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Introduction 

As a programming language, APL is not 
new~ APL was first implemented in 1965, 
over fifteen years ago~ Since its birth~ a 
myriad of other programming languages have 
come into existence. The definitions of 
the most noteworthy of these have been 
strongly influenced by advances in, or at 
least theories from, the field of software 
engineering. Examples include Pascal, 
Euler, Alphard, CLU, and most recently, 
Ada. 

These languages differ markedly from APL 
in that they demand strategic definitions 
of data structures while APL allows, even 
encourages, data structures to be dynamic. 
Alphard, for instance, requires a very 
precise description of the structure of 
data, as well as a precise description of 
the ways in which data are manipulated [9]. 
APL, on the other hand, provides virtually 
no way of explicitly declaring in a static 
fashion the type, shape, or method of 
access of data. 

The software-engineering trend toward 
precise static descriptions of data and 
data access stems from the belief that 
programming errors should be caught before 
software is put into production. By 
requiring precise declarations, the 
programmer is forced to design software 
conscientiously, and inadvertent bugs can 
be caught more easily by the language 
translator due to an increase in redundancy 
of definition. It is believed by their 
proponents that the increased development 
cost entailed by languages like Alphard, 
Pascal, and Ada (as opposed to APL) is more 
than compensated for by a resultant 
decrease in maintenance cost. 

The question is: Because APL rejects the 
notion of precise static declarations, is 
APL an inappropriate language in which to 
implement large software systems? This 
question will be explored from three 
different angles. First, the development 
cost of APL programs will be explored; 
second, the proof of correctness of APL 
programs will be looked at; finally, the 
ability to compile APL programs and apply 
data-flow analysis to discern types, 
shapes, and methods of access will be 
discussed. 

Development Cost of APL Programs 

APL, as it is usually implemented, 
provides an extremely supportive 
environment for software development. 
User-defined functions may be developed and 
tested one at a time without having to 
recompile other functions. Moreover, 

run-time errors do not cause cataclysmic 
system aborts. When an error is detected, 
APL reports the type of error, the name of 
the function in which the error was 
detected, the line of the function that was 
being executed, and a pointer to the token 
that was being processed at the time. At 
that point, APL merely suspends execution, 
allowing the programmer to interrogate the 
values of data objects~ to examine the 
overall state of the workspace, and 
possibly to correct the error and resume 
execution at the point of the error. Thus 
APL provides for and encourages software 
walk-through. The language translator, and 
the language itself, are provided as 
sophisticated and very powerful debugging 
tools. In addition, most major APL 
implementations such as Aplum [7] offer 
explicit debugging aids that allow users to 
trace program execution, trap errors, and 
set break points in functions. 

That APL provides wonderful diagnostics 
and exquisite debugging aids would be 
little consolation if APL programs were 
prone to errors. In a book entitled The 
Mythical Man Month, Frederick P. Brooks, 
Jr. m--points out that experienced 
programmers can produce about 1200 lines of 
error-free code per year, regardless of the 
programming language used. If that 
statement is true, then it follows that the 
more concise a language is, the fewer 
errors will exist in an initial 
implementation of a design. 

APL is a notably concise language. 
George Mayforth recently described [5] an 
interactive system that he implemented in 
APL as an interface between humans and a 
database-management system called Total. 
The interface had previously been done in 
Cobol. The Cobol implementation required 
6950 lines of code while the equivalent APL 
implementation needed only 470 lines of 
code, a 15-to-I ratio. In addition, the 
APL version required 86 work-hours to 
implement, while the Cobol version required 
1280 work hours. The ratio in work-hours 
also comes out to be about 15-to-I. Thus, 
the use of either language yielded about 
5.4 line of corrected code per hour. 

