
Contributed Articles

Iota Flow
with Direct Local Functions

Richard H. Oates

0. Introduction

The ~-technique for defining functions
which appeared in Iverson's Elementary
Analysis [6] has since been called direct
definition to distinguish it from the
original APL technique called canonical (or
del) definition. There are two kinds of
d-T~ect definition: simple definitions
which can be taken as "begin-end"
structures, and conditional definitions
which are "else-if-then" structures. A
program may be used to change the form of a
definition from direct to canonical; the
function may then be established with a
global name and used in the way that
functions fixed and established with del
are used.

We propose that the del-technique be
extended to establish a distinct local
function from each internal direet
definition in ~-notation, while it also
establishes a global function from a
definition not in an-notation. Many
branches could then be replaced with bonds
of appropriate valence to the new functions
in the local domain. Bonds are argument
and result linkages; a more impressive
word, "call", appears in other languages
while the APL word "use" is sometimes not
impressive enough.

Local functions with suggestive names can
elucidate the structure of a global
function in the way that global functions
with suggestive names now elucidate the
structure of a system. By facilitating
such definition, branches would be required
much less often, and eventually perhaps not
at all--control technique would be unified!
In addition, simple local functions could
replace "tool" functions (small, broadly
useful programs) that are mostly global
now. This subordination of function names
would make the workspace easier to use and
would also facilitate the construction of
secure systems.

Some of the new simple local functions
can actually be defined globally, and they
are so defined in the classroom, but they
do not often appear in production
workspaces because they fragment the logic

of the system, create too many global
names, and--all things considered--even the
careful programmer frequently finds it
easier to take a branch.

Much of the work done by local functions
is similar to that done by control
structures in other languages, but the
argot of controI structures does not appear
here, Since the new technique is just
fundamental APL--almost!

The control problem and direct definition
are reviewed in Sections I and 2, and local
definition is introduced in Section 3.
Section 4 discusses simple functions and
the need for several statements. Section 5
introduces conditional functions, and
Section 6 unites conditional and simple
functions in the central examples of Iota
Flow. Use of system constants as statement
labels is proposed in Section 3.1.1 as a
related topic.

I. Flow

It has been said that potent language
primitives make additional control
unnecessary in APL, but technical advance
always whets the appetite. A system will
grow until the quantity of its explicit
control matches the capacity of its
explicit controllers. What changes is the
amount of work that gets done, and the
principle is as old as the development of
the wheel or the hand. The phrase "potent
language primitives" brings to mind monadic
iota (how unconscious now is use of this
function which first astonished me) or per-
haps a smooth and-scan on a rank-3 trans-
position (it does not, alas, suggest the
management of non-trivial conversation).

Control today requires much branching, so
it is likely that branching will persist
long after more potent primitives are
developed. One might wish to have, for
example, a function that tests its input
against an exhaustive table of valid
non-numeric responses in the way that quad
input guarantees a numeric response.

The branch in APL is disconcerting--there
are too many labels and too many branches
in my programs! The effect of a right
arrow is determined by a condition through
various strategies yielding two opposite
meanings. We have one statement that
branches on true or continues on false,

APL Quote Quad 11 3 9 March 1981

http://crossmark.crossref.org/dialog/?doi=10.1145%2F586640.586642&domain=pdf&date_stamp=1981-03-01

another statement that branches on false or
continues on true, and programmers casually
use a variety of expressions to produce
whichever statement may save a cycle or
two. Branching has been much discussed
since Dijkstra [2] touched the nerve in
1968. All control injects discontinuity~
and what the branch disconnects is too
often arbitrary. What indented languages
always disconnect is every "continuity"
except the innermost in every control nest
(only the deepest structure is not
interrupted by a deeper structure). With
its end firmly fastened to its beginning,
the defined function has a much stronger
form. What the function disconnects is
detail, the explanation (definition) of its
name which may well include the names of
other defined functions. Some idea of how
any system works can be gained merely from
a graph of the use of its defined
functions. If the system is well written
(see Appendix A), this idea can be clear
indeed,

The control technique of APL is the
marshalling of functions, defined and
primitive alike, from right to left across
the page except for operators and
parentheses. I have been an application
programmer in the same department since
1957, writing large and nasty programs for
large and nasty files in every languge back
to IBM-650 Soap. I remember the school day
when we were taught the IBM-1401 SBR
instruction that made "closed routines" so
much easier to write, and I remember the
delight of discovering in Cobol that you
did not always have to "perform"--if you
left the periods off a group of statements
in an if-nest they would execute as a
whole. I have used them all, heavily, and
I believe that no other structure is half
as good for the management of control as
the APL defined function--there are not
enough functions in my programs!

