
A THEORY OF DATA DEPENDENCIES OVER RELATIONAL EXPRESSIONS

Marco A. Casanova
Pontificia Universidade Cat6lica do R.J.

22453, Rio de Janeiro, RJ
Brasil

ABSTRACT

A formal system is developed for reasoning
about a class of dependencies that includes
all classes considered in the literature.The
usefulness of the system is illustrated by
applying it to various database design
problems. The system is shown to be sound and
complete by adapting the analytic tableaux
method of first-order predicate calculus to
the class of dependencies adopted. Finally,
the method is shown to be a decision procedure
for the inference problem of a subclass of the
dependencies considered.

1. Introduct ion --
We describe in this paper a formal system for

reasoning about implicational dependencies [Fa21
defined over relational expressions (IDEXS).
Examples of IDEXs are:

(1) (e(a,b,c), e(a,b’,c’) -f b=b’)
(2) (e(a,b,c), e(a,b’,c’) * e(a,b’,c))

where e is a ternary relational expression. That
is, e can be a complicated expression, such as
(EMPCNAME,SALI x MGRCMNAME,?ISALI)CSAL>MSALI, and
not just a base relation. The first IDEX asserts
that the functional dependency A+B holds in the
relation denoted by e and is abbreviated as
e: A+B. The second IDEX asserts that the MVD
A++B(C holds in the relation denoted by e, and is
abbreviated as e: A++B.

IDEXs were chosen because they contain as
special cases all data dependencies defined in
the literature (as far as we know), such as func
tional dependencies (FDs) [Cal], multivalued anx
embedded multivalued dependencies (MVDs, EMVDs)
[Fal, ZMI, join dependencies (JDS)CABU,MMSI,
subset dependencies (SDS) [SW], template depen-
dencies (TDs) CSUI, algebraic dependencies CPYI,
generalized dependencies CGJI, extended embedded
implicational dependencies [Fa2] and inclusion
dependencies (INDs) [Fa3] (also called subset

permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To COPY
otherwise, or to republish, requires a fee and/or specific permission.

0 1982 ACM 0-89791-070-2/82/003/0189 $00.75

constraints in C&L, WMI).

The proof procedure behind the formal system
is an adaptation of the anaIytic tableaux method
CSml, which has already proved quite attractive
when applied to other logics, such as ProcessLogic
[P-r] and Temporal Logic CRUI. The method can be
viewed, in a sense, as a generalization of the
chase procedure developed to reason about FDs and
JDs CMI+lSl and Later extended to FDs and TDs CSUI.
The consistency and completeness of S are also
obtained along the lines of CSml.

2. Implicational Dependency Languages

This section defines a family of formal lan-
guages that we call implicational dependency lan-
guages (ID Languages). The formulas of an ID Lan-
guage are essentially boolean comb_inations O-f
IDEXS and formulas of the form e(c) or c =-d,
where e is a relational expression and c, d are
tuples of constants. An ID language L contains the
following symbols:

(1) relation names: for each n>O, a non-empty set
of n-ary relation names

(2) constant symbols: a non-empty set of symbols,
distinct from the above

(3) the usual connectives and special symbols:
-!,A v, = 3 (,),[,I,-,=

(4) the usual relational operators: x,u,-

A relational expression of L, or simply an
expression, and the arity of an expression are
defined inductively as follows (an expression e of
arity n is called an n-ary expression). Let
ATTR(n) denote the set of sequences of distinct
integers from the interval Cl,nl:

(1) an n-ary relation name is an n-ary (atomic)
expression;

(2) if e is an n-ary expression, T,U,V,X c ATTR(n)
and a is a tuple of co_nstants such that
IUI = IV\ and 1x1 = lal, then the projection
e[T] is a ITI-ary expression and the restric-
tion e[U=V] and selection eCX=G]are n-ary ex-
pressions ;

(3) if e and f are m-ary and n-ary expressions,
respectively, then the product (exf) is an
(n+m)-ary expression and, if n=m, the union
(e u f) and difference (e - f) are n-ary ex-
pressions.

We also introduce the ‘oin (eCX=Ylf) as
abbreviation for (exf)CX=Y ‘*here Y’ is obtazed

189

http://crossmark.crossref.org/dialog/?doi=10.1145%2F588111.588143&domain=pdf&date_stamp=1982-03-29

by adding n to each element of Y, if e is n-ary ex
pression [K12]. Likewise, the intersection (enf) -
abbreviates e-(e-f).

Note that, following CK121, we do not give
names to relation columns as usual in the rela,-
tional model. This greatly simplifies the treat-
ment of relational expressions. However, to
enhance readability, we may occasionally reverse
this position and name columns via relation
schemas of the form rCAl,...,A,,I.

An atomic formula of L is either an equality
a=b or a relational formula e(a), where a, b are
n-ary tuples of constants and e is an n-ary ex-
pression. Each constant in a or b-is said to occur
visible in a=i; each constant in a is said to oc-
curvisible in e(a); and each constant in e is
said to occur hidden in e(a). If P is atomic, we
use PC;/61 to denote the atomic formula obtained
by replacing each visible occurrence of b. by a.,
where a = (a a) and b = (b b ,t-Awf&
of L is eith&i’ai’a?omic formula’A;‘o; fhe form
-IP, (PAQ), (PVQ), (P=>Q), where P,Q are wffs, or
an implicational dependency over relational ex-
pressions of the form (Al,. . .,A, + B) where 5,
lSi<n, are relational formulas and B is either a
relational formula or an equality such that each
constant occurring visible in B also occurs visible
in some A.. By convent ion, we assume that no con-
stant occdrs visible in Ai and hidden in Aj,
l<i, j<n.

