
Developing a Generic Genetic Algorithm
Melvin Neville

Northern ArizonaUniversity
College of Engineering & Technology

Flagstaff, AZ 86004
1-928-523-4613

Melvin.Neville@nau.edu

Anaika Sibley
Northern Arizona University

College of Engineering & Technology
Flagstaff, AZ 86004

1-928-523-2206

abs5@dana.ucc.nau.edu

ABSTRACT
Genetic and evolutionary algorithms, inspired by biological
processes, provide a technique for programs to “automatically”
improve their parameters. We discuss the basics of the algorithms
and introduce our own hybrid. The development of this hybrid
and its application to a simplified problem, evolving the
coefficients for the sine function in a Taylor series, presents
opportunities for computer science education with respect to
model-building, data structures, and language features. Students
must decide upon the representation of the chief mechanisms of
genetic algorithms: mutation to alter the values of parameters
directly and crossover to vary the groupings of co-evolved
parameters in order to break away from local fitness maxima.
They must examine the meaning of fitness itself as well as make
many other modeling decisions. Ada itself provides both
challenges and advantages: linked-lists must be well understood
to be updated in an object-oriented context and hard-typing
produces mixed reactions in students used to C++, but generics
provide a powerful way to generalize the algorithm and
incorporating different problem domains,.

Categories and Subject Descriptors
D.3.3. [Programming Languages] Language Constructs and
Features – data types and structures, inheritance, modules,
packages; I.2.2. [Artificial Intelligence]: Automatic
Programming – program modification.

General Terms
Algorithms, Design, Languages.

Keywords
Genetic algorithm, evolutionary algorithm, generics, templates,
teaching, Ada education, data structures, artificial intelligence,
software tools.

1. INTRODUCTION
This paper comes out of the serendipity of a research project
conducted by the first author and a course in the Fall 2002
semester which he is teaching; the second author is a student
researcher in the project and a student in the course. The research
involves the modeling of biological neural networks in relation to
the evolution of intelligence and especially learning ability [6]. In
order to refine the values of the parameters used in the modeling,
we decided to develop a genetic algorithm (GA) engine that could
be used with variants of the developing simulation. In order to
understand the GA better, we first developed it in connection with
a simplified problem. During this development it became
apparent that the development process itself offered excellent
opportunities for teaching computer science principles in general
and the usefulness of Ada in particular.

The Fall 2002 course (CSE 470, “Introduction to Intelligent
Systems”), introduces advanced undergraduates and graduate
students to non-symbolic artificial intelligence (AI) through the
three course segments: neural nets, fuzzy logic, and genetic
algorithms. These approaches are all inspired by biological
phenomena. This inspiration extends to the desire to
“automatically” refine the parameters of an executable program,
i.e., have a process improve those parameters rather than depend
upon specifying them correctly at the beginning. For example, a
Hebbian or a Perceptron neural net can be used to recognize
patterns after it has been trained [3]. This training is the
“automatic” adjustment of the weights within the net to produce
net-output match to a target output; the properties of the net are
such that it can then generalize in its classifications. Similarly, an
evolutionary or genetic algorithm can be used to alter the
parameters used by a program so that it executes better. Again,
the process is “automatic” in that the training algorithm causes the
parameters to improve without explicit intervention by the
programmer. The appropriate implementation of the algorithm,
however, involves knowledge of the problem domain.

One of the higher-level purposes of the course is to expose the
students to software tool construction: in this regard, the
programming they do in the three segments of the course provides
generalized experience in tool building that goes beyond what
they would receive from using off-the-shelf software that provides
the functionality of these particular methods [4]. The simplified
GA model that was developed for the learning research is used as
a framework for the GA portion of the course, with the students
guided to and through the important concepts.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGAda’02, December 8–12, 2002, Houston, Texas, USA.

Copyright 2002 ACM 1-58113-611-0/02/0012…$5.00.



As the course is currently being taught and the GA portion of the
course is the last, the presented paper will necessarily represent in
part an update based on the course experiences.

