
Is APL a Suitable Tool
for the Design of Large-System Software?

Kevin E. Jordan

Introduction

As a programming language, APL is not
new~ APL was first implemented in 1965,
over fifteen years ago~ Since its birth~ a
myriad of other programming languages have
come into existence. The definitions of
the most noteworthy of these have been
strongly influenced by advances in, or at
least theories from, the field of software
engineering. Examples include Pascal,
Euler, Alphard, CLU, and most recently,
Ada.

These languages differ markedly from APL
in that they demand strategic definitions
of data structures while APL allows, even
encourages, data structures to be dynamic.
Alphard, for instance, requires a very
precise description of the structure of
data, as well as a precise description of
the ways in which data are manipulated [9].
APL, on the other hand, provides virtually
no way of explicitly declaring in a static
fashion the type, shape, or method of
access of data.

The software-engineering trend toward
precise static descriptions of data and
data access stems from the belief that
programming errors should be caught before
software is put into production. By
requiring precise declarations, the
programmer is forced to design software
conscientiously, and inadvertent bugs can
be caught more easily by the language
translator due to an increase in redundancy
of definition. It is believed by their
proponents that the increased development
cost entailed by languages like Alphard,
Pascal, and Ada (as opposed to APL) is more
than compensated for by a resultant
decrease in maintenance cost.

The question is: Because APL rejects the
notion of precise static declarations, is
APL an inappropriate language in which to
implement large software systems? This
question will be explored from three
different angles. First, the development
cost of APL programs will be explored;
second, the proof of correctness of APL
programs will be looked at; finally, the
ability to compile APL programs and apply
data-flow analysis to discern types,
shapes, and methods of access will be
discussed.

Development Cost of APL Programs

APL, as it is usually implemented,
provides an extremely supportive
environment for software development.
User-defined functions may be developed and
tested one at a time without having to
recompile other functions. Moreover,

run-time errors do not cause cataclysmic
system aborts. When an error is detected,
APL reports the type of error, the name of
the function in which the error was
detected, the line of the function that was
being executed, and a pointer to the token
that was being processed at the time. At
that point, APL merely suspends execution,
allowing the programmer to interrogate the
values of data objects~ to examine the
overall state of the workspace, and
possibly to correct the error and resume
execution at the point of the error. Thus
APL provides for and encourages software
walk-through. The language translator, and
the language itself, are provided as
sophisticated and very powerful debugging
tools. In addition, most major APL
implementations such as Aplum [7] offer
explicit debugging aids that allow users to
trace program execution, trap errors, and
set break points in functions.

That APL provides wonderful diagnostics
and exquisite debugging aids would be
little consolation if APL programs were
prone to errors. In a book entitled The
Mythical Man Month, Frederick P. Brooks,
Jr. m--points out that experienced
programmers can produce about 1200 lines of
error-free code per year, regardless of the
programming language used. If that
statement is true, then it follows that the
more concise a language is, the fewer
errors will exist in an initial
implementation of a design.

APL is a notably concise language.
George Mayforth recently described [5] an
interactive system that he implemented in
APL as an interface between humans and a
database-management system called Total.
The interface had previously been done in
Cobol. The Cobol implementation required
6950 lines of code while the equivalent APL
implementation needed only 470 lines of
code, a 15-to-I ratio. In addition, the
APL version required 86 work-hours to
implement, while the Cobol version required
1280 work hours. The ratio in work-hours
also comes out to be about 15-to-I. Thus,
the use of either language yielded about
5.4 line of corrected code per hour.