2. Direct Definition

Iverson's two forms of direct definition
a r e ;

simple :val
conditional :val :prop :val

The name of the function appears to the
left of the colon and the syntax and
localizations are derived from the value
and proposition expressions. There is
always an explicit result; ~ is taken as
the first argument and ~ as the last;
variables set within are local; global
names may be referenced. The function name
itself is always global. If the proposi-
tion is false (0) the left value expression
is executed and if true (I) the right is
chosen. Branching is not allowed. A
defined function DEF (see Appendix B) can
change an input direct definition to
canonical form and then fix the function in
the workspace. In the following sample
execution of DEF, the whole second line

(input) defines the function AVG and the
third line is the name explicitly returned
by DEF:

DEF
AVG:(+/~)÷p,w:O=p,~:'EMPTY'
AVO

AVG 10
EMPTY

Since direct definition was invented for
the pursuit of mathematics, in Iverson's
examples the first expression often
contains a recursive reference. I shall be
discussing direct definition in the pursuit
of programming where recursion occurs much
less often. Iverson uses one direct
function within another at several points
in his Turing Lecture [9]--particularly CFD
and RFD in the discussion of representa-
tions--but all are global in a workspace
that must contain more than fifty
functions, most of which are not of
interest in any given section of the
lecture. Some of these could be local, and
in the usual workspace focused on a single
topic, many more could be. Other languages
allow procedures to be defined within
procedures to any depth. A merely two-
level definition technique in APL would
provide automatic localization of the
second-level functions, unlocking a whole
new domain over which the net of automatic
function bonding could be drawn. Examples
of the need for simple local function
bonding can usually be found in the nearest
program. In the DEF "system", the main
function is R9 and it uses I9 and F9 at
several places in its text. If these two
functions could be made local to F9 as
easily as the variables A9 and C9 are, then
DEF would be more convenient for its users,
because its "system" would be less
obtrusive, but no less convenient for its
author and its auditors. An inconvenient
technique for localizing I9 and R9 today
appears in Appendix C which describes the
program FI.

3. Local Definition

The modification of direct definition
described below is intended for both local
and global use, but the latter is not
pursued in this paper except in Section
3.4. Local definition is an extension and
permutation of direct definition.

3. I Syntax. In a local definition there
is no need to limit the number of value
expressions to one or two, particularly if
a vertical arrangement (one expression per
displayed line) is allowed as an
alternative to the horizontal. The
proposition (fork) may then precede the
first value and become integer valued:

IOTA : FORK
: VAL
: VAL
: VAL

APL Quote Quad 11 3 10 March 1981

The definition terminates at the first line
that does not start with a colon. Only the
name of the function and the first value
are required.

If the fork is missing, the function is
simple and the statements are executed
sequentially from the left or top. Simple
functions arranged vertically could contain
branches (to "system constants" as
described in Section 3.1.1). When the fork
is present, one expression selected by the
fork is executed, as described in Section
3.5. (This expression may not be a
branch.)

3.1.1 System constants. The colon that
terminates t~e name of a local function
conflicts with the colon that terminates a
statement label. Labels are a flawed form
of descriptor, as can be seen in this
example, where L3 is unwanted and L1 need
not appear:

~CONDITION/L2

(FIRST CASE)
~L3

L2:(SECOND CASE)

L3:...

In a new function, usually I just take
labels from the the series B, D, F, H, etc.
A label is a "local constant" which
generates a syntax error if it appears
immediately to the left of a specification
arrow, but it does not look like a
constant. In [4] uniformity is described
as "rules are few and simple" and
generality as "a small number of general
functions provide as special cases a host
of more specialized functions." These
principlesmight be better served if
statement labels were local system
constants with implicit access control
(assignments ignored). Names like ~3 and
014.2 could be automatically reconstructed
when the user leaves definition mode (each
occurrence of the name D14.2 would be
changed to, perhaps, ~15). Because a
system constant is a name, the programmer
would not have to revise branch destina-
tions after insertions. Because they are
also numbers (prefixed by a quad), they
would not need to appear at the left end of
the statement. In a local definition their
entry could be forbidden; in a global
definition they could be entered for
emphasis, but they would not be exdented in
display. System constants would be more
convenient and less obtrusive than
statement labels and they would allow the
colon to be used unambiguously both ways.
An example appears in Appendix D. The
system variable ~LC would take the value of
the current system constant, explicit or
implied.

In this paper, the colon is used ambigu-
ously, and most labels are taken from the
series Li, L2, L3,

3.2 Recursive definition. A direct-
definition value may not be a new local
definition; two levels of definition are
sufficient for practical purposes. For
example, if the definition of a function
named ABLE has three values, the second
cannot be exploded into a whole new
definition of a function called BAKER.

BAKER can easly be defined after ABLE and
should not need to be defined within ABLE.

Recursive definition would complicate the
syntax with no apparent advantage.

3.3 Explicit result. In addition to e and
~, a third symbol may be used to identify a
result not generated at the conclusion of
the last or only expression. For
convenience the result symbol used in this
paper is c, although a character that my
terminal will not form (~ backspace _)
might be a better choice.

3.4 Scope. If del definition could be
entered with an empty header line, each
local definition would then become a
distinct global function, since no global
name is provided to reduce its scope. For
example:

DIV: : (~O)xc~÷~+co:O

If the header line is not empty, then the
local definitions become local functions.

3.5 Use. The name of a local function has
ordinary local scope and the function can
be used wherever its name is known.
Although global and local definitions share
a common set of statement numbers, global-
function execution skips over the local
definitions as if they were not there. If
a branch in any function evaluates to a
number not assigned to a statement in its
own definition section, the function
returns.

