concurrent Ada programs by source translation, Software
-Practice and Experience, 17 (12) 859-884, 1987.

Hey A J G, Jesshope C R and Nicole D A, High Performance simulation of lattice physics using enhanced
transputer arrays, in Computing in High Energy Physics, 363-369, Elsevier Science Publishers (North
Holland) 1986.

Hutcheon A D, Snowden D S and Wellings A J, Programming and &bugging distributed real-time application in
Ada, First International Workshop on Real-Time Ada Issues, in SIGAda, VII (6) 64-66, May 1987.

Mudge T, Units of distribution for distributed Ada, First International Workshop on Real-Time Ada Issues, in
SIGAda, VII (6) 64-66, May 1987.

Wellings A J, Issues in distributed processing (Session summary), First International Workshop on Real-Time
Ada Issues, in SIGAda, VII (6) 57-60, May 1987.

Ada Letters, 1988 Special Edition Page 100 Volume VIII, Number 7