A structure I with domain DI for L is a
function assigning to each n-arx relation name r
of L an n-ary relation Iir) E DI, n>O, and to sach
constant a, I(a)eDI (if a=(a ,...,ak), then I(a)
abbreviates (I(al), . . . , I(a d). I is extended to
the expressions of L as usukal and to the wffs of L
as follows:

(1) I(a=b) = true iff I(a) = I(b), otherwise
I(a=i) = false _

(2) I(e(a))=true iff I(a)cI(e), otherwise I(e(a))=
false

(3) I((Al’...‘A +B)) = true iff J(A h...A A =>B)=
true for al? structures J of L w A ich are”iden
tical to I, except on values of the constants
occurring visible in Al,. . . ,A,; otherwise
I((Al,...,An + B)) = false

(4) I is extended to the other non-atomic wffs
using the rules of Propositional Calculus.

The meaning of the wffs of L should be
clear, except for IDEXs. Loosily speaking an IDEX
could be defined as

(5) (A~,..., A~ + B) - vx
where A’ A,

. . . tfxk (A’ A...A A:, =>B’)
B’ are o tained from ?i

Al>..., An, B, ‘Le;peitiv”kly, by replacing each
visible occurrence of w. (l-<iSk) by x. where 1’
?$i,,’ ’ lwk are the const&ts occurring visible

. . . .
tion’Hbout

A

kli
Note that, without our conven-

e use of constants in Al,.. .,A,,
the definitions in (3) and (5) would not agree.

We now introduce in L by definition some of
the familiar dependencies, all defined over rela-
t ional expressions.

functional dependencies (FDs) :

(1) c: X+Y E (e(i), e(b) -t au = byI

where e is an n-ary expression, X, Y E ATTR(n),
and a, 6 are tuples of constants which are

equal on the X-entries

inclusion dependencies (INDs) :

(2) e 5 f 5 (e(a) -f f(a))

where e, f are n-ary expressions

multivalued dependencies (MVDs) :

(3) e: X ++ Y 3 (e(i). e(S) -t e(F))

where e, X,Y, a, b are as for FDs and c is a
tuple of constants which agrees with a on all
entries, except those in Y, and which agrees
with b on the Y-entries.

join dependencies (JDs) :

(4) e:(X X 1’“” k I Z (e(a,),..., e(i,) + e(b))

where e is an n-ary expression, X
ATTR(n) are such that every m E c ,ploccurs in i

,...,Xk E

some X.
J’ entries.

lsjsk, and ai agrees with b on the Xi

We conclude our list of basic definitions by
saying that a set P of wffs is satisfiable iff all
wffs in P are true in some structure of L. A set P
of wffs logically implies a wff P iff P is true in
everv structure of L where all wffs in P are true i .~
(written P k P). P is a tautology iff P is true
in all structures of L (w-m P, since, P is
a tautology iff P is logically implied by the
empty set of wffs). Given a class X of data depen-
dencies the inference problem for C is the problem
of determining, for any set p of dependencies in C
and any dependency P in 1, if P k P.

3. Examples

We start this section with examples illustra
ting the use of an ID language. Then, we discuss -
several problems that can be formulated within the
framework we .develop.

Examples of formulas involving define depen-
dencies and their translations are (r is ternary
and s is binary):

(la) r: 1+2 V r: 1*3 3 r: 1-H 2

(lb) ((r(a,b,c), r(a,b’,c’) -F b = b’)

(r(a,b,c), r(a,b’,c’) + c = c’)) 3

(r(a,b,c), r(a,b’,c’) + r(a,b’,c))

This formula is a well-known tautology [Ril.

(2a) r: 1 - 2 E r: {12,13)

(2b) (r(a,b,c), r(a,b’,c’) + r(a,b’,c)) =

(r(a,b,c), r(a,b’ , cl) + r(a,b,c’))

Formula (2a) is also a well-known tautology
[Fall.

(3a) (rCl21 5 s A rCl31 5 s A s: 1+2) *
(r(a,b,c) * b=c)

(3b) ((rC12l(a,b)+ s(a,b)) A (rCl3l(a,c)+s(a,c)) A

(s(a,b), s(a,c) -+ b=c)) *

(r(a,b,c) + b=c)

This formula is a tautology and illustrates
how the interplay between FDs and INDs leads to
interesting new facts about r that can neither be
expressed by an FD nor by an IND(the IDEX (r(a,b,c)
+ b=c) indicates that the second and third entries
of each tuple in r are equal).

190

(4a) r: l+Z A rCl1 5 rC21 * rC21 5 rCl1

(4b) (r(a,b,c), r(a,b’,c’) +b=b’) A (r[ll(a) +
+ rC2l(a)) 3 (rCZl(a) -+ rCll(a))

This formula is not a tautology, but it is
true in every structure I such that I(r) is finite.
Hence , finite and infinite logical implication
are not the same for IDEXs.

We now briefly discuss several problems that
can be formulated within the framework we develop.
Although each of these problems arise quite
naturally when databases are designed, they had
not received the appropriate attention in the
literature or were attacked under unrealistic
assumptions (such as the universal relation
assumption or variations thereof).

Consider first the problem of determining if
a constraint of a subschema o’ is valid in any
state of o’constructed from a consistent state of
the base schema U. The importance of this problem,
in the context of database design, is discussed in
CCCFI. To fix ideas, suppose that U’ has relation
names r r defined by expressions
(involv!&‘&q relation names of 13).

e , . . .,e
Le t P be nan

IDEX (Al,...,~m + B) and F be the constraints of u.
Then, P is valid in any state of o’ constructed
from a consistent state of o via el,. . .,e iff
F 1 Q holds, where Q is obtained by repPacing
each occurrence of ri in P by ei (lsicn). For
example, if P is the FD ri:X+Y, Q will be ei:X+Y;
note that, although P is an FD over a relation, Q
is an FD over a relational expression. The sub-
schema constraint problem was addressed in Cti21,
but only for FDs over expressions without set dif-
ference. As we show in Section 6, the decision pro
cedure we develop extends the results in [ti21 to-
a much more general class of dependencies over less
restricted expressions.

