
ON RELATIONAL ALGEBRA WITH MARKED NULLS

Preliminary Version

Witold Lipski, Jr."

Laboratoire de Recherche en Informatique
E.R.A. 452 du C.N.R.S. "Al Khowarizmi"

Universit6 de Paris-Sud, Centre d’Orsay
Bit. 490, 91405 Orsay CBdex, France

Abstract. We formulate some natural conditions
which should be satisfied in an extension of the
relational algebra from the usual relations to
tables with null values, and we explain the motiv-
ation behind these conditions. Roughly speaking,
our conditions say that the extended algebra makes
it possible to correctly compute the “true tuples”
in the result of applying a relational expression
(query) to tables with nulls (database state), and
that the computation can be carried out recursively,
following the structure of the expression. We prove
that these conditions are exactly equivalent to
other conditions proposed earlier by the author and
T. Imielifiski. We give a simple proof of the
correctness of the “naive” extension of the relation-
al algebra to tables with marked nulls, where the
nulls are treated as if they were regular values,
and which supports the operations of projection,
positive selection, union, join and renaming of
attributes. We also show that the result of the
naive evaluation of such an expression (query) is
equal to the response to the query as defined --
in a proof-theoretic framework -- by Reiter.

1. INTRODUCTION

Handling incomplete information in database
systems is undoubtedly one of the important issues
in database theory and practice, and there exists
an extensive literature on this subject (see e.g.
the extensive bibliography in [Lipl). In the context
of relational databases the key issue is to extend
the usual relational algebra from relations to
tables with null values (indicating unknown values),
in a “semantically correct” way.

*On leave from the Institute of Computer Science,
Polish Academy of Sciences, P. 0. Box 22,
00-901 Warsaw PKiN.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
comtnercial adiantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. TO copy
otherwise, or to republish, requires a fee and/or specific permission.

@ 1984 ACM 0-89791-128-S/84/004/0201 $00.75

A correctness criterion was proposed in [ILl,IL21,
where it was embodied in the definition of a
so-called representation system. In this paper we
give different natural correctness conditions, and
we explain the motivation behind th&e conditions.
Roughly speaking, our conditions say that the
extended algebra makes it possible to correctly
compute the “true tuples” in the result of applying
a relational expression (query) to tables with nulls
(database state), and that the computation can be
carried out recursively, following the structure of
the expression. We prove that these conditions are
in fact exactly equivalent to those given in [ILl,
IL2]. We give a simple proof of the correctness of
the “naive” extension of the relational algebra to
tables with marked nulls, where the nulls are
treated as if they were regular values, and which
supports the operators of projection, positive
selection, union, natural join, and renaming of
attributes (for a more thorough discussion of this
extension see [ILl,ILP]). We also show that the
result of the naive evaluation of such an expression
(query) is equal to the response to the query as
defined -- in a proof-theoretic framework -- by
Reiter [Rei] .

Basic facts about relational databases can be
found in Lull’] or [Mai]. Here we use the notation
of [IL2], which we briefly recall below. Throught
the paper % stands for a fixed set of attributes.
Associated with every A(?U is an attribute domain
D(A), containing at least two elements. Elements of
D = uAtUD(A) are called constants. A tuple of

type X, where X is a finite subset of U, is any
mapping t which associates a value t(A)E D(A) with
any At X. A relation of type X is any finite set.of
tuples of type X, and a multirelation of type
<Xl,..., X,> is any sequence r = (rl ,. . . ,rn) where ri

is a relation of type Xi, 1,1 i< n. For two multi-

relations r = <rl,...,rn7, 6 = (6 1'
. . ..s.) of the

same type, rc_s means that riss i for Isign. The

set of all multirelations of type X is denoted by
R(X). The type of multirelation r, tuple t, etc. is
denoted by cc(r), m(t), etc.

We consider the following relational operators:
projection, selection (where the selection condition
is any Boolean combination of conditions of the form
A = a, A = B, with aeD(D(A) = D(B)), union,
(natural) join, renaming of attributes, and difference
(see [ILZI). A selection operator is called positive

201

http://crossmark.crossref.org/dialog/?doi=10.1145%2F588011.588040&domain=pdf&date_stamp=1984-04-02

if its selection condition does not contain negation.
For any subset R of the relational operators, by
a relational R-expression we mean any well formed
expression built up from relation names and symbols
for relational operators -AnAny relation name

A" ~~~l%~s1Z~~~~;1 ZZxpZ~?o?i~ any sequence
i = (f,,...,

R

fn) where the fi are relational

-expressions. We assume that associated with any
f is a sequence (Rl,..., R,> containing all relation

names occurring in f, and we define d(f) =<=(Rl),

. . . . cc(R,)>. If r = (rl,...,z;n) is a multirelation

of type cc(f) then f(r) denotes the multirelation
S obtained by substituting ri for Ri, lQi$m, and

performing all relational operations in f. We denote
/3(f) = c*(s). If X is a set of multirelations of
type a(f) then f(s) denotes If(r): rSr'3 . If
/3(g) = oc(f) then fg denotes the composition of
f and g, i.e. the result of substituting gi for the
i-th relational symbol in f.

