
AJgorithms

CORRECTION TO ALGORITHM 150

Inverse Fourier Transformation

Glenn Schneider

I. The inverse Fourier-transform function
INVFT (APL Quote Quad 11 4, p. 24) has an
error in Line 5. It is printed as:

X÷ 2 0 1 ~ 2 1 o . O X × l ~ , t l f p R

b u t s h o u l d b e :

X÷ 2 0 1 ~ 2 1 o . o X o . x l ~ ' l l ÷ p R

2. In the Comment for this algorithm, a pi
seems to have been left out. The comment
reads "... was defined on an interval other
than O-<X<-2, ..." but should read "... was
defined on an interval other than O_<X_<O2,
,.,II.

Glenn Schneider
Department of Astronomy
211 Space-Science Research Building
University of Florida
Gainesville, Florida
USA 3261 1

ALGORITHM 152

V-Partitions
and Permutations by Inversions

J.O. Shallit

Abstract

We present an algorithm for generating,
subject to certain restrictions, additive
partitions of a non-negative integer. We
obtain simple time estimates for this
algorithm. The computation of combina-
tion vectors is given as an application.
Finally, it is shown that a simple
transformation permits as a special case
the computation of permutations on N
letters with K inversions.

Introduction

A partition of a non-negative integer K
is a vec o f f non-negative integers W such
that K=+/W (i.e., W sums to K).

A V-partition of K is a partition W
subject to the-restriction that ^/W<V, i.e.
W is elementwise strictly less than the
vecto~ of non-negative integers Vo

For example, let V÷l 2 3 4. Then all
V-partitions of 3 are given by the rows of
the following matrix:

0 1 2 0
0111
0 1 0 2
0 0 2 1
0 0 1 2
0 0 0 3

Algorithm

The program PART computes all V-parti-
tions of K:

[i]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[ii]
[12]
[13]
[1 4]
[1 5]
[16]
[17]
/18]
[1 9]
[2 0]

V

V Z÷K PART V;B;R;I;T
m THE RESULT Z IS A MATRIX WHOSE ROWS

CONSIST OF ALL INTEGER VECTORS W
m WITH K:+/W AND (O~W)^W<V

THE VECTORS ARE PRODUCED IN REVERSE
m LEXICOGRAPHICAL ORDER BY A

NON-RECURSIVE ALGORITHM.
Z+(O,pV)pO
+(O~V)lO
T÷(pV)pI÷O
LO: B÷K-+/I÷T
R÷B BREAK I~V
÷(B:+/R)/Li
L2: I÷((T>O)AI>tpT) RIOTA i
÷ (I : 0) / 0
T[I]+T[I]-i
+LO
Li: T÷(IfT),R
Z÷Z,[I] T
I÷pV
+L2

V Z÷K BREAK V;R;T
[1]
[2]
[3] "
[4]
[5]
[6]
[7]
[8]

V

THE RESULT Z IS A VECTOR SUCH THAT
(pV) : pZ AND K : +/Z (IF
POSSIBLE) AND (O~Z)^Z<V AND THIS
IS THE LAST SUCH Z (IN LEXICO-
GRAPHICAL ORDER).

T÷(K~+\V-1)tl
R÷(T-1)÷V-1
Z÷(pV)~R,K-+/R

V Z÷V RIOTA K
[I] ~ GIVES INDEX OF FIRST OCCURRENCE OF
[2] m K IN THE VECTOR V, SCANNING FROM
[3] m THE RIGHT.
[4) ~ IF ~KeV THEN THE RESULT IS O.
[5] Z+i+(pV)-(~V) IK

V

APL Quote Quad 12 3 15 March 1982

http://crossmark.crossref.org/dialog/?doi=10.1145%2F586692.586698&domain=pdf&date_stamp=1982-03-01

Method Applications

Clearly if V contains any O-elements,
then we cannot find any partition
satisfying the given conditions. This
check is performed in Line 6.

The partitions are produced from largest
to smallest (in the sense of lexicographic
order). W, the largest V-partition of K,
is easily computed. The technique is to
fill in the positions of W successively
from left to right with the largest
possible element for each position, until
the sum equals or exceeds K; then the last
position is decremented to get a sum that
exactly equals K. This is done by the
sub function BREAK.

Now, given W, the problem is to determine
the next smallest partition Y. Such a
partition would have an I with (i-<I)AI<N;
and Y[I]<W[I] but Y[K]=W[K] for all K>I.
We are therefore looking for an element of
W to decrement. This search is performed
in Line 11.