Mayforth gives figures that weigh the
monetary cost of executing the APL program
versus that of executing the Cobol version.
In a test that exercised equivalent
functions of both implementations, the APL
version cost 97.7 system billing units
(SBU's) and the Cobol version cost 83.8
SBU's. In real time, however, the APL
version required an average of 33 minutes
to complete, while~the Cobol version
required an average of 36 minutes. Thus,
although APL consumed 17% more computer
resource, it executed in 6% less real time.
Figuring development cost at $20 per
programmer hour, the cost of the APL
version was $1720, and the cost of the
Cobol version was $25600. With the cost of
one SBU at 35 cents, Mayforth points out
that 4776 runs would be required to balance

APL Quote Quad 11 4 18 June 1981

http://crossmark.crossref.org/dialog/?doi=10.1145%2F586647.586652&domain=pdf&date_stamp=1981-06-01

the production-cost difference between the
APL and Cobol implementations°

Cobol is notably verbose, yet it is
probably not more than 33% less concise
than Pascal, Alphard, Ada, and others.
Thus, a code-reduction factor of between
10- and 15-to-I can probably be expected
between these languages and APL. Given the
code-reduction factor between APL and the
software-engineering languages, and if the
statement concerning lines of error-free
code per year is true, then choosing APL as
the language for implementing a given
system should result in fewer errors than
if the system were implemented in Pascal or
Ada, for example. Moreover, any remaining
errors will be made easier to find and
correct by the APL programming environment.

Some errors, however, are subtle enough
that they escape detection by the usually
limited testing of the human programmer.
As often as not, these errors turn out to
be cataclysmic. A question remains then:
Can APL programs be statically examined to
detect errors? Specifically, is APL too
dynamic to make analysis by automatic
verification systems or automatic test-data
generators infeasible? If the answer to
these questions is yes, then APL is
probably not a viable alternative to be
used in the implementation of very large
sotware systems.

Automatic Verification of APL Programs

At first glance APL seems like an
impossible language for which to build an
automatic program verifier. It is true
that APL's lack of explicit data
declarations makes verification of APL
programs a challenge, but Susan Gerhart has
shown [3] that given two equivalent
programs written in APL and in a structured
language such as Pascal, the APL program is
actually less difficult to prove correct.
Once again, this is the result of the
conciseness of APL. APL owes its
conciseness to the power of its primitive
functions. APL's basic data structure is
the array and its primitive functions are
designed to operate on arrays. For
example, in the simple APL expression:

Z÷A+B

A and B can be arrays of any rank and size,
and the primitive function + will add them
together element by element as long as A
and B are the same shape or one of them is
a one-element array. To mimic the
semantics of this expression in a language
such as Pascal requires something like:

FOR I := I TO LENGTH OF A DO
Z[I] := A[I]+B[I]

END;

and this code mimics the APL expression
only when A and B are both one-dimensional

arrays of known length. Much more Pascal
code would be required to capture all the
semantics of the APL expression.

In another example, consider a program to
perform a table look-up. The program
accepts as input a matrix to be searched
and a vector to search for. The program
must return as a result the number of the
first row that matches the vector, or 0 if
no match is found. In APL, the program can
be implemented as follows:

V Z÷MAT SEARCH VEC
Z÷i÷(MAT^°:VEC)/ipl~pMAT

V

In Pascal, the subprogram would look
something like this:

PROCEDURE SEARCH
(MATRIX: ARRAY[I..NO OF ROWS,

I..NO OF COLS] OF CHAR;
VECTOR:ARRAY [I..NO OF COLS] OF CHAR;
NO OF ROWS, NO OF COLS: INTEGER;
VAR RESULT:INTEGER);

VAR
ROW, COL: INTEGER,
MATCH: BOOLEAN;

BEGIN
RESULT:=O; ROW:=I;
WHILE (ROW<=NO OF ROWS) AND (RESULT=O)
DO BEGIN MATCH:=TRUE;

COL:=I;
WHILE (COL <= NO OF COLS) AND

(MATCH=TRUE) DO BEGIN
IF MATRIX[ROW,COL]=VECTOR[COL]

THEN COL:=COL+I
ELSE MATCH:=FALSE

END;
IF MATCH=TRUE THEN RESULT:=ROW

ELSE ROW:=ROW+I
END;
END;

The APL version is much more concise and
much less prone to errors. Furthermore,
the APL version can operate on characters
as easily as it can operate on numeric arg-
uments. The Pascal program, on the other
hand, must be recompiled with new declara-
tions each time the programmer wants it to
operate on arguments of a different type.

