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A template dependency is a formalized integrity constraint on a relational 
database, stating that whenever tuples exist in the database that agree on certain 
attributes, an additional tuple must also be present that agrees with the others in a 
specified way. It is shown that the inference problem for template dependencies is 
undecidable, that is, there can be no algorithm for determining whether a given 
dependency is a logical consequence of a given finite set of dependencies. The 
undecidability result holds whether or not databases are considered to be 
necessarily finite. 

INTROD UCTION 

The goal of dependency theory is to formalize constraints  on the da ta  
compris ing a relat ional  database.  In general,  a dependency is a statement to 
the effect that  when certain tuples are present in the database ,  so are certain 
others. Such statements can be used, for example,  to capture  the idea that  
at tr ibutes are funct ional ly related or independent  in some way. Many  
varieties of  dependencies have been proposed  in the l i terature; see the 
discussions in Fag in  (1980) and Yannakakis  and Papad imi t r iou  (1980), for 
example.  The prol i ferat ion of  varieties is due in par t  to the desire to balance 
two opposing forces: on the one hand, dependencies should be of  a form 
general enough to express interesting propert ies,  but on the other hand, the 
form should not be so general that  natural  questions about  dependencies 
become undecidable  or computa t iona l ly  intractable.  A significant question 
about  any class of  dependencies is its inference problem: Given a finite set D 
of  dependencies and a single dependency D 0, to determine whether D O is true 
in every da tabase  in which each member  of D is true. A solution to the 
inference problem carries with it the abil i ty to determine whether two sets of  

* This work was reported in preliminary form in Gurevich and Lewis (1982). 
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dependencies are equivalent, whether a set of dependencies is redundant, etc. 
The inference problem has been shown to be undecidable or intractable for 
several classes of dependencies (Chandra et al., 1981, Beeri and Vardi 1981). 

Template dependencies were introduced by Sadri and Ullman (1980) and 
have been studied in several subsequent papers. (A precise definition is given 
in the next section.) An important advance in comprehending their expressive 
power was made in Fagin et al. (1981), where it was shown, among other 
things, that there are template dependencies true in all finite databases which 
fail in some infinite database. The methods of Fagin et al. (1981) suggested a 
line of attack on the inference problem, on which we here report. The main 
result of this paper is that the inference problem for template dependencies is 
undecidable, whether or not we adopt the view that a database must be a 
finite structure. 

Our results are based on the undecidability of the word problem for a 
class of semigroups. In brief, the result used is as follows (it is stated 
precisely below). Let S -  {A0, AI,..., Ap} be an alphabet, where Ap is the 
symbol 0, and let E be a set of equations {x l--ym ..... xn-Yn}, where 
N, Y~ E S*. Included in E are the equations needed to make 0 a zero of the 
semigroup: 0 A I - - A ~ 0 = 0  for all i. Consider semigroups generated by 
A0,..., Ap. Then the following two sets are effectively inseparable (and hence 
neither is recursive): 

(1) {E: A 0 = 0 holds in all semigroups in which each member of E 
holds}, 

(2) {E:there is a finite semigroup G satisfying the cancellation 
property (explained below) in which each member of E holds but A0= 0 
fails }. 

This word problem is of a somewhat technical nature but is of interest 
outside this application. The historical context is as follows: Post (1947) 
showed the word problem for arbitrary semigroups to be undecidable. Turing 
(1950) showed the word problem to be undecidable for semigroups with 
cancellation, i.e., semigroups such that, for any x, y, y ' ,  if x y = x y '  or 
yx  = y ' x ,  then y = y' .  Gurevich (1966) showed that the word problem for 
finite semigroups is undecidable, that is, it is undecidable whether there is a 
finite semigroup in which a given set E of equations holds but an additional 
equation s "- t fails. For our purposes the most convenient result would have 
been the effective inseparability of 

(3) {(E, s = t): s = t holds in all semigroups in which each member of 
E holds } 

and 

(4) {(E, s - t): there is a finite semigroup with cancellation in which 
each member of E holds but s = t fails/. 
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Unfortunately, a finite semigroup with cancellation is a group, and the word 
problem for finite groups is a well-known open problem. 1 Instead we are able 
to make do with less: We consider semigroups with zero in which 
cancellation is possible except when the terms of the equation are zero (in 
which case cancellation would of course be unreasonable anyway). The 
result is stated more precisely below but is proved elsewhere (Gurevich and 
Lewis, in press). 