Dependencies over expressions also arise
quite naturally in another situation. For example,
assume that we have two relation schemas rCABC1
and sCABD1 and that B must be functionally depen-
dent on A in r and s taken together. That is,
r(a,b) and s(a,b’) would also imply b = b’. This
constraint can be expressed simply as
r[ABl u SCAB]: A+B. We note that the same con
straint is sometimes expressed by forcing r and s
to be projections of a universal relation U with
attributes ABCD and then assuming that
U: A+B holds CBBG,BMSUI. (A better, but very simi
lar approach can be found in [Mel). But the uni-
versa1 relation assumption is hard to justify
[Kel and may lead to undesirable consequences CBGI.

The framework we develop is also useful to
study lossless decompositions of ‘relations. For
example, let r[ABCD] be a relation scheme (to im-
prove readability, we name the columns of r; we
also use ‘jr’ to denote the natural join, defined
in the usual way). Consider the horizontal
fragmentation of r into r[A=l] and (r-rCA=ll) fol-
lowed by a vertical fragmentation into
s = (rCA=ll)CABl, t = (r-rCA=ll)CACI,
u = (rCA=ll)CACDl and v = (r-rCA=lI)CABDI. Then,in
the presence of s: A+B and t: A-%, we can recon-
struct r as (s*u) u (t*v). To prove this, it suf-
fices to show that

(1) s: A+B, t: A+C k (s*u) u (t*v) 5 r

Concrete illustrations of horizontal and vertical

fragmentations can be found in CSS]. We show in
Section 6 that our method can be used to establish
(1). However, all currently available methods
developed to cope with lossless decompositions are
inappropriate to establish (l), including thechase
procedure of CMMS, SIJI (we will discuss the chase
procedure further in Section 4).

To conclude this section, we discuss theprob
lem of proving that an update preserves consist- -
ency of the database. For example, suppose that we
want to prove that the deletion if 7rCXl (a)
then s:= s-sCY=al preserves the consistency cri-
terion rCX1 5 sCY1. Then, using the familiarrules
for assignments and if-then-else’s [CBI this prob-
lem reduces to proving that

(2) rCX1 c sCY1 1 ,rCXl(a) *rCXl c(s-sCY=al)CYl

which can be proved using the inference rules of
Section 4. Note that (2) offers yet another natural
example of a dependency defined over a relational
expression.

4. A Formal System for Reasoning about IDEXs

Let L be an ID language. We introduce inthis
section a formal system S, whose language is L,and
a proof procedure for S such that a wff P of L is
logically implied by a set P of wffs of L iff P is
a theoremof P in S. This result is proved in Sec-
tion 5. Since the description of the rules of S
dependes on the proof procedure, we discuss it
first. From the point of view of classic Mathemat-
ics, our proof procedure formalizes the following
familiar strategy to prove that P 1 P. Start with
P and 1P and work out all possible cases. More
precisely, organize the proof as a tree whose root
contains P and ,P and is such that the sons of a
node correspond to branching cases. A proof organ-
ized this way is called an analytic tableau.
Terminate the proof when each branch either con-
tains a contradiction (i.e, closes) or cannot be
extended further without rep-n (i. e,completes)
If all branchs close, P u hP) is unsatisfiable
and, hence, P kP. If some branch completes with-
out closing, P u {3P} is satisfiable (this is the
main lemma of Section 5) and, hence, P k P does
not hold.

Reasoning by cases is captured by using rules
of the form

P.
R

1
i’0 1

‘$1 *.*
10
‘in

where Pi and G ‘ij (lsjsni) are

i
finite sets of wffs. Intuitively, Ri means that
from P. we can derive all wffs in q. for some
j E C1:n.l. We call Pi the antecedent! of Ri and
%.13.**r&n., the consequents of Ri. A proof by
case analysis can be formalized as follows:

Definition 4.1

(a) The set of analytic tableaux for a set P of
wffs consists of trees whose nodes are sets of
wff s. It is defined inductively as follows

(i) The tree whose only node is P is analytic
tableau for P;

(ii)Suppose that T is an analytic tableau for
p and let X be a leaf of T. Then, the tree
obtained by extending T by the following
operation is also an analytic tableau for

191

P : if there is a rule Ri with antecedent
Pi and consequents Qil,.,.,~ni such that
all wffs in Pi occur in the branch ending
in h, then ni distinct sons Al,e..,Xni may
simultaneously be adjoined to X , where
hj 5 qj (lsj<ni).

(b) A set H of wffs is a Hintikka set with respect
to a set U of constants iff

y, no wff and its negation are in H;
if there is a rule Ri with antecedent Pi
and consequents Qil,. . . ,~ni, distinct
from rules ID and 7 PR, such that Pi # 0
and Pi 5 H, then Qij 5 H, for some
j E Cl,nil;

(iii) if (Al,..., A,+B) EH, where w are the con-
stants occurring visible in Al,...,A,,
then for any tuple of constants a in U
such that IWI=lal, either ~AiCa/ijI E H,
for some ie.Cl,nl, or BCH/RIEH

(iv) if .~[X](R)EH then, for any tuple ol
constants 6 in U such that Bx = a and !6/
is equal to the arity of e, .e(L)eH

(c) A branch of a tableau is closed iff it contains
a wff and its negation, otherwise it is open.

(d) A branch of a tableau is complete iff the union
of all its nodes is a Hintikka set (with re-
spect to the set of constants of the language).

(e) A tableau is closed iff every branch is closed.

(f) A tableau is complete iff every branch is
closed or some branch is complete.

(g) A proof of a wff P from a set of wffs P is a
closed tableau for P u {-,P). In this case, P is
a theorem of P in S (written P 1 P). 0

We now describe the rules of S. By a new
tuple of constants we mean a tuple of constants
that do not occur in the tableau constructed thus
far. It t = (tl,...,tn, tn+l,...,tn+m), then
tLl,n3 denotes (tl,...,tn) and tCn+l,n+m, denotes

it t). n+l’“” n+m

ID-rules:

7ID . ,(Al,...,A,+B) ii = (al,..., ak) iS a new

Ai,...,A,!,, YB’ tuple of constants

ID. (A l,...,An-+B) a = (a 1’ak) is any

.Ai/...I.AAIB
tuple of constants

where ; = (w 1, . . . ,w,) are the constants occurring
vi.; i;;e=i;i;ffi. . , An and Al = A;Ea/wI, for ieCl,nl ,

Project ion Rules

- PR . 7 e CXI (2) a,b are any tuples of

-e (b) constants with bX equal
to a

PR. 4X1 6)
-

e(b)
a is any tuple of constants
and b is a new tuple of con
stants such that bX is equal
to a.