If a fork evaluates to a number outside
its active range, its function returns.
The range is determined in one of two ways.
If there is only one subsequent value, the
function works as a conditional-execution
statement, so its range is restricted to I.
If there are two or more value expressions,
the first expression is executed when the
fork evaluates to 0, the second when it
evaluates to I, etc. These forms are:

IOTA: FORK : I-VAL

IOTA: FORK : O-VAL : I-VAL : 2-VAL : . ..

4. Simple Functions

The functions Z9 and R9 discussed in
Section 2 can now be easily localized in
F9. In this example the function 19 is
defined in the first statement after the
header and used initially in the fourth.

APL Quote Quad 11 3 11 March 1981

The missing fork (between the two colons)
means that the function is simple:

D+F9 E;F;I;J;K;Q;~IO
19::(ao,:~)A((p~) ,p~)p~2] +\~=''''
R9: : (, ((l÷c~)19~)o,~N÷l)/,~, ((p~) ,-l+N+pc~)

pl~c~
D+(2p~IO+-0) p t ,
÷ ((2 1 + / E = ' ' ' ') V A / 1 3 ~ + / ' : ' I 9 E) /pD

I9 and R9 are examples of a large class
of "tool" programs that are specialized but
n e e d e d m o r e t h a n o n c e , w e] .] d e f i n e d
(s t a b l e) , a n d s m a l l , b u t n o t n e c e s s a r i l y o f
o n e l i n e . (W i d e l y u s e d " t o o l s " a r e T S I O ' s
TRY and CHK, which open a file and check
the return code after reading a block.
Appendix D shows am-versions of TRY and
CHK.)

The function DEF works by substituting
the four characters ' X9 ' for 'm~ , and
introduces Z9 as the explicit result. See
the text it compiles for AVG in Appendix B.
FI, the local-definition version of DEE,
employs the same technique, although it
does not work properly on Statements 7 of
TRY and 5 of CHK, where m and ~ appear in
quotes. FI merely changes the form of a
definition from direct to canonical and
then fixes it. If the function FI modeled
more of the APL interpreter, the problem
would go away and X9, Yg, and Z9 would also
be replaced by internal temporaries fully
isolated from names chosen by the user.
For the purpose of this paper, FI makes
substitutions for ~, ~, and a regardless of
quotes.

If locked function F accesses secure data
and then uses global ~unction G_, an
intruder can substitute his own version of
G and use it to "see" the local variables
of F. In a secure system all routines
needed by F must by locally coded in F or
locally fixed in F after being read from a
file. Secure systems are frequently
file-management systems, and a file system
used for information retrieval may have
hundreds of functions a n d dozens of users,
some of whom write their own APL functions.
In systems like these, the management of
names is not a "secondary" problem [7].

5. F o r k i n g Functions

N-way branches are coded in APL today in
two unattractive ways. If each action can
be coded on a single line and the routine
is stable, then addition can be performed
on the label constant. In this example, I
is expected to have the value I, 2, or 3:

5i:+Li+I
+L2,0p(FIRST CASE)
~L2,0p(SECOND CASE)
(THIRD CASE)
L2:...

A forking function does the same thing
without labels. An illustrative example is
the quadratic formula, "minus B plus or

minus the square root of B squared minus
four A C, over two A". This formula has
three types of result, and it can be coded
in five lines, with the second line taking
care of the case when A is 0:

• ~ . _ _

Z~QUAD 1 100 2000
Q U A D : (w E O] ~ O) × 2 + × D ÷ (w [I] * 2) - 4 × × / i 0 1 /~
:'ZERO DIVIDE'
: ~ COMPLEX T
: 2 p (- w [i]) ÷ 2 x w [0]
: ((- ~ [1]) + R , - R ÷ D * . 5)÷2xw[O]
. . .

If some paths from the fork are too long
to fit on a single line, then today a
vector of labels provides more flexibility:
+(Li,L2,D3)[I]. In a situation like
this, a fork can work together with other
(local and global) functions to provide as
much flexibility as the branch statement
but in a clearer way. An example appears
in the next section.

6. Iota Flow

The IBM-360 effective-address calculation
of [3] provides an example of the way in
which local functions can work together.

--~ ~ (12, 11, 13, 17, 195~ 11

~ a~ ~ - ± (,) ~ / 1 (~ 12

~-~ j ~-- (0 / _Lo'/1 '~) × ± R" ""*'~ 14

a ~ + - 2 ~ ' i ; T (~, /) - b g ~ L ~ 1 x ± R ~ ' ' ' I , 15

a, ,-- J L . ' / (~ / F ' 1(;

"-'-~ l <-- (L<,)~ir'), (.LW/<,,TS"), (_L.,'/. r',) 17
a,,<--2~'!(.L<,/~/F) I- (0 ~ _L~'/K) X ±R *<'' ~ IS

