
Incomplete Information Costs and Database
Design

HAIM MENDELSON
University of Rochester
and
ADITYA N. SAHARIA
University of Washington

This paper presents a methodology for trading-off the cost of incomplete information against the
data-related costs in the design of database systems. It investigates how the usage patterns of the
database, defined by the characteristics of information requests presented to it, affect its conceptual
design. The construction of minimum-cost answers to information requests for B variety of query
twes and cost structures is also studied. The resulting costs of incomplete database information are
balanced against the data-related costs in the derivation of the optimal design.

Categories and Subject Descriptors: H.l.l [Models and Principles]: Systems and Information
Theory: H.2.1 [Database Management]: Logical Design; H.3.3 [Information Storage and Re-
trieval]: Information Search and Retrieval

General Terms: Design, Economics, Theory

Additional Key Words and Phrases: Information economics, query processing, retrieval models, value
of information

1. INTRODUCTION

A database may be viewed as a computer-based representation of a real-world
system, which is intended to support some operational or managerial decision-
making activities by responding to users’ information requests. Users’ require-
ments serve as input to the conceptual design of the database, which determines
the data items available to support users’ information needs. Then, a design
process leads to the creation of a conceptual schema (satisfying various require-
ments) and a physical implementation. The result is a database which supports
the specified data requirements and, in particular, the queries’ it was planned to
respond to.

’ We give a formal definition of the term “query” in Section 2

This work was supported in part by the IBM Program of Support for Education in the Management
of Information Systems.
Authors’ addresses: H. Mend&on, Graduate School of Management, University of Rochester,
Rochester, NY 14627; A. N. Saharia, School of Business Administration, University of Washington,
Seattle, WA 98195.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1986 ACM 0362.5915/66/0600-0159 $00.75

http://crossmark.crossref.org/dialog/?doi=10.1145%2F5922.5678&domain=pdf&date_stamp=1986-06-01

160 * H. Mend&on and A. N. Saharia

The various design steps have been studied in detail in the literature (cf. [18]).
However, the “data requirements” step-which may be the most crucial of all-
is still a practiced art, which has received little guidance from the theory. In this
step, the costs of including various data items in the database are to be balanced
against the benefits, the result being a set of selected database attributes. In fact,
practicing database administrators make their living by performing such cost-
benefit trade-offs intuitively when they determine the information content of the
database.

This paper introduces a framework for examining this problem using a decision-
theoretic approach (cf. 1121). Specifically, we study how the usage pattern, defined
by the characteristics of the information requests presented to the database,
affects its conceptual design. We embed the decision-theoretic approach in the
operational database environment, linking users’ information demands to the
supply of data by the database. An important feature of this environment is the
variety of decision (and operational) problems which are to be supported by a
single database. In this environment, the designer has to select a set of data
items that will jointly support users’ diverse demands.

The design is viewed as a mapping from the input data to a database state.
This mapping is selected before the input data becomes available, and before
users’ information requests are materialized. Thus, events take place in a se-
quence of three stages: (i) design, (ii) data input, and (iii) queries (or information
requests). The database designer, operating in stage (i), has to cope with two
types of uncertainty, which unfold at different times: input uncertainty, which is
resolved at stage (ii), and interaction (or query) uncertainty, resolved at stage
(iii). This process results in data uncertainty, which calls for the use of statistical
query evaluation strategies.

Incomplete information databases have traditionally been modeled by the use
of “null values” (see, e.g., [ll] for a review; also see, e.g., [3, 5, 9, 10, 19, 201). A
pioneering article examining the role of uncertainty in the evaluation of database
queries is due to Wong (221. In 1221, Wong focuses on the query eualuation
strategy, when the database is subject to data uncertainty, using prior probabilis-
tic information for a given database. Wang’s study provides a useful framework
which serves as a starting point for this research. Specifically, we use Wang’s
query classification scheme and generalize the cost structure suggested by him,
as well as modify his classical ship example to illustrate the points of interest
here. Our objective is, of course, different from Wong’s, since we study the
conceptual design issue while Wong examines the issue of statistical query
evaluation. That is, Wang’s work focuses on queries which are to be evaluated as
part of stage (iii) of our scenario (where the problem is how to cope with data
uncertainy), whereas this study examines the decision problem arising in stage
(i), where the design mapping is to be selected.

The information retrieval literature has preceded the database literature in
studying the role of uncertainty in document retrieval (cf. [13]). Gets [16, 171
introduced a probabilistic approach to the document retrieval problem; his
approach has been extended by a number of authors (cf. [4, 8, 231). The effects
of term dependence on retrieval performance have been examined by Salton, et
al. (141. Chow and Yu [2] study optimal retrieval queries whose retrieval rule is
equivalent to the Neyman-Pearson decision rule; they focus on the use of
ACM Transactions 0” Database Sybxems, Vol. 11, NO. 2, June 19ss.

Incomplete Information Costs and Database Design * 161

feedback information to get better retrieval performance. Like Wang’s work [Z],
these studies appropriately focus on the retrieval strategy rather than the
database design strategy that is at the focus of this work.

In what follows, in Section 2 we introduce the framework for our analysis, and
in Section 3 study the construction of minimum-cost answers to users’ informa-
tion requests. In Section 4 we discuss the problem of choosing an optimal design,
and in Section 5 illustrate the issues through a comprehensive example. Our
concluding remarks are offered in Section 6.

2. THE FRAMEWORK

We view the database as a compact representation of relevant real-world data.
The input data consist of information objects which may he obtained from two
possible sources:

(i) The data my be obtained directly from a real-world system reflecting real-
world events. In this case, the information objects record the details of these
events, which may be represented by (possibly idealized) transactions (e.g., sales
records of a retail firm).