Restrict ion Rules

lRE 7e CX=ZlG)

7 e (a) 17 Zx=Zz

2 is any tuple of

RE. eCX=Zl (a)

e(i),: =a
x z

constants

Selection Rules

l SE 7 e CX=dl (a) SE. eCX=dl(a)

7e (ii)17ax=d e(a),a)(=d

2 is any tuple of constants

Product Rules

7 (exf) (a)
1PT.

7e G Cl,nl’l -if (+n+l,n+ml)

(exf) (a)
PT.

e(aCl,nl)’ f (%n+l,n+ml)

a,;, are any tuples of constants and e is n-aryand
f is m-ary

Union Rules

1UN. 1 (euf) G) m (euf > (a)

le (a!,,f (a) e(Z) I f(a)

a is any tuple of constants

Difference Rules

-,DI . 7(e-f) (2 DI. (e-f) (a)

7e (2 If(a) e(a), lf(2

a is any tuple of constants

Equality Rules

ES. ___
a=a

EP. a=$,EP . , a=iY

al=bl,...,a,=b, ~al=bll...l~an=bn

a=;
EI. ’ e(a) 7EI. a=b, Te(a)

--- e(b) 7 e(i)
a,b,c are n-ary tuples of constants, n>O

192

A-rules. A B-rules. B --
AlYA2 B1 I B2

where A, Al, A and B, B
lowing tables: 2

1, B2 are given by the fol-

A Al A2

PAQ P Q

,(P " Q 1P 1Q

,(P='Q P .Q

11 P P P

Table 4.1

B Bl B2
l(P A 9) 1P -lQ

P”Q P Q

P"Q 1p Q

Table 4.2

We now present proofs in S. As usual,examples
are simplified if we make use of derived rules.
Thus, we first augment S with (aerived) rules for
the FDs and INDs, which were introduced by defini-
tion at the end bf Section 2.

FD-rules:

1FD. 7 e:X+Y

e(a),e(b),aX=bX,.ay=by

FD. e(a),e(b>,ax=bx,e:X~Y
2 =b
Y Y

IND-rules:

3IND. Tezf

e(i), .f(a)

IND. e(a), ecf

f (2

Example 4.1:

a,b are tuples of
new constants

a,b are any tuples
of constants

a is a tuple of new
constants

a is any tuple of
constants

We exhibit a formal proof in S of the second half
of Theorem 1 of [Ri]. This result essentially says
that, given a partition of the columns of relation
name r into X,Y,Z, if r:X+Y or r:X+Z hold, then
the join of r[XY] and rCXZ1 on X is a subset of r.
Using the definition of join in terms of product and
restriction, we formalize the above assertion as the
following wff (call it Q):

(1) r:X+Y v r:X+Z b ((rCxY]Xr[XZl)CX=X'l)CXYZ'l~ r

where X', 2' are obtained by adding k to each el-
ement of X,Z, respectively, if r is a k-ary rela-

.93

tion name. We offer the following closedtableau as
a proof that Q is indeed a tautology:

1.

2.

3.

4.

5.

6.

7.

9.

11

r:X+Y V r:X+Z, q((rCXYlx rCXZl)EX=X'l)[XYZ'l~ r

((r[XYlXrCXZI)CX=X'l)CXYZ'l(a,b,c),.r(a,G,c)

(r[XYlXrCXZl)(a,b,G',c), ;=a'

rCXYl(a,b), rCXZl(a',c)

r(a,b,G'),r(a',b',c)

r:X+Z 8. r:X+Y

C=C' .4,6,7,FD 10. b=b'
- - -

r(a,b,c) .6,9,EI 12. r(S,b,c)

X X

.2, PR

.3, RE

.4, PT

.5, PR

.l,B-rule

.4,6,8, FD

.4,6,10, EI

note: the structure of the tableau
case structure) is indicated
example, 7 and 8 are sons of
the only son of 8. A closed
ates with 'X'. C

Example 4.2

(that is, the
spatially. For
6, and 10 is
branch tennin-

We now prove the first half to Theorem 1 of [Ril.
It says that, given a partition of the columns of
a relation name r into X,Y,Z, if a set of FDs F
implies that the join of r[XYl and r[XZl on X is
a subset of r, then F implies either r:X+Y orr:X+Z
More formally, we have

(1) F /- e 5 r implies F k(r:X+Y v X+Y) where

e = (r[XYl xr[XZl)CX=X'l)CXYZ'l and X',Z' are ob-
tained by adding k to each element of X,Z, respect
ively, if r is a k-ary relation name. (Note that-
(1) is actually a metatheorem).

Proof

Assume F b ecr. Then there is a closed tableau T
starting with 60 = F u {Tecr}. Moreover, T can be
constructed using rules FD. 1IND and those for re-
lational expressions. Since only rule.IND can be
applied to 6, , it has only one son, which is
61 = te(S,K,F), Tr(a,K,c)J. Continuing to reason
this way, we can show that T has the following
format:
1. F, Tecr

2. e(i,i,i), .r(i,b,i) ,l, qIND

3. ((r[xY] xr[xzI)[X=X’I) (~,~,~sE) -29 PR, EI

4. (r[XYlXrCXZl)(a,b,=G',~), ;=a' .3, RE

5. r[XYl(a,b), rCXZl(a'c) .4, PT

6. r(a,g,c'), r(a',b',c) *5, PR, EI

n. E

n+l. rG,b,c) .6,n, EI

where E is either b=b' or c=c'

Let US now try to prove that. F k (r:X+Y v r:X+Z).
We can start out a tableau CI as follows

