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ABSTRACT 

A formal system is developed for reasoning 
about a class of dependencies that includes 
all classes considered in the literature.The 
usefulness of the system is illustrated by 
applying it to various database design 
problems. The system is shown to be sound and 
complete by adapting the analytic tableaux 
method of first-order predicate calculus to 
the class of dependencies adopted. Finally, 
the method is shown to be a decision procedure 
for the inference problem of a subclass of the 
dependencies considered. 

1. Introduct ion -- 
We describe in this paper a formal system for 

reasoning about implicational dependencies [Fa21 
defined over relational expressions (IDEXS). 
Examples of IDEXs are: 

(1) (e(a,b,c), e(a,b’,c’) -f b=b’) 
(2) (e(a,b,c), e(a,b’,c’) * e(a,b’,c)) 

where e is a ternary relational expression. That 
is, e can be a complicated expression, such as 
(EMPCNAME,SALI x MGRCMNAME,?ISALI)CSAL>MSALI, and 
not just a base relation. The first IDEX asserts 
that the functional dependency A+B holds in the 
relation denoted by e and is abbreviated as 
e: A+B. The second IDEX asserts that the MVD 
A++B(C holds in the relation denoted by e, and is 
abbreviated as e: A++B. 

IDEXs were chosen because they contain as 
special cases all data dependencies defined in 
the literature (as far as we know), such as func 
tional dependencies (FDs) [Cal], multivalued anx 
embedded multivalued dependencies (MVDs, EMVDs) 
[Fal, ZMI, join dependencies (JDS)CABU,MMSI, 
subset dependencies (SDS) [SW], template depen- 
dencies (TDs) CSUI, algebraic dependencies CPYI, 
generalized dependencies CGJI, extended embedded 
implicational dependencies [Fa2] and inclusion 
dependencies (INDs) [Fa3] (also called subset 
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constraints in C&L, WMI). 

The proof procedure behind the formal system 
is an adaptation of the anaIytic tableaux method 
CSml, which has already proved quite attractive 
when applied to other logics, such as ProcessLogic 
[P-r] and Temporal Logic CRUI. The method can be 
viewed, in a sense, as a generalization of the 
chase procedure developed to reason about FDs and 
JDs CMI+lSl and Later extended to FDs and TDs CSUI. 
The consistency and completeness of S are also 
obtained along the lines of CSml. 

2. Implicational Dependency Languages 

This section defines a family of formal lan- 
guages that we call implicational dependency lan- 
guages (ID Languages). The formulas of an ID Lan- 
guage are essentially boolean comb_inations O-f 
IDEXS and formulas of the form e(c) or c =-d, 
where e is a relational expression and c, d are 
tuples of constants. An ID language L contains the 
following symbols: 

(1) relation names: for each n>O, a non-empty set 
of n-ary relation names 

(2) constant symbols: a non-empty set of symbols, 
distinct from the above 

(3) the usual connectives and special symbols: 
-!,A v, = 3 (,),[,I,-,= 

(4) the usual relational operators: x,u,- 

A relational expression of L, or simply an 
expression, and the arity of an expression are 
defined inductively as follows (an expression e of 
arity n is called an n-ary expression). Let 
ATTR(n) denote the set of sequences of distinct 
integers from the interval Cl,nl: 

(1) an n-ary relation name is an n-ary (atomic) 
expression; 

(2) if e is an n-ary expression, T,U,V,X c ATTR(n) 
and a is a tuple of co_nstants such that 
IUI = IV\ and 1x1 = lal, then the projection 
e[T] is a ITI-ary expression and the restric- 
tion e[U=V] and selection eCX=G]are n-ary ex- 
pressions ; 

(3) if e and f are m-ary and n-ary expressions, 
respectively, then the product (exf) is an 
(n+m)-ary expression and, if n=m, the union 
(e u f) and difference (e - f) are n-ary ex- 
pressions. 

We also introduce the ‘oin (eCX=Ylf) as 
abbreviation for (exf)CX=Y ‘*here Y’ is obtazed 
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by adding n to each element of Y, if e is n-ary ex 
pression [K12]. Likewise, the intersection (enf) - 
abbreviates e-(e-f). 

Note that, following CK121, we do not give 
names to relation columns as usual in the rela,- 
tional model. This greatly simplifies the treat- 
ment of relational expressions. However, to 
enhance readability, we may occasionally reverse 
this position and name columns via relation 
schemas of the form rCAl,...,A,,I. 

An atomic formula of L is either an equality 
a=b or a relational formula e(a), where a, b are 
n-ary tuples of constants and e is an n-ary ex- 
pression. Each constant in a or b-is said to occur 
visible in a=i; each constant in a is said to oc- 
curvisible in e(a); and each constant in e is 
said to occur hidden in e(a). If P is atomic, we 
use PC;/61 to denote the atomic formula obtained 
by replacing each visible occurrence of b. by a., 
where a = (a a ) and b = (b b ,t-Awf& 
of L is eith&i’ai’a?omic formula’A;‘o; fhe form 
-IP, (PAQ), (PVQ), (P=>Q), where P,Q are wffs, or 
an implicational dependency over relational ex- 
pressions of the form (Al,. . .,A, + B) where 5, 
lSi<n, are relational formulas and B is either a 
relational formula or an equality such that each 
constant occurring visible in B also occurs visible 
in some A.. By convent ion, we assume that no con- 
stant occdrs visible in Ai and hidden in Aj, 
l<i, j<n. 