Clearly, APL's conciseness stems from the
fact that most of the looping operations
that occur in APL programs are implicit in
the primitive functions. Gerhart points
out that verifying loop conditions and
finding paths of execution are the most
difficult parts of program verification.
She shows that because most loops are
implicit in APL's primitive functions, APL
programs have fewer paths and are therefore
easier to verify than equivalent programs
in other programming languages.

The most difficult part of Gerhart's work
was to pin down data types and shapes.
Since APL programs do not contain explicit
formal declarations of data types and
shapes, this information must be determined

APL Quote Quad 11 4 19 June 1981

through context analysis. Thus, the bulk
of Gerhart's automatic verification system
was centered around data-flow analysis.
'Knowing' the domain and range of each
primitive function, Gerhart's data-flow
analyzer simply formed a conjunct of the
output predicates of each primitive
function along a path to build the output
predicate of that path. Whenever possible,
the conjunct was simplified and~ if a
conflict occurred between the conjunct at
any given point and the input predicate of
the next primitive function to be applied,
an error was signalled.

When given the input and output predic-
ates of an APL program, Gerhart's system
was able to verify that the input
constraints did not conflict with the
output constraints. More interesting,
however, was the ability of the system to
produce an input predicate when it was
given the output predicate. Certainly, the
ability of the system to produce input
predicates has implications for automatic
test-data generation. A test-data
generator could use the input predicate to
produce a set of data to feed the object
program.

At this point, the cost of developing
programs in APL has been shown to be less
than the cost of developing equivalent
programs in other languages. In addition,
Gerhart has shown that proving APL programs
to be correct is easier than proving
equivalent programs in many other languages
to be correct. These findings imply that
APL programs are less costly to maintain
than equivalent programs developed in other
languages. Because APL is usually
implemented as an interpreter, however, APL
programs usually cost more to execute on a
computer. This flaw could be remedied
through true compilation of APL programs.

Compilation of APL Programs

In a recent paper on the compilation of
APL, Clark Wiedmann [8] gives some
empirical evidence of the inefficiency of a
typical interpreter. He determined the
number of machine instructions executed by
Aplum to evaluate the simple expression:

K÷K+I

to be about 800. This number is awesome,
especially when K is a scalar variable, but
it is not surprising when considering the
necessity of the interpreter to be general.
A compiler, on the other hand, might be
able to reduce this expression to two or
three machine instructions--or even a
single machine instruction if K is a value
that can be kept in a machine register
(i.e. a loop counter). Thus, a reduction
factor in execution time of from 100 to
1000 is feasible for some programs if
compilation is possible.

We believe [4] that an APL compiler is
possible. When compared to the grammar of
Pascal, Algol, or Ada~ the grammar of APL
is trivial~ When certain conditions are
met, therefore, parsing APL programs is an
easy task. The only difficulty arises with
the syntax of identifiers. For example,
the expression:

ABC

is totally ambiguous when examined
statically. From this statement alone~ it
is impossible to tell:

--whether C is a variable or a niladic
function,

--whether B is a monadic or a dyadic
function,

--or whether A is a variable or a monadic
function.

In practice, statements like this are rare.
George Strawn has shown [6] that in
practice, 95% of APL identifiers are not
ambiguous, especially when considerd in
context. This percentage can be increased
to nearly 100% if APL's scope rules are
changed [8].

Presently, APL allows variables to be
declared local to a function if they are
placed in the header of the function. All
other identifiers referenced by a function
are, by default, global objects. Global
objects may be either variables or other
functions. In addition, when one function
calls another, all variables declared local
in the caller are available to the callee.
Thus, it is possible for the callee to
cause side effects (whether intentionally
or not) to so-called local variables of the
caller~

If APL's scope rules were to be changed
so that global variables must be declared,
each function to be called must have its
specific syntaxes declared (niladic,
monadic, dyadic), and all other identifiers
referenced within a function are by default
strictly local, then all of the ambiguities
vanish. Moreover, since strictly local
variables are known only to the functions
within which they are defined, unwanted
side effects disappear as well. With this
change in scope rules, APL programs may be
parsed trivially by a compiler. In fact,
based on these changes, an LL(1) parser for
APL has been constructed [4] and operates
on a grammar that requires only nineteen
productions to define the APL language.
(See Appendix.)

