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Abstract

We studv the problem of translating updates ot database views
View updates are disambiguated by requuing that a specified view
complement (1¢ a second view which contamns all the mnformation
omitted from the given view) remains constant during the
translation We study some of the computational problems related
to the apphcation of this general methodology in the context of
relational databases We restrict our attention to projective views of
databases which consist of a single relatton and satsfy functional
dependencies We first characterize complementaly views and show
that finding a mimmum complement of a4 given view 1s
NP-complcte We then study in detail the problem of translating
the 1nsertion of a tuple nto a view and extend our results to the
cases of deletion and replacement of a tuple Finally we define and
study a new kind of dependencies the expliot functional

dependencies, which intuitively state that some part of the database

information can be computed from the rest.

1 Introduction

In database systems, the amount and structure of the stored
data 1s decided by the database admimstrator However, individual

users often want to deal with only part of the information 1n the
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database and morcover they mdy want to restructure 1t 1n a way
sultable to their needs For this reason, database systems often
provide the wiew facility A view 1s defined by giving a query on the
whole database At any point the contents of the view 1s just the
outcome of this query lhe user querics and updates the view as
though 1t were a database 1n itsclf, with no reference to the
underlying database The view idea spares the user from the
conceptual complextties of the whole database makes quertes casier
by "factoring out” a common subexpression, and can serve as a
protection mechanism by restricting access to only insensitive
information A view facility 1s an important part of many relational
database systems, eg PRTV [I], QBF [Zl], System R [As] and
INGRES [SWKH] (as well as of database systems designed along
the lines of the network data model, ke DBTG [CO], or the
hierarchical data model, ke IMS [D, Ij)

In relauonal database systems, a view 1s 1n gencral implemented
by naming and stonng its defimtion, which 15 just a query
defimtion 1n the query language of the system Queries on the view
are translated into database queries by composing them with the
view defimtion Thus, querying a view presents no serious
conceptual problems

What 15 much more complex 1s the subject of updating a view
A simple update operation, such as mserting a tuple 1n the view,
may create formidable problems The underlying database update
may be ambiguous, ill-defined, create inconsistencies 1n the
database, or have side-effects on the view This problem 15 related
to such fundamental issues as null values {Co4, Za2] and update

anomalies [Col, Co3, BBG] m relational databases Most exising
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sysiems do not allow updates of views (eg PRTV, QBE) or allow
them only n the trivial case in which the view consists of one of
the database relations This omission apparently reflects our poor
understanding of the subject

In one of the first works dealing with view updates, Dayal and
Bernstein [DB] stipulated a notion of correct translation of a view
update, and gave some straightforward conditions for the existence
of such translations From this and subsequent works, ¢ g [RS, Ca,
FSD], 1t became apparent that we need a method for assigning
semantics to view updates This method should be formal (resolving
the delicate ambiguities involved) and simple (so the users would
define the semantics themselves, perhaps with the aid of the
database system)

An excellent solution to this problem was suggested in the
work of Bancilhon and Spyratos {BS, Sp] They developed an
elegant theory (quite independent of the relational model) of
database mappings, 1e functions from database states to database
states A view v 18 such a mapping, and so 1s an update u on the
view How can we translate 47 The translation, T, must be such
that the updated database maps via v into the updated view As
may be suspected, there are typically many T)'s, so the problem
remams Bancithon and Spyratos resolve this ambiguity by the
notion of the complement of a view A complement of v 1s
another view V), such that the mapping s—(v(s), v(s)) (where s
denotes the database state) is one-to-one In other words, any
mformation lost by v can be recovered by v/ A view has many
complements (for example, the identity mapping 15 a complement
of all views) Choosing a complement that must remain constant
assigns unambiguous semantics to a view update The scenario 1s the

following A user defings a view Before updating the view, the user

must define (probably with the assistance of the system) another
view (a complement of the first), which must be held constant
during updating (this corresponds to the "rectangle rule” of [Ch]
and the "absence of side effects” of [DB]) Using this information,
the system translates (or rejects as untranslatable) the user’s updates

Translating under constant complement amounts to finding a
database state s such that ws)=uv(s) and V(s)=v(s) By the

defimtion of a view complement, s' will be unique 1f it exists at all
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Thus 1f such an s can be found {or any » (1n which case we say
that u 15 v translatable) we can translate u as the databasc update
qu(va') 1(quv’) The soundness of the overall approach 1s
demonstrated by the following facts [BS]

) 1,18 consstent 1e the updated database always maps, under
the view defimtion v on the updated view (formally vTy=u)
also T, 1s acceptable meanming that 1f u does not change the view,
no change 1s made on the database either (1c for all 5, uvws)=ws)
implies 7 (s)=5)

1) Suppose U 1s a sct of view updates which 1s reasonable 1n
the sense that 1t satisfics minimal user requirements, te it 15 closed
under composiion and there 1s a mceans to cancel the effect of
evenn allowed update on the view {(formally, if w w€U then
uw €, and if 515 a database statc and u€U, there 1s an update
wEU such that wuv(s)=ws)) If V' 15 a view complement such that
any update in U 1s v-translatable then the mapping which
associates to an updatc & in U the database update Tu 15 a
morphism, 1e T, =T, T, forall u w €U (clearly, any rcasonable
way to translate a set of updates should have this property, 1e the
result of the translaton should be the same whether the user
apphes two updates from the set one after the other or therr
compostte update) On the other hand, the converse also holds 1f T
1s 4 mapping on U such that for cvery u€U, T(u) 1s a consistent
and acceptable databasc update and also 7 15 a morphism (1e T1s
a rcasonable way to translate view updates tnto database updates),
then there 1s 4 view complement V' such that, for every w€U, u 18

v-translatable and T(w)=T,

However as was pointed out carlicr this approach 1s essentially

independent of any parucular data model In this paper we

investigate some of the issues and problems which anse when one
attempts to apply this methodology in the context of the relational
model, with a view towards rendering 1t realizable 1n practice We
discover that very imntcresting theoretical questions already arise at
very simple cases of the applicauon In particular we concentrate
on database schemas consisting of a single relation, with integnty
constraints which arc (for the most

part) just functional

dependencies The views we consider are simply projections of the



relaion  Working with a single rclation corresponds to some
anrcahistic umwersal relation assumption [U2], but 1t yields a
simplified problem which must be conquered first Functional
dependencies constitute a simple and practical class of constraints
Projective views are, again, the simplest imaginable, and they are
also important from a practical point of view