(ii) The data may be extracted from a larger existing database. In this case,
the database represents a view (i.e., a logical subset of a larger “universal”
database, e.g., salary data extracted from a larger “Employee” database).

We unify the two cases and use the term input to indicate the data source.
The purpose of the database is to provide information that reduces the

uncertainty about the values of relevant variables. Most existing work in the
database area focuses on the idealized cases known as “complete information
databases,” where the database reduces the uncertainty to complete certainty.
This means that the database contains all the relevant data for all possible
queries.’ In most real-life situations, however, uncertainty is pervasive because
it is sometimes infeasible and often uneconomical to completely eliminate uncer-
tainty: the expected benefits from reducing the uncertainty to complete certainty
are insufficient to offset the costs of doing so, Thus, for example, real numbers
are not stored with infinite precision, historical data is not kept forever, and
some relevant entities or data-items may not be included in. a subschema since
their added value does not justify their added cost. Also, the database often
represents an aggregation of some “raw” data rather than its full details.

The data stored in the database is used to respond to various queries. The
information provided by the answers to the queries supports various managerial
or operational decisions. When the information stored in the database is incom-
plete, the response provided to a query may be only an estimate of the correct
response. An incorrect response may bring about erroneous actions or decisions,
which are costly. We call this cost “the cost of incomplete database information.”

‘The database designer is interested in reducing the cost of incomplete database
information: however, this will usually require expanding the database while
increasing the data collection, manipulation, storage and retrieval costs (we term
these costs “data-related costs”). One of the most important tasks of the database
designer is to balance the cost of incomplete database information against the

‘Thus, “completeness” is a property of the database and the et of all possible queries.

ACM Transactions on natabase Systems. Vol. 11, No. 2, ‘be 1986.

162 . Ii. Mend&on and A. N. Saharia

data-related costs. Since this balancing is to be performed at design time, the
designer faces two types of uncertainty, which unfold at different stages:

(1) Input uncertainty, resulting from the fact that the realization of the input
data may be unknown at design time. When the input is in the form of
transactions from a real-world system, this is because the actual input data is
typically absent at design time (which takes place before the system becomes
operational). When the data is extracted from a larger “universal” database, the
database may be updated after the “view” is defined by the designer. Conse-
quently, the designer will have incomplete information on the state of the
“universal” database at usage time.

(2) Information-request (or interaction) uncertainty, resulting from the fact
that, at design time, the designer is unable to accurately predict what specific
information requests will take place in the future; he possesses only probabilistic
knowledge of the possible future requests.

To formalize these notions in more concrete terms. we introduce some notation
and assumptions. We assume
by a T x n matrix,

x=

that the input d&a X may be represented

L
We call the rows of the matrix X “information objects” and denote row t
by xt = &I, xf2, , x,,). We call the columns of X “attribute variables” (or, in
short, “attributes”). Each attribute j (j = 1,2, , n) is associated with a domain
Ej such that its values xy E Ej for all t = 1, 2, , 7’. Information objects are
uniquely identified by the row number t, which serves as an implicit attribute.
This allows us to treat attributes 1, 2, , n on the same footing, rather than
treat a single attribute (or a set of attributes) as a database key.3 The information
objects xt are sampled from the composite domain E” = El C3 & 8 C3 E,,
where @ denotes Cartesian product. This terminology is clearly consistent with
the usual relational database terminology, viewing the input data X as a relation
defined over the domains E,, Ez, , En.

A database state D (a matrix) is a representation of information derived from
the input data X and is stored in the database. In general, a design is a procedure
which transforms the input data X into a database state D. We consider designs
that repeatedly apply a given transformation rule f to each information object xt.
A design is then represented by a mapping f, defined over E”, which assigns to
each information object xt a (multidimensional) transformed object dt = f&j.
Thus the transformation f is applied to each row of the T X n matrix X, yielding
a T x m matrix D.’ In particular, any subset of n attributes (m 5 n) defines a

’ Otherwise the keys may be transformed into row numbers. We awme that all feasible designs
include the database keys.
’ Note that this means that the row number t (serving as a key value) is preserved, since row I of X
is transformed into row t of D.

ACM Transactions on Database systems, Vol. 11, No. 2, June 1986.

Incomplete Information Costs and Database Design * 163

projection mapping obtained by projecting each information object .rt over the
selected attributes. The resulting database state D consists of the corresponding
columns of X. In this case we say that the database represents a view of X, the
mapping f is then identified by the subset of attributes included in the database.
For notational convenience, we let f denote, at the same time, the design (i.e.,
the mapping from rr to d,) and the set of attributes included in the view.

To illustrate these concepts, we present a (modified) version of an example
due to Wong [22]. Consider a collection of T ships, each uniquely identified by a
number t E { 1, 2, , I’]. The attribute variables are as follows:

Attribute 1: Type (Ty), with domain El = (carrier, sub};
Attribute 2: Speed (in knots) (El), with domain E2 = [20, 401;
Attribute 3: Current Location (CL), with domain E3 =]A, P, I, M); and
Attribute 4: Last Week’s Location (LWL), with the same domain, E4 = E3 =

IA P, I, Ml.

In E3 and E4, A stands for the Atlantic Ocean, P for the Pacific Ocean, I for the
Indian Ocean, and M for the Mediterranean Sea. An example of an information
object representing ship t (the tth row of X) may be .rr = (sub, 25, A, M).

Here, any subset of the attributes {Ty, S, CL, LWL) defines a view. For
example, if we select the subset f =]Ty, S], the database will include for each
ship its Type and Speed.