The real work involved with the
compilation of APL programs grows from the
need to produce efficient object code.
Without the employment of data-flow
analysis to perform optimization of' the
code produced by the parser, the object
code generated by the compiler would be
overly general, and its execution would

APL Quote Quad 11 4 20 June 1981

probably be no more efficient than the
execution of the APL interpreter. Since
the types and shapes of data objects are
not explicitly declared in APL, data-flow
analysis must be utilized to learn this
information from context.

The interaction of forward data-flow
analysis with backward data-flow analysis
can pin down virtually all the types and
shapes. Those values whose types and
shapes cannot be determined, or vary
widely, will simply result in the
generation of very general code unless the
user supplies more specific information.
In other words, in keeping with the spirit
of APL, explicit data declarations will not
be required, but the user should be aware
that those objects whose characteristics
cannot be pinned down may possibly yield
overly general code.

Consider the following sequence of code:

[1] A÷+ IB
[2] C~-B[4]
[3] D÷A+i

Even though no declarations are provided
by the user, a compiler using data-flow
analysis can determine the types and ranks
(number of dimensions) of all the variables
in this example. The analysis would
proceed as follows:

--Beginning with forward flow analysis, all
that can be determined in Line [I] is
that B is numeric or empty.

--At Line 2, B is found to be a non-empty
one-dimensional array, hence C must be
scalar.

--A deduction backward from Line 2 would
then discover that in Line I B must be
numeric and, therefore, A must be a
numeric scalar.

--Another forward deduction would then
result in the knowledge that C is
numeric, and in Line 3 that D must be a
numeric scalar because A is.

The only characteristic that cannot be
determined is the exact size of B.

Using data-flow analysis, Bauer and Saal
[I] discovered that the type and shape
attributes of 75~ of the data objects could
be pinned down in thirty test programs.
This figure is extremely encouraging,
considering that their basic block of
analysis was a single line of code and that
they allowed information found at one line
to flow to the next, only if the subject
program had no branches. It is likely that
an approach that breaks programs up into
more conventional blocks by finding branch
statements and their targets, and that
performs a true analysis of the flow of
data between blocks along a path, can yield
a figure higher than Bauer and Saal's 75%.

On a different note, it should be made
clear that APL compilers will not supplant

APL interpreters. It is the interpretive
environment that facilitates software
development. Functions will still be
created and debugged using the interpretive
environment; only when the programmer is
reasonably certain that a function is
correct should it be compiled.

Limitations of APL

As of this writing, APL has four major
limitations. First, APL operates only on
rectangular arrays--there are no list or
record structures as in some other
languages; second, user-defined functions
may be passed a maximum of two arguments
and may only return one result; third, APL
does not provide for separate compilation;
fourth, APL does not allow users to define
their own data types. The first three
limitations may soon disappear, but the
fourth,limitation cannot be remedied
without violating the spirit of APL.

General heterogeneous arrays will soon be
universally accepted into the APL
community. General arrays, often called
nested arrays or arrays of arrays, will
allow users to build non-rectangular
data-structures and will provide for mixing
of data types within a single object.
General arrays can be considered an analog
of Pascal's "record" type.

The limitation that user-defined
functions may be passed a maximum of only
two arguments and may deliver only one
result is a recognized problem. At this
point, there is no technical difficulty in
implementing remedies beyond generalizing
the types of arrays allowed. Implementers,
however, are correctly reluctant to
implement new features unless there is
agreement on the details in the APL
community, and a good understanding of
possible side effects.

Separate compilation is the ability to
develop related modules of a software
system independently. When it is time to
integrate a module with others, all names
not essential to its interfaces are hidden
from other modules, thus avoiding collision
of name spaces. To my knowledge, no
currently available APL system supports
such separate compilation.

Finally, user-defined data types create
two problems. First, user-defined data
types require precise declarations, and
precise declarations are not in keeping
with the spirit of APL. Second, user-
defined types are usually used to define
how a program intends to use the computer's
memory. This often has machine-dependency
ramifications. APL, however, is a machine-
independent language; it attempts to
insulate the user from hardware peculiari-
ties as much as possible, putting on the
implementors the burden of exploiting each
feature where most appropriate.