A structure I with domain DI for L is a 
function assigning to each n-arx relation name r 
of L an n-ary relation Iir) E DI, n>O, and to sach 
constant a, I(a)eDI (if a=(a ,...,ak), then I(a) 
abbreviates (I(al), . . . , I(a d). I is extended to 
the expressions of L as usukal and to the wffs of L 
as follows: 

(1) I(a=b) = true iff I(a) = I(b), otherwise 
I(a=i) = false _ 

(2) I(e(a))=true iff I(a)cI(e), otherwise I(e(a))= 
false 

(3) I((Al’...‘A +B)) = true iff J(A h...A A =>B)= 
true for al? structures J of L w A ich are”iden 
tical to I, except on values of the constants 
occurring visible in Al,. . . ,A,; otherwise 
I((Al,...,An + B)) = false 

(4) I is extended to the other non-atomic wffs 
using the rules of Propositional Calculus. 

The meaning of the wffs of L should be 
clear, except for IDEXs. Loosily speaking an IDEX 
could be defined as 

(5) (A~,..., A~ + B) - vx 
where A’ A, 

. . . tfxk (A’ A...A A:, =>B’) 
B’ are o tained from ?i 

Al>..., An, B, ‘Le;peitiv”kly, by replacing each 
visible occurrence of w. (l-<iSk) by x. where 1’ 
?$i,,’ ’ lwk are the const&ts occurring visible 

. . . . 
tion’Hbout 

A 

kli 
Note that, without our conven- 

e use of constants in Al,.. .,A,, 
the definitions in (3) and (5) would not agree. 

We now introduce in L by definition some of 
the familiar dependencies, all defined over rela- 
t ional expressions. 

functional dependencies (FDs) : 

(1) c: X+Y E (e(i), e(b) -t au = byI 

where e is an n-ary expression, X, Y E ATTR(n), 
and a, 6 are tuples of constants which are 

equal on the X-entries 

inclusion dependencies (INDs) : 

(2) e 5 f 5 (e(a) -f f(a)) 

where e, f are n-ary expressions 

multivalued dependencies (MVDs) : 

(3) e: X ++ Y 3 (e(i). e(S) -t e(F)) 

where e, X,Y, a, b are as for FDs and c is a 
tuple of constants which agrees with a on all 
entries, except those in Y, and which agrees 
with b on the Y-entries. 

join dependencies (JDs) : 

(4) e:(X X 1’“” k I Z (e(a,),..., e(i,) + e(b)) 

where e is an n-ary expression, X 
ATTR(n) are such that every m E c ,ploccurs in i 

,...,Xk E 

some X. 
J’ entries. 

lsjsk, and ai agrees with b on the Xi 

We conclude our list of basic definitions by 
saying that a set P of wffs is satisfiable iff all 
wffs in P are true in some structure of L. A set P 
of wffs logically implies a wff P iff P is true in 
everv structure of L where all wffs in P are true i .~ 
(written P k P). P is a tautology iff P is true 
in all structures of L (w-m P, since, P is 
a tautology iff P is logically implied by the 
empty set of wffs). Given a class X of data depen- 
dencies the inference problem for C is the problem 
of determining, for any set p of dependencies in C 
and any dependency P in 1, if P k P. 

3. Examples 

We start this section with examples illustra 
ting the use of an ID language. Then, we discuss - 
several problems that can be formulated within the 
framework we .develop. 

Examples of formulas involving define depen- 
dencies and their translations are (r is ternary 
and s is binary): 

(la) r: 1+2 V r: 1*3 3 r: 1-H 2 

(lb) ((r(a,b,c), r(a,b’,c’) -F b = b’) 

(r(a,b,c), r(a,b’,c’) + c = c’)) 3 

(r(a,b,c), r(a,b’,c’) + r(a,b’,c)) 

This formula is a well-known tautology [Ril. 

(2a) r: 1 - 2 E r: {12,13) 

(2b) (r(a,b,c), r(a,b’,c’) + r(a,b’,c)) = 

(r(a,b,c), r(a,b’ , cl ) + r(a,b,c’)) 

Formula (2a) is also a well-known tautology 
[Fall. 

(3a) (rCl21 5 s A rCl31 5 s A s: 1+2) * 
(r(a,b,c) * b=c) 

(3b) ((rC12l(a,b)+ s(a,b)) A (rCl3l(a,c)+s(a,c)) A 

(s(a,b), s(a,c) -+ b=c)) * 

(r(a,b,c) + b=c) 

This formula is a tautology and illustrates 
how the interplay between FDs and INDs leads to 
interesting new facts about r that can neither be 
expressed by an FD nor by an IND(the IDEX (r(a,b,c) 
+ b=c) indicates that the second and third entries 
of each tuple in r are equal). 
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(4a) r: l+Z A rCl1 5 rC21 * rC21 5 rCl1 

(4b) (r(a,b,c), r(a,b’,c’) +b=b’) A (r[ll(a) + 
+ rC2l(a)) 3 (rCZl(a) -+ rCll(a)) 

This formula is not a tautology, but it is 
true in every structure I such that I(r) is finite. 
Hence , finite and infinite logical implication 
are not the same for IDEXs. 

We now briefly discuss several problems that 
can be formulated within the framework we develop. 
Although each of these problems arise quite 
naturally when databases are designed, they had 
not received the appropriate attention in the 
literature or were attacked under unrealistic 
assumptions (such as the universal relation 
assumption or variations thereof). 