In general, the mapping f is not one-to-one. In the above example, if we choose
the view based on f = (Ty, S) and ship 1 has x1 = (sub, 25, A, M), then d, = f&i)
= (sub, 25). The same value of d, would be obtained if I, = (sub, 25, I, P), hence
d, is less informative than xi. This will result in incomplete information costs
when a query such as “find the current location of all ships having speed less
than 30 knots” is invoked. Thus the cost of incomplete database information
depends on the design selected, f; the database designer has to choose a design f
by balancing the anticipated cost of incomplete database information against the
data-related costs (including data collection, storage, retrieval, and manipulation
costs). Clearly, these costs depend on the design f.

At design time the input data realization X is not known to the designer; he
has only some subjective probability distribution over (E”) r, which guides him
through the design process. In what follows, we assume that the information
objects xi, x2, , IT are independent, identically distributed (i.i.d.) random
vectors, each following a joint distribution F,(.) over E”. It is important to
emphasize that this specitication does allow for probabilistic dependence across
attributes, which is an important property of real-world databases. To illustrate,
in the above ship example it is natural to allow for a dependence of Current
Location (CL) on Last Week’s Location (LWL), or for a dependence of Speed
on Type.

Information is requested from the database in the form of queries. A qwry Q
is an ordered triplet (r, B,, YJ) where rr C]I, 2, , n] is a set of k attributes.
B, S E” specifies a retrieval criterion (a set of qualifying values for the k
attributes included in VT), and s E (1,2, , n) is a set of attributes whose values
are to be displayed. The query Q = (rr, B,, n) is to be interpreted as: “find all the
information objects t such that T&) E B,, and for each information object

ACM Transactions on Database Systems, Vol. 11, No. 2, June ms.

164 - H. Mend&on and A. N. Saharia

selected, display t and the values 7(x6)” (where ?r and v are projection operators).
Thus, for the above ship example, the query

Q,: “find the ships (currently) located in the Atlantic.”

will have =I = CL (since retrieval is based on Current Location), B,, = (AJ (select
only if CL is A) and uI = 4 (since only the ship identification is to be displayed).
The query

Q2: “find all ships located in the Atlantic and having speed greater
than 30 knots, and also display their Type.”

has ~2 = (CL, S], B,, = {(A, s) 1 s 5 30) and 72 = (Tyj.
Consider a user who submits a given query Q = (r, B., n). The data-

base management system has to choose an answer a from the set AQ of all
possible answers to the query Q. The general form of such an answer is o =
(t, h,(n) I t E o,I, where the answer set a, is a subset of (1, 2, . , TJ specifying
which information objects are included in the answer, and h,(q) is an estimate
of the VJ attributes for information object t (where t E or). When 7 = 6, we say
that the query is a retried query. The answer to a retrieval query is limited to
the answer set a,, identifying the information objects selected. For example,
query Q1 above is a retrieval query. When IJ # 4, we say that the query is a u&e-
extracting query; Q2 is an example of a value-extracting query.

In general, some of the attributes included in = and II may not be available in
the database (depending on the design f). For example, in our ship example
consider the view f = (S, LWL). The query Q1 above retrieves on the basis of
aI = CL, which is not available in the database. In this case it becomes necessary
to make an inference from the values of the available attributes on the value of
the missing attribute in order to decide whether to include an information object
in the answer set. In the case of query Q2, above, both CL and Ty are missing in
the design j, hence both the answer set a, and the displayed values of Ty are
subject to uncertainty.

The criteria for formulating the answer a to a query Q are based on the costs
associated with incorrect or inaccurate answers. These costs may depend not
only on the query Q, but also on the use to be made of the information-which
typically will vary between invocations of the same query Q. For example, the
cost of incorrect answers to query Q, above may be drastically different in war
time and in peace time. We model such variations using a parameter /.I which
may vary across invocations of the query Q. We call the pair (Q, p) = !J an
information request. The information request fJ uniquely identifies the query
component Q; thus, we can also index query parameters by 8.’

Consider an information request fl submitted for processing by the database
management system. The system has to decide on an answer o to the information
request 0 given the database stats D. The cost associated with incorrect (or
inaccurate) answers is a function C(a; 8, X) of the information request (0). the
full input matrix (X), and the answer provided (a). However, when the answer
is evaluated, only the database state D is known, and it is necessary to make an

‘For example, A, is the set of all possible answers to the query ff, where tl = (Q, rr)

ACM Tra”8sctio”s on Database Syetems, Vol. 11, NO. 2, June 1986.

Incomplete Information Costs and Database Design * 165

inference on the input matrix X from which D has been derived. This calls for
solving the following decision problem:

Find a* = a*(O, D) such that

c(a*; 0, D) = In? da; 8, D), cm

where c(a; 0, D) is the expected cost associated with the answer a in database
state D: ~(a; 0, D) E Ex[C(a; 8, X) 1 D], where the conditional expectation is
taken over all possible realizations of the input X (i.e., with respect to the input
uncertainty). The minimum expected cost associated with information request 0,
given that the database state is D, is given by E(B, D) = ~(a*@, D); 0, D), where
a*(& D) is the optimal answer.

Let N(B) be the number of times an information request 0 will be invoked
per unit of time;6 N(0) is a random variable with expected value h(0) =
E[N(B)] < m. We call X(B) “the frequency of information request 8.” Summing
over all information requests, the expected cost of incomplete database infor-
mation per unit of time depends on the design f, and is given by

With each design j, we can associate a physical implementation and a data-
related cost (which includes the cost of observing the relevant data, collecting it,
storing it in the database, and retrieving it from the database). These costs will
depend on the design f, on the input data X, and on the information requests. At
design time, however, the last two components are unknown, and we can evaluate
only the expected data-related cost associated with design f. We denote the
expected data-related cost under design f (averaged per unit of time over the
relevant interval-say the lifetime of the current design) by B(f). Thus the
database design problem can be formulated as follows: from a given family, F, of
feasible designs, find the design f that minimizes the expected overall cost
function, I(f) + B(f). That is, the task of the database designer is to choose a
design f* such that

IV*) + B(f*) = $; V(f) + B(f% (2.3)

that is, a design that minimizes the overall expected cost.
We consider the uiew design problem, where the set 9of feasible designs

consists of all the possible views (recall that a view projects each information
object over a subset of the n input attributes). The view design problem is the
problem of optimally selecting a subset of the input attributes to support a given
set of information requests. In this case the projection mapping operates on a
row-by-row basis, where each information object x, is transformed into a projected
database tuple d,.7 A precursor to the optimal design problem is the construction
of optimal answers, which is studied in the next section.

