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CORRECTION TO ALGORITHM 150 

Inverse Fourier Transformation 

Glenn Schneider 

I. The inverse Fourier-transform function 
INVFT (APL Quote Quad 11 4, p. 24) has an 
error in Line 5. It is printed as: 

X÷ 2 0 1 ~ 2 1 o . O X × l ~ , t l f p R  

b u t  s h o u l d  b e :  

X÷ 2 0 1  ~ 2 1 o . o X o . x l ~ ' l l ÷ p R  

2. In the Comment for this algorithm, a pi 
seems to have been left out. The comment 
reads "... was defined on an interval other 
than O-<X<-2, ..." but should read "... was 
defined on an interval other than O_<X_<O2, 
,.,II. 
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ALGORITHM 152 

V-Partitions 
and Permutations by Inversions 

J.O. Shallit 

Abstract 

We present an algorithm for generating, 
subject to certain restrictions, additive 
partitions of a non-negative integer. We 
obtain simple time estimates for this 
algorithm. The computation of combina- 
tion vectors is given as an application. 
Finally, it is shown that a simple 
transformation permits as a special case 
the computation of permutations on N 
letters with K inversions. 

Introduction 

A partition of a non-negative integer K 
is a vec o f f  non-negative integers W such 
that K=+/W (i.e., W sums to K). 

A V-partition of K is a partition W 
subject to the-restriction that ^/W<V, i.e. 
W is elementwise strictly less than the 
vecto~ of non-negative integers Vo 

For example, let V÷l 2 3 4. Then all 
V-partitions of 3 are given by the rows of 
the following matrix: 

0 1 2 0  
0111 
0 1 0 2  
0 0 2 1  
0 0 1 2  
0 0 0 3  

Algorithm 

The program PART computes all V-parti- 
tions of K: 

[i] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
[9] 
[10] 
[ii] 
[12] 
[13] 
[ 1 4 ]  
[ 1 5 ]  
[16] 
[17] 
/18] 
[ 1 9 ]  
[ 2 0 ]  

V 

V Z÷K PART V;B;R;I;T 
m THE RESULT Z IS A MATRIX WHOSE ROWS 

CONSIST OF ALL INTEGER VECTORS W 
m WITH K:+/W AND (O~W)^W<V 

THE VECTORS ARE PRODUCED IN REVERSE 
m LEXICOGRAPHICAL ORDER BY A 

NON-RECURSIVE ALGORITHM. 
Z+(O,pV)pO 
+(O~V)lO 
T÷(pV)pI÷O 
LO: B÷K-+/I÷T 
R÷B BREAK I~V 
÷(B:+/R)/Li 
L2: I÷((T>O)AI>tpT) RIOTA i 
÷ ( I : 0 ) / 0  
T[I]+T[I]-i 
+LO 
Li: T÷(IfT),R 
Z÷Z,[I] T 
I÷pV 
+L2 

V Z÷K BREAK V;R;T 
[ 1 ]  
[ 2 ]  
[ 3 ]  " 
[ 4 ]  
[ 5 ]  
[ 6 ]  
[ 7 ]  
[ 8 ]  

V 

THE RESULT Z IS A VECTOR SUCH THAT 
(pV) : pZ AND K : +/Z (IF 
POSSIBLE) AND (O~Z)^Z<V AND THIS 
IS THE LAST SUCH Z (IN LEXICO- 
GRAPHICAL ORDER). 

T÷(K~+\V-1)tl 
R÷(T-1)÷V-1 
Z÷(pV)~R,K-+/R 

V Z÷V RIOTA K 
[I] ~ GIVES INDEX OF FIRST OCCURRENCE OF 
[2] m K IN THE VECTOR V, SCANNING FROM 
[3] m THE RIGHT. 
[4) ~ IF ~KeV THEN THE RESULT IS O. 
[5] Z+i+(pV)-(~V) IK 

V 
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Method Applications 

Clearly if V contains any O-elements, 
then we cannot find any partition 
satisfying the given conditions. This 
check is performed in Line 6. 

The partitions are produced from largest 
to smallest (in the sense of lexicographic 
order). W, the largest V-partition of K, 
is easily computed. The technique is to 
fill in the positions of W successively 
from left to right with the largest 
possible element for each position, until 
the sum equals or exceeds K; then the last 
position is decremented to get a sum that 
exactly equals K. This is done by the 
sub function BREAK. 

Now, given W, the problem is to determine 
the next smallest partition Y. Such a 
partition would have an I with (i-<I)AI<N; 
and Y[I]<W[I] but Y[K]=W[K] for all K>I. 
We are therefore looking for an element of 
W to decrement. This search is performed 
in Line 11. 