Consider first the problem of determining if 
a constraint of a subschema o’ is valid in any 
state of o’constructed from a consistent state of 
the base schema U. The importance of this problem, 
in the context of database design, is discussed in 
CCCFI. To fix ideas, suppose that U’ has relation 
names r r defined by expressions 
(involv!&‘&q relation names of 13). 

e , . . .,e 
Le t P be nan 

IDEX (Al,...,~m + B) and F be the constraints of u. 
Then, P is valid in any state of o’ constructed 
from a consistent state of o via el,. . .,e iff 
F 1 Q holds, where Q is obtained by repPacing 
each occurrence of ri in P by ei (lsicn). For 
example, if P is the FD ri:X+Y, Q will be ei:X+Y; 
note that, although P is an FD over a relation, Q 
is an FD over a relational expression. The sub- 
schema constraint problem was addressed in Cti21, 
but only for FDs over expressions without set dif- 
ference. As we show in Section 6, the decision pro 
cedure we develop extends the results in [ti21 to- 
a much more general class of dependencies over less 
restricted expressions. 

Dependencies over expressions also arise 
quite naturally in another situation. For example, 
assume that we have two relation schemas rCABC1 
and sCABD1 and that B must be functionally depen- 
dent on A in r and s taken together. That is, 
r(a,b) and s(a,b’) would also imply b = b’. This 
constraint can be expressed simply as 
r[ABl u SCAB]: A+B. We note that the same con 
straint is sometimes expressed by forcing r and s 
to be projections of a universal relation U with 
attributes ABCD and then assuming that 
U: A+B holds CBBG,BMSUI. (A better, but very simi 
lar approach can be found in [Mel). But the uni- 
versa1 relation assumption is hard to justify 
[Kel and may lead to undesirable consequences CBGI. 

The framework we develop is also useful to 
study lossless decompositions of ‘relations. For 
example, let r[ABCD] be a relation scheme (to im- 
prove readability, we name the columns of r; we 
also use ‘jr’ to denote the natural join, defined 
in the usual way). Consider the horizontal 
fragmentation of r into r[A=l] and (r-rCA=ll) fol- 
lowed by a vertical fragmentation into 
s = (rCA=ll)CABl, t = (r-rCA=ll)CACI, 
u = (rCA=ll)CACDl and v = (r-rCA=lI)CABDI. Then,in 
the presence of s: A+B and t: A-%, we can recon- 
struct r as (s*u) u (t*v). To prove this, it suf- 
fices to show that 

(1) s: A+B, t: A+C k (s*u) u (t*v) 5 r 

Concrete illustrations of horizontal and vertical 

fragmentations can be found in CSS]. We show in 
Section 6 that our method can be used to establish 
(1). However, all currently available methods 
developed to cope with lossless decompositions are 
inappropriate to establish (l), including thechase 
procedure of CMMS, SIJI (we will discuss the chase 
procedure further in Section 4). 

To conclude this section, we discuss theprob 
lem of proving that an update preserves consist- - 
ency of the database. For example, suppose that we 
want to prove that the deletion if 7rCXl (a) 
then s:= s-sCY=al preserves the consistency cri- 
terion rCX1 5 sCY1. Then, using the familiarrules 
for assignments and if-then-else’s [CBI this prob- 
lem reduces to proving that 

(2) rCX1 c sCY1 1 ,rCXl(a) *rCXl c(s-sCY=al)CYl 

which can be proved using the inference rules of 
Section 4. Note that (2) offers yet another natural 
example of a dependency defined over a relational 
expression. 

4. A Formal System for Reasoning about IDEXs 

Let L be an ID language. We introduce inthis 
section a formal system S, whose language is L,and 
a proof procedure for S such that a wff P of L is 
logically implied by a set P of wffs of L iff P is 
a theoremof P in S. This result is proved in Sec- 
tion 5. Since the description of the rules of S 
dependes on the proof procedure, we discuss it 
first. From the point of view of classic Mathemat- 
ics, our proof procedure formalizes the following 
familiar strategy to prove that P 1 P. Start with 
P and 1P and work out all possible cases. More 
precisely, organize the proof as a tree whose root 
contains P and ,P and is such that the sons of a 
node correspond to branching cases. A proof organ- 
ized this way is called an analytic tableau. 
Terminate the proof when each branch either con- 
tains a contradiction (i.e, closes) or cannot be 
extended further without rep-n (i. e,completes) 
If all branchs close, P u hP) is unsatisfiable 
and, hence, P kP. If some branch completes with- 
out closing, P u {3P} is satisfiable (this is the 
main lemma of Section 5) and, hence, P k P does 
not hold. 

Reasoning by cases is captured by using rules 
of the form 

P. 
R 

1 
i’0 1 

‘$1 *.* 
10 
‘in 

where Pi and G ‘ij (lsjsni) are 

i 
finite sets of wffs. Intuitively, Ri means that 
from P. we can derive all wffs in q. for some 
j E C1:n.l. We call Pi the antecedent! of Ri and 
%.13.**r&n., the consequents of Ri. A proof by 
case analysis can be formalized as follows: 

Definition 4.1 

(a) The set of analytic tableaux for a set P of 
wffs consists of trees whose nodes are sets of 
wff s. It is defined inductively as follows 

(i) The tree whose only node is P is analytic 
tableau for P; 

(ii)Suppose that T is an analytic tableau for 
p and let X be a leaf of T. Then, the tree 
obtained by extending T by the following 
operation is also an analytic tableau for 
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P : if there is a rule Ri with antecedent 
Pi and consequents Qil,.,.,~ni such that 
all wffs in Pi occur in the branch ending 
in h, then ni distinct sons Al,e..,Xni may 
simultaneously be adjoined to X , where 
hj 5 qj (lsj<ni). 