2. REPRESENTATION SYSTEMS: TWO EQUIVALENT DEFINITIONS

Lety be a set of abstract objects called
multitables, and assume that associated with every
TE3' is a type oC(T) = (X,,...,X,> and a nonempty

set Rep(T) of multirelations of type M(T). We
think of multitable T as an "incompletely specified"
multirelation, where Rep(T) gives the set of
possibilities for this unknown multirelation. In
other words, if T is a database state, then all we
know about the real world is that it is exactly
described by one of the multirelations in Rep(T).

Although the internal structure of a multitable
will be immaterial in this section, one may think
of a multitable as a 'generalized multirelation"
where some tuples may contain null values.

Suppose a user submits a query (R-expression) f
and that the database state is T. Since the true
state of the real world is represented by some
r*CRep(T), all we know about the "true response"
f(r*) is that it is in the set f(Rep(T)). In general
it is impossible to represent this set of
possibilities by any multitable U so as to satisfy
f(Rep(T)) = Rep(U). However, in many cases it is
enough to " approximate" f(Rep(T)) by Rep(U). The
notion of a "sufficiently good approximation" is
formalized by the following definition, introduced
in [ILl,IL2]:

Definition l.<';T, Rep,R> is a representation
system if for any R-expression f and for any T
with H(f) = d(T) there exists IJET such that

(1)

where for any sets
the same type X,

of multirelations of

3 $ 3 @ for any R-expression g with

cx(g) = x, n Pm = &Y)
For any attribute AER, let V(A) be an

infinite set of variables, and let V = U AtUV(A).
The elements in V will also be called (marked) nulls.
We shall assume that VnD = 9,

--
that V(A) = V(B) (the intersections are understood coordinatewise).

The intuition behind (1) is the following: U if D(A) = D(B), and that V(A)nV(B) = 0 if D(A)
sufficiently well represents f(Rep(T)), since the # D(B). A V-tuple of type XCa is any mapping
fact that the two sets on both sides of (1) may be associating a value t(A)ED(A)uV(A) with every ACX,
different cannot be found out by a user who has a
query language based on R-expressions at his/her

a V-table of type X is any finite set of V-tuples of
type X, and a V-multitable of type (X,,...,X,) is

disposal and who is concerned only with the "true
tuples" in a response; see [ILl,IL2] for a more
detailed discussion.

We now give a different definition of a represent-
ation system.

Definition 2. (y, Rep, G) is a representation
system if there is a function which associates a
multitable, denoted by f(T), with any R-expression
f and any Tt$T with d(T) = a(f), in such a
way that

(2) n Rep(f(T)) = (I f(Rep(T))

and

(3) (gf)(T) = g(f(T))

for all R-expressions g with of(g) = p(f).
The motivation behind Definition 2 is the

following: Suppose we want to design a system which
correctly evaluates the set of "true tuples"

(4) n f(Rep(T)),

i.e. those tuples which are in the "true response"
f(r*>, no matter which element of Rep(T) turns out
to be the true state r* of the real world. Moreover,
assume that our system compute3 (4) by first
evaluating a multitable U = f(T) and then determining
the set of "true tuples" n Rep(U). Note that (2)
is exactly the statement that such a system is
correct. Notice however that if any multirelation is
(or can be identified with) a multitable then (2)
can trivially be satisfied by putting

f(T) = nf(Rep(T))

((3) is then, in general, not satisfied). What we
really would like to have is not just a system which
computes f(T) individually for any f and T, but a
true extension of the relational algebra from
relations to tables,
operator in s)

where for any relational
we have a rule how to perform this

operator over tables. Such a system provides a
uniform recursive method to compute f(T), and is
clearly characterized by condition (3).

The main result of this section is
Theorem 1. Definition 1 is equivalent to

Definition 2. n

3. REPRESENTATION SYSTEM BASED ON TABLES WITH
MARRED NULLS

In this section we give a simple proof of the fact
that the system based on tables with marked nulls
(V-tables) considered in [ILI,ILZ] is indeed a
representation system. The proof of this fact given
in IILl,ILa -relied on a rather complicated notion
of a so-called conditional table. Here we in
addition indicate a connection of the representation
system based on marked nulls with the approach of
Reiter [Rei'].

202

any sequence T = (T1'..., T,> of V-tables, where Ti

is of type Xi. A valuation is any mapping v: V + D

such that for all AC% and xEV, xEV(A) implies
v(x)ED(A). The set of all valuations is denoted by
Val. For any V-multitable T we define

rep(T) = {v(T): veVal]

Rep(T) = {rcR(oc(T)): for some vEVa1, v(T)srJ.

Here v(T) denotes the result of substituting, for
all xt$V, all occurrences of x in T by v(x)
(the meaning of the notation v(t) used later is
similar).