2. GENETIC AND EVOLUTIONARY
ALGORITHMS
2.1 The Basic Genetic Algorithm
GAs were introduced by John Holland in the early 1970s [8]. The
biologically inspiring concepts are the mutation of Mendelian
genetics and the phenomenon of crossover: these produce
individual variation which is then acted upon by an analog to
evolutionary theory’s natural selection. Computer scientists have
envied the ability of species to evolve towards more complex,
higher-functioning forms without (from the standpoint of
evolutionary theory) the necessity of invoking an outside
supervisor. The fundamental ideas in evolutionary theory and
their mapping to a GA (or Evolutionary Algorithm = EA) involve
the following:

(1) A living organism is provided with genes that help
determine its development. A particular gene has its
own responsibilities; however, it generally interacts
with other genes. The organisms (units of selection) in
a GA can be represented by a vector that bears the
parameters of interest to a solution.

(2) The genes are inheritable and hence genetic variation
can be passed on from one generation to the next. The
varying forms of the same gene are termed alleles.
Mutation is a process whereby a gene may alter its
allelic form Similarly, the values of the parameters on
the vector of a GA organism can vary according to rules
that the designer must stipulate, and the meaning of
mutation, as the main introducer of allelic variance,
must be decided.

(3) The genes are organized on chromosomes so that
groupings of particular allelic conformations may
remain intact from one generation to the next:
reproduction involves passing copies of chromosomes
form parent to child. A GA vector represents a
chromosome.

(4) Crossover occurs during meiosis, the production of a
gamete for sexually-reproducing species: portions of
homologous pairs of chromosomes may interchange,
thereby altering which constellations of alleles may be
interacting with which on a single chromosome. (See
Figure 1: homologous pairs of chromosomes, with the
partial exception of the XY pair, bear the same gene
sequences but in potentially different allelic forms.)
The crossover operator in a GA has the function of
enabling different groupings of parameters to come into
contact with each other in possible offspring.

(5) Biological evolution is driven through the genotype of
the individual, the individual’s particular alleles and
their interactions being displayed to the world through
its phenotype. Individual phenotypes will have varying
advantages in a given environment, and these
advantages will, through natural selection, translate into
better chances at survival and reproduction. In a GA the
designer crafts a fitness function to measure relative

advantages to the individuals who have been subjected
to mutation, crossover, and possibly other operations,
and who are competing to constitute the next
generation’s population.

Biuological View GA view

chromosome 1 organism 1

chromosome 2 organism 2

Figure 1. Biology inspires Computer Science: The
reassortment of allele blocks on chromosomes after crossover

(biology) and of parameter values after crossover (GA).

2.2 Genetic vs. Evolutionary Algorithms
Our algorithm is closer to an EA than a classic GA. Michalewicz
[5] describes the essential differences between GAs and
Evolutionary Strategies (ES, use here for EA) as being five-fold:
(1) The classical GA uses a bit vector to represent the parameters
of an individual, whereas an ES uses a floating-point vector. (2)
A GA uses repetitive random selection with repetition to draw the
next population out of the current population, with the chances
being affected by a fitness evaluator (or by rank), while an ES
draws the next population out of a larger number of offspring
from the previous generation by using the fitness function without
replacement. (3) The operations of mutation and crossover may be
applied in a GA according to their separate probabilities after the
next generation has been selected. In an ES the offspring already
contain individuals subjected to mutation and crossover at the
time that selection back to the base population size occurs. (4) In
a GA the probabilities of mutation and crossover are constant,
while in an ES they can alter from generation to generation. (5) A
GA handles “illegal” offspring (those with organism parameters
outside constraints) by penalizing them in the selection process,
while an ES can discard them. In points (1) .. (3) we are closer to
an ES, in (4) to a GA, and with respect to (5), in the simplified
problem we only produce legitimate offspring. However, the term
“Genetic Algorithm” also can imply the generalized evolutionary
approach, and so we use it.

3. OUR ALGORITHM
3.1 A Comparison of Algorithms
Sipper presents a canonical form for the GA [7]:

A B C D E F G H

a b c d e f g h

A B C D E f g h

a b c d e F G H



1. Initialize the generation counter to 0;
2. Initialize the populations of entities (i.e., create them

with an initial genetic makeup);
3. Evaluate the entities (apply a fitness function);
4. Iterate through generations until some criterion for

stopping is met:
4.1. Increment the generation counter;
4.2. Choose the new generation from among the

members of the last generation;
4.3. Carry out crossover on the new generation;
4.4. Apply mutation to the new generation;
4.5. Evaluate the new generation;

5. End iteration;

The choice of the new generation is typically based on a fitness-
influenced, but not fitness-determined, evaluation of the children;
thus there is a possibility for a lower-ranking individual to
contribute to the next generation. The crossover mechanism and
the selection mechanism are both ways of avoiding being trapped
short of a really good solution by local fitness maxima.