(b) A set H of wffs is a Hintikka set with respect 
to a set U of constants iff 

y, no wff and its negation are in H; 
if there is a rule Ri with antecedent Pi 
and consequents Qil,. . . ,~ni, distinct 
from rules ID and 7 PR, such that Pi # 0 
and Pi 5 H, then Qij 5 H, for some 
j E Cl,nil; 

(iii) if (Al,..., A,+B) EH, where w are the con- 
stants occurring visible in Al,...,A,, 
then for any tuple of constants a in U 
such that IWI=lal, either ~AiCa/ijI E H, 
for some ie.Cl,nl, or BCH/RIEH 

(iv) if .~[X](R)EH then, for any tuple ol 
constants 6 in U such that Bx = a and !6/ 
is equal to the arity of e, .e(L)eH 

(c) A branch of a tableau is closed iff it contains 
a wff and its negation, otherwise it is open. 

(d) A branch of a tableau is complete iff the union 
of all its nodes is a Hintikka set (with re- 
spect to the set of constants of the language). 

(e) A tableau is closed iff every branch is closed. 

(f) A tableau is complete iff every branch is 
closed or some branch is complete. 

(g) A proof of a wff P from a set of wffs P is a 
closed tableau for P u {-,P). In this case, P is 
a theorem of P in S (written P 1 P). 0 

We now describe the rules of S. By a new 
tuple of constants we mean a tuple of constants 
that do not occur in the tableau constructed thus 
far. It t = (tl,...,tn, tn+l,...,tn+m), then 
tLl,n3 denotes (tl,...,tn) and tCn+l,n+m, denotes 

it t ). n+l’“” n+m 

ID-rules: 

7ID . ,(Al,...,A,+B) ii = (al,..., ak) iS a new 

Ai,...,A,!,, YB’ tuple of constants 

ID. (A l,...,An-+B) a = (a 1’ . . ..ak) is any 

.Ai/...I.AAIB 
tuple of constants 

where ; = (w 1, . . . ,w,) are the constants occurring 
vi.; i;;e=i;i;ffi. . , An and Al = A;Ea/wI, for ieCl,nl , 

Project ion Rules 

- PR . 7 e CXI (2) a,b are any tuples of 

-e (b) constants with bX equal 
to a 

PR. 4X1 6) 
- 

e(b) 
a is any tuple of constants 
and b is a new tuple of con 
stants such that bX is equal 
to a. 

Restrict ion Rules 

lRE 7e CX=ZlG) 

7 e (a) 17 Zx=Zz 

2 is any tuple of 

RE. eCX=Zl (a) 

e(i),: =a 
x z 

constants 

Selection Rules 

l SE 7 e CX=dl (a) SE. eCX=dl(a) 

7e (ii)17ax=d e(a),a)(=d 

2 is any tuple of constants 

Product Rules 

7 (exf) (a) 
1PT. 

7e G Cl,nl’l -if (+n+l,n+ml) 

(exf) (a) 
PT. 

e(aCl,nl)’ f (%n+l,n+ml) 

a,;, are any tuples of constants and e is n-aryand 
f is m-ary 

Union Rules 

1UN. 1 ( euf) G) m (euf > (a) 

le (a!,,f (a) e(Z) I f(a) 

a is any tuple of constants 

Difference Rules 

-,DI . 7(e-f) (2 DI. (e-f) (a) 

7e (2 If(a) e(a), lf(2 

a is any tuple of constants 

Equality Rules 

ES. ___ 
a=a 

EP. a=$ ,EP . , a=iY 

al=bl,...,a,=b, ~al=bll...l~an=bn 

a=; 
EI. ’ e(a) 7EI. a=b, Te(a) 

--- e(b) 7 e(i) 
a,b,c are n-ary tuples of constants, n>O 
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A-rules. A B-rules. B -- 
AlYA2 B1 I B2 

where A, Al, A and B, B 
lowing tables: 2 

1, B2 are given by the fol- 

A Al A2 

PAQ P Q 

,(P " Q 1P 1Q 

,(P='Q P .Q 

11 P P P 

Table 4.1 

B Bl B2 
l(P A 9) 1P -lQ 

P”Q P Q 

P"Q 1p Q 

Table 4.2 

We now present proofs in S. As usual,examples 
are simplified if we make use of derived rules. 
Thus, we first augment S with (aerived) rules for 
the FDs and INDs, which were introduced by defini- 
tion at the end bf Section 2. 

FD-rules: 

1FD. 7 e:X+Y 

e(a),e(b),aX=bX,.ay=by 

FD. e(a),e(b>,ax=bx,e:X~Y 
2 =b 
Y Y 

IND-rules: 

3IND. Tezf 

e(i), .f(a) 

IND. e(a), ecf 

f (2 

Example 4.1: 

a,b are tuples of 
new constants 

a,b are any tuples 
of constants 

a is a tuple of new 
constants 

a is any tuple of 
constants 

We exhibit a formal proof in S of the second half 
of Theorem 1 of [Ri]. This result essentially says 
that, given a partition of the columns of relation 
name r into X,Y,Z, if r:X+Y or r:X+Z hold, then 
the join of r[XY] and rCXZ1 on X is a subset of r. 
Using the definition of join in terms of product and 
restriction, we formalize the above assertion as the 
following wff (call it Q): 

(1) r:X+Y v r:X+Z b ((rCxY]Xr[XZl)CX=X'l)CXYZ'l~ r 

where X', 2' are obtained by adding k to each el- 
ement of X,Z, respectively, if r is a k-ary rela- 
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tion name. We offer the following closedtableau as 
a proof that Q is indeed a tautology: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

9. 