‘Over a relevant time interval (say, during the life of the current design).
‘Thus preserving the row numher t, which servves BS B database key.

ACM Transactions 0” Database System, “0,. 11, No. 2, June ,986.

166 - H. Mend&on and A. N. Saharia

3. MINIMUM-COST ANSWERS

In this section we examine the construction of a minimum-cost answer to an
information request of the form B = (Q, p), where the query Q is

Qb, B,, rl) : find It, ~(4 I &) E B.I. (3.1)

As mentioned earlier, the possible answers to (3.1) are of the form a = (t, h,(n)] t
E a,], where a, L (1, 2, , T). With each feasible answer a, we associate a cost
C(o; 0, X). The cost structure is as follows:

(i) Costs are additive across information objects.
(ii) For each information object, the associated cost has two components: a

retried cost component and a value extraction cost component. When the query
is a retrieval query (7 = o), the latter cost is zero.

(iii) A cost multiplier s = s(S) multiplies both cost components and measures
the relative importance of accurate responses to the information request.

(iv) For the retrieval cost component, we say that a type-l error (or omission)
occurred when a(s) E B,, but t $S a,. We say that a type-11 error (or false-alarm)
occurred when t E o,, but r(xI) B B,. In the information retrieval literature, a
type-1 error corresponds to the case where a relevant document is not retrieved,
and a type-11 error to the case where a nonrelevant document is retrieved
(cf. [13, ch. 61). With each type-11 error (false alarm), we associate a relative
cost of a; with each type-1 error (omission), we associate a relative cost of
(1 - a). (This is consistent with the usual methodology (cf. [22]).) We allow a to
depend on the parameter P of the information request.

(v) The due-extraction cost component is incurred only for tuples included
in the answer set a,, and reflects the cost associated with errors in the values of
the displayed attributes. It is specified by a function c,(&, I*, n), which trans-
lates the difference between the displayed values h, and the correct projected
values n(x,) into cost terms (we allow the value-extraction cost function c, to
depend on p.) When h, = n(xt), no cost is incurred, hence c,(n(s), xt, VJ) = 0
(some specific structures for c, are studied in Section 4). Note that the parameter
,,r associated with the information request 0 = (Q, a) may affect the cost
parameters a and s as well as the value-extraction cost function cu.

The answer to an information request B is the result of two decisions: a retrieual
decision and an estimation decision. The retrieval decision specifies the subset of
tuples to be selected, a, (a subset of]I, 2, . . , T}). The estimation decision
specifies the estimated values for the YJ attributes that will be displayed in the
response. The resulting estimate may be written as (htl t E ar]. For purposes of
discussion, it is convenient to define the result of the estimation decision by the
juU matrix H = (h,, t = 1, 2, . . , T), regardless of the tuples actually selected.
Then, only h, values for t E (I, will be displayed in the output. Following
this convention, an answer a is fully specified by a, and H, and we can write
a = (a,, H).

Our assumptions clearly imply that an optimal answer may he evaluated on a
tuple-by-tuple basis. In particular, for each tuple t, regardless of whether or not
it ends up being included in the answer set, we can evaluate an optimal estimate
of the n attributes, which we denote by h*(q, d,) = [h:(d,), i E 7). Further, we
ACM Transactions on Database Systems, “0,. II, No. 2, June ,986.

Incomplete Information Costs and Database Design - 167

can evaluate for each tuple t (t = 1, 2, . , T) the minimal potential expected
value-extraction cost (to be incurred only if it is selected for display):

G(v, 4) = EMh*h dJ, *t, 7) I4 = “t EMh, .G, 1) Idtl. (3.2)

Consider now the decision whether or not to include tuple t in the answer. If
the tuple is excluded, the omission cost would be incurred if &) E B,; thus the
expected cost of excluding tuple t from the answer is given by

s.(l - a).Pr{rr(xJ E B,ldrf = ~(1 - a)p(r, B,, d,), (3.3)

where we define

p(r, B,, 4) = P&d4 E &I &I. (3.4)

If tuple t is included in the answer, the contribution of the retrieval cost
component to the expected cost is given by sa(1 - p(r, B,, dt)) and the
contribution of the value-extraction cost component is s.?,(IJ, d& It follows that
tuple t belongs to an optimal answer if and only if

PC*, B,, 4) 2 01 + CAT, A), (3.5)

and a*(6’, D) = (a:(& D), H*(B, D)) is optimal where

a:(& D) = ItIp(s, B., 4) 2 a + c,(v, &)I

and

H*(@, D) = fh*(q, d,), t = 1, 2, . . , T).

The procedure for responding to an information request can thus be described
as follows. For each tuple t, the available data d, is inspected and the correspond-
ing (minimal) value-extraction cost E,,(q, d,) is evaluated (the optimal estimate
h*(q, dt) may be evaluated either at the same time or following the decision to
include tuple t in the answer). The prohabilityp(s, B., d,) is then evaluated and
condition (3.5) is tested. If (3.5) does not hold, the tuple is rejected. If (3.5) holds,
tuple t is selected and the optimal estimate h*(r~, &) is displayed.