Our algorithm differs in a number of respects:

1. Initialize the generation counter to 0;
2. Initialize the population of entities;
3. Iterate through generations until some criterion for

stopping is met;
3.1. Increment the generation counter;
3.2. Each individual produces a standard number of

copies (“children”);
3.3. Each child is subjected to potential mutation;
3.4. Each child has the possibility of crossover

(multiple crossover disallowed);
3.5. The children are evaluated;
3.6. The most fit are selected for the next generation;

4. End iteration;

The principal differences between the two algorithms are that ours
evaluates and selects the next generation after mutation and
crossover have been applied, inverts the order of mutation and
crossover, and selects the next generation strictly on the basis of
the fitness scores. We feel that on the first two issues our
approach is at least as effective and is more related to biology;
furthermore, crossover serves to dislodge a run from local maxima
and therefore non-fitness-based selection is not necessary.

3.2 The Architecture of Our Approach
There are a number of important constants and data structures
involved in the program, which can be described in relation to the
algorithm (Figure 2):

(1) NumWin: the number of Winners per cycle, i.e., the
number of individuals that shall reproduce.

(2) ChildPerWin: the number of children per Winner.
(3) Winners: a list to hold the generation that is about to

produce offspring. This list is NumWin long. This list
is filled and initialized at the beginning of the run (step
2 of the algorithm) and is refilled at the establishment of
the parents for the next generation (step 3.6 of the
algorithm).

(4) Children: a list to hold the offspring that are generated
from the Winners list: it will be NumWin *

ChildPerWin long. The individuals in the list are first
subjected to the possibility of mutation and then (in
random pairings) to the possibility of crossover. After
these operations have occurred, all individuals are
evaluated by Evaluate, the fitness function.

(5) PriorityQueue: a data structure that makes up a priority
queue into which the Children are transferred and
ordered strictly on the basis of their fitness. The size of
the priority queue is the same as that of the Children list
in our implementation; a variant has it the size of the
Winners list.

Figure 2. The algorithmic cycle and the principal data
structures (numbers refer to our algorithm above).

The cycle completes with the fittest NumWin individuals being
drawn from the PriorityQueue and placed in the Winners list.

4. SELECTING A GA PROBLEM
Our consideration here is with respect to the pedagogical
advantages of a particular problem. The problem should be
simple to describe and model, with parameters that give scope to
the mutation and crossover processes, but also generating
interesting modeling questions. In the following we consider a
spectrum of these modeling questions, ranging from language
issues to the process of modeling itself. The confronting of the
questions is a key part of the pedagogy. We include statements of
the decisions made for our research model, but the students are
stimulated to consider alternatives.

4.1 The Target Problem: Optimizing a Sine
Function
To explore the GA process we decided upon using the Taylor
series for the calculation of sine values. This is a simple
mathematical model with a number of coefficients of varying
importance to the accuracy of the model. The Taylor series for
the sine is [2]:

sin(x) = x1 /1! – x3 /3! + x5 /5! – x7 /7! … (x = angle in radians)

mutation crossover evaluation

(2) Initialization

(3,3) (3.4) (3.5)

(3.2) create

children

to next generation (3.6) (3.6) select

Winners list Children list

Priority
Queue



We set the problem of evolving the coefficients αi in of a power
series in x:

sin(x) = α0x
0 /0! + α1x

1 /1 +α2x
2 /2! + α3x

3 /3! + α4x
4 /4! + …

Ideally, in the GA-evolved series every coefficient of an even
power of x would be essentially 0.