Once a suitable I has been found, we 
decrement W[I] by I in Line 13. We then 
replace W[I,(I+i),...,N] by the largest 
possible subvector that will allow W to 
retain the K-sum property. If no such 
subvector exists, we decrement I by I and 
continue. If I = 0, there are no smaller 
vectors and we are done. 

Worst-Case Analysis 

Let N=pV, the number of elements in V. 
Then the time required to compute an 
individual partition is, in the worst case, 
proportional to N*2. To see this, note 
that I is specified to be pV in Line 17 and 
is decreased by at least one in Line 11. 
Hence the loop in Lines 8-14 is performed 
at most N times. Computation time within 
the loop is easily seen to be proportional 
to N, and the result follows. 

Actually, this algorithm usually performs 
much better than this simple example would 
indicate. Results of some timings (in mil- 
liseconds) on an IBM 4341 were as follows: 

F÷ w 

N 

[N÷2) PART Np2' 
N-I) PART iN' 

TIME E)÷i+p~E (TIME F)÷i÷o~F 

i 20 20 
3 17 18 
5 17 15 
7 17 16 
9 19 -- 

ii 23 -- 
13 38 -- 

A. Computation of Combinations 

The expression K PART Np2 calls the 
partition function with N repetitions of 2. 
Hence for (O~K)^K~N this expression 
computes all logical vectors of length N 
that sum to K; there are KiN such. For 
example, the function COMB returns a matrix 
of all possible E-choices from 1,2,..°~N: 

[ I] 
V Z÷K COMB N 

Z+((K:N),K)p(,K PART Np2)/(N×K~N)p~N 
V 

1 2 
i 3 
1 4 
2 3 
2 4 
3 4 

AB 
AC 
AD 
BC 
BD 
CD 

2 COMB 4 

'ABCD'[2 COMB 4] 

B. Tabulation of Permutations by Number of 
Inversions 

We define a permutation V to be a vector 
of length N that is a rearrangement of ~N. 
An inversion occurs in V when I<J but 
V[I]>V[J]. 

For each permutation V we may consider 
the associated vector IFP V formed by 
letting the l-th element be the number of 
indices J with J>I and V[I]>V[J], i.e. the 
number of inversions occurring at I. 

Ill 
[2] 

V Z~IFP P 
INVERSION FROM PERMUTATION 

Z÷~/(Po.>p)xTIpP)~.<IpP 
V 

Note that : 

^/(IFP V)<¢~pV (I) 

that is, there can be no more than N-i in- 
versions occurring at V[i], N-2 inversions 
occurring at V[2], etc. The following 

theorem relates permutations to (¢~N)- 
partitions: 

Theorem. There exists a I-to-I correspond- 
ence between permutations of length N with 
K inversions and (@~N)-partitions of K. 

Proof. Let P be a permutation of length N 
~--K inversions. Then K = +/IFP P and by 
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(I) we have ^/(IFP P)<@ipP. Thus IFP P is 
a (¢tN)-partition of K. Now we must show 
that there is a permutation with an 
inversion pattern corresponding to any 
(4PiN)-partition R of K. 

If R[1] = J, then clearly the permutation 
P corresponding to R must have P[I] = J+l, 
as any other choice for P[i] would lead to 
an incorrect number of inversions in the 
first position. Now we discard J+l from 
the set S = {1,2,...,N} to get a new set 
S' Then it is easy to see that P[2] must 
be the (R[2]+l)-st smallest element of S'. 
We can continue in this fashion to define 
each element of P = PFI R. 

V P÷PFI Z;S;T 
[1] ~ PERMUTATION FROM INVERSION 
[ 2 ] P÷T0 - -  - -  

[ 3 ]  S+tpZ 
[4] Li:÷(O=pS)/O 
[5] T÷I+Z[1] 
[6] P÷P,S[T] 
[7] S+(T~ipS)/S 
[8] Z+I~Z 
[ 9 ] +LI 

V 

The permutation we get by this process is 
uniquely defined, and no other permutation 
Q can have ^/R=IFP Q. QED 

To tabulate permutations by inversions, 
we first compute the (~btN)-partitions of K 
using PART and then transform them to 
permutations using the transformation PFI. 

V Z÷K PWKI N;J;T 
[i] ~ PERMUTATIONS OF LENGTH N 
[2 ] ~ WITH K INVERSIONS 
[ 3 ] T÷K ~ART~bTN-- 
[4] Z÷(O,N)pJ÷O 
[5] LO:+(J->I+pT)/O 
[6] Z÷Z,[i] PFI T[J÷J+i;] 
[ 7] ÷L0 

V 

2 PWKI 5 
31245 
23145 
21435 
213 54 
14235 
13425 
13254 
12534 
12453 
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