In Section 2 we characterize when two projections are
complements of each other There 1s an interesting parallel between
this characterization and the notion of independence of Rissanen
[R1] Our necessary and suffictent condition (which can be
generalized to include the presence of join dependencies) states that
the common part of the projections must be a superkey of one of
the projections As a consequence, 1t 1s easy to test whether two
given projections are complementary 1n a schema It 1s also possible
to construct a nonredundant (minimal) complement of a given
projection 1n polynomial time Unfortunately, finding a smallest (1€
with fewest attributes) complement of a given projection 1s shown
to be NP-complete

In Section 3 we study how to implement the insertion of a
tuple 1nto a projection, keeping a given complementary projection
unchanged We show that this can be done 1n a umque way, and so
the problem reduces to tesung whether the resulting database 18
consistent. We show that this test can be carried out 1n ime cubic
in the number of tuples of the view Since this 1s likely to be
impractical, we also develop two alternative stronger tests that can
be executed more cfficiently

Ideally, we would like the time complexity of our update
algonthms to depend on the number of attributes, functionat
dependencies, and other parameters of the schema, not of the

instance When the ume must depend on the number of tuples, we

would at least like this dependence to be logarthmuce, since thi,
number 15 expected to be very large However, complexitics like
those described 1n the previous paragraph resemble, in a practical
sense exponential complexities We show some negative complexity
results which suggest that this "exponential” behavior 1s inherent
The translatability problem becomes IT 2” hard [St] if the view 18
represented 1n some exponentially succinct way (e g, as the union

of two Cartesian products) Even one of the sinpler, stronger tests
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mcnuoned above becomes o VP hard

Finallv, we examine the complexity of finding a complement
which renders a given insertion translatable We show that this
problem s polynomial 1n the number of tuples of the view but
mhciently exponential 1n the size of the schema (and the logarithm
of the number of tuples of the view) Swmilar results can be
obtamned for the two stronger tests

In Section 4 we extend these results to the case of deletions and
replacements of tuples We find that, for the most part, the
extension 1s rather straightforward Finally 1n Section 6 we define
and cxamine a new kind of functional dependencies which 1s
important in the context of complements the explicit functional
dependencies We extend our charactenzation of complementary
projections to also allow for the presence of expheit functional
dependencies Section 6 concludes this work by pointing out some

directions for further research

2 Definmg a Complement

Let S be a database schema (U, Z), where U 1s a universal set
of attrnbutes and Z 1s a fimte set of dependencies (for the
fundamental notions and notations of the relational model see
[U1]) A relation R over U (an instance of U) 1 called legal of 1t
sausfies all the dependencies 1n = (notation RE=X) A view of S 1s
for us a projection defined by a subset X of U For cach instance
R, the corresponding imstance of the view 15 wy(R) We
disambiguate updates on a view by defining a sccond view, Y, the
complement of X Two views X and Y are called complementary 1f
7 y(R)=ny(R) and = y(R)=w y(R) mply R=R', whencver R

and R are both legal instances In other words, the two views

together contain cnough nformation to reconstruct the whole
database

When are two views X and Y complementary? Clearly, a
sufficient condition 1s that the multivalucd dependency (MVD)
*X Y] holds in ecvery lcgal nstance, 1e % implies the MVD
*X, Y] If ths 1s the case the database can be reconstructed from
its projections on X and Y by join Recently 1t has been shown {V1]
that the condition 1s not necessary, 1e tf Z consists of general first-

order sentences then # X and my can be complementary without



the reconstruction operator being the join However, we show that

this cannot happen iIf we impose more restrictions on 2

Theorem 1
Let Z consist of functional dependencics and join dependencies

Then X Y are complementary ff Zk=*[X, Y]

Proof The "if* direction 1s immediate 1f = implies the MVD

*[X, Y1, then for every legal instance R we have w y(R)*m (R)=R

Conscquently, if for two legal instances R, R’ we have

-”X(R):-”X(R’) ‘”Y(R)='”Y(R’),
7RI y(R)=n y(R)*w (R') and from this R=R', 1e X, Y are

and we get
complementary

For the “only 1f" direction assume that = does not mmply the
MVD *X, Y], we will show that X Y are not complementary, by
legal 1nstances R, R’ for which

exhibiting two  distinct

7 x(R)=u (k) and wy(R)=7 p(R)

Let o be a jon dependency *[R;, Rq], define M(o)
to be the set of MVDs {* U1€Sl R, Uz€S2 R), S;, Sya
parution of {1, , g} } (sec also {MSY]) If Z' is the set we obtain
if we replace each join dependency ¢ 1n I by the multivalued
dependencies 1n M(o) then, since ¢ imphes each MVD mn M(s), =
imphes Z’, but by our hypothesis £ does not 1mply *[X, Y], so %'
does not imply *[X Y] cither Now since Z' consists of FD's and
MVD’s only, there 1s a two tuple counterexample to this imphcation
[SDSF], te there 1s a rclation R consisting of two tuples p and »
which satisfies all the dependencies i X' but docs not satisfy
rn

From the relation R construct another rclavon R’ as follows

X 1, ot

pXNY]=p[XNY] and also plY X]##[Y-X] and p[X-Y]#»[X Y]

since R does not satisfy must be that

et R' consist of a tuple pu’ which agrees with p on X and with »
on ¥ X and of a tuplc »" which agrees with » on X and with p on
Y X Clearly, R#R', R’ sausfies all the dependencies m ' (it
defines the same "special truth assignment” [SDSF] as R), and also
7 y(R)=7 y(R’) and 7 y(R)=n y(R") Thus, we only need to show
that R and R’ arc both lcgal, 1e they both satisfy all the JD's n =

(they obviously satisfy the 7 D's in X, since these are included i 2’

and R, R' sausfy %)

let *[R; Rq] bea /D n Z to show that 1t holds m R 1t

suffices to show that, if a tuple ¢ 15 obtained by joming §,(R)
.ﬁq[Rq] where §;
his 1s certamnly true oif  §;= :$q=p or if §;= :£q=v,
Sy={v §=put  S={1 §,=v}