THE PROBLEM AND THE MAIN LEMMA 

A database is for our purposes simply a relational structure. In our 
treatment such a structure is assumed to consist of a single relation R with a 
fixed number of columns or attributes A, B,..., C. A typing restriction is also 
in force: The domains of the various attributes are disjoint. For example, 
suppose the relation R represents the availability of garments of various 
styles and sizes from various suppliers. Then R has three attributes: 
SUPPLIER, STYLE, and SIZE, and typical members of the R relation might 
be (St. Laurent, Evening Dress, 10) and (BVD, Brief, 36). The disjointness 
of the three attribute domains is natural since no supplier is a style, etc. 
(Naturally, our undecidability proofs apply a fortiori if either 
assumption-- that  of the single relation, or that of the disjoint attributes--is 
abandoned. See Makowsky (1983) for a discussion of the semantics of the 
typing restriction.) 

A template dependency is a statement, formalized in the language of 
predicate logic, to the effect that if certain tuples are in R, then some other 
single tuple is also in R. Schematically, we may write a template dependency 
in the form 

R (a, b,..., c) 

& R(a ' ,b ' ,  .... c') (theantecedents) 

& R(a", b", .... e") 

R(a*, b*,..., c*) (the conclusion). 

meaning that if the tuples (a, b,..., e), (a ' ,  b' ,  .... e ' )  ..... and (a", b", .... e") are 
in the database, then so is (a*, b* ..... c*). (We rule out the use of the identity 
sign.) Not all of a, a', .... a", a* need be distinct, and similarly for the other 

Recently Slobodskoi (1981) has shown the undecidability of the word problem for finite 
groups. By a construction like that of this paper, this result could be used to establish the 
undecidability of the inference problem for template dependencies over finite databases. 
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attributes; otherwise the dependency would be trivial. (Because of the typing 
restriction, however, no a can be the same as any b. That is, since variables 
in different columns must range over different sets of individuals, no variable 
can appear in two different columns.) Nor does a* need be among 
a, a',..., a"; if a*, b*,..., e* all appear among the antecedents, then the depen- 
dency is said to be full, otherwise embedded. The symbols in the antecedents 
are to be interpreted as universally quantified (for all a, b, etc.) and, in the 
case of an embedded dependency, any symbols in the conclusion not 
appearing in the antecedents are interpreted as existentially quantified (there 
exist b*, etc.). For example, consider the dependency 

R(a, b, c) & R(a, b', c') ::> R(a*,  b, c ' )  

for the garment database just used as an example. This dependency asserts 
that if a supplier supplies both garments of some style b and garments of 
some size c', then there is a supplier (not necessarily the same one) of style b 
garments in size c'. 

The question addressed here is whether a given finite set of template 
dependencies has another given template dependency as a logical conse- 
quence. We can distinguish two versions of the meaning of "logical conse- 
quence." In the true database interpretation, the relation R (and therefore the 
domain of each attribute) is of finite but arbitrary size. In the other version, 
R may be infinite. Fagin et al. (1981) prove that the two versions of "logical 
consequence" differ for certain systems of template dependencies. We here 
prove that under either view, the inference problem is undecidable. 
Specifically, we prove the following: 

MAIN THEOREM. Let D range over finite sets of  (typed) template depen- 
dencies and let D O range over single (typed) template dependencies. Then the 
following two sets are effectively inseparable: 

{(D, Do): D o holds in every (finite or infinite) database in which 
each member of D holds}, 

{(D, Do): Do fails in some finite database in which each member 
of D holds }. 

It follows immediately that neither set is recursive and that there is no 
recursive axiomatization of the set of all (D, Do) such that D o holds in all 
f ini te  databases satisfying D. ("Effective inseparability" is a condition 
stronger than recursive inseparability; see Rogers, 1967 or Gurevich and 
Lewis, in press, for an explanation.) 

The proof of the Main Theorem has two parts. The Main Lemma gives the 
necessary result about effective inseparability for the word problem 
mentioned above. The Reduction Theorem shows that this word problem can 
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be reduced to the given database dependency problem, so that a solution to 
the latter, in either the finite or the infinite case, would imply a solution to 
the former. 