11 

r:X+Y V r:X+Z, q((rCXYlx rCXZl)EX=X'l)[XYZ'l~ r 

((r[XYlXrCXZI)CX=X'l)CXYZ'l(a,b,c),.r(a,G,c) 

(r[XYlXrCXZl)(a,b,G',c), ;=a' 

rCXYl(a,b), rCXZl(a',c) 

r(a,b,G'),r(a',b',c) 

r:X+Z 8. r:X+Y 

C=C' .4,6,7,FD 10. b=b' 
- - - 

r(a,b,c) .6,9,EI 12. r(S,b,c) 

X X 

.2, PR 

.3, RE 

.4, PT 

.5, PR 

.l,B-rule 

.4,6,8, FD 

.4,6,10, EI 

note: the structure of the tableau 
case structure) is indicated 
example, 7 and 8 are sons of 
the only son of 8. A closed 
ates with 'X'. C 

Example 4.2 

(that is, the 
spatially. For 
6, and 10 is 
branch tennin- 

We now prove the first half to Theorem 1 of [Ril. 
It says that, given a partition of the columns of 
a relation name r into X,Y,Z, if a set of FDs F 
implies that the join of r[XYl and r[XZl on X is 
a subset of r, then F implies either r:X+Y orr:X+Z 
More formally, we have 

(1) F /- e 5 r implies F k(r:X+Y v X+Y) where 

e = (r[XYl xr[XZl)CX=X'l)CXYZ'l and X',Z' are ob- 
tained by adding k to each element of X,Z, respect 
ively, if r is a k-ary relation name. (Note that- 
(1) is actually a metatheorem). 

Proof 

Assume F b ecr. Then there is a closed tableau T 
starting with 60 = F u {Tecr}. Moreover, T can be 
constructed using rules FD. 1IND and those for re- 
lational expressions. Since only rule.IND can be 
applied to 6, , it has only one son, which is 
61 = te(S,K,F), Tr(a,K,c)J. Continuing to reason 
this way, we can show that T has the following 
format: 
1. F, Tecr 

2. e(i,i,i), .r(i,b,i) ,l, qIND 

3. ((r[xY] xr[xzI)[X=X’I) (~,~,~sE) -29 PR, EI 

4. (r[XYlXrCXZl)(a,b,=G',~), ;=a' .3, RE 

5. r[XYl(a,b), rCXZl(a'c) .4, PT 

6. r(a,g,c'), r(a',b',c) *5, PR, EI 

n. E 

n+l. rG,b,c) .6,n, EI 

where E is either b=b' or c=c' 



Let US now try to prove that. F k (r:X+Y v r:X+Z). 
We can start out a tableau CI as follows 

1. F, I (r:X+Y V r:X+Z) 

2. lr:X+Y, ,r:X+Z . A-rule 

3. r(a,b,c), r(a',b',c'), d=d',q&E' . 2,1FD 

4. r(d,e,f), r(d',e',f'), d=d',qi=f' . 2,qFD 

But then the derivations between lines 6 and n of 
T can be mimecked to extend o to a closed tableau. 
That is, we can obtain either E=b' or ?=f'. Hence, 
F b (r:X+y v r:X+Z) follows. 0 

We close this section with another perspec- 
tive of the analytic tableaux method. From the 
point of view of database theory, the analytic 
tableaux method is closely connected with the 
chase method CMMS,SUl , if we imagine the latter 
extended to boolean combinations of dependencies 
involving relational expressions. However, the 
details of the two methods differ considerably. We 
first observe that indeed-both methods talk about 
the existence of a tuple a in the relation denoted 
by an expression e. However, in the analytic 
tableaux method this is indicated by the formal 
statement e(a), whereas in (the generalization of) 
the chase-method the same would be asserted by 
entering a in a table T, associated with e (dif- 
ferent tables for e would have to be kept for dif 
ferent cases in a proof by case analysis). The anai 
ogy breaks down, though, when we observe that the - 
analytic tableaux method also uses formulas of the 
form .e(a) negating the existence of a in e. This 
is necessary when set difference is allowed. But 
consider what would happen if we tried to extend 
the chase method. We would need a rule, for example, 
to assert that if t is in table T, and e=f-g, then 
t must be in table Tf, but t cannot appear in table 

This last fact is difficult to express in the 
',%se method. Hence the analytic tableaux method 
is more flexible in'this case than the chase method. 

5.Soundness and Completeness of System S 

We prove in this section that S is sound and 
complete.Soundness means that P /- P => P b P 
holds and completeness signifies that the converse 
holds. 
Since P bP iff bPl~... A P, -P and P [- P iff 
1 P~A...A P, *P, where P = {Pl,...P,), we may 
assume without loss of generality that P is empty. 
We also assume that the set of constants of the 
language L used by S is infinite (which assures that 
we do not run out of constants during a proof). 

The soundness of S follows trivially by induc- 
tion on the height of a tableau. To prove the com- 
pleteness of S we have to show that if P is a taut- 
OlWY, then there is a closed tableau for ,P (i.e., 
that FP * FP). We actually prove that if P is a 
tautology, then every complete tableau for .P 
closes. Or, equivalently, that if there is a com- 
plete open tableau for TP, then -IP is satisfiable 
and, hence, P is not a tautology. This result is 
obtained as follows. Recall that a tableau 'I is corn 
plete and open iff some open branch E of 'I forms a- 
Hintikka set. We prove that, in fact, any Hintikka 
set is satisfiable. Hence, E is satisfiable and, 
since 6 starts with ,P, so is 1P. 

Lemma 5.1: Any Hintikka set is satisfiable 

Proof 

Let H be a Hintikka set 
structure I for L where 
first define a set E of 
constants. Let U be the 

for L. We construct a 
all wffs in H are true. We 
classes of equivalence of 
set of constants of L and . _ 

define p = i(a,a)/a E lJ] u t(a,b)/"a=b" E H). By 
construction and since H is a Hintikka set (using 
the Equality rules), p is an equivalence relation. 
We take E as the set of equivalence classes of p. 
The equivalence class of a constant a is desig- 
nated by a". I is constructed as follows. The 
domain of I is E; for each constant a, I(a) = a'; 
for each n-ary relation name r, n > 0 , 
I(r) = {(ay,...,aE) E En/"r(al,...,an)" E HI. 