ZL~ a, ~ 2 ~'' i (J- .0)~i I '7 b (0 ~ JL(¢, I '5 X _L 17 ~ "' s, If)
E X C 20

]
In this document, which appeared in 1964
before the computer implementations of AFL,
~/ and ~/ are used as ÷ is today; the
expression following i in Line 16 means:
take the first four of the last eight
elements of Row 0 of I. The variable I is
a (3 16)-bit instructYon register; R Ts
sixteen general registers; N determTnes
the instruction type; one, two, or three
addresses are left in A; and for an
SS-instruction, three Tengths are left in
L. A literal rendering of this algorithm
~n current APL is:

ii~R,RX,RS,SS.SI)[N]
RR:~L2,~[2]÷f± 4~I[0;]
RS:+LI,A[3]÷2± 4÷l[J÷0;]
R--X:J÷(0~2± 4+I[0;])×2±R[2±-4÷I[0;];]
L--T:A[2]÷(2*24~]J+(2±-i~÷I[I;]~+

(~2±4÷I[1;])x2±R[2±4+f[1;];]
L f : + L 3 , ~ [~] ÷ 2 ± I [O ; ~ + t 4)
S S : L ~ (2 ± I [0 ; 8 + ~ 8 3) , (2 ± I [0 ; 8 + 1 4]) ,

2 ± I [0 ; ~ 2 + 1 4]
A [2] ~ (2 . 2 4) 1 (2 ± - 1 2 ~ I [2 ;]) + (0 ~ 2 ± 4 + I [2 ;])

x2±R[2±4÷I[2;];]
SI:A[~]÷(2*~4)I(2z-12÷I[i;])+(O~2±4÷

l[l;])x2zR[2±4÷I[l;];]
L3:EXC

APL Quote Quad 11 3 12 March 1981

Multiple specification was not yet in the
language. This carefully constructed
algorithm is a classic small example of
branch optimization on irregular routines,
which is a tedious chore.

Local functions eliminate all branches
and reduce the count of characters to
approximately what it was in 1964:

AL[i+i 2 2 3 6 i[N]]~-ADRS N
RR RX RS SS SI

ADRS: w
:R i 2
:(R i),M I+(B i)+D i
:(R i),(M(B i)+D i),R 2
:(M(B i 2)+D i 2),0.L
:M(B i)+D i

MOD ,REGISTER ,INDEX, BASE ,D ISP ,L ENG TH :
M: : (2 " 2 4) J ~
R: :2i~I[0;8 12/0J-I]o.+14]
I: :(0sR 2)x2±R[R 2;]
B: : (0~2JL~/[W; 14])x21~R[21@/[m; 14];]
D: :2z~l[w;4+li2]
L::(161R 1 2),R 1 2

The fan-out branches become a five-way fork
(ADRS~ leading to five expressions, each of
which is confined to a single line by the
more supple use of functions that local
definition permits. The fan-in branches
simply disappear. The functions M, R, I,
B, D, and L would never be defined as
global functions because that would
disperse the algorithm, so branches are
usually coded. On the other hand, if local
functions were even simpler than branches,
they would probably be used. This example
illustrates the way in which local
functions can elucidate program structure.
The algorithm appears in five statements in
a language close to the natural "index plus
base plus displacement", using a vocabulary
of six new words (functions) which are
immediately explained (defined). In order
to make this vocabulary complete, two of
these functions take no arguments. Because
the 1964 program operates on a single
level, it cannot be as clear as the 1981
version which operates on three.

Each of the six simple functions contains
a sing]e expression, but in some other
situation each might well contain several
expressions in simple or fork form. Other
languages allow one program to be defined
inside another, but the technique is more
promising in APL because a local function
can delimit a group of statements as
readily as it enumerates a set of
alternatives, and because the simple
valence mechanism of APL makes it easy to
bond one function to another. (I once lost
two weeks using a batch language trying to
pass the kind of argument--numeric or
character and scalar or vector or matrix--
that I now take for granted; six months
later I was told that what I had been
trying then had not been working.) Iota
flow is automatic bonding in a simple f~rm

that groups consecutive or alternative
statements. Iota flow makes an arbitrary
network of related conditions easy to
construct to any dynamic depth, even though
the number of static levels of function
definition is limited to two. The
superficial appeal of if-then-else quickly
fades with deeply nested structures, where
it becomes apparent that the syntax is the
problem. The forking function is simpler
and more general than if-then-else, which
it encompasses without special provision.

These remarks also apply to niladie
functions (in this example I and L) which
in some situations might bond to other
functions to complete their work. For this
reason, and because a niladic function is
useful as the initial function in a
(possibly conversational) system, I would
not like to see them dropped [8]. (I would
also like to see ambivalence extended to
zero valence. A printing system, for
example, might have several options, X, k,
and Z, with X used most often. Since the
absence of X can imply X, a simple PRINT
statement can be introduced early in a
teaching situation with the full non-
default range--PRINT X, PRINT ~, or PRINT
Z--held for later.)