As mentioned earlier, several undecidability proofs for database depen- 
dencies have appeared elsewhere. The result of this paper is stronger than 
that of Chandra etal. (1981), that the inference problem is undecidable for 
type embedded implicational dependencies (EIDs). An EID resembles a 
template dependency, but the conclusion may be a conjunction of atomic 
formulas rather than a single atomic formula. For example, the following is 
an EID: 

R(a, b, c) & R(a, b', c') ~ R(a*, b, c) & R(a*, b, c'). 

In terms of the garment supply example, this states that if one supplier 
supplies a garment b in a size c and also supplies some garment in size c', 
then there is a supplier of garment b in both sizes c and e'. Since EIDs are 
more general than template dependencies, the results of this paper imply the 
undecidability results of Chandra (1981), but not vice versa. See also Beeri 
and Vardi (1981). 

A result similar to the main result of this paper has been proved by Vardi 
(in press) by quite different techniques. Vardi's proof yields dependencies 
with an unbounded number of antecedents but a fixed number of attributes; 
our proof yields dependencies with a bounded number of antecedents (five at 
most) but an unbounded number of attributes. Since one parameter or the 
other must be unbounded in any undecidable class of dependencies, our 
results may be regarded as complementary. 

Our construction was inspired by the diagrams used in Fagin et al. (1981) 
to describe dependencies succinctly. A dependency with k antecedents and 
one conclusion is represented by an undirected graph with k + I nodes. The 
nodes represent tuples in the relation, and the labels of edges are attributes 
on which those tuples agree (have the same value of the attribute). Thus each 
type of edge label represents an equivalence relation; implied edges may be 
omitted in diagrams to avoid clutter. A numbered node is an antecedent, and 
the node labelled * is the conclusion. Thus the * tuple has existentially quan- 
tified components on any attributes that do not label edges (or implied 
edges) joining that tuple to others in the diagram. For example, the diagram 
in Fig. 1 represents the dependency used earlier as an example: for any 
a, b, e, b', e', 

R(a, b, e) & R(a, b', e') ::> (for some a*) R(a*, b, c'). 

Node 1 represents the tuple (a, b, e), node 2 the tuple (a, b', c '),  and node * 
the tuple (a*, b, c'). Nodes 1 and 2 have the same A attribute, nodes 1 and * 
the same B attribute, and nodes 2 and * the same C attribute, so the three 
edges are labelled accordingly. No attribute values need be mentioned 
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FIGURE 1 

explicitly in these diagrams, since they are all quantified; only the pattern of 
equality among attribute values, and which is the conclusion tuple, are 
important. 

The proof of the Main Theorem is based on a result about the word 
problem for semigroups. Before stating it, we need to define a few notions 
about semigroups. A semigroup G has zero 0 if x0 = 0x = 0 for each x E G 
(we denote the semigroup operation by juxtaposition), and has identity I if 
x I  = I x  = x for each x E G. A semigroup G with zero 0 and with an identity 
has the cancellation property if it satisfies the condition, 

(i) ( x y =  xy '  ~ O or y x  = y ' x  ~ O)=> y =  y ' .  

Also, if G has zero 0 but has no identity, then G has the cancellation 
property if it satisfies both (i) and (ii): 

(ii) (xy = x or y x  = x)  => x = O. 

(Condition (ii) seems a natural one since it describes a circumstance in 
which cancellation would yield the identity, if there were one. It is used in 
the proof to ensure that the cancellation property is preserved when an 
identity element is adjoined to a semigroup that does not have one already.) 

MAIN LEMMA. Le t  S range over alphabets containing the symbols 0 and 
A0, and let x i and  Yi range over strings in S*. Let  q) range over formulas  o f  
the f o r m  

x l  = Y l  & " " • & x .  = Y n ~ A 0 =  0 

such that the equations A0 = 0 and 0A = 0 for all A E S appear among the 
antecedents. Then the following two sets are effectively inseparable: 

{4 : (~ holds in every S-generated semigroup}, 

{4 : 0 fai ls  in some f ini te  S-generated semigroup without identity 
having the cancellation property}, 

This lemma is proved in Gurevich and Lewis (in press) by a combination 
of the methods of Turing (1950) and Gurevich 0966).  
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We use this lemma in a slightly stronger form below: We restrict the 
strings x i and yl appearing in the antecedents of 0 to be of length 2 and 1, 
respectively. Imposing this restriction is a simple matter; if ~ contains a 
conjunct ABC = DA, for example, we introduce new symbols E and F into 
S, add the equations AB = E and DA = F, and replace the equation 
ABC = DA by EC - F. Any semigroup satisfying the original formula ~ will 
satisfy the new formula, with appropriate interpretations for the new 
symbols, and vice versa; and the cancellation property is not affected, 
because only the presentation of the semigroup is changed, not the semigroup 
itself. 