APL Quote Quad 11 4 21 June 1981

Conclusions

The current trend in the field of
software engineering toward languages that
require explicit, precise declarations of
data objects implies that APL, a language
that rejects the idea of explicit data
declarations, is unacceptable as a tool in
which to implement software. It is widely
believed that new languages like Pascal,
Alphard, and Ada tend to reduce development
and maintenance costs. Because of its
conciseness, however, APE can reduce
development and maintenance costs even more
than these "structured" languages. APL is
much more concise and, therefore, much less
prone to errors. Because of this concise-
ness it might be said that APL is an even
higher-level language than these other more
recent languages. In the words of Clark
Wiedmann~ "an ounce of simplicity is worth
a pound of redundancy." At present, APL
does present a few inconveniences for the
development of large software systems.
These limitations are, however, in great
part due to the forms of implementation,
and may be overcome in the future.

Kevin E. Jordan
University Computing Center
Graduate Research Center
University of Massachusetts
Amherst, Massachusetts
USA 01003

Appendix. An LL(1) Grammar for APL

The following grammar follows APL's law
of execution which states: expressions
shall be executed from right to left.
Thus, if the grammar's syntax seems
strange, bear in mind that the lexical
analyzer delivers tokens in the same order
that it processes source text, i.eo right
to left.

<function>::=<stmt list>]e
<stmt list>::=<stmT><stmt list'>
<stmt-list'>:z=<stmt list~[~
<stmt~::= <stmt body~end of line
<stmt body>::=<~xp list>~-IE
<expjist>::=<exp>~exp list'>l;<exp_list>
<exp list'>: :=;<exp list> I~
<exp': :=<simple exp><sub exp>
<simple exp>: :=~index_li~t><simple_exp'>]

<simple exp'>
<simple e~p'>::=)<exp>(Iconstant Ivariable I

nilad~c function
<index li~t>::=]<exp list>[
<sub e~p>::= <assignment> J-l<axis_op>[

<f~ exp> [£
<fn e~p>::=<dyadic exp>]<monadic exp>
<dyadic exp>: :=dyadic function<sTmple_exp>

<sub exp>
<monad~c exp>::=monadic function<sub exp>
<axis op~::=right axis_~racket <exp>--

left axis bracket
<assignment>~:=-<target>
<target>::=<index list><target'>l<target'>
<target'>::=variable<sub_exp>

References

[I] Alan M. Bauer and Harry J. Saalo
APL really need run-time checking?,
Software--Practice and Experience 4

Does

[2] Frederick P. Brooks, Jr. The ~_thical
Man-Month~ Addison-Wesley Pub~-i~hing
Company~ Reading, Mass. (1975).

[3] Susan Lucille Gerhart. Verification
of APL Programs~ PhD. Thesis, Department
of Computer Science, Carnegie-Mellon
University, Pittsburgh, Penna. (Nov.
1972)o

[4] Kevin E. Jordan and Clark Wiedmann.
Research project, University Computing
Center, University of Massachusetts
(1980).

[5] George R. Mayforth. An APL-TOTAL
Interface, APL79 Conference Proceedings
APL Quote Quad 9 4 Part I (June 1979) pp.
397-408.

[6] George O. Strawn. Does APL really
need run-time parsing?, Software--
Practice and Experience, Vol. 7, (1977)
pp. 193-200.

[7] Clark Wiedmann. APLUM Reference
Manual, Control Data Corporation,
Minneapolis, Minn. (1978).

[8] Clark Wiedmann. Steps toward an APL
compiler, APL79 Conference Proceedings,
APL Quote Quad 9 4, Part I (June 1979)
pp. 321-28.

[9] Wm. A. Wulf, Ralph L. London, and Mary
Shaw. Abstraction and Verification in
Alphard: Introduction to Language and
Methodology, Carnegie-Mellon University
and USC Information Sciences Institute
(June 1976).

APL Quote Quad 11 4 22 June 1981