U s, R, U1632 R} 15 1 Z', it holds in R and thus cither

Eq are tuples of R then enther §=p or §=»

cie et Since the MVD
£=p or £=» lhus R satisfics alt dependencics in £ and so does

R’ (by the same argument) Ihis completes the proof 1

Notice that our condition (though not the proof) parallels the
result of Rissanen on independence [R1] Intuttively independence
1s stronger than complementarity and thus our Theorem contans
only the first condition of {R1] To sce why consider the classical
Fmployee Department-Manager schema The decomposition into
X=1D Y=EM s not idependent although X and Y are

complementary

Theorem 1 has some algorithmic conscquences

Corollary 1
Given (U, Z), X, YCU whether X Y are complementary can

be tested in polynomial time

Proof By Theorem 1 tesung for complementanity amounts to
mferring an MVD from a sct of FDs and JDs The latter can be

done 1n polynomial tme [MSY, V2] 1

Corollary 2
Given (U Z) and XCU, we can find in polynomal tme a

mimmal (nonredundant) complement of X

Proof Simply start with the trivial complement U and repeatedly
take out any attmbute 1n X which can be taken out without
affecting complementanty (examine the attibutes m some arbitrary

order) 1

I'hus we can program 1n « database system some guidance to
the user towards the defimtion of a complement Unfortunately, as

so often happens, finding the mimmum 1s much harder



Theorem 2
Given (U, Z), XCU and k0 determining whether there 1s a

complement Y of X with |Y]=k 15 NP-complete

Proof Mcembership in NP 1s obvious just gucss a subset Y of U
with |Y]=k and venfy (Coroliary 1) that X, Y are complementary

To prove the hardness part, we will make a reduction from the
3 satisfiability  problem (3-SAI) which is known to be NP-
complete [Ck, K GJ] Let ¢ be a Boolean formula in 3 conjunctive
normal form (3-CNF) let x, 1=1, n be the vanables occuring n
¢, and let fj, J=1, m be the clauses of ¢ We construct the
following schemad S‘p=(U, ) Uss Fy TXX; XX A and 2
F ) I mxl_*x r
F; FX'~X, 1=1, ,n, and also for each clause j:l=1ﬂ+1}2+{, \

contans  the functional dependencies
J=1, ,m, the functional dependencies ’71*” 7 sz—»Fj. Lj3—>1~}
af lﬂzx,, Lﬂ=X,, if 1],=-1x,, LJ,=X',)

Now let X be F; F,X;X'; X, X, we clam that X has a
complement ¥ with |Y]=1+nff ¢ 15 satisfiable To sce this, first
assume that @ 1s sausfiable, and let / be a satisfying assignment.
Take Y to be L; L,A, where L =X, 1f A(x) 1s true L,=X" 1f
h(x) 1s false To show that X Y are complementary, 1t suffices to
show (by Theorem 1) that Z=*[Y Y], to do that, we use the chase
method for mmferrng dependencies [MMS] 1f we consider the
tableau consisung of a row with distinguished vanables 1n the X
columns and a row with disunguished vanables mn the Y columns,
then we can convert the second row nto a row of disingwished
variables by using the I'D-rules corresponding to the FD’s n X as
follows first, since h satisfics j} at least one of the FD's {L]I"FJ-
L]2—>F ” LJ3—> 1} can be used to fill in I" T and this can be done
for all ; Then the I'D's F; F, X=X, F; F,X' =X can be
used to fill in the remaming X;'s and X')'s

For the converse, suppose there 1s a complement Y of X with
|¥Y|=1+n Clearly Y has to contan at least one of {X s X o (else
there 1s no way to fill 10 both X . and X' ,), and thus Y contains
exactly one of {X » X i for cach i (also 4€Y) Consider now the
assignment h, where h(x) 1s true if X,€Y and false 1f X', €Y since
F, 1s filled 1n, at least one of {Lﬂ L}

J
Y, and thus h satsfics j} This 15 true for all 5, so & satisfies ¢ and

, 1 13} must be contained 1n

the caim 1s cstablished
Finally, 1t 1s easy to see that qu and X can be constructed in

tume polynomal 1n the length of ¢ This completes the proof B

Observe that 1n our reduction we only used FD's, so Theorem 2
15 true even if X 1s constrained to contan only FD's Now if
2={/—>-=B|/>Bisan F'Dm 3}, then if ¢ 1s a JD Zk=g iff
Z'k=o [BV] Thus we might as well replace Z by =’ 1n our proof,
which means that Theorem 2 1s true even if £ 1s constrained to
consist of MVDs only

3 the [franslation of Insertions

31 Testing Translutability

Z 15 now a sct of funcuonal dependencies we furthermore
assume that cach /D mn T 15 of the form X—>A where 4 15 a
single attnibute (this 15 casy to enforce by replacing cach 1D X—Y

in I by the cquivalent sct of 7Ds {X—=A4 AE€Y})

Suppose that the view X and its complement Y are given, and
so 15 the cuirent instance V of the view We wish to translate the
update u on the view consisting of the wmisertion of a tuple ¢ while
keeping the complement 7 y(R} constant How can we design an
update on R T, which achieves this?

The translation T, should have certain obvious properties
A 1t should implement the view update that 1s m (T [R) = VUt
B It should keep the complement constant, according to the
prescribed semantics  that 15 7 (T [RY=n p(R)

C It should yield a consistent database that 1s, 1f R 1s a “possible”
mstance 7 [R]F=Z the meaning of "possible™ 1s the subject of
property D below

D A more subtle but important assumption 1s that the user
proposcs the update based on his knowledge of the view and on no
other information concerning the database Thus, the translation
should produce a legal database for all legal instances of the

overall database, given the instance of the view

It 1s quite nteresting that these propertics determine precisely
when the insertion of a4 tuple 7 in an nstance ¥V of the view 1s

translatable, and, if 1t 18 the translavon T, 1s umique



First suppose that @4 (otherwise T, s the identity) Since
7 {(R) must be kept constant (Property B) we must assume that
XN VE€a y y(R)=m y (V). otherwise the only way to sert
£ 7 x(R) (Property A} would be to msert something in o y(R)
By lhcorem 1 XNMY 15 a superkey of either X or ¥ If 1t 1s a
supcerkey of X then the update 1s clearly untranslatable because
WUt 1s not the projection of a legal instance (Property C) So
XN Y~Y It follows that the only Tu satsfying 4 B and C is the
msertion of the fuple *w y(R) 10 the database R T, [R]=R U
'z y(R) (* denotes the natural join)