1. F, I (r:X+Y V r:X+Z)

2. lr:X+Y, ,r:X+Z . A-rule

3. r(a,b,c), r(a',b',c'), d=d',q&E' . 2,1FD

4. r(d,e,f), r(d',e',f'), d=d',qi=f' . 2,qFD

But then the derivations between lines 6 and n of
T can be mimecked to extend o to a closed tableau.
That is, we can obtain either E=b' or ?=f'. Hence,
F b (r:X+y v r:X+Z) follows. 0

We close this section with another perspec-
tive of the analytic tableaux method. From the
point of view of database theory, the analytic
tableaux method is closely connected with the
chase method CMMS,SUl , if we imagine the latter
extended to boolean combinations of dependencies
involving relational expressions. However, the
details of the two methods differ considerably. We
first observe that indeed-both methods talk about
the existence of a tuple a in the relation denoted
by an expression e. However, in the analytic
tableaux method this is indicated by the formal
statement e(a), whereas in (the generalization of)
the chase-method the same would be asserted by
entering a in a table T, associated with e (dif-
ferent tables for e would have to be kept for dif
ferent cases in a proof by case analysis). The anai
ogy breaks down, though, when we observe that the -
analytic tableaux method also uses formulas of the
form .e(a) negating the existence of a in e. This
is necessary when set difference is allowed. But
consider what would happen if we tried to extend
the chase method. We would need a rule, for example,
to assert that if t is in table T, and e=f-g, then
t must be in table Tf, but t cannot appear in table

This last fact is difficult to express in the
',%se method. Hence the analytic tableaux method
is more flexible in'this case than the chase method.

5.Soundness and Completeness of System S

We prove in this section that S is sound and
complete.Soundness means that P /- P => P b P
holds and completeness signifies that the converse
holds.
Since P bP iff bPl~... A P, -P and P [- P iff
1 P~A...A P, *P, where P = {Pl,...P,), we may
assume without loss of generality that P is empty.
We also assume that the set of constants of the
language L used by S is infinite (which assures that
we do not run out of constants during a proof).

The soundness of S follows trivially by induc-
tion on the height of a tableau. To prove the com-
pleteness of S we have to show that if P is a taut-
OlWY, then there is a closed tableau for ,P (i.e.,
that FP * FP). We actually prove that if P is a
tautology, then every complete tableau for .P
closes. Or, equivalently, that if there is a com-
plete open tableau for TP, then -IP is satisfiable
and, hence, P is not a tautology. This result is
obtained as follows. Recall that a tableau 'I is corn
plete and open iff some open branch E of 'I forms a-
Hintikka set. We prove that, in fact, any Hintikka
set is satisfiable. Hence, E is satisfiable and,
since 6 starts with ,P, so is 1P.

Lemma 5.1: Any Hintikka set is satisfiable

Proof

Let H be a Hintikka set
structure I for L where
first define a set E of
constants. Let U be the

for L. We construct a
all wffs in H are true. We
classes of equivalence of
set of constants of L and . _

define p = i(a,a)/a E lJ] u t(a,b)/"a=b" E H). By
construction and since H is a Hintikka set (using
the Equality rules), p is an equivalence relation.
We take E as the set of equivalence classes of p.
The equivalence class of a constant a is desig-
nated by a". I is constructed as follows. The
domain of I is E; for each constant a, I(a) = a';
for each n-ary relation name r, n > 0 ,
I(r) = {(ay,...,aE) E En/"r(al,...,an)" E HI.

Consider now I extended to a boolean valuation for
the wffs of L. We show that each wff P in H istrue
in I by induction on the degree of P (the numberof
occurrence of +,7,v,A,* and the relational oper-
ations in P).

basis: suppose that P has degree 0.

Then P is either r(a) or a=b, where r is a relaticn --
name and a,b are tuples of constants. If P is r(a)
then, by construction of I, go E I(r). Hence, P is
true in I. If P is a=b, the result follows like-
wise.

induction step: suppose that all wffs in H of de-
gree less than i are true in I and let PEH be a
wff of degree i.
If P is yr(a) or >a=b, then P is true in I by
construction of I and definition of Hintikka set.
Rather than proceeding with a detailed case analy-
sis, we summarize all other cases as' follows.
case schema 1: P is either -,(Al,...&+B), e[X](z),

e[X=d](a),(exf)(a),l(euf)(a),(e-f)(z), or the ante-
cedent of an A-rule.Then, there is an instance of a
rule R whose antecedent is P and whose consequent is

a ={91,..:, Qn] where each Qi has degree lower Juan
P. Since H is a Hintikka set, each Qi is in H. By
the induction hypothesis, each Qi is true in I.But,
in each specific case, this implies that P is true
in I. As an illustration, we prove the case that
P is l(Al,..., A, -t B). Let w = (wl,...,wk) be the
constants visible in (A,.....A, + B). Since H is
a Hintikka set (using Gle -t-1$, thgre are con-
stants a=(al,..., ak) such that AiCa/wl, ie[l,n]and
?B [a/w] are in H.
By the induction hypothesis and since these wffs
have degree less thanl(Al,...,A, + B), they are
true in I. Therefore, I(A'1 A... A A', * B') =
false. But this implies that I((Al,...,A,+ B))is
false, by definition.

case schema 2: P is either -1e[X=2] (z), -te[X=al$),
7 (exf) (3 , (e u f)(z), 3 (e-f)(g) or the anteced-
ent of a B-rule. Then, there is an instance of a
rule R whose antecedent is P and whose conse-
quents are CQl) and {Q2} , where Ql and Q2 have
degree lower than P. Since H is a Hintikka set,
Qi is in H, for some i E C1,2]. By the induction
hypothesis, Q;. is true in I. Again, in each spe-
cific case, this implies that P is true in I.

case schema 3: P is either (Al,...,A, -t B) or

Te[X](a). We prove only the first case.
Let W = (w l,...,wk) be the constants visible .in

194

(A 41 -t B) and let I = (al,...,ak) be any
tub;,‘:; constants in U. Since H is Hintikka set
and P E H, Q(a) E H where Q(Z) is either A.[:/;1 ,
for some iE[l,nl , or Q(a) is BCa/wl. Sinck Q(a)
has degree less than (A

Q& * ;;A:r;eB;;, “,y
the

induction hypothesis, Therefore,
for any tuple B of constants in U,
A,[;/;1 A . . . A A,Ca/;l * B[a/;l is true in I. But
this implies that (Al, . . . ,A, + B) istrue in I.