Mayforth gives figures that weigh the 
monetary cost of executing the APL program 
versus that of executing the Cobol version. 
In a test that exercised equivalent 
functions of both implementations, the APL 
version cost 97.7 system billing units 
(SBU's) and the Cobol version cost 83.8 
SBU's. In real time, however, the APL 
version required an average of 33 minutes 
to complete, while~the Cobol version 
required an average of 36 minutes. Thus, 
although APL consumed 17% more computer 
resource, it executed in 6% less real time. 
Figuring development cost at $20 per 
programmer hour, the cost of the APL 
version was $1720, and the cost of the 
Cobol version was $25600. With the cost of 
one SBU at 35 cents, Mayforth points out 
that 4776 runs would be required to balance 
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the production-cost difference between the 
APL and Cobol implementations° 

Cobol is notably verbose, yet it is 
probably not more than 33% less concise 
than Pascal, Alphard, Ada, and others. 
Thus, a code-reduction factor of between 
10- and 15-to-I can probably be expected 
between these languages and APL. Given the 
code-reduction factor between APL and the 
software-engineering languages, and if the 
statement concerning lines of error-free 
code per year is true, then choosing APL as 
the language for implementing a given 
system should result in fewer errors than 
if the system were implemented in Pascal or 
Ada, for example. Moreover, any remaining 
errors will be made easier to find and 
correct by the APL programming environment. 

Some errors, however, are subtle enough 
that they escape detection by the usually 
limited testing of the human programmer. 
As often as not, these errors turn out to 
be cataclysmic. A question remains then: 
Can APL programs be statically examined to 
detect errors? Specifically, is APL too 
dynamic to make analysis by automatic 
verification systems or automatic test-data 
generators infeasible? If the answer to 
these questions is yes, then APL is 
probably not a viable alternative to be 
used in the implementation of very large 
sotware systems. 

Automatic Verification of APL Programs 

At first glance APL seems like an 
impossible language for which to build an 
automatic program verifier. It is true 
that APL's lack of explicit data 
declarations makes verification of APL 
programs a challenge, but Susan Gerhart has 
shown [3] that given two equivalent 
programs written in APL and in a structured 
language such as Pascal, the APL program is 
actually less difficult to prove correct. 
Once again, this is the result of the 
conciseness of APL. APL owes its 
conciseness to the power of its primitive 
functions. APL's basic data structure is 
the array and its primitive functions are 
designed to operate on arrays. For 
example, in the simple APL expression: 

Z÷A+B 

A and B can be arrays of any rank and size, 
and the primitive function + will add them 
together element by element as long as A 
and B are the same shape or one of them is 
a one-element array. To mimic the 
semantics of this expression in a language 
such as Pascal requires something like: 

FOR I := I TO LENGTH OF A DO 
Z[I] := A[I]+B[I] 

END; 

and this code mimics the APL expression 
only when A and B are both one-dimensional 

arrays of known length. Much more Pascal 
code would be required to capture all the 
semantics of the APL expression. 

In another example, consider a program to 
perform a table look-up. The program 
accepts as input a matrix to be searched 
and a vector to search for. The program 
must return as a result the number of the 
first row that matches the vector, or 0 if 
no match is found. In APL, the program can 
be implemented as follows: 

V Z÷MAT SEARCH VEC 
Z÷i÷(MAT^°:VEC)/ipl~pMAT 

V 

In Pascal, the subprogram would look 
something like this: 

PROCEDURE SEARCH 
(MATRIX: ARRAY[I..NO OF ROWS, 

I..NO OF COLS] OF CHAR; 
VECTOR:ARRAY [I..NO OF COLS] OF CHAR; 
NO OF ROWS, NO OF COLS: INTEGER; 
VAR RESULT:INTEGER); 

VAR 
ROW, COL: INTEGER, 
MATCH: BOOLEAN; 

BEGIN 
RESULT:=O; ROW:=I; 
WHILE (ROW<=NO OF ROWS) AND (RESULT=O) 
DO BEGIN MATCH:=TRUE; 

COL:=I; 
WHILE (COL <= NO OF COLS) AND 

(MATCH=TRUE) DO BEGIN 
IF MATRIX[ROW,COL]=VECTOR[COL] 

THEN COL:=COL+I 
ELSE MATCH:=FALSE 

END; 
IF MATCH=TRUE THEN RESULT:=ROW 

ELSE ROW:=ROW+I 
END; 
END; 

The APL version is much more concise and 
much less prone to errors. Furthermore, 
the APL version can operate on characters 
as easily as it can operate on numeric arg- 
uments. The Pascal program, on the other 
hand, must be recompiled with new declara- 
tions each time the programmer wants it to 
operate on arguments of a different type. 

