Algorithms

CORRECTION TO ALGORITHM 150

Inverse Fourier Transformation
Glenn Schneider

1. The inverse Fourier-transform function INVFT (APL Quote Quad $114, \mathrm{p} .24$) has an error in line 5. It is printed as:
```
X+201& 2 1 0,0X\times1+11个\rhoR
```

but should be:

$$
X \leftarrow 201 \& 21 \circ .0 X \circ \cdot \times 1+11 \uparrow \rho R
$$

2. In the Comment for this algorithm, a pi seems to have been left out. The comment reads "... was defined on an interval other than $0 \leq X \leq 2$, ..." but should read "... was defined on an interval other than $0 \leq X \leq 02$, ...".

Glenn Schneider
Department of Astronomy
211 Space-Science Research Building
University of Florida
Gainesville, Florida
USA 32611
\square

ALGORITHM 152
V-Partitions
and Permutations by Inversions

> J.O. Shallit

Abstract

We present an algorithm for generating, subject to certain restrictions, additive partitions of a non-negative integer. We obtain simple time estimates for this algorithm. The computation of combination vectors is given as an application. Finally, it is shown that a simple transformation permits as a special case the computation of permutations on N letters with K inversions.

Introduction

A partition of a non-negative integer K is a vector of non-negative integers W such that $K=+/ W$ (i.e., W sums to K).

A V-partition of K is a partition W subject to the restriction that $\wedge / W<V$, i.e. W is elementwise strictly less than the vector of non-negative integers V.

For example, let $V<1234$. Then all V-partitions of 3 are given by the rows of the following matrix:

0	1	2	0
0	1	1	1
0	1	0	2
0	0	2	1
0	0	1	2
0	0	0	3

Algorithm

The program $P A R T$ computes all V-partitions of K :

```
\nabla Z&K PART V:B;R;I;T
```

 - THE RESULT \(Z\) IS A MATRIX WHOSE ROWS
 [2] A CONSIST OF ALL INTEGER VECTORS W
[3] WITH $K=+/ W$ AND $(0 \leq W) \wedge W<V$.
[4] i THE VECTORS ARE PRODUCED IN REVERSE
[5] A LEXICOGRAPHICAL ORDER BYA
[6] A NON-RECURSIVE ALGORITHM.
[7] $Z \leftarrow(0, \rho V) \rho 0$
$[8] \rightarrow(0 \in V) / 0$
[9] $\quad T+(\rho V) \rho I+0$
[10] $L 0: B \leftarrow K-+/ I \uparrow T$
[11] $R+B$ BREAK $I \downarrow V$
[12] $\rightarrow(B=+/ R) / L 1$
[13] $L 2: I \leftarrow((T>0) \wedge I>1 \rho T)$ RIOTA 1
[14] $\rightarrow(I=0) / 0$
[15] $T[I]+T[I]-1$
[16] $\rightarrow L 0$
[17] L1: $T \leftarrow(I \uparrow T), R$
[18] $Z \leftarrow Z,[1] T$
[19] $I \leftarrow \rho V$
[20] $\rightarrow L 2$
∇
∇ 2↔K BREAK V; R; T
[1] T THE RESULT Z IS A VECTOR SUCH THAT
[2] $\quad(\rho V)=\rho Z A N D K=+/ Z(I F$
[3] POSSIBLE) AND $(0 \leq Z) \wedge Z<V$ AND THIS
[4] ค IS THE LAST SUCH Z (IN LEXICO-
[5] ค GRAPHICAL ORDER).
[6] $T \leftarrow(K \leq+\backslash V-1): 1$
[7] $R+(T-1)+V-1$
[8]
∇
$\nabla \mathrm{Z}+\mathrm{V}$ RIOTA K
[1] G GIVES INDEX OF FIRST OCCURRENCE OF
[2] A K IN THE VECTOR V, SCANNING FROM
[3] ค THE RIGHT.
[4) A IF ~KGV THEN THE RESULT IS 0 .
[5] $2+1+(\rho V)-(\phi V) 1 K$
∇

Clearly if V contains any O-elements, then we cannot find any partition satisfying the given conditions. This check is performed in Line 6 .

The partitions are produced from largest to smallest (in the sense of lexicographic order). W, the largest V-partition of K, is easily computed. The technique is to fill in the positions of W successively from left to right with the largest possible element for each position, until the sum equals or exceeds K; then the last position is decremented to get a sum that exactly equals K. This is done by the subfunction $B R E A K$.

Now, given W, the problem is to determine the next smallest partition Y. Such a partition would have an I with ($1 \leq I$) $\wedge \leq N$; and $Y[I]<W[I]$ but $Y[K]=W[K]$ for all $K>I$. We are therefore looking for an element of W to decrement. This search is performed in Line 11.

Once a suitable I has been found, we decrement $W[I]$ by 1 in Line 13. We then replace $W[I,(I+1), \ldots, N]$ by the largest possible subvector that will allow W to retain the K-sum property. If no such subvector exists, we decrement I by 1 and continue. If $I=0$, there are no smaller vectors and we are done.