This conclude the proof. 0

In order to use Lemma 5.1 to obtain a com-
pleteness proof for S we must guarantee that some
branch of a tableau that does not close eventual-
ly becomes a Hintikka set. But the procedure given
in Definition 4 .l (a) permits constructing tableaux
with infinite open branchs which are not Hintikka
sets. This follows because: (i) rules may be ap-
plied redundantly to introduce wffs already de-
rived; (ii) rules 1 ID,ID, -,PR,PR may be repeatedly
applied to generate wffs that differ only on the
tuples of constants used; (iii) rule ES may always
be applied using any tuple of constants. Theseprob

- lems are avoided by refining the procedure for
constructing tableaux.

The refined procedure for constructing ta-
bleaux proceeds as in Definition 4.1(a), except
that: (i) rules are never applied redundantly; (ii)
as few constants as possible are used. To achieve
these goals, additional bookkeeping is required.
First, a tag is kept for each formula in a tableau
indicating if that formula can still be used non-
redundantly as antecedent of some rule. Second, a
total order is defined among constants occurring
in a tableau as follows. We-say that a is older
than b iff a occurs visible in a formula whir
was added to the tableau before any formula where
b occurs visible. This partial order is then ex-
tended to a total order among constants. We also
say that (al,...,
iff ai

a,,) is olde; than (bl,...,bn)
is older than or equal to bi, for each

isCl,nl, and a.
jECl,nl. J

is older than b. , , for some

The refined procedure constructs a tableau
for a set of wffs P as follows. Initially, the
tableau contains only one node, which is P. Let
T be the tableau constructed thus far. The pro-
cedure stops if any of the following conditions
are satisfied.

Tl. T is closed.

T2. for some open branch 8, every wff in 9 is
tagged as used;

T3. for some open branch 0, the only unused
wffs are of the form (Al,. ..,An -+ B) or
7 eCXl(Z) , and for each such wff Q there
is no tuple of constants occurring in f3
that was never us’ed before with Q (in an
application of the appropriate rule).

Otherwise, let X be the node highest up in
T with an unused wff Q, which should not satisfy
condition T3. T is extended as follows. Take every
open branch Cl passing through X and extend 0 by ap-
plying all rules whose antecedent is Q (only two
rules, EP and ER, have the same antecedent). Tag Q
as used and each wff added as unused.

There are two special cases to consider:

(1)

(2)

Q is of the form (A l,.--,An + B) orTeCXl(a).
Apply rule ID or ,PR using Q and the oldest
tuple of constants occurring in 8 that was
never used before with Q, and add Q along
with each consequent. (We know that such tuple
of constants exists because Q does not satisfy
condition T3).

Q is a = L, e(a) or .e(a)
Try to apply rules ET, EI andIE to derive
new formulas not occurring in 8.

Intuitively, the refined procedure extends
the tableau from the root down so that each wff is
used exactly once as antecedent of a rule. The dif
ficult part concerns rules ID and 1PR. In order to
generate a Hintikka set, if it is the case, rule
ID has to be applied with all possible tuples of
constants. This isachievedby a careful control of
the constants already used and by repeating the
antecedent of the rule along with the consequents.
Similar remarks apply to rule.PR. (Strictly speak
ing the tree thus generated is not a tableau, but-
it can always be transformed into one by deleting
the repeated formulas).

Another important feature of the procedure is
that, when rules ID and .PR are applied, constants
are selected from those used in the branch being
ext ended , not from the set of all constants. Hence,
the refined procedure guarantees that, if the ta-
bleau does not close, there is an open branch 9
that forms a Hintikka set with respect to the set
of constants occurring in 8, but not necessarily
with respect to the set of all constants. But this
does not affect the proof of Lemma 5.1 and opens
the possibility of constructing finite Hintikka
sets.

By a finished systematic tableau, we mean a
tableau constructed bv the refined procedure which
is either infinite or else finite but cannot be ex -
tended further by the refined procedure.

We close this section with the completeness
theorem for System S.

Theorem 5.2

(a)

(b)

Cc)

(a)

(b)

(cl

Every open finished systematic tableau has a
branch which is a Hintikka set.

If a wff P is a tautology, then every finished
systematic tableau starting with,P must close.

System S is complete.

Proof

Follows by definition of the refined procedure
for constructing tableaux.

Suppose that there is a finished systematic
tableaux starting with,P that is not closed.
Then, by (a), it contains an open branch %
which forms a Hintikka set H. By Lemma 5.1, H
is satisfiable. Since -VP E H, -IP is also sat

- isfiable. Hence, P is not a tautology.

Assume that P is a tautology . By (b), there
is a closed tableau for 1P.
Hence, kP * k P. 0

195

6. Decidability Question_. for ID Languau

In this section we discuss the inference prob
lem for ID languages. We first observe that this -
problem is undecidable since the inference problem
for embedded implicational dependencies (EIDs) is
undecidable [CLMI and EIDs are a special case of
IDEXs. Thus, we concentrate on a class of instances
of the inference problem for which the analytic
tableaux method is a decision procedure.

We first state a lemma that gives a charac-
terization of unbounded tableaux. We say that an
application A of rule PR, with antecedent e[Xl(Z),
is-a consequence of an application A’ of rule ID
or rule,PR in a Ebleaux cs iff one of the wffs
introduced in u by A’ generates the antecedent
eCxl(?i) of A , possibly after a sequence of ap-
plications of the rules for relational expressions.