Clearly, APL's conciseness stems from the 
fact that most of the looping operations 
that occur in APL programs are implicit in 
the primitive functions. Gerhart points 
out that verifying loop conditions and 
finding paths of execution are the most 
difficult parts of program verification. 
She shows that because most loops are 
implicit in APL's primitive functions, APL 
programs have fewer paths and are therefore 
easier to verify than equivalent programs 
in other programming languages. 

The most difficult part of Gerhart's work 
was to pin down data types and shapes. 
Since APL programs do not contain explicit 
formal declarations of data types and 
shapes, this information must be determined 
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through context analysis. Thus, the bulk 
of Gerhart's automatic verification system 
was centered around data-flow analysis. 
'Knowing' the domain and range of each 
primitive function, Gerhart's data-flow 
analyzer simply formed a conjunct of the 
output predicates of each primitive 
function along a path to build the output 
predicate of that path. Whenever possible, 
the conjunct was simplified and~ if a 
conflict occurred between the conjunct at 
any given point and the input predicate of 
the next primitive function to be applied, 
an error was signalled. 

When given the input and output predic- 
ates of an APL program, Gerhart's system 
was able to verify that the input 
constraints did not conflict with the 
output constraints. More interesting, 
however, was the ability of the system to 
produce an input predicate when it was 
given the output predicate. Certainly, the 
ability of the system to produce input 
predicates has implications for automatic 
test-data generation. A test-data 
generator could use the input predicate to 
produce a set of data to feed the object 
program. 

At this point, the cost of developing 
programs in APL has been shown to be less 
than the cost of developing equivalent 
programs in other languages. In addition, 
Gerhart has shown that proving APL programs 
to be correct is easier than proving 
equivalent programs in many other languages 
to be correct. These findings imply that 
APL programs are less costly to maintain 
than equivalent programs developed in other 
languages. Because APL is usually 
implemented as an interpreter, however, APL 
programs usually cost more to execute on a 
computer. This flaw could be remedied 
through true compilation of APL programs. 

Compilation of APL Programs 

In a recent paper on the compilation of 
APL, Clark Wiedmann [8] gives some 
empirical evidence of the inefficiency of a 
typical interpreter. He determined the 
number of machine instructions executed by 
Aplum to evaluate the simple expression: 

K÷K+I 

to be about 800. This number is awesome, 
especially when K is a scalar variable, but 
it is not surprising when considering the 
necessity of the interpreter to be general. 
A compiler, on the other hand, might be 
able to reduce this expression to two or 
three machine instructions--or even a 
single machine instruction if K is a value 
that can be kept in a machine register 
(i.e. a loop counter). Thus, a reduction 
factor in execution time of from 100 to 
1000 is feasible for some programs if 
compilation is possible. 

We believe [4] that an APL compiler is 
possible. When compared to the grammar of 
Pascal, Algol, or Ada~ the grammar of APL 
is trivial~ When certain conditions are 
met, therefore, parsing APL programs is an 
easy task. The only difficulty arises with 
the syntax of identifiers. For example, 
the expression: 

ABC 

is totally ambiguous when examined 
statically. From this statement alone~ it 
is impossible to tell: 

--whether C is a variable or a niladic 
function, 

--whether B is a monadic or a dyadic 
function, 

--or whether A is a variable or a monadic 
function. 

In practice, statements like this are rare. 
George Strawn has shown [6] that in 
practice, 95% of APL identifiers are not 
ambiguous, especially when considerd in 
context. This percentage can be increased 
to nearly 100% if APL's scope rules are 
changed [8]. 