Consider now I extended to a boolean valuation for 
the wffs of L. We show that each wff P in H istrue 
in I by induction on the degree of P (the numberof 
occurrence of +,7,v,A,* and the relational oper- 
ations in P). 

basis: suppose that P has degree 0. 

Then P is either r(a) or a=b, where r is a relaticn -- 
name and a,b are tuples of constants. If P is r(a) 
then, by construction of I, go E I(r). Hence, P is 
true in I. If P is a=b, the result follows like- 
wise. 

induction step: suppose that all wffs in H of de- 
gree less than i are true in I and let PEH be a 
wff of degree i. 
If P is yr(a) or >a=b, then P is true in I by 
construction of I and definition of Hintikka set. 
Rather than proceeding with a detailed case analy- 
sis, we summarize all other cases as' follows. 
case schema 1: P is either -,(Al,...&+B), e[X](z), 

e[X=d](a),(exf)(a),l(euf)(a),(e-f)(z), or the ante- 
cedent of an A-rule.Then, there is an instance of a 
rule R whose antecedent is P and whose consequent is 

a ={91,..:, Qn] where each Qi has degree lower Juan 
P. Since H is a Hintikka set, each Qi is in H. By 
the induction hypothesis, each Qi is true in I.But, 
in each specific case, this implies that P is true 
in I. As an illustration, we prove the case that 
P is l(Al,..., A, -t B). Let w = (wl,...,wk) be the 
constants visible in (A,.....A, + B). Since H is 
a Hintikka set (using Gle -t-1$ , thgre are con- 
stants a=(al,..., ak) such that AiCa/wl, ie[l,n]and 
?B [a/w] are in H. 
By the induction hypothesis and since these wffs 
have degree less thanl(Al,...,A, + B), they are 
true in I. Therefore, I(A'1 A... A A', * B') = 
false. But this implies that I((Al,...,A,+ B))is 
false, by definition. 

case schema 2: P is either -1e[X=2] (z), -te[X=al$), 
7 (exf) (3 , (e u f)(z), 3 (e-f)(g) or the anteced- 
ent of a B-rule. Then, there is an instance of a 
rule R whose antecedent is P and whose conse- 
quents are CQl) and {Q2} , where Ql and Q2 have 
degree lower than P. Since H is a Hintikka set, 
Qi is in H, for some i E C1,2]. By the induction 
hypothesis, Q;. is true in I. Again, in each spe- 
cific case, this implies that P is true in I. 

case schema 3: P is either (Al,...,A, -t B) or 

Te[X](a). We prove only the first case. 
Let W = (w l,...,wk) be the constants visible .in 
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(A 41 -t B) and let I = (al,...,ak) be any 
tub;,‘:; constants in U. Since H is Hintikka set 
and P E H, Q(a) E H where Q(Z) is either A.[:/;1 , 
for some iE[l,nl , or Q(a) is BCa/wl. Sinck Q(a) 
has degree less than (A 

Q& * ;;A:r;eB;;, “,y 
the 

induction hypothesis, Therefore, 
for any tuple B of constants in U, 
A,[;/;1 A . . . A A,Ca/;l * B[a/;l is true in I. But 
this implies that (Al, . . . ,A, + B) istrue in I. 

This conclude the proof. 0 

In order to use Lemma 5.1 to obtain a com- 
pleteness proof for S we must guarantee that some 
branch of a tableau that does not close eventual- 
ly becomes a Hintikka set. But the procedure given 
in Definition 4 .l (a) permits constructing tableaux 
with infinite open branchs which are not Hintikka 
sets. This follows because: (i) rules may be ap- 
plied redundantly to introduce wffs already de- 
rived; (ii) rules 1 ID,ID, -,PR,PR may be repeatedly 
applied to generate wffs that differ only on the 
tuples of constants used; (iii) rule ES may always 
be applied using any tuple of constants. Theseprob 

- lems are avoided by refining the procedure for 
constructing tableaux. 

The refined procedure for constructing ta- 
bleaux proceeds as in Definition 4.1(a), except 
that: (i) rules are never applied redundantly; (ii) 
as few constants as possible are used. To achieve 
these goals, additional bookkeeping is required. 
First, a tag is kept for each formula in a tableau 
indicating if that formula can still be used non- 
redundantly as antecedent of some rule. Second, a 
total order is defined among constants occurring 
in a tableau as follows. We-say that a is older 
than b iff a occurs visible in a formula whir 
was added to the tableau before any formula where 
b occurs visible. This partial order is then ex- 
tended to a total order among constants. We also 
say that (al,..., 
iff ai 

a,,) is olde; than (bl,...,bn) 
is older than or equal to bi, for each 

isCl,nl, and a. 
jECl,nl. J 

is older than b. , , for some 

The refined procedure constructs a tableau 
for a set of wffs P as follows. Initially, the 
tableau contains only one node, which is P. Let 
T be the tableau constructed thus far. The pro- 
cedure stops if any of the following conditions 
are satisfied. 

Tl. T is closed. 

T2. for some open branch 8, every wff in 9 is 
tagged as used; 

T3. for some open branch 0, the only unused 
wffs are of the form (Al,. ..,An -+ B) or 
7 eCXl(Z) , and for each such wff Q there 
is no tuple of constants occurring in f3 
that was never us’ed before with Q (in an 
application of the appropriate rule). 