In the preceding example, local functions
were used to articulate an algorithm that
appeared quite early in the development of
the language; in the next example they
consolidate a more recent, fully articu-
lated algorithm without losing any of the
pieces. The compiler diagrammed in
Appendix A contains one branch statement in
each of four functions, PARSE, STRIP,
POLISH, and COMPILE, and these functions
together with CENTER are exhibited here to
facilitate comparison. The index origin of
the compiler is I:

Z÷PARSE E
+OXIA/FUNCTIONS Z÷STRIP E
Z÷(' ',' ',PARSE L Z) ON(C Z) ON ' ',' ',

PARSE R Z

Z÷STRTP E
-~0×~ i~[/DEPTH Z÷E
Z~-STRIP i+ i)E

Z+POLISH M
Z÷CT M ~ (v / [i] M ~ ' ') /M
÷ O x l l ~ l f p M
Z÷Z,(POLISH LT M),POLISH RT M

Z÷COMPILE E;CE
CE÷CENTER E
Z+((('+'(CE)~ 3~pE)/NAMES[I],'÷'),

CE[2 i S]
NAMES~i~NAMES
+O×13~pE
Z÷Z ON COMPILE(LEFT E),Z[i],RIGHT E

Z÷CENTER E
Z÷(LOCCENTER E)/E

Each of the nineteen global programs in
the original compiler becomes a local

APL Quote Quad 11 3 13 March 1981

function in the version DLF below. The
fourteen programs that do not appear above
were converted merely by changing their
"punctuation". For PARSE and STRIP the
change was almost as simple: complementing
the condition. Alternatively STRIP might
be coded as a conditional execution, but
the presence of quotes make this treatment
of PARSE inconvenient. Since the relation
is not conspicuous, it should perhaps be
mentioned that STRIP is a forking function
used within the fork of PARSE. In POLISH
and COMPILE, the elevation of the condition
to the top of the program produces a
function with a sharper balance and lower
voltage (the fork definition seems less
"algorithmic" than the branch statement).
In order to achieve this balance in
COMPILE, part of the specification is
transferred to the CENTER function:

P÷DLF S;OIO;N
~IO+O
Pc-COMPILE POLISH PARSE S
A

PARSE:v/FUNCTIONSa~STRIPw
:(' ',' ',PARSE Lc) ON(Ca) ON ' ',' ',

PARSE Rc
C::w[CENTRALFNw]
L::(-I+CENTRALFN~)÷~
R::(CENTRALFNw)~w
CENTRALFN::((FUNCTIONSw)^O:DEPTHw)11
STRIP:i=[/DEPTHc~:STRIP I~-1~w
DEPTH::+\(W='(')-O,-i+w=')' •

POLISH:I<i÷pw+(v~w~' ')/~
:CTw
:(CTm),(POLISH LTw),POLISH RT~
CT::, I I +(' '~FIRSTCOL~)~
RT::(vk-I¢' '~FIRSTCOLw)~
LT::(~v\' '~FIRSTCOLw)~w
FIRSTCOL: :,((l÷p~),l)÷w
A

COMPILE:3<O~
:CENTER~
:cON COMPILE(LEFTw),(i#a÷CENTERw),RIGHTw
CENTER:
:CE÷(LOCCENTERw)/w
:N+'ABCDEFGHIJKLMNOPQRSTUVWXYZ'[i+261p

~LC]
:((('÷'£CE)~3~pw)/N,'÷'),CE[2 1 3]
LEFT::(~v\LOCCENTERw)/~
RIGHT::c÷(~cv^\-a÷LOCCENTERw)/m
LOCCENTER:
:(~pw)(0 i 2 +(FUNCTIONSw)[:x~pw

ON:
:~(2÷ 1 1 , p ~) p ~
:w÷(2÷ 1 1 , p ~) p w
: (((p ~) [0 1 x p w) ÷ ~) , [1] ((p w) [0 1 x p ~) ÷ w
FUNCTIONS:
: w ~ ' ÷ + - x ÷ < ~ : ~ > ~ V A ? ~ p ~ ÷ + ~ O * o [L z T I '

Program listings for most block-struct-
ured languages are indented. They attempt
to modulate a detailed listing with the
profile of its structure. Each format
suffers from the other--the detail
constantly disturbs the structure, and the
structure interrupts the detail whenever
control descends to a lower level. In DLF
the depth of function nesting reaches 5 at

two points. This is easily seen in
Appendix A, but hard to pick out of the
definition. Does it matter? It does not
much help the auditor of DLF to know that
CENTRALFN and FIRSTCOL are both at Level 4,
but it is important to know that COMPILE,
POLISH, and PARSE are all at the same level
and that it is one step down to FIRSTCOL
from CT, RT, and LT. Each bond between
neighboring functions can be seen clearly
in DLF. It shows the statements and the
"micro-structure" while Appendix A
summarizes the structure as a whole. The
distinction between the two figures is
appropriate, and large. APL is beyond
indented blocks. What would be useful is a
system variable that could display all
function bonding performed in the workspace
since the variable was last set to null by
the user. Graphs like the one in Appendix
A for both trees and forests are easily
generated from an (N,2)-table where N is
the number of unique function bonds, but
this table cannot in general be established
at the application level, because of i, the
self-referential primitive.

