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Abstract. We formulate some natural conditions 
which should be satisfied in an extension of the 
relational algebra from the usual relations to 
tables with null values, and we explain the motiv- 
ation behind these conditions. Roughly speaking, 
our conditions say that the extended algebra makes 
it possible to correctly compute the “true tuples” 
in the result of applying a relational expression 
(query) to tables with nulls (database state), and 
that the computation can be carried out recursively, 
following the structure of the expression. We prove 
that these conditions are exactly equivalent to 
other conditions proposed earlier by the author and 
T. Imielifiski. We give a simple proof of the 
correctness of the “naive” extension of the relation- 
al algebra to tables with marked nulls, where the 
nulls are treated as if they were regular values, 
and which supports the operations of projection, 
positive selection, union, join and renaming of 
attributes. We also show that the result of the 
naive evaluation of such an expression (query) is 
equal to the response to the query as defined -- 
in a proof-theoretic framework -- by Reiter. 

1. INTRODUCTION 

Handling incomplete information in database 
systems is undoubtedly one of the important issues 
in database theory and practice, and there exists 
an extensive literature on this subject (see e.g. 
the extensive bibliography in [Lipl). In the context 
of relational databases the key issue is to extend 
the usual relational algebra from relations to 
tables with null values (indicating unknown values), 
in a “semantically correct” way. 
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A correctness criterion was proposed in [ILl,IL21, 
where it was embodied in the definition of a 
so-called representation system. In this paper we 
give different natural correctness conditions, and 
we explain the motivation behind th&e conditions. 
Roughly speaking, our conditions say that the 
extended algebra makes it possible to correctly 
compute the “true tuples” in the result of applying 
a relational expression (query) to tables with nulls 
(database state), and that the computation can be 
carried out recursively, following the structure of 
the expression. We prove that these conditions are 
in fact exactly equivalent to those given in [ILl, 
IL2]. We give a simple proof of the correctness of 
the “naive” extension of the relational algebra to 
tables with marked nulls, where the nulls are 
treated as if they were regular values, and which 
supports the operators of projection, positive 
selection, union, natural join, and renaming of 
attributes (for a more thorough discussion of this 
extension see [ILl,ILP]). We also show that the 
result of the naive evaluation of such an expression 
(query) is equal to the response to the query as 
defined -- in a proof-theoretic framework -- by 
Reiter [Rei] . 

Basic facts about relational databases can be 
found in Lull’] or [Mai]. Here we use the notation 
of [IL2], which we briefly recall below. Throught 
the paper % stands for a fixed set of attributes. 
Associated with every A(?U is an attribute domain 
D(A), containing at least two elements. Elements of 
D = uAtUD(A) are called constants. A tuple of 

type X, where X is a finite subset of U, is any 
mapping t which associates a value t(A)E D(A) with 
any At X. A relation of type X is any finite set.of 
tuples of type X, and a multirelation of type 
<Xl,..., X,> is any sequence r = (rl ,. . . ,rn) where ri 

is a relation of type Xi, 1,1 i< n. For two multi- 

relations r = <rl,...,rn7, 6 = (6 1' 
. . ..s.) of the 

same type, rc_s means that riss i for Isign. The 

set of all multirelations of type X is denoted by 
R(X). The type of multirelation r, tuple t, etc. is 
denoted by cc(r), m(t), etc. 

We consider the following relational operators: 
projection, selection (where the selection condition 
is any Boolean combination of conditions of the form 
A = a, A = B, with aeD( D(A) = D(B)), union, 
(natural) join, renaming of attributes, and difference 
(see [ILZI). A selection operator is called positive 

201 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F588011.588040&domain=pdf&date_stamp=1984-04-02


if its selection condition does not contain negation. 
For any subset R of the relational operators, by 
a relational R-expression we mean any well formed 
expression built up from relation names and symbols 
for relational operators -AnAny relation name 

A" ~~~l%~s1Z~~~~;1 ZZxpZ~?o?i~ any sequence 
i = (f,,..., 

R 

fn) where the fi are relational 

-expressions. We assume that associated with any 
f is a sequence (Rl,..., R,> containing all relation 

names occurring in f, and we define d(f) =<=(Rl), 

. . . . cc(R,)>. If r = (rl,...,z;n) is a multirelation 

of type cc(f) then f(r) denotes the multirelation 
S obtained by substituting ri for Ri, lQi$m, and 

performing all relational operations in f. We denote 
/3(f) = c*(s). If X is a set of multirelations of 
type a(f) then f(s) denotes If(r): rSr'3 . If 
/3(g) = oc(f) then fg denotes the composition of 
f and g, i.e. the result of substituting gi for the 
i-th relational symbol in f. 