PROOF OF THE MAIN THEOREM 

Let us fix some particular alphabet S and some particular formula gt of the 
form specified in the Main Lemma, with Ix l ] - -2  and ]yi l= 1 for each 
antecedent. In the ensuing construction we shall use the following 
equivalence relations on tuples: For each A E S, the relations A '  and A'; 
and additional relations E and E ' .  (These equivalence relations are the 
attributes of the dependencies, so if S contains n symbols, the relation will 
have 2n + 2 attributes.) We write a ~-A, b to indicate that a and b are A'-  
equivalent, and similarly for the other equivalence relations. 

The basic idea is to represent a word A~ A 2 • • • A k over S by the structure 
of Fig. 2. Let us call such a structure a bridge for A ~ A 2 . . .  A k. All the 
elements across the bottom of a bridge are E-equivalent, all those across the 
top of a bridge are E'-equivalent, and each symbol A i of the word is 
represented by a triangle with the apex having relations A[ and A [' to the two 
points on the base. If x - y is one of the given equations and v results from 
w by the substitution of an occurrence of y for an occurrence of x, then the 
corresponding dependencies provide the means for replacing in a bridge for 
w a portion representing x by another portion representing y to yield a 
bridge for v. 

For each equation r: AB = C in the antecedents of 0, construct the four 
dependencies Di(r ) (i = 1, 2, 3, 4) illustrated in Fig. 3. Let D be the set of all 
these dependencies. Also, let D O be as shown. The Main Theorem is implied 
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( r )  
D z ( r )  

D3( r ) D 4 (  r ) 

l' 
r,  A B = C  

FIGURE 3 

by the following theorem relating the word problem for ~ to Do and the 
dependencies in D. 

REDUCTION THEOREM. (A) I f  (~ holds in every S-generated semigroup, 
then D o holds in every database in which each member of D holds. 

(B) I f  ~ fails in some finite S-generated semigroup having the 
cancellation property, then there is a finite database in which each member of 
D holds but D O does not. 

If  the Reduction Theorem holds, then by the Main Lemma the  two sets 
mentioned in the Main Theorem are effectively inseparable. So it remains to 
prove the Reduction Theorem. 

Proof of (A). Suppose that ¢ holds in every S-generated semigroup. Then 
there is a sequence of  m + 1 ~ 1 strings u 0, u l ..... u m, where u o is A o, u m is 0, 
and for i = 0  ..... m - - 1  u i .  l results from ul by replacement of  a single 
occurrence of  some x i by Yl or vice versa. (Otherwise, let ~ be the 
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equivalence relation on strings induced by such replacements; then the 
quotient semigroup S * / ~  would provide a counterexample to O.) 

Suppose that M is a finite or infinite database satisfying D. We show that 

M satisfies D 0. Let a, b, d o E M and a ---E b, a _~_A, 0 do, b ~A;' do. Check by 
induction on j = 0 ..... m that if uj = B o • • • Bp_~ (B t ..... Bp_~ E S), then there 
are Co ..... Cp C M and d 1 ..... dp C M such that a = c 0, b = Cp, and e k ~E Ck+ 1, 
dk -~e' dk+ 1, G ~"k dk+l'  dk+ 1 ~--,'~' G+ 1 for k = 0 ..... p -- 1. In particular, 

when j =  m there is a d I such that d0-~E, dl ,  a ~0, dl ,  and d 1 ~0,,b, as 
required by D O . 

(B) Now suppose that O fails in some finite semigroup G without identity 
having the cancellation property. Adjoin to G an identity element I and call 
the resulting semigroup G'.  We claim that G '  also has the cancellation 
property. For  suppose x y = x y '  :/: 0 in G'.  If  x = I  or y =  y '  = I  or x, y, 
y ' C  G, then y - - - y ' .  Without loss of  generality we may assume that the 
remaining case is x, y C G, y ' = L  Then x y = x : / : O  in G, which is 
impossible. The proof  that y x  = y ' x  ~ 0 ::> y = y '  is similar. 