In this compiler the functions average
1.5 statements in length. Can you imagine
the 778 statements of the formal
description of System/360 defin@d in 520
global functions? Excluding'the two
literals that begin 'ABC' and '÷+-' , the
DLF program has a total of 792 characters,
of which 46% are 'ABCDEFGHIJKLMNOPQRSTUVWX
YZ~' , 6% are '-0123456789', 24% are
'[(:'';)]' , 8% are ,~c,, and only 16% are
the symbols '÷<=~v~^+-×Ep~÷U1~[[[../~\'
for which APL is famous. Local functions
can change the face of the language.

7. Conclusion

After the primitive operator and the
primitive function, the defined function is
the best "control structure" of all (except
possibly for the defined operator, which I
have not yet used). If alternative courses
of action are represented in a homogeneous
way, then the potent language primitives
can do the job, but when the representation
or the algorithm is diverse, the branch
comes into play. The conditional-direct
function and the conditional-execution
statement are two special cases of a strong
general form, N-way branching, that
requires too many labels and too many
branches in APL today. The fork is more
concise than the conditional branch and it
eliminates the unconditional branch that is
otherwise required to reunite the flow. It
is somewhat less flexible than the branch,
but this may be a virtue if it encourages
better program structure. One new level of
definition is enough; from the global
level and one local level, the automatic
function bond easily builds networks to any
depth.

The prohibition on side effects will
limit the use of local definition,
particularly until general arrays make

APL Quote Quad 11 3 14 March 1981

explicit results more general, but it does
not sound like a bad idea to complement the
license of global definition with more
rigorous local definition that can be
entered with less clerical effort.
Definition on-the-fly is routine in a
natural language, and definition within
definition can make this most fluent
programming language more fluent still. If
functions are made easier to write, more
will be written and style will improve.

Richard H. Oates
IBM World Trade Americas/Far East Corp.
Town of Mount Pleasant, Route 9
North Tarrytown, New York
USA 10591

References

[I] J.A. Brown. Evaluating Extensions to
APL, APL79 Conference Proceedings, APL
Quoteu~ 9 4 (June 19~9) PP. 148-~.

[2] E.W. Dijkstra. Goto statement :
considered harmful, Letter to the editor,
Comm. ACM 11 3 (March 1968). In 1959 I
discussed Goto with a psychiatrist,
complaining that no one else in the
office liked to write a program that can
be read straight down the page.

[3] A.D. Falkoff, K.E. Iverson, and E.H.
Sussenguth. A formal description of
System/360, IBM Systems Journal 3 3
(1964).

[4] A.D. Falkoff and K.E. Iverson. The
design of APL, IBM Journal of Research
and Development 17 IF(July 1--973).

[5] K.E. Iverson. APL in Exposition, APL
Press, Pleasantville, New York (1976).

[6] K.E. Iverson. Elementary Analysis,
APL Press, Pleasantville, New York
(1976).

[7] K.E. Iverson. Programming style in
APL, An APL Users Meeting, I.P. Sharp
Associates, Toronto (1978).

[8] K.E. Iverson. The role of operators
in APL, APL79 Conference Proceedings, APL
Quote Qua~4-~ie'-Tg~9~-T2~r:~-~.

[9] K.E. Iverson. Notation as a tool of
thought, Comm. ACM 23 8, (Aug. 1980) pp.
444-65.

Appendix A. Bonding Tree

This is a function-use graph for the
compiler in [5]. Vertical paths are traced
by the three symbols + o - and horizontal
paths by the 26 symbols A-E. The symbol +
at an intersection means that the function
name to the right appears once in the tree.

Functions that appear more than once are
marked with o at the first occurrence and
with - at each reoccurrence, whereupon
tracing of the network terminates:

o PARSE - PARSE
+ +

+ o STRIP - STRIP

+ + o DEPTH

+ +

+ + L o CENTRALFN o FUNCTIONS

+ + - DEPTH
+ +

+ + C - CENTRALFN

+ +

+ - FUNCTIONS

+ o ON

+

o POLISH - POLISH

+ +

+ + CT o FIRSTCOL

+

+ + LT - FIRSTCOL

+ +

+ + RT - FIRSTCOL

+

o COMPILE- COMPILE
+

+ CENTER o LOCCENTER -

+

+ LEFT - LOCCENTER

+

+ RIGHT - LOCCENTER

+

ON

The graph is easily limited to the set of
all paths that contain a designated
function, such as ON:

X + PARSE o ON

+

+ COMPELE - ON

This compiler, which does not handle
names wider than one character because it
was intended for tutorial use, was
incorporated into a, production query system
at Americas/Far East Headquarters several
years ago. A fifteen-minute change to a
few statements let it operate on numeric
vectors in place of character strings, each
number in the vector being decoded from a
name (token) in the string. The maximum
width of the token depends on the size of
the decoding alphabet and the representa-
tion chosen for numbers. The decoding is
(oALPHABET)iALPHABETiTOKEN.

The thirty statements of the compiler
appear in nineteen functions, and the
nineteen functions appeared in a workspace
that contained over 100 functions of its
own at that time. The compiler was small
enough to use but too visible, so after a
few months of operation it was sadly
butchered o

The compiler appears as a set of local
functions in Section 6.