Interesting questions arise about how big the series should be,
what the initial coefficient values should be, and how the fitness
of a particular set of coefficients should be measured. For
example, in playing with the breadth of the range of powers
students should discover the limitations of the precision of Float
and even Long Float. We found ourselves in the research forced
to use Long Float and to limit the exponent range to 0 .. 12. In
setting the initial coefficient values, the expectation that
coefficients will evolve approximately equally positively as well
as negatively led us to select 0.0 for all values. The development
of a good evaluation function is non-trivial: it should compute
rapidly, test the whole range of relevant angle values, and force
accuracy throughout the range. For example, our function ran
from 0 degrees through 90 degrees by 5-degree intervals and
summed the square of the error (difference between the tested
organism’s evaluation and that of a perfect sine series evaluation)
for all intervals in the range. Its major fault is in not emphasizing
more errors at the low end of the range of angles. We made the
evaluation function one of the generic parameters to the genetic
algorithm in order to be able to facilitate substituting for it.

4.2 The Interpretation of Mutation
Mutation obviously implies the altering of coefficient values.
However, should mutational effects be the same for all
coefficients? In the research we decided to set the mutational
amount for a coefficient roughly proportional to the amount that
we knew was the desired outcome. It is clear that this takes
advantage of special knowledge and will not be generally
possible.

The frequency of the mutation and the possibility for multiple
mutations in the same organism are further questions. We made
multiple mutations allowable and expressed the frequency of
mutation as a parameter to the algorithm.

4.3 The Interpretation of Crossover
From the standpoint of a GA, the purpose of crossover is to allow
the possibility that favorable constellations of organism-
parameters may be brought together from different organisms.
The analogy to biology is very stretched, so there is room for
diverse interpretations. Our particular approach was to use a
crossover probability algorithm parameter to randomly select
which organisms among the Children could undergo crossover,
randomly pair these (if an odd number, deselecting one individual
randomly), and then use another parameter to randomly choose a
break-point in the range of coefficient powers for swapping
between the two individuals.

5. ADA AND EDUCATIONAL ISSUES
5.1 The Structure of Lists
The lists could have been implemented either through arrays or
through linked-lists. We used linked-lists; furthermore, the nodes

of the lists each pointed to the objects of interest rather than
containing the objects explicitly, so that in the interest of
efficiency the lists and their nodes could exist statically once
formed even though a given node might be “empty”, while the
objects could be easily transferred among nodes.

Arrays would have had the particular advantage of facilitating the
accessing of organisms by index. Linked-lists are also more
confusing to undergraduates (and hence need more practice), and
we discovered in the neural nets segment of the CSE 470 course
that putting them in a strictly object-oriented implementation with
the fields of the nodes being only accessible through access
methods produces particular updating problems (Figure 3a). The
problem arose in the access for updating of the Node’s Contents
field: a GetContents function returns a copy of the Contents of the
Node, so that direct updates to the Content’s field only affect the
copy. Three solutions were proposed as they were, perhaps
surprisingly, not immediately obvious to the students: (1) have the
Node’s Contents field actually point to the object of interest rather
than contain it – access through that pointer gives direct access to
the Real_Contents fields (Figure 3b); (2) obtain a copy of the
Contents object, update its fields, and write the copy over the
original Node’s Contents (Figure 3c); and (3) violate pure OO
encapsulation principles by making the fields of the Node record
public, so that Contents may be operated upon directly through
the pointer that iterates along the list’s nodes (Figure 3d).

Figure 3a. The Iterator pointer gives direct access to Node but
not to Contents (all record fields private), a field inside Node.

Figure 3b. Direct access to Real_Contents is obtained through
the pointer returned by the GetContents primitive function of

Node.

5.2 The Priority Queue
We implemented this through a binary heap, but a simple, ordered
list could also have been used. The trade-off is interesting. In the

Iterator along the linked-list

Node

Iterator along the linked-list

NodeNode

Contents Contents

Node

Contents Contents

Real_Contents Real_Contents



simplest case of the heap, the size of the queue must be NumWin
* ChildPerWin long in order to sort the children; on the other
hand, only NumWin organisms need be drawn from it. The
students could be asked to formulate efficiencies such as a heap of
size only NumWin, with insertions that occur after the heap has
been filled either being logically excluded by the poor fitness of
the candidate or by pushing a poorer-fitness candidate out. The
list alternative is easier to program: its length need only be
NumWin long, and it is formed through insertion-sort, with too-
large values (if low values are considered better) simply
disregarded or pushed off the end of the list.

Figure 3c. GetContents on the Node returns a copy of the
Contents; this can be updated with respect to its fields and
then the copy rewritten to the Node through SetContents.