The minimal expected cost of incomplete database information associated with
information request B in database state D is thus given by

c(B, D) = s. i [min(p{a, B,, dt), a + t,(q, dt)l - ap(r, B,, d,)]
= (3.6)

= s. ; gAp(r, EL, 41, &(n, dt)),
t=,

where gm(p, 6) is defined by

g”.(p, 6) = minlp, 01 + 6) - ap. (3.7)

g*(p, 6) represents the expected (relative) cost of incomplete information for a
tuple with probability of qualifyingp and expected value-extraction cost 6.

Although condition (3.5) is a retrieval condition, the retrieval decision also
depends on the expected value-extraction cost, Eu(q, d,): a tuple will be included

ACM Transactions 0” Database Systems, Vol. 11, No. 2, June 19%.

166 * H. Mend&on and A. N. Saharia

in the answer if and only if the expected combined cost of including it is less than
the expected cost of excluding it. Thus, while, from an operational viewpoint, we
can separate the processing of the query to a retrieval part and a value-extraction
part, the retrieval decision depends on the expected value-extraction cost. In this
sense, the problem cannot be separated into two independent problems of
retrieval and estimation. As a result, Wong’s [ZZ, Sect. 61 separation approach
to the solution of value-extracting queries is not optimal in our context, since it
does not take this combined cost into account.

In the case of retrieval queries (where 7 = b), the value-extraction cost
component is zero and our optimality condition (3.5) reduces to

a:(& D) = Itlph, B., dA 2 al, (3.6)

that is, the answer set consists of those tuples whose probability of qualifying
is greater than or equal to a threshold value given by the relative cost of false
alarm 01. This condition is consistent with the retrieval strategy suggested by
Wong [22, Sects. 4-51, as well as the optimal retrieval strategies suggested in the
information retrieval literature (cf. [2,7]).

4. OPTIMAL DESIGN

In this section we apply the results of Section 3 to derive the costs of incomplete
database information and to solve the optimal design problem, (2.3). Optimal
designs are then studied for increasingly complex situations. We start with single-
attribute retrieval queries when attributes are independent, proceed to the case
of dependent attributes, and then study the more general case of combined
retrieval and value-extracting queries.

To derive the cost of incomplete database information under a given design f,
we have to aggregate expression (3.6) over all information requests. Recalling
that X(O) is the frequency of information request 0, the expected cost of incom-
plete database information under design f is given by

(4.1)

Since xl, x2, . ,)I~ are i.i.d., so are d,, dp, . , dT. and Eq. (4.1) simplifies to’

W) = T.C A(O) f &AP(~, B., 4, &(v, 4L (4.2)
B

where the i.i.d. variates d,, d2, dS, . are distributed as d, and we define A(O) =
X(O).s(O), the frequency-weighted importance of information request 0 (which is
independent of the design f).

Another element of (4.2) which is independent of the design f, and hence can
be evaluated a priori is the functional relationship gn(., .), given by (3.7)?
Further, if we assume that the values of a are a random sample from some

’ Note that, due to the fact that d,, ds, ,dt, , are i.i.d., we can write

E &&I*, B., dd, &(rl, 4)) as E 8.(p(n, B., d), Un, d)).
d, d

*The argumenlr of g.(, .), p and 6 are of course dependent on the design f.
ACM Transaction. on DatahasP systems, V.I. 11, No. 2, June 1986.

Incomplete Information Costs and Database Design * 169

distribution F,(.), we can replace g,(p, 6) by

dp, 6) = E g.&, 6) = &(P, 6) dr,(a). (4.3) Y s
In particular, when a is uniformly distributed over the unit interval, we have

g(p, a) = fp

{

for p I 6
1P - i(p - 612 for p 2 6.

In general, gm(p, 8) is a concave function of p, satisfying g-(0, 6) = 0. Thus
g(p, 6) is also concave in p and satisfies g(p, 8) = 0. Since g,,(p, 6) defined
by (3.7) may be viewed as a special case with degenerate r,(.), we can pursue
our analysis using the function g(p, 6).

We consider first the design of a database that supports only retrieval
queries (i.e., queries with 7 = 6). In this case, the optimal retrieval policy given
by (3.5) reduces to “a tuple t belongs to an optimal answer if and only if

p(r, B., dt) z 01.” In the case of retrieval queries, the value-extraction cost is
6 = 0, hence g(p, 6) = g(p, 0) is a function ofp only, which we denote by C(p).

Clearly, G(.) is concave and G(0) = G(1) = 0. In the case where 01 is uniformly
distributed over the unit interval, (4.4) becomes

G(P) = k!(P? 0) = $PP(l - P). (4.5)

We analyze first the design of a database with independent attributes which
supports single-attribute retrieval queries.

4.1 Single-Attribute Retrieval Queries: Independent Database Attributes

Let each domain E, be discrete, say E; = (1, 2, . . , , N;I, with input distribution
specified by

Pr[z,i = j) = pij, j = 1, 2, . . . , l\r,

where, for a11 t, zt,, xr2, , xt, are independent. Assume that the data-related
costs are linear in the number of attributes in the database (i.e., the cost of
adding an attribute to the database is a constant b). Consider single-attribute-
project retrieval queries of the form

Q(i, A: find {tlxti= j).

Here, ?r = i and B. = j. We denote Q(?r, B,) more briefly by (i, j); also,
p(r, B,, dt) can be written asp&j, &). Assuming that A(0) depend only on the
query Q(i, j), we write A(0) = A(Q(i, j)) = A(i, j).

Consider a given design f. To evaluate the expected cost of incomplete database
information from (4.2), it is sufficient to compute E,,*G(p(i, j, dt)) for all i, j.
But for i E f, p(i, j, d,) is 1 if dti = j and zero if d,; # j; in either case,
G(p(i, j, d,)) = 0. Thus, when i E f, the answer a, will consist of the tuples t with
d,; = j, with a zero cost of incomplete database information. When i +? f,

p(i, j, d,) = Pr(z,; = j I dc) = P+ = jl = pij,

hence EdtG(p(i, j, d,)) = C(p;j). Note that since xy are i.i.d. and the attributes
are mutually independent, a, will either be null or will include all the tuples,

ACM Transactions on Database Systems, Vol. 11. NO. 2, June ,986.