It remains to determine under which conditions T, [R] 1s legal
(Property C) The insertion of £ into b 1s translatable iff 7, [R]l=2
Jor all R such that RF=Z @ y(R)=V (Property D was used here)

Suppose that the msertion 1s not translatable ['his means that
there 1s a functional dependency, say Z-+ A4, which 1s violated by
TJR] for some R for which RE=ZX and 7y(R)=V Since R
satisfies Z— A4, the nserted tuple must be the culpnt Thus, there
must be a tuple r of ¥V which agrees with 1 on ZNX and, if A€X,
disagrees with 1 on A Furthermore, 1if we fill the rows of V with
new symbols m the columns of YJX, only with
AZN(Y-X))=p[ZN(Y-X)] where u 1s o tuple agreeing with £ on
XNY (call this relanon R(V, i, r, Z—» A4)) and then perform the
chase [MMS] wrt Z on this relation, no two distinct clements of V,
neither the elements corresponding to AA4] p[A4] (f AE€Y-X), are

ever cquated (if they are, we say the chase succeeded) It turns out

that this 1s a necessary and sufficient condition for
untranslatability
Theorem 3

The mmsertion of ¢ mto V (€V) 1s translatable as

R*—R’ U 2ay(R) of and only if

@ XN Yer yn (V)

(b) £ mpliecs XNY—Y, and ¥ does not mmply YNY—-X
(c) Chaseg[R(V, 4 r, f] succeeds for all functional dependencies
fZ and tuples r of V

Proof By the preceding discussion all we need to notice 1s that, if
Chases[R(V ¢ r, f)] does not succeed for some FD fEZ and some

tuple r of V, then 1t actually provides us with a counterexample, 1¢
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1t constructs a relation R such that R=2 7 yfR)=V, and T [R]
violates f In the opposite case, the chasc actually provides us with
a proof that there can be no relabon R such thit R=Z,
7 y(R)=V, and T [R] violates some fEZ 1e T, [R]=X ior all R
such that RE=Z, wy(R)=V 1

Corollary

Whether an insertion 1s translatable can be tested in time

oan3iegin 1212 |1-x)

Proof Clearly, condition (a) can be tested 1in time O(]¥]), and
condition (b) can be tested in ume O(Z|) (using the hnear time
algorithm [BB] for inferning an FD from a set of I'D’s) Since
condition (c) can be tested by domg O(]Z| |V]) chases, it
suffices to show that the chase of R(V, ¢ r, ) can be computed
in ame Off V|210g|V1 |Z] |¥-X]) Recall that the chase procedure
consists 1n repeatedly locating a pair of tuples g, » such that
ulZ)=»{Z] and p[A]#v[4]} for some FD Z—> A in Z, and replacing
the element p[A] with »[4] throughout the 4 column This can be
done by the following straightforward algonthm

Imtialize R® to be RV, & 1. )
Repeat until no new change 1s made on R
For each FD Z—A m Z do

Sort k" lexicographically according to the elements
of the Z columns
Find the first pair of consecutive tuples g, » such
that p{Z)=v[Z], plA}%v[4]
Replace p[4] by »[4] throughout the 4 column

It 15 clear that each execution of the body of the for loop takes

ume O(1Mlogll), so cach exccution of the for loop takes time
O(Vlog|lV] |1Z) Since each ume the for loop 1s executed the
number of distinct symbols in the Y-X columns 1s reduced by at
least one (if the chase ever attempts to equate two different
elements 1n one of the X columns we stop immediately), and
mnally we have |Y-X||V] such symbols, the for loop will be

executed at most |Y-X||V times, and so the total time 1s at most

oaW2iogl¥l |3] 1Y-XY 1



I'he algonthm described above can be speeded up by taking

the  following  straightforward  shortcut to  construct
k(V 11 /7= A4) first fill the rows of ¥ with new symbols n the
columns of ¥ X then do a chase (and store the resulting relation to
be recused for other members of ) and then set
AZ0(Y Hl=pl/N(Y V)] for some p agreung with £ on XNY
However siuce we are still unable to provide a better quarantee
for 1ts worst case performance than O} V]3log|l1), its applicability
in practice 1s dublous 1n view of the fact that |}] s normally very
large For this reason we will now present two alternative tests for
which we can show better upper bounds to their worst case
perfornance However, our tests will be sironger than necessary
te 1n addition to rejecting all untranslatable mscrtions, they may

also reject some translatable ones

Test 1

Qur first alternatve test consists 1n simply avoiding to do a full
chase on R(V t r, Z— A), instead for cach tuple p agreeing with
fon XNY, we do a chasc on the two-tuple relation consisung of r
and g, and we report success if any of these chases equates A4],
plA] Of A€Y-X notice .hat 1n this case p[A]=44), since
XNY-Y) or attempts to cquate two distinct clements of V
Thus, what we are actually doing 1s 1mposing the extra
requirement  that Chase[R(V ¢ r fJ] succeeds fast if 1t succeeds
at ali Intuitively, this docs not scem to be very restrictive, and one
may hope that Test 1 will actually accept most of the translatable
msertions that will occur in practice

The test can obviously be implemented 1n time 0(]V|2 12D

However, we can do better (in terms of the dependence of the

tme complexity on |V]), as follows

1 Fill the rows of V with new symbols 1n the ¥ X columns Then
determune the set of tuples T={p p[YNY]={YNT¥]} Ihiscan be
done in ume O(V)

2 For cach ZC U, construct a copy of the relation 7 (call it T),
and sort 1t according to the contents of the Z columns This can be
done 1n time O(ZIUI NioglV)