FUNCTIONS

APL Quote Quad 11 3 15 March 1981

Appendix B. Direct-Definition Compiler

The DEF function is reprinted from [9]
with some of its multiple specification
rewound :

Z9÷DEF
Z9÷~FX F9 [~

De-F9 E;F;I;J;K;Q;OIO
O÷(2pDlO÷0)p' '
+((21+/E=' ''')v^/ 1 3 z+/, :, I9 E)/O
E÷, 1 1 +OCR OFX 'Q', ' ',[-0.5],E
I ~-' :' I9 F+~c~ X9 ' R9 '~a Y9 ~ R9 E
D+(O, -6 -+/I) ~ (-(3 ×I~++ \I) 4p~ (7 ,~F) p (7×pF) +F
l÷2+t 2 +F~-I +pD
D÷3~(C9[((2L2±v/'c~m' I9 E),I+I),5;]),~D[;0,

I,I]
J÷>~ 0 1 ~'÷0' I9 E
J÷((-i~I) ^J)/K÷+ \I<0 ,-I+I÷E(A9
K÷v/ ((-K)~Io.>ti+[/K)[;J-l]
D÷D,(F,pE)÷@ 0 -2 ~(K+2×K<iqbK)~p' ',E,[0.5]

Z÷X R9 Y ; N
Z ~ (, ? (i ÷ X) I9 Y)o .ZN÷l) / ,Y , ((pY) , - l+N÷pX)p

1,I,X

Z÷A I9 B
Z÷(Ao.:B)A((pA),pB)D~21+\B :''''

C9
Z9÷

X9Z9+
Y9Z9÷X9

) / 3 + (0 : 1 ÷ ,
+O,OpZ9÷
Z9÷

A9
012345678
9ABCDEFGH
IJKLMNOPQ
RSTUVWXYZ
ABCDEFGHI
JKLMNOPQR
STUVWXYZO

The function resulting from the example
in the text is:

Z9÷AVG Y9
+(O=l÷,O:p,Y9)/3
+O,OpZ9÷'EMPTY'
Z9÷(+/Y9)÷p,Y9

expressions. The function I has been
modified to accept ~, m, and a in quotes as
discussed in Section 4.

Z9÷FI
Z9÷OFX F9

D*-F9 E;OIO;A;C;E;I;N;R;B;F;I;J;K;M;N;Q;X;Z
Z~-OFX(D~-CR 'F9')[6 7 +~/0÷0 ;]
Z÷[3EX O[S 9 7]
Z+OFX D[iO 11 ;]
Z÷DFX D[i2+t3;]
+Li
Z÷A I B
Z÷Ao . :B
Z+X R Y;N
Z~-(,~(I÷X)I y)o,ZN÷l)/,y,((py) ,-i+N÷pX)pi+X
Z÷E B; Q
Z÷~Qvi~Q><\Q÷BZ, ')/B÷,, ',B
Z÷N B;Q
B÷~'QA~-i4)Q÷B[;O]Z' ')~B÷(ip±)¢(2ppB)pB
Z÷(V/QA(~Q+<\BA.:~B)~B+(pB)pQ\(Q÷,^\B~' ')/,

B
L1 :C÷ 0 22 pA ~-'0123456789ABCDEFGHIJKLMNOPQR

STUVWXYZAB~DEFGHIJKLMNOPQRSTUVWXYZO '
+((21+/''''=E)v2>+/' :' I E÷E E)/pD÷(2pO)p''
E÷, 1 1 +OCR OFX 'Q',' T,[-O. 5],E
F÷'c Z9 ' R '~ X9 ' R 'w Y9 ' R E
Z÷i+2×M÷+/I÷' :' I F --
D÷(O,-(Z-i)-M)+(U(I×M)++\I)qb~(Z,pF)p(Z×pF)÷

F
C+C,[O]
C÷C,[O]
C÷C,[0]
C÷C,[0]
C÷C,[0]
C÷C,[O]

;W9Z9~
Y9;W9Z9~
Y9;W9Z9÷X9

)+1÷(W9Zi)xW9÷I+1÷,('
+O,pZ9÷
Z9÷

~(~B÷D[;I]V,~' ') / ' C [t 3 ; 2 + t 3] ÷ C [3 4;]÷'' ''
!

m(2=F+.=' :')/'C[3;3 4]÷'' '''
~(~Bv-'c'cE)/'C[5;]~'' '''
I~((F+l+pO)-3)p4
D÷5@C[(2L2LV/'m~' I E),3,I,5;],~D
D÷(i~B,(]2+I÷pD)plY/D
K÷+\I<0, i+I÷E~A
J÷((--l~I)AJ÷>~ 0 -1 ~'÷~' I E)/K
K÷v/ ((-K)~Io ,>t l+r / K)[;J-l]
Z÷, 0 1 ~K~' ',[0.5] E
D+D'((F--B),PZ)÷(1,pZ)PZ~,';',Z ' ' , k Z