Given a multirelational expression f and a

multitable T, we can define fCWA(T) and foWA(T) --
the CWA (Closed World Assumption) and OWA (Open
World Assumption) responses, respectively, for query
f in database state T -- in the following way:

fcwA(T) = {t: (vv, v(t)E f(v(T))q

f'"*(T) = It: (\dv,r)(v(T)C_r ;;cS v(t)Ef(r))J.

(Here v and r range over all valuations, and
multirelations of type a(T), respectively. If f
is a multirelational expression then we should make
precise the notion of "tuple t belonging to a
multitable", in the obvious way).

In fact, these definitions should be treated as
different versions of the definition given -- in
terms of the predicate calculus -- by Reiter [Rei].
Reiter defines she response to query W(z), expressed
by a formula W(x) of the predicate calculus with free
variables xx n' as the set of all V-tuples

(called answI:s in [Rei]), such that for any model

t

M of his theory DB, MC W(t), i.e. that the inter-
pretation of t belongs to the interpretation of

W in M. In the case of f CWA , any model (up to
isomorphism) is given by v(T) for a valuation v,
the interpretation of t is v(t), and the inter-
pretation of W is computed algebraically as
f(v(T)) (according to "Codd Completeness Theorem").

The meaning of fOWA can be interpreted in a
similar way.

Clearly, f OwA(T)S fCWA(T), and if f is monotone,
fOWA I fCWA .

If we assume that no variable canoccur in two
different columns in T, or that the attribute
domains are infinite, then we can prove the
following lemma.

Lemma 1. For 3multirelational expression f

n rep(f CWA(T)) = f) f(rep(T))

(preservation of "true tuples", cf. (2)). cl
For any multirelational expression f and any

V-multitable T with at(T) = w(f), f(T) will
denote the result of evaluating f over T,
treating variables as if they were constants
(different from all constants in D) -- this will
be referred to as the "naive evaluation". For any T
and f, let Val*(T,f) denotqthe set of all valu-
ations v such that v(x) does not occur in either
T or in (selection conditions in) f, and v(x)
+ v(y) for all X,Y, x + Y.

Theorem 2. If the attribute domains are
sufficiently large (e.g. 'infinite; more exactly, if
V*(T,f) # 0) then the naive evaluation is complete,
i.e.

f'"*(T) 5; f(T).

203

Note 1. Here, similarly as in Lemma 1, f is any
multirelational expression (possibly involving-
difference).
Note 2. In general, the naive evaluation is not
sound, i.e. the inverse inclusion does not hold.

The main fact used in the proof is that
f(v(T)) = v(f(T)) for all vEV*(T,f). 0

In the rest of the paper we shall be concerned
with R-expressions with G consisting of
projection, positive selection, union, join, and
renaming: of attributes, denoted R= PS+UJR.

Theorem 3. The naive evaluation is sound for
PS%JR-expressions. i.e.

*CWA f(T) c f ('0
for any P&JR-expression f.

The main fact used in the proof is that
v(f(T))C_f(v(T)) for any PS+UJR-expression f. cl

Combining Theorem 2 with Theorem 3 we conclude

that for any PS+UJR-expression f, fCWA(T) is
given by the naive evaluation of f over T.
Finally, taking into account that the naive
evaluation clearly satisfies (3), and using
Theorem 1, we obtain

Theorem 4. [ILl,ILL] The set of V-multitables
with the funcion rep (or Rep) define a represent-
ation system supporting R= PS+UJR (under the
infinite attribute domains assumption). [I

It may be noted that Theorem 4 -- together with
the results of [IL33 -- can be used to prove the
correctness of the query evaluation method based
on representative instances in the context of the
universal relation model [MUV]: T plays then the
role of a representative instance.

REFERENCES

LkJJ T. Imieliiiski, W. Lipski, On representing
incomplete information in a relational database.
Proc. 7th Internat. Conf. on Very Large Data Bases, -- ----I_
Cannes, France, Sept. 9-11, 1981, pp. 388-397.

[IL21 T. Imielifiski, W. Lipski, Incomplete
information in relational databases. Institute of
Computer Science PAS Report 475, Warsaw, May 1982,
submitted for publication.

[IL31 T. Imielifiski, W. Lipski, Incomplete
information and dependencies in relational databases.
Proc. ACM SIGMOD Internat. Conf. on Management of --- --
Data, San Jose, CA, May 23-26, 1983, pp. 178-18K

[Lip] W. Lipski, Logical problems related to
incomplete information in databases. Presented at
Colloquium on Algebra, Combinatorics and Logic in
Computer SC&-r, Hungary, Septx2-16,1983.

[Mai] D, Maier, The Theory of Relational Databases.
Computer Science Press, Rockvxle, MD, 1983.

[MUV] D. Meier, J. D. Ullman, M. Y. Vardi, On the
foundations of the universal relation model.
Manuscript, 1983.

[Rei] R. Reiter, A sound and sometimes complete
query evaluation algorithm for relational databases
with null values. Techn. Rep. 83-11, Dept. of
Computer Science, The Univ. of British Columbia,
Vancouver, BC, Canada, June 1983.

[Ull] J. D. Ullman, Principles of Database Systems,
Second Edition. Computer Science %ess, Potomac, MD,
1982.