In what follows, if x is any string in S*, then x is that element of G '  
denoted by the term x. We construct a finite model for D in which D O fails 
as follows. Let P =  {a ~ G ' :  there is some b C G'  such that ab =A0}.  Since 
I ~ G' ,  it follows t h a t / ,  A 0 ~ P. Also, since A o 4= 0, 0 ~ P. For any A E S, 
and a, b C P, we ~,rite a ~a  b if and only if aA = b. Note that -% is a 1-1 
partial function on P since G'  has the cancellation property, and that -% is 
empty. For  every triple a , A , b  such that a , b ~ P ,  A E S ,  and a ~ A b ,  
introduce a new element (a, A, b), and let Q be the set of these new elements. 
The universe of  the model for D is the union of  P and Q. It remains to 
specify the equivalence relations. 

(1) For  A E S, ~A' is the reflexive symmetric transitive closure of  
{((a, A, b), a): b}. 

FACT 1. Each ~A, equivalence class has cardinality 1 or 2. In 
particular, the only equivalence classes contained entirely within P or entirely 
within Q are trivial. 

(2) For  A E S,~A,, is the reflexive symmetric transitive closure of 
{({a, A, b>, b): a ~A b}. 

FACT 2. Each ~ ,  equivalence class has cardinality 1 or 2. 

(3) a ~ b if and only if a = b or both a and b are in P. 

(4) a ~E, b if and only if a = b or both a and b are in Q. 

It remains to show that this structure is a model for each dependency in D 
but not for D 0. In each case let us suppose that a template matches and let 
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us denote by t i the element of  P or Q that matches n o d e  i of  the template 
diagram. In other words, tuples t t and tj agree on the components labelling 
the edges connecting nodes i and j of  the diagram (and also agree on other 
components if implied by transitivity). We must show that a tuple 
corresponding to * can be chosen in each case (D1)-(D4) but not in the case 
of  (Do). 

(D1) If  t 1 . . . . .  ts, then * can be chosen as the same element. 
Suppose that t l , t2 ,  or t 3 is in Q. Then t l = t  2 = t 3 ,  since E holds only 
trivially in Q. Hence tl ~ ,  t4 and t I ~A,, t4. This cannot happen if t 4 E P, for 
then t~ = (t 4, A, t4}, which implies that taA = t4, and this is impossible since 
G has no identity and has the cancellation property. (That is, A 4=/, and 
t4A = t4 implies t4 = 0, which it is not.) So t4 C Q, and hence t 4 = t~ since 
~-A, holds only trivially in Q. By the same argument, t 5 ---tl as well, and the 
case in which any of t~, t2, t 3 is in Q reduces to the case in which all five 
elements are identical. So assume that t~, t 2, and t 3 are in P;  a similar 
argument shows that t 4 and t 5 are in Q unless all five points are identical. 
Then necessarily t 4=( t l ,A ,  t2}, ts=(t2,B,  t3}, so that t l A = t  z and 
tIAB = t 3. Then tl C =  t 3 and * may be chosen as (t~, C, t3). 

(D2) If  t ~ = t  2 = t  3, then * may be chosen to be the same point. If  
tl E Q, then t: = t~ since ~E holds only trivially for members of  Q; also t 3 

must be identical by an argument like that used above for (D 0. So assume 
that tl and t 2 are in P;  again t 3 ~ Q unless all three points are identical. So 
t 3 = ( t~ ,C,  t2); and there is some t such that t~Ct =A o. Hence t~A E P. 
Then let * be (t 1, A, tlA ). 

(D3) Completely analogous to (D2). 

(D4) Again, unless the whole template collapses, t~ and t 2 are in P and 
t 3, t , ,  and t~ are in Q. Hence t 3 = (t~, C, t2), t 4 = (t~, A, bl)  for some b~, and 
t 5 = (b 2, B, t2) for some b2. That is, t iC= t 2, t~A = b~, and b2B = t2. Then 
b iB= tIAB =t~C=t2=b2B and bl = b  2 by cancellation. Choose * to be 
this element. 

( N O T D o )  Let t~=I, t 2 = A  o, t3=(LAo,  Ao); then no * can exist 
since it is not the case that A 0 = 0. 

This completes the proof. 
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