170 * H. Mendelson and A. N. Saharia

depending on whether pij 2 a or p;j < a. The expected cost of incomplete database
information is therefore given by

I(f) = T C C AC6 j)G(Pij).
ie/ J

It follows that adding attribute i to a design f where i +Z f will reduce the expected
cost of incomplete database information by

vi = T C A@, j)C(pij),
j

(4.6)

independent ofj. We can thus call ui “the value of attribute-i information,” since
this value is independent of the other attributes and depends only on i. If we
number the attributes by decreasing vi, that is, U, 2 LJ* 2 u3 2 . z u., the
optimal design will include attributes 1, 2, , k, where k is the first index
satisfying Us+, < b (where we define ““+I = 0): this design includes in the database
all attributes i for which the marginal benefit of inclusion IJ; exceeds the marginal
cost b.

4.2 Single-Attribute Retrieval Queries: Two Dependent Attributes

To gain insight into the effects of dependence among attributes, we modify the
above setting by assuming that attributes 1 and 2 are (probabilistically) depend-
ent, while all other attributes are independent. We assume that the joint distri-
bution of attributes 1 and 2 is given by

Pr(Ztl = j, Xt* = m) = Zjrn (4.7)

and define zj. = Cm zj,,,, t.,,, = Cj zj”. As in Section 4.1, the reduction in the
cost of incomplete database information as a consequence of adding attribute
i (i f 1, 2) to the database is independent of the other attributes and is given by
(4.6). In contrast, the redution in the cost of incomplete information when
attribute 1 (2, respectively) is added to a design f depends on whether attribute
2 (1, respectively) is already included in f. When 1, 2 4 j,

“1 = I(f) - I(f u Ill) = Q&J) - ml) (4.8)

represents the reduction in the cost of incomplete database information when
attribute 1 is added to a design f that does not include attribute 2. Similarly,
if 1, 2 E f,

u* = I(f) - I(f u (21) = r(6) - 1(12)) (4.9)

represents the value of adding attribute 2 to a design f that does not include
attribute 1. We also define, for 2 E f, 1 E f,

“12 = I(f) - I(f u (11) = U(2)) - 1(ll, 21). (4.10)

ulz represents the value of adding attribute 1 to the design when attribute 2 is
present; similarly, uzl is defined as the value of adding attribute 2 to the database
when attribute 1 is already included.

Incomplete Information Costs and Database Design * 171

We evaluate I(f) for f = 6, (11, 121, and {l, 21.” For the null design f = 6,
~(1, j, dt) = zj. andp(2, m, dt) = z.,,,, hence

I(@) = T 2 A(1, j)G(Zj.) + T C A(2, m)G(Z.m) + i$3 oi’
I m

Also, since only attributes 1 and 2 are mutually dependent,

1(ll, 21) = j3 “i.

We next evaluate 1((l)). For f = (I), ~(1, j, d,) is always zero or one, hence
G(p(l, j, Q)) = 0. As for queries involving attribute 2, such as Q(2, m),
if d,, = j.

~(2, m, dt) = P& = m I III = j) = Zjm/Zj.,

since PI{x,~ = jl = zj.. We thus obtain,

f Gb(2, m, dt)) = Z zj.G(tjm/zj.),
j

and hence

I({l)) = T C A(2, m)zj.G(+JZj.) + ,i3 vi.
,.m

Similar considerations lead to

1(12)) = T 2 A(1, j)Zm.G(+Jz.m) + ii3 vi.
IF

Substituting the above expressions in (4.8)-(4.10) yields

uz = T C A(1, j)[C(zj.) - 1 z~.G(z~~/z.,)J + T z A(2, m)G(z.,), (4.11a)
m m

VI= T. i A(1, j)G(+J + T C A(22 m)[Gk.rrJ - f: zj.G(zjm/zj.)l, (4.11b)
I m

and

VZI = T C A(29 m)Zj.G(+Jzj.), (4.12a)
I?

“12 = T z A(l, j)t.mG(+J~.m). (4.12b)
Lm

We now show that u,~ 5 II, and up, 5 uz, namely: the existence of a dependent
attribute in the database always reduces the value of information associated with
an attribute, as might be expected. To see this, compare (4.11) with (4.12); clearly,

” For other vslue~ off, the value of each attribute if 1,2, u, may simply be added, due to independence.

ACM Transactions on Database Systems, “0,. 11, NO. 2, June 1986.

172 . H. Mend&on and A. N. Saharia

it is sufficient to prove that

Z Z.mG(zjm/~.m) s G(zj.),
m

and
7 Zj.G(ZjJZj.) 5 G(ZVn).

(4.13a)

(4.13b)

Now the left-hand side of (4.13a) may be viewed as the expected value of the
concave function G(.), applied to a random variable taking on the values z,,/z.,
with probabilities z.,; the expected value of this random variable is rj.. But then
(4.13a) clearly follows from Jensen’s inequality (cf. 16, p. 249]), which states that
the expected value of a concave function of a random variable is bounded by the
value of that function at the expectation of the random variable. Inequality
(4.13b) follows in a similar fashion.