2. REPRESENTATION SYSTEMS: TWO EQUIVALENT DEFINITIONS 

Lety be a set of abstract objects called 
multitables, and assume that associated with every 
TE3' is a type oC(T) = (X,,...,X,> and a nonempty 

set Rep(T) of multirelations of type M(T). We 
think of multitable T as an "incompletely specified" 
multirelation, where Rep(T) gives the set of 
possibilities for this unknown multirelation. In 
other words, if T is a database state, then all we 
know about the real world is that it is exactly 
described by one of the multirelations in Rep(T). 

Although the internal structure of a multitable 
will be immaterial in this section, one may think 
of a multitable as a 'generalized multirelation" 
where some tuples may contain null values. 

Suppose a user submits a query (R-expression) f 
and that the database state is T. Since the true 
state of the real world is represented by some 
r*CRep(T), all we know about the "true response" 
f(r*) is that it is in the set f(Rep(T)). In general 
it is impossible to represent this set of 
possibilities by any multitable U so as to satisfy 
f(Rep(T)) = Rep(U). However, in many cases it is 
enough to " approximate" f(Rep(T)) by Rep(U). The 
notion of a "sufficiently good approximation" is 
formalized by the following definition, introduced 
in [ILl,IL2]: 

Definition l.<';T, Rep,R> is a representation 
system if for any R-expression f and for any T 
with H(f) = d(T) there exists IJET such that 

(1) 

where for any sets 
the same type X, 

of multirelations of 

3 $ 3 @ for any R-expression g with 

cx(g) = x, n Pm = &Y) 
For any attribute AER, let V(A) be an 

infinite set of variables, and let V = U AtUV(A). 
The elements in V will also be called (marked) nulls. 
We shall assume that VnD = 9, 

-- 
that V(A) = V(B) (the intersections are understood coordinatewise). 

The intuition behind (1) is the following: U if D(A) = D(B), and that V(A)nV(B) = 0 if D(A) 
sufficiently well represents f(Rep(T)), since the # D(B). A V-tuple of type XCa is any mapping 
fact that the two sets on both sides of (1) may be associating a value t(A)ED(A)uV(A) with every ACX, 
different cannot be found out by a user who has a 
query language based on R-expressions at his/her 

a V-table of type X is any finite set of V-tuples of 
type X, and a V-multitable of type (X,,...,X,) is 

disposal and who is concerned only with the "true 
tuples" in a response; see [ILl,IL2] for a more 
detailed discussion. 

We now give a different definition of a represent- 
ation system. 

Definition 2. (y, Rep, G) is a representation 
system if there is a function which associates a 
multitable, denoted by f(T), with any R-expression 
f and any Tt$T with d(T) = a(f), in such a 
way that 

(2) n Rep(f(T)) = (I f(Rep(T)) 

and 

(3) (gf)(T) = g(f(T)) 

for all R-expressions g with of(g) = p(f). 
The motivation behind Definition 2 is the 

following: Suppose we want to design a system which 
correctly evaluates the set of "true tuples" 

(4) n f(Rep(T)), 

i.e. those tuples which are in the "true response" 
f(r*>, no matter which element of Rep(T) turns out 
to be the true state r* of the real world. Moreover, 
assume that our system compute3 (4) by first 
evaluating a multitable U = f(T) and then determining 
the set of "true tuples" n Rep(U). Note that (2) 
is exactly the statement that such a system is 
correct. Notice however that if any multirelation is 
(or can be identified with) a multitable then (2) 
can trivially be satisfied by putting 

f(T) = nf(Rep(T)) 

((3) is then, in general, not satisfied). What we 
really would like to have is not just a system which 
computes f(T) individually for any f and T, but a 
true extension of the relational algebra from 
relations to tables, 
operator in s) 

where for any relational 
we have a rule how to perform this 

operator over tables. Such a system provides a 
uniform recursive method to compute f(T), and is 
clearly characterized by condition (3). 

The main result of this section is 
Theorem 1. Definition 1 is equivalent to 

Definition 2. n 

3. REPRESENTATION SYSTEM BASED ON TABLES WITH 
MARRED NULLS 

In this section we give a simple proof of the fact 
that the system based on tables with marked nulls 
(V-tables) considered in [ILI,ILZ] is indeed a 
representation system. The proof of this fact given 
in IILl,ILa -relied on a rather complicated notion 
of a so-called conditional table. Here we in 
addition indicate a connection of the representation 
system based on marked nulls with the approach of 
Reiter [Rei']. 
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any sequence T = (T1'..., T,> of V-tables, where Ti 

is of type Xi. A valuation is any mapping v: V + D 

such that for all AC% and xEV, xEV(A) implies 
v(x)ED(A). The set of all valuations is denoted by 
Val. For any V-multitable T we define 

rep(T) = {v(T): veVal] 

Rep(T) = {rcR(oc(T)): for some vEVa1, v(T)srJ. 