Figure 3d. Direct access to Contents for updating its fields is
through the iterator pointer as the fields of Node are public.

5.3 Hard-Typing
The first author has reached the conclusion that reactions to Ada’s
hard-typing are partially a result of experience and partially reflect
personality. He himself (usually) welcomes the assistance that
hard-typing gives, but the advantages of the technique do not
necessarily promptly win over new recruits who are more used to
the freer compiler environment of C and even C++. However, it
is hard to imagine the Ada’s complex generics system functioning
without a very careful typing control.

5.4 Use of Generics
Ada’s generics is a very powerful mechanism for the generalizing
of code. To indicate the scope of its involvement in the
development of our tool (and to justify the paper’s title), we first
sketch the interface to the eight generic packages (italicizing the
first appearance of package names for ease in reference). We then
show the instantiation necessary for the driver of this program, as

specialized by the target problem calculating the coefficients of
the Taylor series for the sine function.

(1) A package for the basic nodes in the linked lists, exporting
GenListNode and GenListNodeClassPtr, each GenListNode
containing a GenItemPtr as well as a pointer to the next
node.

generic
type GenItem is private;
type GenItemPtr is access all GenItem;

package GenListNode_Pack is …

(2) A package for the linked-lists that we use for all program
lists, exporting GenList and GenListPtr, and instantiated with
a generic node package.

generic
with package GLNP is new GenListNode_Pack(<>);

package GenLinkedList_Pack is …

(3) A package for the nodes which serve as the nodes directly
stored both in the binary heap and by the pointers from the
nodes in the linked-lists. These serve as intermediates which
store the fitness values of the organisms (the term we will
use for the entities that are to evolve) that are to be subjected
to mutation, crossover, and evaluation; they also contain a
pointer to the organisms themselves. The package exports
GenHeapNode and pointers to GenHeapNode. (see Figure 4)

Figure 4. A GenHeapNode and its connection to the
GenListNode in the list and to the organism node.

Changing an organism from one list to another (or to the
priority queue) involves moving the GenHeapNode-

Organism grouping as a unit.

generic
type GenItem is private;
type GenItemPtr is access all GenItem;

package GenHeapNode_Pack is …

(4) A package for the priority queue, which exports GenHeap,
GenHeapPtr, HeapArray (the implementation of the binary

Iterator along the linked-list

GetContents update fields

SetContentsNode

Contents

Copy of
Contents

Iterator along the linked list

NodeContents

Iterator along the linked list

break here for moves between lists

GenListNode

GenHeapNode

ItemPtr fitness

Organism for
mutation and

crossover



heap), and HeapArrayPtr, and which was instantiated with
GenHeapNode_Pack.

generic
with package GHNP is new GenHeapNode_Pack(<>);

package GenBinaryHeap_Pack is …

(5) A bodyless package to bundle-together types by making them
the parameters of this otherwise null package [1]. This
bundling assures that the objects representing the organisms
to be subjected to mutation are passed as parameters to the
genetic algorithm together with the mutation mechanism
appropriate for them.

generic
type GenObject is private;
-- instantiated with the organisms of interest
type GenObjectPtr is access all GenObject;
type GenMutator is private; -- package for mutation
type GenMutatorPtr is access all GenMutator;

package GenNode_Pack is end GenNode_Pack;

(6) A package to bundle together types and subprograms dealing
with crossover and re-export these under new names. This
package has no body but eliminates a multitude of potential
generic parameters that had formerly made coding the
instantiation onerous.

generic
with package GN_Pack is new GenNode_Pack (<>);

-- bundles types together as in (5) above
type ConcreteCrossOver is private;

-- instantiate with the mechanism specialized
-- for the organisms of interest

type ConcreteCrossOverPtr is access all
ConcreteCrossOver;

with function CrossOverOccursForOrg … return
Boolean;
-- mainly debugging

with procedure DoCrossOver …;
-- to execute the crossover

package GenericCrossOver_Pack2 is …

(7) A package to handle crossover at the level of the list of
organisms potentially undergoing the process. This package
exports MasterCrossOver and MasterCrossOverPtr.