Presently, APL allows variables to be 
declared local to a function if they are 
placed in the header of the function. All 
other identifiers referenced by a function 
are, by default, global objects. Global 
objects may be either variables or other 
functions. In addition, when one function 
calls another, all variables declared local 
in the caller are available to the callee. 
Thus, it is possible for the callee to 
cause side effects (whether intentionally 
or not) to so-called local variables of the 
caller~ 

If APL's scope rules were to be changed 
so that global variables must be declared, 
each function to be called must have its 
specific syntaxes declared (niladic, 
monadic, dyadic), and all other identifiers 
referenced within a function are by default 
strictly local, then all of the ambiguities 
vanish. Moreover, since strictly local 
variables are known only to the functions 
within which they are defined, unwanted 
side effects disappear as well. With this 
change in scope rules, APL programs may be 
parsed trivially by a compiler. In fact, 
based on these changes, an LL(1) parser for 
APL has been constructed [4] and operates 
on a grammar that requires only nineteen 
productions to define the APL language. 
(See Appendix.) 

The real work involved with the 
compilation of APL programs grows from the 
need to produce efficient object code. 
Without the employment of data-flow 
analysis to perform optimization of' the 
code produced by the parser, the object 
code generated by the compiler would be 
overly general, and its execution would 
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probably be no more efficient than the 
execution of the APL interpreter. Since 
the types and shapes of data objects are 
not explicitly declared in APL, data-flow 
analysis must be utilized to learn this 
information from context. 

The interaction of forward data-flow 
analysis with backward data-flow analysis 
can pin down virtually all the types and 
shapes. Those values whose types and 
shapes cannot be determined, or vary 
widely, will simply result in the 
generation of very general code unless the 
user supplies more specific information. 
In other words, in keeping with the spirit 
of APL, explicit data declarations will not 
be required, but the user should be aware 
that those objects whose characteristics 
cannot be pinned down may possibly yield 
overly general code. 

Consider the following sequence of code: 

[ 1 ] A÷+ IB 
[ 2 ] C~-B[ 4 ] 
[3] D÷A+i 

Even though no declarations are provided 
by the user, a compiler using data-flow 
analysis can determine the types and ranks 
(number of dimensions) of all the variables 
in this example. The analysis would 
proceed as follows: 

--Beginning with forward flow analysis, all 
that can be determined in Line [I] is 
that B is numeric or empty. 

--At Line 2, B is found to be a non-empty 
one-dimensional array, hence C must be 
scalar. 

--A deduction backward from Line 2 would 
then discover that in Line I B must be 
numeric and, therefore, A must be a 
numeric scalar. 

--Another forward deduction would then 
result in the knowledge that C is 
numeric, and in Line 3 that D must be a 
numeric scalar because A is. 

The only characteristic that cannot be 
determined is the exact size of B. 

Using data-flow analysis, Bauer and Saal 
[I] discovered that the type and shape 
attributes of 75~ of the data objects could 
be pinned down in thirty test programs. 
This figure is extremely encouraging, 
considering that their basic block of 
analysis was a single line of code and that 
they allowed information found at one line 
to flow to the next, only if the subject 
program had no branches. It is likely that 
an approach that breaks programs up into 
more conventional blocks by finding branch 
statements and their targets, and that 
performs a true analysis of the flow of 
data between blocks along a path, can yield 
a figure higher than Bauer and Saal's 75%. 

On a different note, it should be made 
clear that APL compilers will not supplant 

APL interpreters. It is the interpretive 
environment that facilitates software 
development. Functions will still be 
created and debugged using the interpretive 
environment; only when the programmer is 
reasonably certain that a function is 
correct should it be compiled. 

Limitations of APL 

As of this writing, APL has four major 
limitations. First, APL operates only on 
rectangular arrays--there are no list or 
record structures as in some other 
languages; second, user-defined functions 
may be passed a maximum of two arguments 
and may only return one result; third, APL 
does not provide for separate compilation; 
fourth, APL does not allow users to define 
their own data types. The first three 
limitations may soon disappear, but the 
fourth,limitation cannot be remedied 
without violating the spirit of APL. 