Lemma 6.1: Let P be a finite set of wffs.

cc 1

(*)

Lemma 6.1 suggests a way to guarantee that ~. the refined procedure always stops. It suffices
to restrict P and P so that, when trying to es-
tablish P IP, the refined procedure never ap-
plies rule PR as a consequence of applications
of rules ID or -rPR. This is not the case when P
contains, for example, (r(a,bx+sCABCl(a,b,c)) or
((s-s[ABCl)(a,b,c) + r(a,b,c)) since,after ap-
plying rule ID to each of these formulas, rule PR
will be applied to sCABCI(%), for some x. The cdn
ditions on P k P discussed above can easily be-
translated to restrictions on the structure of P
and P.

u is an unbounded systematic tableau starting
with P iff rule PR is applied infinitely often
in U as a consequence of applications of rules
ID or 1PR.

Proof

Obvious, since rule PR is applied infinitely
often in cf.

Suppose that (5 is an unbounded systematic
tableau for P (P is finite) but rule PR is
applied finitely many times in o as a conse-
quence of applications of rules ID or -IPR.
By definition of the refined procedure, there
are at most IPI appl.ications of rule 1ID in
u and,at most as many applications of rule PR
that are not consequences of applications of,
rules ID or 1PR as.there are projection op-
erations occurring in wffs in P. Then, there
are finitely many applications of rules -JID
and PR in o.

Since these are the only two rules that in-
troduce new constants, finitely many con-
stants were used in o. But then rules ID and
,PR were also applied finitely many times
in U. This in turn implies that the refined
procedure stops in finitely many steps. Hence
u is bounded. Contradiction. 0

Towards this end, given an expression f of L
and a specific occurrence p of a subexpression of
f, we define the negation index or, simply, the
index i(p,f) of p in f as the number of set dif-
ference operations prefixing p in f. For example,if
f = e[Al - (g-e)CB1 , then the index of the leit-
most occurrence of e is 0 and the index of the

rightmost occurrence of e is 2.
Given a wff P and a specific occurrence p of

an expression of P, we extend the index as follows
(i(p,P) now counts set difference operations and
negations):

(1) if P is f(Z), then i(p,P) = i(p,f)

(2) if P is 14, then i(p,P) = i(p,Q) + 1

(3) if P is (Ql"Q2) or (QlvQ2) and p occurs in Qi,
then i(p,P) = i(P,Qi)

(4) if P is (QlaQ2) and p occurs in Ql, then
i(p,P) = i(p,Ql) + 1 otherwise i(p,P) = i(p,Q2)

(5) if P is (A
4""'

A, -F B) and p occurs in A. then
i(p,P) = 1 p,Ai) + 1, otherwise i(p,P)=i(i:B)

Likewise, we define the index of an occur-
rence R of a subformula of a wff P as follows
(i(R,P) counts negations prefixing R):

(6) if P is R then i(R,P) = 0

(7) if P is,R then i(R,P) = 1

(8) if P is (Ql"Q2) or (QlvQ2) and R occurs in Qi,
then i(R,P) = i(R,Qi)

(9) if P is (Ql *Q2) and R occurs in Ql, then
i(R,P) = i(R,Ql) + 1, otherwise
i(R,P) = i(R,Q2)

(lO)if P is (Al,...,A, + B) and R is Ai, iE[l,nl ,
then i(R,P) = 1, otherwise i(R;P) = 0

We can now state the following theorem.

Theorem 6.2: The analytic tableaux method is a
decision procedure for instances P b P of the
inference problem for ID languages such that,
for each subformula Q of a wff in P u hP) such
that Q is of the form (Al,...,A,+B) or
-rf [Xl(a), for each expression p occurring inQ
such that p is of the form eCX1, if Q has even
degree, then p has odd degree.

Proof

Let P 1 P be an instance of the inference problem
for ID languages satisfying the conditions of the
theorem and suppose that the refined procedure does
not stop when applied to P u (,P).

By Lemma 6.1, the refined procedure does not stop
iff rule PR is applied infinitely often as a con-
sequence of rules ID or,PR. But rule ID is ap-
plied iff a wff Q of the form (Al,....,A, + B) oc-
curs in some node of the tableau, possibly after
several applications of A- and B-rules. But this
is possible only when Q occurs in some formula of
Pu{-P) with even index. Now, this application of
rule ID will have as a consequence an application
of rule PR iff there is an occurrence p of an
expression of the form e[Xl in Q and the index of
p is even. Similar observations apply when Q is of
the form.f[XI(a). But in both cases, the condi-
tions on Pu{-,P) are violated. Contradiction. Hence,
the procedure always stops when the input Pu&P)
satisfies the conditions of the theorem. 0

We conclude this section with some examples
and comments on the class of instances for which
the analytic tableaux method (i.e., the refined

196

procedure of Section 5) is a decision procedure
(with appropriate translations for FDs, INDs and
natural join):

(1) r: X-tY V r: X+2 k rCXY1 * r[XZl 5 r

(2) (rCA=lI)CABI: A+B, (r-r[A=l])[AC]: A+C

1 (rrA=lI)[ABI * (r[A=ll)CACDI u

(r-r[A=lI)[ACI * (r-r[A=lI)[ABDl 5 r

(3) el:Xl+Yl, . . .,e,. n 'X +Yn p e,:X,+Y, ,
where e,,...,e, are expressions that do not
involve set difference.

We note at this point that, by (3), our result
then contains as a special case the main result in
CK121. In other words, our result extends the main
result in CK121 by considering a much wider class
of dependencies (and not just FDs over expressions)
and by allowing set difference (albeit in a res-
tricted way).

The following instances do not satisfy the
conditions of Theorem 6.2 and, in fact, the refined
procedure diverges when applied to them:

(4)

(5)

(6)

r: A+B, r-CA1 5 rCB1 k rCB1 5 r[Al

rCX1 5 sCY1 k ,rCXl(a) * rCX1 5 (s-sCY=al)CYl

However, we can rewrite (5) to conform with the
conditions of Theorem 6.2. Indeed, we can trans
form (5) into:

t 5 u /= 7t(Z) => t 5 (u-uCY=al)

by defining t=r[Xl and u=sCYl, and observing
that

(s-sr.Y=z1)cYl = (SCYI - scYlCY=al)

7. Conclusions

This paper described a formal system for
reasoning about implicational dependencies over
relational expressions and an associated proof pro
cedure based on the analytic tableaux method. Th:
basic motivation was provided by various schema
design problems briefly discussed in Section 3.