generic
with package GCOP is new

GenericCrossOver_Pack2(<>);
-- instantiate with a concrete crossover
-- package

with package GHNP is new GenHeapNode_Pack (…);
with package GLNP is new GenListNode_Pack (…);
with package GLLP is new GenLinkedList_Pack (…);

package MasterCrossOver_Pack2 is …

(8) The master package for the generic algorithm, exporting
GeneticAlg and GeneticAlgPtr. This is the most complex
genetic package, taking as it does the packages providing
building blocks which must go together to make the master
algorithm. The list of the generic parameters is
uncomfortably long, but it allows the tailoring of the genetic
algorithm to handle many different decisions, which are

indicated in the following comments that accompany the
parameters.

generic
with package GLNP is new GenListNode_Pack (…);

-- exports the nodes for lists
with package GLLP is new GenLinkedList_Pack (…);

-- exports the lists using the above nodes
with package GHNP is new GenHeapNode_Pack (…);

-- exports the fundamental entity for
-- movement among lists

with package GBHP is new GenBinaryHeap_Pack (…);
-- exports the priority queue: for more
-- generality, should be renamed simply as a
-- priority queue!

with package GCOP is new
GenericCrossOver_Pack2(<>);
-- has the rules for an organism’s crossover

with package MCOP is new MasterCrossOver_Pack2
(…);
-- has the rules for crossover among
-- organisms

with function Evaluate (…) return …;
-- fitness evaluator – so must be
-- specific to a concrete organism

with procedure CopyOver (…);
-- copies an organism – so must be
-- specific to a concrete organism

with function MakeMutate (…) return …;
-- creates the desired mutation object –
-- so will be working with a concrete
-- organism

with procedure DoMutate (…);
-- carries out mutation – so must be
-- specific to a concrete organism

package GeneticAlg_Pack is …

The process of instantiation of these generic packages follows
logical lines but is still complex: we think it worthwhile to have a
pattern to follow. The following pattern instantiates for the target
problem of the sine function and hence demonstrates the use of a
set of target-related packages:

package SinSeries_Pack, exporting SinSeries and
SinSeriesPtr types;
-- “SinSeries” from the series of coefficients
-- for calculating the sine value

package SinSeriesEvaluate_Pack, exporting fitness
function Evaluate (decoupling is to allow easy
substitution of alternate fitness functions);

package SinSeriesMutate_Pack, exporting Mutate
and MutatePtr types;

package SinSeriesCrossOver_Pack, exporting
CrossOver and CrossOverPtr types

This grouping of four package reinforces the need for domain-
specific modules and also the usefulness in decoupling these
modules.

The sequence of instantiations (and some renamings) is as
follows:



(1) Instantiation of the “signature” [1] generic package that
bundles together the SinSeries object and the Mutate
that goes with it:

package SSP renames SinSeries_Pack;
package SSGNP is new GenNode_Pack

( GenObjec => SSP.SinSeries,
GenObjectPtr => SSP.SinSeriesPtr,
GenMutator => SinSeriesMutate_Pack.Mutate.
GenMutatorPtr =>

SinSeriesMutate_Pack.MutatePtr );

(2) Two sequential instantiations to set up the priority
queue: the first sets up the nodes of the priority queue
(and also the values attached to the nodes of the linked-
lists) and the second sets up the priority queue itself,
here, a binary heap:

subsypte SSPtr is SSP.SinSeriesPtr;
package SSHNP is new GenHeapNode_Pack

( GenItem => SSP.SinSeries;
GenItemPtr => SSPtr );

package SSHP is new GenBinaryHeap_Pack
( GHNP => SSHNP );

(3) Two sequential instantiations to set up the linked-lists
(the first makes use of the above instantiations, and the
second sets up the linked-lists):

subtype SSHeapNodePtr is SSHNP.GenHeapNodePtr;
package SSLNP is new GenListNode_Pack

( GenItem => SSHNP.GenHeapNode,
GenItemPtr => SSHeapNodePtr );

package SSLLP is new GenLinkedList_Pack
( GLNP => SSLNP );

(4) Two sequential instantiations to set up the crossover
mechanism (the mechanism is more complicated than
with mutation because of the interaction among
organisms):

package SSCP renames SinSeriesCrossOver_Pack;
package SSGCOP is new GenericCrossOver_Pack2