3 For each ZC U, compute the closure of Z under Z, 1e the set

Zt={4 ZE=Z— 4} This can be done in time 0(2]Ul |2 fusing
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the algonthm of [BB] for computing closures)
4 For each ZCU, go through the table T, from top to bottom
and, whenever a tuple agrees with the previous one on Z, make 1t
agree on Z1 This has the effect of making all tuples which agree
on Z to agrec on Z + (as they should), and 1t can be done 1n time
o 1w
S For ecach FD Z-+4 m Z do
For each tuple r for which AZNX]=4{ZNX] and
HAl24A4] (f A€X), do
Make r agree with p on ZN(Y-X), where p 1s a
tuple n T
For each ZCU do
Insert r 1n T,
If {Z)=»[Z], where » 1s etther the tuple next
to r or the wple before r 1n Ty,

then make r agree with » on Z7+
This can be done in tme O(Z| |N 21U tog| )

Thus, the overall ime expended 15 O(|Vlog V| 20U 1Z) of
course, there are various optimizations and shortcuts one may
employ in an actual implementaton (for example, to handle the
potential problem of having too many sorted tables - say by
actually having for each Z a sequence of pointers to the tuples of
T) Observe that the running time of this algonthm will be better
than our worst-case upper bound for the exact translatabihity test
(and also better than the obvious 0(]V|2 |IZ) algonthm) if
|Wlogl| > 2|U|, which 1s defimtely going to be the case

practical situations.

Test 2

Qur second altcinative test has a somewhat different flavor

noticc that lest 1 saves ume by domg only part of the

computation necessary for cach particular chase Test 2 instead,

will only do one full chase if this 1s possible

More specifically recall that the essential part of the

translatability test (in terms of ume requirements) 1s checking if for
all R such that RE=X, 7y(R)=V we have T, [R]FZ Suppose

now that Y actually has the followwng property



Par alt Ry Ry such that Rje=2 Ry=Y @y (R))=my(R))
AXNY€m y 1 (R )= 7y y(Ry) we have that TR I=Z off
TR =2

We call such a Y a good complement of X Our imterest i good
complements hes in the fact that 1f ¥ happens to be a good
complement of X then clearly all we nced to do to test if the
insettion u 1s translatable 15 constuct some relation Ry such that
Ryp=Z, my(Ry)=V, and test of T fRJ=2 We can construct such
an Ry by filling the rows of ¥ with new symbols in the Y-X
columns and then doing a chase this can be done in tme
00W2log 13] [¥-XD) Tesung of T,[RJ=Ry U  r*myfRy)
sausfies T amounts to testing If for each tuple p of Ry, the two-

tuple relation consisting of p and r*ar )(RO) satisfies all the F'Ds n

2 this can be done 1n ume OV |Z|)

Thus all we need to do 1s show how one can test If a given
complement Y of X 1s actually a good complement This can be

done 1n 0(]E|2 |UD tme The detalls will be given n the full

paper

32 Complexity of Testing Translatability

So far we have shown how one can test if a proposed insertion
of a tuple mnto a view 1s translatable, and iIf so how to do the
translation (Theorem 3) We presented an O(IVlgloglV[) algorithm
for testing translatability Since this algorithm is likely to be
mcefficient in practice we also developed two alternative stronger
tests, which can be exccuted faster

In the sequel, we are going to prove a result which has some
negative implications regarding the extent to which one can hope

to improve the running time required to test translatability

Specifically, we will show that if the view 1s presented 1n an
exponentially succinct way (1¢ as a union of Cartesian products)
then testing translatability becomes Il ZP hard [St}] This result
provides strong cvidence against the possibility of having an
algonthm that runs in ume less than O(V]), 1€ it indicates that
the whole view has to be examined in order to test translatabihty

Moreover we believe that this result also casts some doubt on

the posstbility of substanuially improving the running ume of our

algonthm Loosely speaking 1 Zp-hardncss scems to indicate that
the problem lacks a "nice” combinatorial structure, which could be
exploited to yield an algorithm constderably more efficient than
the one resuluing from our exhaustive approach

We will now prove the result

Fheorem 4
Determining if an insertion 1s translatable 1s T1 zp-hard if the
view V15 given implicitly as the union of two Cartesian products,

of total size oAU

Proof Let G be a Boolean formula in 3 CNF, contaiming the
variables x, =1, ,n, and consisting of clauses fj. J=1, ,m, and let
X={x;, . xg}, Y={x4;  x,} be a gven partion of the
set of vanables of G It 1s known [St W] that determining 1if for all
possible assignments of truth values to the variables m X G 1s
satisfiable, 1e 1f VX3Y G(X Y)=1 (where VX means Vx; Vxp
etc) s I1 2” complete In what follows we give a polynomial-ume
reduction from this problem to the problem of testing
translatability of an insertion to a succinctly presented view
Let U be BX;X'; X X' AF; F,C, and let Z consst of the
FD's X;X'; X X' 3= A, F; F,,—C, BA—C, and, for each clause
fj=1ﬂ+112+1]3 of G, the FD's LﬂA—vF], LJZA—>FJ, LJ3A—>F}
(where Lﬂ 18 X af lﬂ 1 x,, and Lﬂ 18 X', if Iﬂ 18 Tx,) Let the
view be BX,X' ] XnX' » and let the complementary view be
X ,X’ ] XnX' nAF; FpC Finally let the mstance V of the view
be SBXSXIX'IX XanXrn U s, where sxtx'l 1s a relation over
with pfX]=0, piX)=1,
viX)=1, »[X']=0, sp1s a single tuple over B with sp{B]=b, and

s 18 a single tuple over BX;X'; X, X', with {Bl=a JX)=1,

XX, consisting of two tuples u, »,

3[,\”[]=1 Observe that ¥ 1s cssenually just a list of all possible
truth assignments cach tuple p of ¥, with the exception of s,
defines an assignment h {x;, . x3—{0, 1} by taking
Hox)=plX) X J==plX)), also, p[Bl=b

Suppose now we want to insert 1n ¥ the tuple £, where {B]=b,
1x,x,; X X d=4X X, XX, this
mnsertion 1s translatable 1ff VX3Y G(X, Y)=1 First, 1t 1s obvious

We will show that

that conditions (a) and (b) of Theorem 3 are satisfied



Furthermore obsciving that the only tuple agiecing with ¢ on
X, X'; X, X', (the common part of the vicw and the complement)
18 s 1t 18 casy to sce that condition (c) s satisfied if the I'D fis
taken to be XIX', XkX'k—*A (because the only tuple agreemg
with ¢ on X;X'; XpX'p s s) oraf fus Fy I,—C (since no
attribute of f1s m the view) or if f1s 111'4"’/ (since s agrees with
t on dll possible [/ ﬂs)