Otherwise, let X be the node highest up in 
T with an unused wff Q, which should not satisfy 
condition T3. T is extended as follows. Take every 
open branch Cl passing through X and extend 0 by ap- 
plying all rules whose antecedent is Q (only two 
rules, EP and ER, have the same antecedent). Tag Q 
as used and each wff added as unused. 

There are two special cases to consider: 

(1) 

(2) 

Q is of the form (A l,.--,An + B) orTeCXl(a). 
Apply rule ID or ,PR using Q and the oldest 
tuple of constants occurring in 8 that was 
never used before with Q, and add Q along 
with each consequent. (We know that such tuple 
of constants exists because Q does not satisfy 
condition T3). 

Q is a = L, e(a) or .e(a) 
Try to apply rules ET, EI andIE to derive 
new formulas not occurring in 8. 

Intuitively, the refined procedure extends 
the tableau from the root down so that each wff is 
used exactly once as antecedent of a rule. The dif 
ficult part concerns rules ID and 1PR. In order to 
generate a Hintikka set, if it is the case, rule 
ID has to be applied with all possible tuples of 
constants. This isachievedby a careful control of 
the constants already used and by repeating the 
antecedent of the rule along with the consequents. 
Similar remarks apply to rule.PR. (Strictly speak 
ing the tree thus generated is not a tableau, but- 
it can always be transformed into one by deleting 
the repeated formulas). 

Another important feature of the procedure is 
that, when rules ID and .PR are applied, constants 
are selected from those used in the branch being 
ext ended , not from the set of all constants. Hence, 
the refined procedure guarantees that, if the ta- 
bleau does not close, there is an open branch 9 
that forms a Hintikka set with respect to the set 
of constants occurring in 8, but not necessarily 
with respect to the set of all constants. But this 
does not affect the proof of Lemma 5.1 and opens 
the possibility of constructing finite Hintikka 
sets. 

By a finished systematic tableau, we mean a 
tableau constructed bv the refined procedure which 
is either infinite or else finite but cannot be ex - 
tended further by the refined procedure. 

We close this section with the completeness 
theorem for System S. 

Theorem 5.2 

(a) 

(b) 

Cc) 

(a) 

(b) 

(cl 

Every open finished systematic tableau has a 
branch which is a Hintikka set. 

If a wff P is a tautology, then every finished 
systematic tableau starting with,P must close. 

System S is complete. 

Proof 

Follows by definition of the refined procedure 
for constructing tableaux. 

Suppose that there is a finished systematic 
tableaux starting with,P that is not closed. 
Then, by (a), it contains an open branch % 
which forms a Hintikka set H. By Lemma 5.1, H 
is satisfiable. Since -VP E H, -IP is also sat 

- isfiable. Hence, P is not a tautology. 

Assume that P is a tautology . By (b), there 
is a closed tableau for 1P. 
Hence, kP * k P. 0 
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6. Decidability Question_. for ID Languau 

In this section we discuss the inference prob 
lem for ID languages. We first observe that this - 
problem is undecidable since the inference problem 
for embedded implicational dependencies (EIDs) is 
undecidable [CLMI and EIDs are a special case of 
IDEXs. Thus, we concentrate on a class of instances 
of the inference problem for which the analytic 
tableaux method is a decision procedure. 

We first state a lemma that gives a charac- 
terization of unbounded tableaux. We say that an 
application A of rule PR, with antecedent e[Xl(Z), 
is-a consequence of an application A’ of rule ID 
or rule,PR in a Ebleaux cs iff one of the wffs 
introduced in u by A’ generates the antecedent 
eCxl(?i) of A , possibly after a sequence of ap- 
plications of the rules for relational expressions. 

Lemma 6.1: Let P be a finite set of wffs. 

cc 1 

(* ) 

Lemma 6.1 suggests a way to guarantee that ~. the refined procedure always stops. It suffices 
to restrict P and P so that, when trying to es- 
tablish P IP, the refined procedure never ap- 
plies rule PR as a consequence of applications 
of rules ID or -rPR. This is not the case when P 
contains, for example, (r(a,bx+sCABCl(a,b,c)) or 
((s-s[ABCl)(a,b,c) + r(a,b,c)) since,after ap- 
plying rule ID to each of these formulas, rule PR 
will be applied to sCABCI(%), for some x. The cdn 
ditions on P k P discussed above can easily be- 
translated to restrictions on the structure of P 
and P. 

u is an unbounded systematic tableau starting 
with P iff rule PR is applied infinitely often 
in U as a consequence of applications of rules 
ID or 1PR. 

Proof 

Obvious, since rule PR is applied infinitely 
often in cf. 

Suppose that (5 is an unbounded systematic 
tableau for P (P is finite) but rule PR is 
applied finitely many times in o as a conse- 
quence of applications of rules ID or -IPR. 
By definition of the refined procedure, there 
are at most IPI appl.ications of rule 1ID in 
u and,at most as many applications of rule PR 
that are not consequences of applications of, 
rules ID or 1PR as.there are projection op- 
erations occurring in wffs in P. Then, there 
are finitely many applications of rules -JID 
and PR in o. 