As a simple example, consider the case where both domains consist of two
values, say El = EP = (1,2), and

where 0 5 p c l/2. Note that x11 and .xt2 are perfectly negatively correlated when
p = 0, perfectly positively correlated when p = l/2, and independent when
p = l/4. It is straightforward to derive

ul= 7’. A,. G(1/2) + T. AZ. [G(1/2) - 1/2G(2p) - 1/2G(1-2p)],
us = T AZ. G(l/Z) + ‘I’. A,. [G(1/2) - 1/2G(2p) - 1/2G(1- 2p)],

ulz= T. A,. (1/2G(2p) + 1/2G(l-2p)],

and

“2, = T. A\2.. [1/2G(2p) + 1/2G(l-2p)],

where A,. = A(l, 1) + A(1, 2) and AZ. = A(2, 1) + A(2, 2). Assuming that a is
uniformly distributed over [0, 11, G(p) = 1/2p(l -p) (see (4.5)). We demonstrate
the behavior of ua and u12 as functions of p in Figure 1 (the figure depicts the
case where AZ. > A,.). Note that

up + 012 = T G(1/2).(A,. + A%.)

is a constant, independent of p. When p = 0 or p = l/2, the value of attribute
sets 111, (21, and (1, 2) is the same, since any one of them determines the other.
Clearly, the assumption A%. > Al. implies that, for all p, ut > ul. The (gross)
value of attribute 2 (up) is always greater than ulz. Assuming that the cost of
adding any attribute to the database is b, we add attribute 2 to a design f
(satisfying 1, 2 @ f) if and only if u2(p) > b, and then add attribute 1 to the
design f U (2) if and only if u12(p) > b. Note that uz depends on p even when the
initial design f does not contain attribute 1; the reason is that in adding attribute
2 to the database, not only do we reduce the cost associated with queries on this
attribute, but we also improve the quality of inference on attribute 1. Thus the
database designer must also take into account the indirect benefits of adding an
attribute to the database, associated with improved quality of inference on related
(unavailable) data items.
ACM Transactions 0” Datebase Srstems, Vol. 11, NO. 2, June 1986.

Incomplete Information Costs and Database Design * 173

\

IL
0.0

l--A 1‘
Y&1/4) I Y*, (114) = l/4

Y,(lM) = Y,2(i/4) = l/8

i’-;;\\

I I I I

, 0.1 0.2 0.3 0.4 0.5

P

Fig. 1. ua and u12 BS functions ~fp (Section 4.2). (A.. = 2, AI. = 1)

4.3 Value-Extracting Queries: General Considerations

Next we consider the optimal design of databases that support more general
queries, involving both retrieval and value-extraction. Here, the optimal answer,
a*, and therefore also the optimal design, f*, depend on the retrieval cost as well
as the value-extraction cost. Hence, we start our analysis of value-extracting
queries by examining the form of the value-extraction cost function, c,(hl, x,, 7).

Several functional forms are useful representations of c,(h,, .xI, q); some of the
possibilities are as follows:

(i) For each tuple t included in the answer, a cost&is incurred if the value of
the ith attribute is incorrect (i.e., whenever h,(# xl:), and these costs are additive.
Thus,

where + is an indicator function (equal to 1 if hl; # x,:, and zero otherwise). This
cost structure is meaningful when all the attributes included in 7 have discrete
domains.

(ii) For each tuple included in the answer a, a cost p is incurred if any of the
attributes is incorrect (i.e., whenever the whole vector h, is not identical to the
true value q(4). Here, c,(h,, x,, 7) = B. @,h,f,(r,)l. Again, this cost function is
meaningful only when all the attributes included in r~ have discrete domains.

(iii) For each tuple t included in the answer, the cost is quadratic in the
magnitude of the error, namely, a cost of p;(h,; - x,~)* is incurred for the ith

ACM Transections on Database System., “0,. L L, No. 2, June ,986.

174 * H. Mend&on and A. N. Saharia

attribute, and these costs are additive. Hence,

This cost structure is meaningful when the attributes included in 7 have contin-
uous domains.

In Section 4.4 we study the problem of choosing an optimal design when the
attributes in 7 have discrete domains and the cost function c, is given by (i)-
the treatment of cost functions (ii) is similar to (i). In Section 4.5 we outline the
procedure when the attributes whose values are extracted have continuous
domains, and the cost function c, is given by (iii).

4.4 Value-Extracting Queries: Discrete Attributes

In this section we consider the cost structure (i) and its implications on database
design. We fix a design fand consider a query Q = (r, B., 7). Under the assumed
cost structure, the minimum-cost estimate hf(d,) for the value xii of attribute
i E q in tuple t is the mode” of the conditional distribution of xti given dt, that
is, letting J(J E EJ be the solution of

Pr{xti = J (dtJ = fix Pr(x,; = j (dlJ,

we have ht(dt) = J. The minimal expected value-extraction cost for tuple t is
given by

Ch 4 = C Bimi(dt),
iE”

where we have defined

mi(d,) = 1 - P&i = ht(dt) (dtJ.

Thus, the retrieval condition (3.5) becomes

p(r, EL, dd 2 a + ;r: Bid&);
LE.

(4.14)

for each tuple t satisfying (4.14), the displayed values will be the modes (h:(d,),
i E 7). Note that, in particular, tuples with p(n, B,, dt) < &, &mi(dc), where
the expected cost due to inaccurate value-extraction exceeds the expected cost of
omission, will be excluded.

Using (4.2), the expected total cost of incomplete database information for a
given design f is given by

r(f) = T.C A(B). E Br, d), L- Pa(d)
B d iEll >

(4.15)

The optimal design is now obtained by balancing the reductions in this cost
function against the data-related costs.

” This is because at the mode the probability of an error is minimized (and hence the expected cost
is minimized).