General heterogeneous arrays will soon be 
universally accepted into the APL 
community. General arrays, often called 
nested arrays or arrays of arrays, will 
allow users to build non-rectangular 
data-structures and will provide for mixing 
of data types within a single object. 
General arrays can be considered an analog 
of Pascal's "record" type. 

The limitation that user-defined 
functions may be passed a maximum of only 
two arguments and may deliver only one 
result is a recognized problem. At this 
point, there is no technical difficulty in 
implementing remedies beyond generalizing 
the types of arrays allowed. Implementers, 
however, are correctly reluctant to 
implement new features unless there is 
agreement on the details in the APL 
community, and a good understanding of 
possible side effects. 

Separate compilation is the ability to 
develop related modules of a software 
system independently. When it is time to 
integrate a module with others, all names 
not essential to its interfaces are hidden 
from other modules, thus avoiding collision 
of name spaces. To my knowledge, no 
currently available APL system supports 
such separate compilation. 

Finally, user-defined data types create 
two problems. First, user-defined data 
types require precise declarations, and 
precise declarations are not in keeping 
with the spirit of APL. Second, user- 
defined types are usually used to define 
how a program intends to use the computer's 
memory. This often has machine-dependency 
ramifications. APL, however, is a machine- 
independent language; it attempts to 
insulate the user from hardware peculiari- 
ties as much as possible, putting on the 
implementors the burden of exploiting each 
feature where most appropriate. 
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Conclusions 

The current trend in the field of 
software engineering toward languages that 
require explicit, precise declarations of 
data objects implies that APL, a language 
that rejects the idea of explicit data 
declarations, is unacceptable as a tool in 
which to implement software. It is widely 
believed that new languages like Pascal, 
Alphard, and Ada tend to reduce development 
and maintenance costs. Because of its 
conciseness, however, APE can reduce 
development and maintenance costs even more 
than these "structured" languages. APL is 
much more concise and, therefore, much less 
prone to errors. Because of this concise- 
ness it might be said that APL is an even 
higher-level language than these other more 
recent languages. In the words of Clark 
Wiedmann~ "an ounce of simplicity is worth 
a pound of redundancy." At present, APL 
does present a few inconveniences for the 
development of large software systems. 
These limitations are, however, in great 
part due to the forms of implementation, 
and may be overcome in the future. 

Kevin E. Jordan 
University Computing Center 
Graduate Research Center 
University of Massachusetts 
Amherst, Massachusetts 
USA 01003 

Appendix. An LL(1) Grammar for APL 

The following grammar follows APL's law 
of execution which states: expressions 
shall be executed from right to left. 
Thus, if the grammar's syntax seems 
strange, bear in mind that the lexical 
analyzer delivers tokens in the same order 
that it processes source text, i.eo right 
to left. 

<function>::=<stmt list>]e 
<stmt list>::=<stmT><stmt list'> 
<stmt-list'>:z=<stmt list~[~ 
<stmt~::= <stmt body~end of line 
<stmt body>::=<~xp list>~-IE 
<expjist>::=<exp>~exp list'>l;<exp_list> 
<exp list'>: :=;<exp list> I~ 
<exp': :=<simple exp><sub exp> 
<simple exp>: :=~index_li~t><simple_exp'>] 

<simple exp'> 
<simple e~p'>::=)<exp>(Iconstant Ivariable I 

nilad~c function 
<index li~t>::=]<exp list>[ 
<sub e~p>::= <assignment> J-l<axis_op>[ 

<f~ exp> [£ 
<fn e~p>::=<dyadic exp>]<monadic exp> 
<dyadic exp>: :=dyadic function<sTmple_exp> 

<sub exp> 
<monad~c exp>::=monadic function<sub exp> 
<axis op~::=right axis_~racket <exp>-- 

left axis bracket 
<assignment>~:=-<target> 
<target>::=<index list><target'>l<target'> 
<target'>::=variable<sub_exp> 
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