Here v(T) denotes the result of substituting, for 
all xt$V, all occurrences of x in T by v(x) 
(the meaning of the notation v(t) used later is 
similar). 

Given a multirelational expression f and a 

multitable T, we can define fCWA(T) and foWA(T) -- 
the CWA (Closed World Assumption) and OWA (Open 
World Assumption) responses, respectively, for query 
f in database state T -- in the following way: 

fcwA(T) = {t: (vv, v(t)E f(v(T))q 

f'"*(T) = It: (\dv,r)(v(T)C_r ;;cS v(t)Ef(r))J. 

(Here v and r range over all valuations, and 
multirelations of type a(T), respectively. If f 
is a multirelational expression then we should make 
precise the notion of "tuple t belonging to a 
multitable", in the obvious way). 

In fact, these definitions should be treated as 
different versions of the definition given -- in 
terms of the predicate calculus -- by Reiter [Rei]. 
Reiter defines she response to query W(z), expressed 
by a formula W(x) of the predicate calculus with free 
variables x . . ..x n' as the set of all V-tuples 

(called answI:s in [Rei]), such that for any model 

t 

M of his theory DB, MC W(t), i.e. that the inter- 
pretation of t belongs to the interpretation of 

W in M. In the case of f CWA , any model (up to 
isomorphism) is given by v(T) for a valuation v, 
the interpretation of t is v(t), and the inter- 
pretation of W is computed algebraically as 
f(v(T)) (according to "Codd Completeness Theorem"). 

The meaning of fOWA can be interpreted in a 
similar way. 

Clearly, f OwA(T)S fCWA(T), and if f is monotone, 
fOWA I fCWA . 

If we assume that no variable canoccur in two 
different columns in T, or that the attribute 
domains are infinite, then we can prove the 
following lemma. 

Lemma 1. For 3multirelational expression f 

n rep(f CWA(T)) = f) f(rep(T)) 

(preservation of "true tuples", cf. (2)). cl 
For any multirelational expression f and any 

V-multitable T with at(T) = w(f), f(T) will 
denote the result of evaluating f over T, 
treating variables as if they were constants 
(different from all constants in D) -- this will 
be referred to as the "naive evaluation". For any T 
and f, let Val*(T,f) denotqthe set of all valu- 
ations v such that v(x) does not occur in either 
T or in (selection conditions in) f, and v(x) 
+ v(y) for all X,Y, x + Y. 

Theorem 2. If the attribute domains are 
sufficiently large (e.g. 'infinite; more exactly, if 
V*(T,f) # 0) then the naive evaluation is complete, 
i.e. 

f'"*(T) 5; f(T). 
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Note 1. Here, similarly as in Lemma 1, f is any 
multirelational expression (possibly involving- 
difference). 
Note 2. In general, the naive evaluation is not 
sound, i.e. the inverse inclusion does not hold. 

The main fact used in the proof is that 
f(v(T)) = v(f(T)) for all vEV*(T,f). 0 

In the rest of the paper we shall be concerned 
with R-expressions with G consisting of 
projection, positive selection, union, join, and 
renaming: of attributes, denoted R= PS+UJR. 

Theorem 3. The naive evaluation is sound for 
PS%JR-expressions. i.e. 

*CWA f(T) c f ('0 
for any P&JR-expression f. 

The main fact used in the proof is that 
v(f(T))C_f(v(T)) for any PS+UJR-expression f. cl 

Combining Theorem 2 with Theorem 3 we conclude 

that for any PS+UJR-expression f, fCWA(T) is 
given by the naive evaluation of f over T. 
Finally, taking into account that the naive 
evaluation clearly satisfies (3), and using 
Theorem 1, we obtain 

Theorem 4. [ILl,ILL] The set of V-multitables 
with the funcion rep (or Rep) define a represent- 
ation system supporting R= PS+UJR (under the 
infinite attribute domains assumption). [I 

It may be noted that Theorem 4 -- together with 
the results of [IL33 -- can be used to prove the 
correctness of the query evaluation method based 
on representative instances in the context of the 
universal relation model [MUV]: T plays then the 
role of a representative instance. 
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