Z9÷AVG Y9;W9
+(W9Zl)xW9÷l+l÷,(O:p,Y9)+l
÷O,pZ9÷(+/Y9)÷p,Y9
Z9÷'EMPTY'

Appendix C. Local-Definition Compiler

The function FI (Flow Iota), is an
adaptation of DEE for local functions. A9,
C9, I9, and R9 have become A, C, I, and R,
and they all--are made local--to--F9--in order
to demonstrate the current awkwardness of
localizing function names. The final ~FX
operation is left outside F9 so that it may
even redefine a name local to F9. F9 will
accept a matrix of expressions, but--no
further attempt is made to model behavior
of a global function. Definitions in
~-form are compiled both for simple
arguments and for forks with any number of

Appendix D. Examples

Here are an-versions of TRY and CHK in a
"quilt" ("cover") function. Quilts
establish an aggregate required by current
file technique, and serve as a base for a
local OFX. The quilt is gone at run time,
so in this exhibit TRY and CHK are shown
branching to their "own" statement numbers;
if they were defined as local functions in
the sense described in this paper, each
system constant would reflect bhe new
position of the local-definition line in
the global definition. Statement 7 of TRY
is discussed in Section 4.

APL Quote Quad 11 3 16 March 1981

QUILT
~R T~Y:
:~÷(?+ i 1 ,p~)p~
:E÷a[~IO;]
: D ÷ ((i + D ~) , 4) D ' CTL PAT'
:~(9+O=PID DSVO~,D,(p~)pE)/~14

:<÷ I 0 i 0 ~SVC E
:+(O:c÷p~E, '÷m')/~
:÷((o,o):Y+~+~k)/0
:+(i 2 A,~I+c)/~i2
::(- l+c)+'v'

:D÷OSVR~
~T, CHKc
:(,' ',D~'"',~'"'),' SHARE OFFER FAILED'
CHK:
: + (O = p , ~) / Q 3

: ~ (v / ~ c O , ~) / O
:c+(130)11fm
:~ 21 -27[~IO+2=UNC 'OLE']f'''TSIO ERROR ''

,(~),'' '',,OLE[~IO+c;]'
:~(04L I0)÷'÷'
:o

Compilation of QUILT by FI produces this
form of TRY:

Z9÷X9 TRY Y9;E;D
X9÷(-2÷ i i ,pX9)pX9
E+X9[~IO;]
~÷((l+pX9),4)p' CTL DAT'
÷(D÷O:PID OSVO Xg,D,(pXg)pE)/~i4
~E,'~t0'
Z9+ i 0 I 0 ~SVC E
+(O=Z9~p~E,'~ Y9 T)/O
+ ((0 , O) : i ~ Z 9 * ~ E) / 0
+ (1 2 ^ , Z l + Z 9) / ~ 1 2
(- - l + Z g) + ' v '
Y9
D÷OSVR X9
Tv CHK Z9
(,' ',D}'"',X9t"'), ' SHARE OFFER

FAILED v

In a large system quilts are not a
practical technique for localizing all
functions that should not be global, and a
simpler technique is needed. Here are two
possible forms of extension of V:

?'F X Y g'
'W W' V 'F F X Y Z'

The first example localizes functions X, Y,
and Z in F, provided that (like PCOPY) the
names are free in F. In the second example
the repetition of F causes X. Y, and Z to
override current objects, and F in turn is
established in workspace W overriding any
current F in W. Any combination of one and
two work~pace--and global function names
would be allowed.

Redefining Reduction Along an Empty Axis

Zeke Hoskin

A b s t r a c t

This note presents a consistent
approach to evaluating the reduction of
an array along an empty axis, giving
results which agree with accepted values
where these exist and also giving unique
and consistent results for the Nand and
Nor functions.

Note: For clarity, the body of this
paper deals only with vectors; the
extension to higher-rank arrays is
straightforward.

Introduction

The reduction of an empty vector by a
scalar dyadic function F is defined as the
left- or right-identity--value for F, or as
an error if F has no identity [1,27. This
is theoretically unsatisfying and has the
practical drawback that an application
using reduction by Nand or Nor, which
complete the set of ten nontrivial Boolean
functions, must include code to deal with
the empty case. This paper describes for
each scalar dyadic function an identity
which can be extended consistently to
obtain a result for reduction of the empty
vector.

Theory

For each APL scalar dyadic function F, we
can find a "quasi-identity" element Q and a
monadic function G such that, for any X
within the range ~nd the domain of F:

G Q F X ÷÷ X (1)

If F has a left identity, then Q is that
identity element and G is the function that
returns its argument ~nchanged. If F has a
right-identity, then G Q will be equ~l to
that identity element--/. By the
right-identity definition:

Q F I ÷÷ Q (2)

and by identity (I):

G Q F I +÷ I (3)

Then by (2) and (3) :

G Q +÷ G Q F I ÷+ I (4)

The scalar identity (1) can be extended
into an identity on nonempty vectors, which
can in turn be extended to the empty
vector :

G F/Q,X ÷÷ F/X (5)
F/~O ÷÷ G FTQ,~O ÷÷ G Q (5)

APL Quote Quad 11 3 17 March 198]