The analytic tableaux method proved to be
quite attractive and easy to use manually. However,
it may fail to stop, even in trivial, albeit patho-
logical, cases. This should not be viewed as a handi
cap of the method because the problem it tries to -
solve is indeed undecidable. Moreover, we exhibited
a rich class of instances of the problem for which
the method is a decision procedure. But it must be
added that the procedure for constructing systematic
tableaux is quite inefficient, since it requires
considerable extra bookkeeping. Hence, reasonable
heuristics for reducts of the full problem should
also be sought. However, the search for provably
tractable reducts should never reduce the expressive
ness power of the language beyond the point that -
it becomes irrelevant to the schema design problems
that motivated this research.

Acknowledgements

This research was supported in part by FINEP and
CNPq grant 402090/80. Support from IBM do Brasil is

also gratefully acknowledged.

References_

CABUI

CBFHI

CBBGI

A.V. Aho, C. Beeri and J.D. Ullman. “The
Theory of Joins in Relational Databases",
ACM TODS 4,3 (Sept. 1979), 297-314.

C. Beeri, R. Fagin, J.H. Howard. "A Com-
plete Axiomatization for Functional and
Multivalued Dependencies". Proc. ACM
SIGMOD Conf. (Aug. 1977), 47-61.

C. Beeri, P.A. Bernstein, N. Goodman. "A
Sophisticate's Introduction to Database
Normalization" Proc. 1978 Very Large Data
base Conf., 113-124.

-

CBMSU~C. Beeri. A.O. Mendelzon. Y. Saniv. J.D.

CBGI

CCBl

[CCFl

[CLMI

cc011

CDAI

CENI

CFAll

CFAZI

CFA31

CGJI

Ullman. .
- I

"Equivalence of Relational Database
Schemes". Proc. 1979. ACM Symp. on the
Theory of Computing, 319-329.

P.A. Bernstein, N. Goodman. "What does
Boyce-Codd Normal Form do?". Proc. 1980
Very Large Database Conf.

M.A. Casanova, P.A. Bernstein, "A Formal
System for Reasoning about Programs Accessing
a Relational Database", ACM TOPLAS 2,2
(July 1980)

M.A. Casanova, J.M.V. de Castilho, A.L. Fur-
tado. "Properties of the Conceptual and
External Schemas". (submitted for publica-
tion).

A.K. Chandra, H.R. Lewis, J.A. Makowsky.
"Embedded Implicational Dependencies and
their Inference Problem". RC 8757, IBM
T.J. Watson Research Center, Yorktown
Heights, N.Y. (March 1981)

E.F..Codd. "Further Normalization of the Data
Relational Model (R.Rustin,ed.), Prentice-
Hall, N.J. (1972).

C.J. Date. "An Introduction to Database Sys-
tems". (2nd ed.), Addison-Wesley Pub. Co.
(1977)

H.B. Enderton. "A Mathematical Introduction
to Logic". Academic Press (1972)

R. Fagin. "Multivalued Dependencies and a
New Formal Form for Relational Databases".
ACM TODS 2,3 (Sept. 1977)

R. Fagin. "Horn Clauses and Database Depend-
encies". Proc. ACM SIGACT Symp. on theTheory
of Computing (1980)

R. Fagin. "A Normal Form for Relational Data
- bases that is based on Domains and Keys"

ACM TODS (to appear)

J. Grant and B.E. Jacobs. "On Generalized
Dependencies" (to appear).

19-l

[Kel W. Kent. "Consequences of Assuming a Univer-
sal Relation". ACM TODS (to appear).

[Kill A. Klug. "Entity-Relationship Views Over
Uninterpreted Enterprise Schemas". Proc. Int.
Conf. Entity-Relationship Approach to sys-
tems Analysis and Design (1979), 52-72.

CD121 A. Klug. "Calculating Constraints on Rela-
tional Expressions". ACM TODS 5,3 (Sept.1980)

[Mel A.O. Mendelzon. "Database States and their
Tableaux". Comp. Syst. Research Group, Univ.
of Toronto (unpublished TR).

CMMSI D. Maier, A.O. Mendelzon and Y.Sagiv. "Test-
ing Implications of Data Dependencies". ACM
TODS 4,4 (Dec. 1979), 455-469.

CPrl

CPYI

[Ril

CRUI

CSml

CSSI

CSUI

CSWI

CSYI

CWMI

V.R. Pratt. "A Practical Decision Method for
Propositional Dynamic Logic-Preliminary Re-
port". Proc. 10th ACM Symp. on the Theory of
Computing (1978), 326-337.

C. Papadimitriou and M. Yannakakis.
"Algebraic Dependencies". Proc. 1980 IEEE
Symp. on Foundations of Computer Science.

J. Rissanen. "Independent Components of
Relations". ACM TODS 2,2 (Dec. 1977) 317-325.

N. Rescher, A. Urquhart. "Temporal Logic".
Springer-Verlag (1971)

R.M. Smullyan. "First-Order Logic".
Springer-Verlag (1971)

J.M. Smith and D.C.P. Smith. "Database
Abstractions: Aggregation and Generalization".
ACM TODS 2,2 (June 19771, 105-133

F. Sadri, J.D. Ullman. "A Complete Axiom-
atization for a Large Class Dependencies in
Relational Databases". 1980 ACM Symp. on the
Theory of Computing.

Y. Sagiv, S. Walecka. "Subset Dependencies as
an Alternative to Embedded Multivalued Depend
encies". TR UIUCDCS-R-79-980, U. of Illinois-
at.Urbana-Champaign (July 1979).

Y. Sagiv, M. Yannakakis. "Equivalence among
Relational Expressions with the Union and Dif
ference Operations". JACM 27,4 (Oct. 1980) ,-
633-655.

G. Wiederhold, R.El-Masri. "A Structural Model
for Database Systems". TR STAN-CA-79-722,
Stanford University (Feb. 1979).

198