I'hus all we have to show 1s that for all tuples r with r#s
(these are the tuples agreemg with ¢ on  B),
Chaseg[R(V 1, r BA—C)} succeeds (1¢ starting with AAl=44]
we eventually equate AC] s off there 1s a satisfying assignment
h for & which agrees with the one defined by ron {x;, . x;}

First suppose there 1 such an assignment A and let ry, be the
tuple Since
XX X =YY X Xyl rldl=A4] so rjAl=s4]

Since h satisfics j}, ’h[lﬂ]=1 for some 1, so rh[Ij,]=s[L],], e

corresponding to it

rh[lﬂAlzs{IﬂA], and so rh[I']]=s{l‘j] for j=1, yn Thus,
rdry I=Ar; 1) so rlCl=4Cl But since ril BA)= 1 BA),
riC1=AC] and thus ACT=4{C] 1e Chaseg[R(V t 1, BA—=C)]
succecds Conversely 1t 1s not difficult to see (by cssentially tracing
the previous argument backwards) that AC], {C] can only be
cquated 1f there 15 a tuple corresponding to a satsfying assignment
and agreemg with r on X, X'y XpX'y

Thus we hawve cstablished that the insertion of ¢ into
V 1s translatable ff VX3Y G(x Y)=1 Since U, Z, { and the

descripuon of ¥ as a Cartesian product can obviously be

constructed from G X, Y in polynomial time, we are done ]

It certamly 1s not surprising that using a sunilar (only simpler)

construcion we can show an analogous result for Test 1

fheorem §

Determining of Test 1 accepts an msertion 1s co-NP complete if
the view V¥ 1s gnen impheitly as the umon of two Cartesian
products of total swve OAU)

Proof Omitted 1

33 ILwinding a Complement

So far, we have assumed the following scenario for translating
vicw updates when the user updates a view, he also specifies
unambiguously the semantics of the update by defining a
complement which should be kept constant during the translation
We studied 1n detail the problem of checking 1if a proposed
insertion of a tuple into a projective view 1s translatable, when the
complement 18 another projection and the database consists of a
single relation satisfying a given set of functional dependencies

However, a real database system should also be able to provide
the user with some assistance concerning the task of defining a
complement. We already gave a ghmpse at this problem in Section
2, where, after we characterized complementary views, we
examuned the problems of finding a nonredundant complement
and a minimum complement Now that we have also gained some
understanding of testung translatability, we can pose the following
question Suppose the user wishes to have the update translatable,
mposing only partial (or none at all) restricion on the
complement to be used How can one determine a complement

which will render the update translatable?

Let the view be X, and supposc Y 1s a complement of X such
that the insertion of the tuple ¢ into the instance V of the view 18
translatable under constant Y Clearly, Y=WU(U-X), where
WCX Since (Wi€w (V) (condition (a) of Theorem 3), there 1s a
tuple r of V such that AWj=4W] Consider now the set of
attnbutes W,={4 A€X, A4]=44]} It 15 mmedate that
{W JEn Wr( V), ZE=W,~Y (since ZE=W—Y by condition (b) of
Theorem 3, and W,2W), and Z does not mmply WX (f
ZE=W,~ X, then the insertion of £ into ¥ 1s not translatable since
AW =AW} t#1), moreover 1f R 15 a database such that RF=Z,
my(R)=V,
RU *ny(R)=3, 1t follows that also R U *x Wr(R)l=2, for all

then  fwp (R)=r*apy(R), and thus since
r

such R Therefore, the nsertion of ¢ mto V 15 also

translatable  under constant Y,= W U(U-X)

From the above discussion, 1t 1s easy to see the following



Lheorcm 6
Given Z, X V and (, we can find a complement Y of X such
that the nsertion of f into ¥ 1s translatable under constant ¥

within mun(l¥, 2|X]) tests of translatabihty

Proof One can compute, for each tuple r of ¥, the set W,={4
A€X, AA]l=4A]}, and after ehminating duplications, test, for each
such W, 1f the insertion of 7 into ¥ 1s translatable under constant
Y =W U(U-X) If no such W, 1s found, then, by the preceding
discussion, there 15 no complement ¥ of X such that the nsertion

of 1 into V 1s translatable under constant Y ]

Thus we can determine 1f there 1s a complement which renders
a given 1nsertion translatable 1n polynomial time (see the Corollary
to Theorem 3) Observe, however, that the polynomial complexity
depends strongly on the fact that we are allowing the whole view
V as part of the problem instance The following result indicates
that there 1s an nherent exponential dependence on |U]+logl /], n
other words, we may nevertheless have to check all possible

subsets of X 1n order to find a complement.

Theorem 7
Determiming 1f there 1s a complement Y of X such that the
insertion of ¢ 1nto V 1s translatable under constant Y 1s NP-hard 1f

the view V 1s presented succinctly (as in Theorem 4) [ |

We remark that by following a similar line of reasoning, one
can scc that Theorem 6 remains true if we interpret “translatable”
as "accepted by Test 1 (Test 2)", and "test of translatability” as

"Test 1 (Test 2)" The same holds for Theorem 7

4 1he Dranslation of Ddletions and  Replacements

In this Section we bricfly show how the ideas developed
previously for the case of translating the msertion of a tuple to a
view can be adapted n g straightforward manner to handle the
case of deleting a tuple and of replacing a tuple with another We
continue o assume that Z 1s a set of /D s satisfied by the database
R and that we are given the view X the complement Y and the

currcnt 1nstance V' of the view
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41 Dcletions

Suppose we wish to translate the update » on the view
consisting of the deletton of a tuple +, ¢€V while keeping the
complement @ p(R) constant  1he update T, on R which achteves
thes should sausfy a y(T [RD= V-, 7 W T R)=my(R) and also
T RE=2 for all R such that RE=Z 7 y(R)=V (compare with
Properties A through 1) given for the case of an insertion)

Now since -n){R) must be kept constant, we must have that
4X0YI€7 yn (V) m other words there 1s a tuple r€V such
that r#¢, AXNY]=4XNY] From this we now sce that XNY
cannot be a superkey of X (since ¥ 1s a projection of a legal
instance), so by Theorem 1 XNY—Y It follows that the only
possible candidate for 7, 1s the deletion of the tuple i*x y(R) from
the database R T,[R]=R-r*m y(R)