Worst-Case Analysis

Let $N=\rho V$, the number of elements in V. Then the time required to compute an individual partition is, in the worst case, proportional to $N * 2$. To see this, note that I is specified to be ρV in Line 17 and is decreased by at least one in Line 11. Hence the loop in Lines $8-14$ is performed at most N times. Computation time within the loop is easily seen to be proportional to N, and the result follows.

Actually, this algorithm usually performs much better than this simple example would indicate. Results of some timings (in milliseconds) on an IBM 4341 were as follows:

```
E\leftarrow'(LN:2) PART N\rho2'
F\leftarrow'(N-1) PART \N'
```

N	$(T T M E E) \div 1 \uparrow \rho 甲 E$	$(T I M E F) \div 1 \uparrow \rho \perp F$
1	20	20
3	17	18
5	17	15
7	17	16
9	19	-
11	23	--
13	38	--

A. Computation of Combinations

The expression X PART No2 calls the partition function with N repetitions of 2 . Hence for ($0 \leq K$) $\wedge K \leq N$ this expression computes all logical vectors of length N that sum to K; there are $K: N$ such. For example, the function $C O M B$ returns a matrix of all possible K-choices from $1,2, \ldots, N$:
$\nabla Z+K \operatorname{COMB} N$
[1]

$$
Z \leftarrow((K!N), K) \rho(, K \text { PART } N \rho 2) /(N \times K!N) \rho: N
$$

∇
2 COMB 4
2
13
4
3
4
34

$$
{ }^{\prime} A B C D D^{\prime}\left[\begin{array}{lll}
2 & C O M B & 4
\end{array}\right]
$$

$A B$
$A C$
$A D$
$B C$
$B D$
$C D$
B. Tabulation of Permutations by Number of Inversions

We define a permutation V to be a vector of length N that is a rearrangement of $1 N$. An inversion occurs in V when $I<J$ but $V[I]>V[J]$.

For each permutation V we may consider the associated vector $I F P V$ formed by letting the I-th element be the number of indices J with $J>I$ and $V[I]>V[J]$, i.e. the number of inversions occurring at I.

```
    \nabla Z LFP P
[1] INVERSION FROM PERMUTATION
[2]
    Z\leftarrowF/(P\circ.>P)\times(1\rhoP)百.< 1\rhoP
    \nabla
```

Note that:

$$
\begin{equation*}
\wedge /(I P P \quad V)<\phi i \rho V \tag{1}
\end{equation*}
$$

that is, there can be no more than $N-1$ inversions occurring at $V[1], N-2$ inversions occurring at V[2], etc. The following theorem relates permutations to (ϕ, N)partitions:

Theorem. There exists a 1-to-1 correspondence between permutations of length N with K inversions and ($\phi_{1} N$)-partitions of K.

Proof. Let P be a permutation of length N with K inversions. Then $K=+/ I F P P$ and by
(1) we have $\wedge /(I F P P)<\phi i \rho P$. Thus TFP P is a (ϕ, N)-partition of K. Now we must show that there is a permutation with an inversion pattern corresponding to any ($\phi 1 N$) -partition R of K.

If $R[1]=J$, then clearly the permutation P corresponding to R must have $P[1]=J+1$, as any other choice for $P[1]$ would lead to an incorrect number of inversions in the first position. Now we discard J+1 from the set $S=\{1,2, \ldots, N\}$ to get a new set S'. Then it is easy to see that $P[2]$ must be the ($R[2]+1$)-st smallest element of S^{\prime}. We can continue in this fashion to define each element of $P=P F I R$.
$\nabla P \leftarrow P F I \quad Z ; S ; T$
[1] PERMUTATION FROM INVERSION
[2] $P \leftarrow \overline{1} 0$
[3] $S+1 \rho Z$
[4] $\quad L 1: \rightarrow(0=\rho S) / 0$
[5] $T \leftarrow 1+Z[1]$
[6] $P \leftrightarrow P, S[T]$
[7] $S \leftarrow(T \neq \imath \rho S) / S$
[8] $2+1 \downarrow 2$
[9] $\rightarrow L 1$
∇
The permutation we get by this process is uniquely defined, and no other permutation Q can have $\wedge / R=I F P Q$. QED

To tabulate permutations by inversions, we first compute the ($\phi: N$)-partitions of K using $P A R T$ and then transform them to permutations using the transformation PFI.
∇ Z $\leftarrow K$ PWKI $N ; J ; T$
[1] PERMUTATIONS OF LENGTH N
[2] $\overbrace{}^{-}$WITH K INVERSIONS
[3] $T \leftarrow K$ PARTфIN
[4] $Z \leftarrow(0, N) \rho J+0$
[5] $L 0: \rightarrow(J \geq 1+\rho T) / 0$
[6] $Z \leftarrow Z,[1]$ PFI $T[J+J+1$;]
[7] $\rightarrow L 0$
∇

2 PWKI 5

3	1	2	4

$\begin{array}{lllll}2 & 3 & 1 & 4 & 5\end{array}$
21435
$\begin{array}{lllll}2 & 1 & 3 & 5\end{array}$
14235
$\begin{array}{lllll}1 & 3 & 4 & 2 & 5\end{array}$
13254
12534
12453
J.O. Shallit

Department of Mathematics
University of California
Berkeley, California
USA 94720