( -- package:
GN_Pack => SSGNP,

-- types:
ConcreteCrossOver => SSCP.CrossOver,
ConcreteCrossOverPtr => SSCP.CrossOverPtr,

-- methods:
MakeCrossOver =>

SSCP.MakeCrossOver,
CrossOverOccursForOrg =>

SSCP.CrossOverOccursForOrg,
DoCrossOver => SSCP.DoCrossOver );

package SSMCOP is new MasterCrossOver_Pack2
( GCOP => SSGCOP,

GHNP => SSHNP,
GLNP => SSLNP,
GLLP => SSLLP );

(5) Finally, the instantiation itself of GeneticAlg_Pack; this
instantiation depends upon the previous instantiations:

package GAP is new GeneticAlg_Pack
( -- packages:

GCOP => SSGCOP,
GHNP => SSHNP,
GBHP => SSHP,
GLNP => SSLNP,
GLLP => SSLLP,
MCOP => SSMCOP,

-- methods:
Evaluate =>

SinSeriesEvaluate_Pack.Evaluate,
CopyOver => SSP.CopyOver,
MakeMutate =>

SinSeriesMutate_Pack.MakeMutate,
DoMutate =>

SinSeriesMutate_Pack.DoMutate );

6. CONCLUSION
The closely-related approaches of Genetic and Evolutionary
Algorithms offer the promise of a semi-automatic adjustment of
relevant programs under paradigms inspired by biological
genetics and evolutionary theory. We present the mechanics of a
generic genetic-algorithm machine written in Ada in which the
use of extensive generic parameters provide flexibility. The
object-oriented paradigm itself can raise problems with respect to
the implementation of updatable linked-lists; these problems are
readily solvable and offer a useful didactic point in themselves.
Another issue is Ada’s hard-typing: it is rarely popular with
students but it is basic to Ada’s success.

In order to model how one could apply the machine to a specific
problem, we give the generic parameters of the eight generic
packages in the program and then trace the instantiation of this
machine for the test problem of “evolving” the coefficients of the
Taylor series for the sine function: the sequences of instantiations
must be carefully choreographed.

Figure 5. Layers of the Genetic Algorithm: The fundamental
data structures and algorithm, the interface, and the actual

instantiation.

Figure 5 illustrates the conceptual layering of the solution that
results from consideration of the basic questions: what is
fundamental to the generic genetic algorithm itself, what should
stand as a generic interface between the algorithm and a particular
instantiation, and how can likely instantiations be so generalized

Generic genetic algorithm: general relation of data
structures and the processing algorithm

Interface: list and node structures, priority queue, entity
carrying organism and its fitness value; mutation

mechanism; crossover mechanism

Particular instantiation (sin-series coefficient problem)



that the interface and the genetic algorithm can be implemented in
a way that the approach is extensible to many different problems?
The consideration of these issues are a related set of significant
modeling problems; our particular solution in this case is only one
way in which the decisions could have been made.

7. ACKNOWLEDGMENTS
The research was partially conducted under the Department of
Energy’s Accelerated Strategic Computing Initiative (ASCI) as
subcontracted to Northern Arizona University through University
of Utah grant 98-E-18 and combined with our college’s PALS
program.

8. REFERENCES
[1] Barnes, J. Programming in Ada95. Addison-Wesley, 1998,

2nd ed.

[2] Dwight, H.B. Tables of Integrals and Other Mathematical
Data. Macmillan, New York, 1957 (3rd ed).

[3] Fausett, L. Fundamentals of Neural Networks. Prentice-Hall,
1994.

[4] Hines, J.W. Matlab Supplement to Fuzzy and Neural
Approaches in Engineering. Wiley, 1997.

[5] Michalewicz, Z. Genetic Algorithms + Data Structures =
Evolution Programs. Springer-Verlag, Berlin, Heidelberg,
New York, 1996 (3rd ed)

[6] Neville, M., and Gray, L. Modeling the evolution of
behavioral learning circuitry: Aplysia stage,
CONIELECOMP 2001 (International Conference on
Electronics and Computers), (Cholula, Mexico 2001).

[7] Sipper, M. On the origin of environments by means of
natural selection. AI Magazine, 22(2001): 133-140.

[8] Tsoukalas, L. , and Uhrig, R. Fuzzy and Neural Approaches
in Engineering. Wiley, 1997.