But now obscrve that since T, JRJCR and Z only contands
iDs TJRI=Z if R=Z Thus, our last requirement that
TJRI=Z for all R such that R=Z @y (R)=V, 15 sausfied
trivially

We have thus shown the following

Theorem 8
The deletion of 7 from ¥V 1s translatable as R« R-r*n y(R) if and
only 1f
(a) AXN Y€y f(V-0
(b) £ 1mphes XNY—Y, and X does not imply XNY-X ]

Hence detcrmining if a deletion is translatable can be done 1n

ume O(V|+|Z)

42 Replacements

Suppose now the update we wish to translate under constant
complement ¥ 1s the replacement of a tuple 1, (;€V, by a tuple 1),
1,V The update T, on R should sausfy & (T, [R)="V-1; U 1,
and again @ WT [RY=#(R), and T [R]=Z for all R such that
R=Z, mx(R)=V We disunguish two cases

Case 1 (lXNY*JxNY].
This case exhibits a behavior similar to the once we are already

familiar with specifically since 7 y(R) must be kept constant, we



must have XN YI€7 yy y(V-1)) (IXOYICr g (V) From this
it follows that XMY cannot be a superkey of X, and thus 1t 15 a
superkey of ¥ by Theorem 1 Hence the only possible candidate
for T, 15 the replacement of the wple {*n y(R) by the tuple
*ny(R)

To check now 1f the last condition 1s sausfied, 1e if T, [R]F=32
for all R such that RF=X, 7 y(R)=V it1s not difficult to sce (by a
reasoning exactly analogous to the one given for nsertion) that all
we have to do 1s check if Chascy[R(V, 5 r f)] succeeds for all
FDs fin X and for all tuples 7w V which are different from 1;

Case 2 1fXNY]=14XNY]

In this case we see that the first two conditions can be satisfied
with no further restrictions on V, ¢ X, or Y, and morcover the only
possible candidate for T, 15 replacing the set of tuples ;" y(R) by
the set of tuples ty*m y(R) (we can no longer assert as before that
either set will consist of a single tuple, since this depended on
XNY being a superkey of ¥, which 1s no longer necessary)

Checking whether the last condition 1s satisfied, 1¢ whether
TRJF=Z for all R such that RFZ, wy(R}=V, can sull be done
by checking 1f Chaseg[R(V (5 r, f)] succeeds for all f1n Z and for
all rin ¥V, r#4; (one can see that the fact that {;*w y(R) and
s Y(R) may consist of more than one tuple does not affect
anything)

Thus, we have the following

Theorem 9

The replacement of ¢ by H, m V¥V (4EV,
1,8) 15 tanslatable as ReR-1*m y(R) U 1;*m ((R) 1f and
only 1f

() yf¥NY€ayn V) and  GAXNY€a 3V, or
{b) 2 implies XNY—=Y and T does not mmply XNY—X, or
ylxny)=1{xNY]

(c) Chasez[R( V.iyr A succeeds for all fin = and for all rin ¥,

r#t, 1
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From Eheotem 91t should be dea that one Can davelop resulis
anglogous 1o the ones gnen for the case of msertion in a
straightforward way Thus we will not puisue this direction any

turther

5 Fxphct Functional Dipendencies

Functional dependencies assert that a certain mapping is one-
toone for cxample a mapping from employce project pairs to
managers or fiom cost price pairs to rates of profit However there
15 a difference, certain such mappmngs arc essential nformation
stored by the database (as 1n the fitst cxample above) whereas
others are redundant informarion mappings that could be computed
eaplicitly (as 1n the second cxample) We call the latter case of
IDs exphicu FDs (I1Ds)

LID> arc important in the context of views and view
complements because they can scrously affect the information
content of databasc mappings We thus felt that we should study
their behavior vis a vis the other known classes of dependencies

We first define formally what an FFD 1s

Defimtion

A sct of attributes X explicitly determines a set of attnbutes Y
(notation X-, T) if there 1s an wmstance-independent function f
(called a wutness of X—, ¥) such that @ yy(R)=flm y(R)), for any

legal mnstance R of the database

Cost-Profitrate—, Price, Couise-Student-Grade—,

Fxamples
Avcrage-Grade

e

We remark that n our defimtion of an EI'D, no special
property of the witness function f1s assumed fhis Ieads naturally
to the following extension of the meaning of miplication of an [ I D
o from a set of dependencies Z, where ¢, 1=1 & arc the £/ Ds
n X for all functions f; 1=1 k there is a function fsuch that if
a database R sausfies all dependencies m Z (where f; 1s taken as
the witness of o)) then 1t also satisfies o (where f1s taken as the

witness of ¢) In case o 1s not an LFD then one just omits the

requircment of the existence of f



As we are gong to sce shortly, with this approach '/ D's
behave very much like 7 D's (in the scnse of Propositions 1 and 2)
It would be interesting to see what happens 1f one 1mposes natural
restrictions on the witness function f, such as inverubihty, 0-1-

valuedness, etc

In the following, if £ 1s a set of dependencies we

denote by Zp the set of FD's {X—»Y X—, Y s mn i}

Proposition 1

Let Z be a set of EFDs, then ZF=X—, Vff Z=X—-Y

Proof Consider the following chase procedure for computing X +
mtiahze X+ 10 X, repeatedly locatc a member Z— B of 2 such
that ZCX¥and B 1s not contamed m X1, and set XT to XTUB
As 15 well known [MMS] this procedure terminates with a unique
Xt and futthermore Tp=X—Y iff YCX+

We will now argue that also Zk=X—, ¥ 1ff YCXt First, 1f
YCXxt, then 1t 1s clear that Sk=X— e Y by the construction of
Xt (observe that, if X~, ¥ and Y-, Z then X—, Z)
Conversely, if Y 1s not contained in X' +, we will show that Z does
not imply X—, Y For each EFD Z—, Bn Z, pick as 1ts witness
a function f;_, p such that f;_, (t7)=1,p, where (7 is a tuple
over Z with 1 z{W]=a for all W, and 1z 15 a tuple over ZB with
t7p{W]=a for all W Now 1f g 15 a purported witness of X—, ¥,
then consider the database R consisting of a single tuple ¢ with
{W=a for WEX* and {W]=y otherwise where y# (g(4X1),
for some A 1n Y-X It 1s clear that R satisfies each EFD Z—, Bin