Once a suitable I has been found, we
decrement W[I] by I in Line 13. We then
replace W[I,(I+i),...,N] by the largest
possible subvector that will allow W to
retain the K-sum property. If no such
subvector exists, we decrement I by I and
continue. If I = 0, there are no smaller
vectors and we are done.

Worst-Case Analysis

Let N=pV, the number of elements in V.
Then the time required to compute an
individual partition is, in the worst case,
proportional to N*2. To see this, note
that I is specified to be pV in Line 17 and
is decreased by at least one in Line 11.
Hence the loop in Lines 8-14 is performed
at most N times. Computation time within
the loop is easily seen to be proportional
to N, and the result follows.

Actually, this algorithm usually performs
much better than this simple example would
indicate. Results of some timings (in mil-
liseconds) on an IBM 4341 were as follows:

F÷ w

N

[N÷2) PART Np2'
N-I) PART iN'

TIME E)÷i+p~E (TIME F)÷i÷o~F

i 20 20
3 17 18
5 17 15
7 17 16
9 19 --

ii 23 --
13 38 --

A. Computation of Combinations

The expression K PART Np2 calls the
partition function with N repetitions of 2.
Hence for (O~K)^K~N this expression
computes all logical vectors of length N
that sum to K; there are KiN such. For
example, the function COMB returns a matrix
of all possible E-choices from 1,2,..°~N:

[I]
V Z÷K COMB N

Z+((K:N),K)p(,K PART Np2)/(N×K~N)p~N
V

1 2
i 3
1 4
2 3
2 4
3 4

AB
AC
AD
BC
BD
CD

2 COMB 4

'ABCD'[2 COMB 4]

B. Tabulation of Permutations by Number of
Inversions

We define a permutation V to be a vector
of length N that is a rearrangement of ~N.
An inversion occurs in V when I<J but
V[I]>V[J].

For each permutation V we may consider
the associated vector IFP V formed by
letting the l-th element be the number of
indices J with J>I and V[I]>V[J], i.e. the
number of inversions occurring at I.

Ill
[2]

V Z~IFP P
INVERSION FROM PERMUTATION

Z÷~/(Po.>p)xTIpP)~.<IpP
V

Note that :

^/(IFP V)<¢~pV (I)

that is, there can be no more than N-i in-
versions occurring at V[i], N-2 inversions
occurring at V[2], etc. The following

theorem relates permutations to (¢~N)-
partitions:

Theorem. There exists a I-to-I correspond-
ence between permutations of length N with
K inversions and (@~N)-partitions of K.

Proof. Let P be a permutation of length N
~--K inversions. Then K = +/IFP P and by

APL Quote Quad 12 3 16 March 1982

(I) we have ^/(IFP P)<@ipP. Thus IFP P is
a (¢tN)-partition of K. Now we must show
that there is a permutation with an
inversion pattern corresponding to any
(4PiN)-partition R of K.

If R[1] = J, then clearly the permutation
P corresponding to R must have P[I] = J+l,
as any other choice for P[i] would lead to
an incorrect number of inversions in the
first position. Now we discard J+l from
the set S = {1,2,...,N} to get a new set
S' Then it is easy to see that P[2] must
be the (R[2]+l)-st smallest element of S'.
We can continue in this fashion to define
each element of P = PFI R.

V P÷PFI Z;S;T
[1] ~ PERMUTATION FROM INVERSION
[2] P÷T0 - - - -

[3] S+tpZ
[4] Li:÷(O=pS)/O
[5] T÷I+Z[1]
[6] P÷P,S[T]
[7] S+(T~ipS)/S
[8] Z+I~Z
[9] +LI

V

The permutation we get by this process is
uniquely defined, and no other permutation
Q can have ^/R=IFP Q. QED

To tabulate permutations by inversions,
we first compute the (~btN)-partitions of K
using PART and then transform them to
permutations using the transformation PFI.

V Z÷K PWKI N;J;T
[i] ~ PERMUTATIONS OF LENGTH N
[2] ~ WITH K INVERSIONS
[3] T÷K ~ART~bTN--
[4] Z÷(O,N)pJ÷O
[5] LO:+(J->I+pT)/O
[6] Z÷Z,[i] PFI T[J÷J+i;]
[7] ÷L0

V

2 PWKI 5
31245
23145
21435
213 54
14235
13425
13254
12534
12453

J.O. Shallit
Department of Mathematics
University of California
Berkeley, California
USA 94720

APL Quote Quad 12 3 17 March 1982