Since these are the only two rules that in- 
troduce new constants, finitely many con- 
stants were used in o. But then rules ID and 
,PR were also applied finitely many times 
in U. This in turn implies that the refined 
procedure stops in finitely many steps. Hence 
u is bounded. Contradiction. 0 

Towards this end, given an expression f of L 
and a specific occurrence p of a subexpression of 
f, we define the negation index or, simply, the 
index i(p,f) of p in f as the number of set dif- 
ference operations prefixing p in f. For example,if 
f = e[Al - (g-e)CB1 , then the index of the leit- 
most occurrence of e is 0 and the index of the 

rightmost occurrence of e is 2. 
Given a wff P and a specific occurrence p of 

an expression of P, we extend the index as follows 
(i(p,P) now counts set difference operations and 
negations): 

(1) if P is f(Z), then i(p,P) = i(p,f) 

(2) if P is 14, then i(p,P) = i(p,Q) + 1 

(3) if P is (Ql"Q2) or (QlvQ2) and p occurs in Qi, 
then i(p,P) = i(P,Qi) 

(4) if P is (QlaQ2) and p occurs in Ql, then 
i(p,P) = i(p,Ql) + 1 otherwise i(p,P) = i(p,Q2) 

(5) if P is (A 
4""' 

A, -F B) and p occurs in A. then 
i(p,P) = 1 p,Ai) + 1, otherwise i(p,P)=i(i:B) 

Likewise, we define the index of an occur- 
rence R of a subformula of a wff P as follows 
(i(R,P) counts negations prefixing R): 

(6) if P is R then i(R,P) = 0 

(7) if P is,R then i(R,P) = 1 

(8) if P is (Ql"Q2) or (QlvQ2) and R occurs in Qi, 
then i(R,P) = i(R,Qi) 

(9) if P is (Ql *Q2) and R occurs in Ql, then 
i(R,P) = i(R,Ql) + 1, otherwise 
i(R,P) = i(R,Q2) 

(lO)if P is (Al,...,A, + B) and R is Ai, iE[l,nl , 
then i(R,P) = 1, otherwise i(R;P) = 0 

We can now state the following theorem. 

Theorem 6.2: The analytic tableaux method is a 
decision procedure for instances P b P of the 
inference problem for ID languages such that, 
for each subformula Q of a wff in P u hP) such 
that Q is of the form (Al,...,A,+B) or 
-rf [Xl(a), for each expression p occurring inQ 
such that p is of the form eCX1, if Q has even 
degree, then p has odd degree. 

Proof 

Let P 1 P be an instance of the inference problem 
for ID languages satisfying the conditions of the 
theorem and suppose that the refined procedure does 
not stop when applied to P u (,P). 

By Lemma 6.1, the refined procedure does not stop 
iff rule PR is applied infinitely often as a con- 
sequence of rules ID or,PR. But rule ID is ap- 
plied iff a wff Q of the form (Al,....,A, + B) oc- 
curs in some node of the tableau, possibly after 
several applications of A- and B-rules. But this 
is possible only when Q occurs in some formula of 
Pu{-P) with even index. Now, this application of 
rule ID will have as a consequence an application 
of rule PR iff there is an occurrence p of an 
expression of the form e[Xl in Q and the index of 
p is even. Similar observations apply when Q is of 
the form.f[XI(a). But in both cases, the condi- 
tions on Pu{-,P) are violated. Contradiction. Hence, 
the procedure always stops when the input Pu&P) 
satisfies the conditions of the theorem. 0 

We conclude this section with some examples 
and comments on the class of instances for which 
the analytic tableaux method (i.e., the refined 
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procedure of Section 5) is a decision procedure 
(with appropriate translations for FDs, INDs and 
natural join): 

(1) r: X-tY V r: X+2 k rCXY1 * r[XZl 5 r 

(2) (rCA=lI)CABI: A+B, (r-r[A=l])[AC]: A+C 

1 (rrA=lI)[ABI * (r[A=ll)CACDI u 

(r-r[A=lI)[ACI * (r-r[A=lI)[ABDl 5 r 

(3) el:Xl+Yl, . . .,e,. n 'X +Yn p e,:X,+Y, , 
where e,,...,e, are expressions that do not 
involve set difference. 

We note at this point that, by (3), our result 
then contains as a special case the main result in 
CK121. In other words, our result extends the main 
result in CK121 by considering a much wider class 
of dependencies (and not just FDs over expressions) 
and by allowing set difference (albeit in a res- 
tricted way). 

The following instances do not satisfy the 
conditions of Theorem 6.2 and, in fact, the refined 
procedure diverges when applied to them: 

(4) 

(5) 

(6) 

r: A+B, r-CA1 5 rCB1 k rCB1 5 r[Al 

rCX1 5 sCY1 k ,rCXl(a) * rCX1 5 (s-sCY=al)CYl 

However, we can rewrite (5) to conform with the 
conditions of Theorem 6.2. Indeed, we can trans 
form (5) into: 

t 5 u /= 7t(Z) => t 5 (u-uCY=al) 

by defining t=r[Xl and u=sCYl, and observing 
that 

(s-sr.Y=z1)cYl = (SCYI - scYlCY=al) 

7. Conclusions 

This paper described a formal system for 
reasoning about implicational dependencies over 
relational expressions and an associated proof pro 
cedure based on the analytic tableaux method. Th: 
basic motivation was provided by various schema 
design problems briefly discussed in Section 3. 

The analytic tableaux method proved to be 
quite attractive and easy to use manually. However, 
it may fail to stop, even in trivial, albeit patho- 
logical, cases. This should not be viewed as a handi 
cap of the method because the problem it tries to - 
solve is indeed undecidable. Moreover, we exhibited 
a rich class of instances of the problem for which 
the method is a decision procedure. But it must be 
added that the procedure for constructing systematic 
tableaux is quite inefficient, since it requires 
considerable extra bookkeeping. Hence, reasonable 
heuristics for reducts of the full problem should 
also be sought. However, the search for provably 
tractable reducts should never reduce the expressive 
ness power of the language beyond the point that - 
it becomes irrelevant to the schema design problems 
that motivated this research. 
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