Z (with witness fy_, p), but R does not satisfy X—, ¥ with

witness g 1

Proposition 2

Tet 2 be asetof FFDs and let Z' be a set of /Ds and JD's
Suppose that ZUZ'E=¢
@ 1If ¢ 1s an FD or JD or embedded JD, then ZUZ'E=q
M)If ¢ 15 an ITD, then Zik=o

Proof

(@ If = fUZ’ does not imply g, then there 1s a relation R which
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salishies Z.IU}.' but violates ¢ Now since RE=2; dearly we can
pick a funcuon f, tor cach 171 ¢, m 2 such that R also sauishies

o, with winess £, Thus R sausfies 2UZ" and therctore ZUE'

!
does not imply ¢

(b) Assume that 2 docs not mmply o and observe that the one
wple 1etiion R constructed in the Proof of Proposition 1 also

satnfies Z' (since 1t sausfies any /5 /1) or embedded JD Thus R

satisfies UL’ and violates ¢ and so UL docs not imply o B

lThus we can casily augment any of the known axiom systems
for IDs I'Ds and MVDs etc to mclude 77Ds Morcover our
characterization of complementary views (Theorem 1) can be

extended to include LIDs as follows

Theorem 10
let 2 be a set of IDs JDs and FFIDs Then X Y are
complementary ff

(a) lhey arc complementary when considered as views of

Ty R (e 2 mmphes the embedded MVD
IN}—>-—XY]Y-X) and

b) E=XUY—>, U

Proof The ™f direcion 18 immediate  from (a)

7 f(RI*7 y(R)=m y1j y(R) for cvery legal database R, and then
from (b) R=fmy; y(R)=fa y(R)*n y(R)), where S 1s an
nstance-independent function Thus 1f for two legal instances R,
R we have @yfR)=my(R) and wyR)=my(R) we get
R=flm (R0 (R)=fim (R )*n (R)=R', 1 X, Y

complementary

are

Tor the "only 1f" dircction assume first that (a) 1s false, 1e 2
does not 1mply the embedded MVD XNY—->—X Y|Y X We first
remark that the Fquivalence Theotem ot [SDSH] s also true if o 1s
an cmbedded MVD (using the partial extension of the equivalence
between dependencies and formulas to include embedded MVDs
described 1n Section 7 the 2-tuple Subrclation ! emma can be
extended to the case m which ¢ 15 an embedded AMVD by an
argument analogous to the one gnen for the case 1n which ¢ 15 an
MVD) Using the same construction as 1n the Proof of Theorem 1

(combined with Proposition 2 (a) and the above observation), we



obtain  two distinct two tuplc  relations R R’ such  that
-nX(R)=7r)((R'), 7 R)=m Y(R'). and R R’ sausfy all the ID’s
and JDs in 2 and all the /Ds in Z; Ihen ats casy to sce that
we can pick for each /7D o in £ a function f such that both R
and R’ sausfy ¢ with witness S~ Ihis shows that X Y are not
complementary

If (b) 1s false then (XU nt*U where (YUNt s the closure
of XUY wrt Z; et R, R’ be two one tuple relations such that
RIM=R[W=a for W m (YUNT and R[W]# R[] otherwise
Clearly, R#R" @ y(R)=n y(R'), = (R)=m «(R) R, R’ sausfy all
I'Ds and JDs 1n 2, and morecovar by picking as the witness of an

ErDZ7—8B

™
oo
£
)
oy

.

VALY!
1 we sce that R R’ also sausfy the I/ I’s in = This shows that X,

Y are not complementary, and the proof 1s complete |

Intuttively Theorem 1 stated that 1f the only dependencies
present are 'Ds and JDs, then the only way fo reconstruct a
database from two projections 15 by join Theorem 6 states that, 1f
EFrD’s arc also present, then the only way is to join the two
projections and then explicitly compute the information which 1s

sull massing

6 Conclusions and Directions for Further Research

We have studied some of the computational problems arnsing
when one considers applying, in the context of the relational
model the methodology proposed by Bancilhon and Spyratos for
translating view updates We discovered that certain important
problems such as testing translatabiity and dctermining a

complement which renders an update translatable, although

solvable 1n polynomial time (lheorems 3 6, 8, 9), exmbit an
interesting kind of mherent complexity (Theorems 4, 5, 7), which
indicates the existence of hmitations on how efficiently they can be
solved However we have only concentrated on a very simple case
of the application we feel that rauch remains to be done before a
reasonable account of the applicability of the methodology can be
attempted In particular the following possibilities seem to us to be

worthy of further invesugafion

(1) Altowing more gencrat dependencies  In patticular it would be
nteresting to see to what extent can Theorem 1 be generalized
ospetally moview of the negatne rosult of [VI] Mose importantly
though one should study the problem of testing translatability and
desigming o translatton (recall that we found the translation of
dedetions to be trivial just becinse we only considered functional
dependencaes) s conceivable that our basic idea of a chase-type

algonthm will be useful although it 1s not clear to what extent

(2) Considering views that are a restriction of a projection (1e of
the form o pmy where P s a predicate on tuples) It should be
noted that most of the views oceuring in practice are actually of the
above form The complement here can be a pair of views, eg
(0p opuy) or lopmy wy) where 7y 1s a complement of
my We belicve that, in the case of only functional dependencics
(which 1s still very important from 4 practical viewpoint), our basic

approach can be used with only simple modifications (at least for

certain  P’s)

(3) Considering  multi-relation  databases with views that are
projections of joins of relations this 1s most important, given that
the universal relation assumption 1s being criticized as unrealistic
We also belicve that this is likely to be the theoretically most

nteresting  direction

(4) Studying the explicit functional dependencies It seems to us
that EFD's are a step in the right direction, 1f one wants a model
capable of capturing the information content of database mappings
We have already examined their influcnce on complementanty of

like testing

views (Theorem 10) Therr effect on 1ssues

translatability or designing a translatjon (perhaps 1 conjunction
with refining our definttion to capture more semantics) 1S a

question which we feel deserves further rescarch
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