Incomplete Information Costs and Database Design * 175

4.5 Value-Extracting Queries: Continuous Attributes

In this section we study the case where all the attributes included in 7 have
continuous domains, and the cost structure is given by (iii) of Section 4.3. It is
well known (cf. 121, p. 6191) that the parameter estimator which minimizes a
quadratic loss function is the mean (conditional on all available information).
Thus, for a design f and given database state D,

that is, .xti is estimated by its conditional mean given dt. The resulting value-
extraction cost for tuple t is given by

E&I, 6) = i;q IBiE[(.rti - h?(dt))‘l dtl = ,z Pi&d,),
1s.

where o:(d,) denotes the conditional variance of xr: given d,. Now condition (3.5)
becomes

(4.16)

and, for each tuple t satisfying (4.16), the displayed values will he the conditional
means ((hr(d,), i E 7). Finally, the expected cost of incomplete database infor-
mation for a design f is given by

Bid(d) (4.17)

5. A COMPREHENSIVE EXAMPLE

As an example which demonstrates the application of the foregoing ideas, we
consider a generalized (and modified) version of Wong’s [22] classical ship
example introduced in Section 2. Recall that in this example an information
object is a ship with attributes Type (Ty), Speed (S), Current Location (CL),
and Last Week’s Location (LWL).

Here, a major data-related cost is the data collection (i.e., tracking) cost. We
assume that the data-related costs depend on the subset of attributes included in
the design as follows: The cost of including LWL is 1 monetary unit per ship,
the cost of including Ty is 3 monetary units per ship, and the cost of including
CL and Speed, or CL only, or Speed only, is 8 monetary units per ship (since the
gross value of information is nonnegative, this implies that either both S and CL
will be included in the database, or both will be excluded).

We assume that the prior knowledge is summarized by the probability distri-
butions in Tables I-II, which are taken from Wong’s example. The prior proba-
bility of types is given by Pr(carrierj = Pr{subJ = l/2; we also assume that the
prior distribution of LWL is the (unique) stationary distribution corresponding
to the transition probability matrix of Table I. This distribution (which, due to
stationarity, is also the distribution of CL) is given in Table III. Finally, using
the conditional distribution Pr{Speed < s 1 Type] and the type probabilities, we
derive the unconditional distribution of S (Table IV) and the conditional distri-
bution of Ty given S (Table V).

176 * H. Mend&m and A. N. Saharia

Table I. Conditional Probability Distribution of Current
Location Given Last Week’s Location: PrlCL I LWL)

CL

M I P A

M 0.8 0.1 0 0.1

I 0.2 0.8 0 0
LWL

P 0 0.15 0.8 0.05

A 0.1 0 0.1 0.8

Table II. Conditional Distribution of
Speed Given Type, Pr(S < s I Tyl

(See Wang [ZZ], Figure 2)

s (Knots) Carrier Sub

20 0 0
25 0.4 0
30 1 0.2
35 1 0.8
40 L 1

Table III. The Prior Distribution
of LWL (and CL)

CL
for LWL) Probabilitv

M 7118
I 5118
P l/S
A 219

Table IV. The Distribution of Speed, Pr{S < s)

s (Knots) PrISmed < sl

20 0
25 0.2
30 0.6
35 0.9
40 1

Table V. The Conditional Distribution of Type Given Speed,
PrlTylSl

Speed

20 5 s < 25 25sSC30 3OsSC40

Incomplete Information Costs and Database Design * 177

Table VI. Expected Cost of Incomplete Database Information per Information
Request-Tuple for Query Qx (See Appendix A)

Expected cost of incomplete
database information

(per informstion request-tuple)

Design f 0) ci = l/2 (ii) a - U(0, 1)

f=4 0.07776 0.06566
f = ILWLI 0.07778 0.0568

f = I’M 0.07778 0.05358

f= 15, LWLI 0.05056 0.03562
f 2 IS. CLI 0 0

Table VII. Expected Cost of Incomplete Database Information per
Information Ileauest-Tuole for QWN Q, (See Amxndix A)

Expected cost of incomplete
database information

(per information request-tuple)

Design f 0) n = 112 (ii) ~1 - U(0, 1)
f=rn 0.1944 0.1944
f = {LWLJ 0.1944 0.1769
f= ml 0.1944 0.1188
f = 1% LWLI 0.07716 0.06333
f = IS, CL1 0.033869 0.03403
f = IS. CL. Tvl 0 0

We assume that the database is designed to support two queries:

Q,: Find all the ships (currently) in the Mediterranean with Speed greater
than or equal to 30 knots; and

Q2: Find all the ships (currently) in the Mediterranean and display their types.

Q1 is a retrieval query characterized by T, = {CL, S) and B. = [M} X (30,40);
Q2 is a value-extracting query with 1r2 = CL, B,, = (Ml, and q2 = Ty.

We consider two alternative constructions of information requests based on
these queries, which differ in the distribution r,(.) of the relative retrieval-cost
parameter a (for both queries):

(i) a, = 01~ = l/2 (i.e., the cost of omission is equal to the cost of false alarm).
(ii) The parameter a is uniformly distributed over the unit interval. We assume

that a cost of @rY = 1 monetary unit is incurred whenever the Type
displayed for a ship in response to Q2 is incorrect, and denote the frequency-
weighted importance of information requests involving query i by
Ai (i = 1, 2).

Next we examine the costs of incomplete database information. Clearly, &he
specification of the problem allows us to compare costs per tuple (i.e., per ship).
The designs to be considered are f = $ (the null design), f = (Ty), f = (LWLJ,
f = {CL, SJ, f = ITy, LWL), and f = {Ty, CL, SJ (the remaining designs are
obviously suboptimal). Tables VI and VII (respectively) summarize the costs of

ACM Tmmactio”s cm DstabaPe Systems, Vol. 11, No. 2, June ,986.

170 * H. Mendelson and A. N. Saharia

Table VIII. Values and Costs of Alternative Designs (per Tuple) as a Function
of (AI, A.). The First Two Columns Correspond to a = l/Z, and the Latter to

01 - U(O.1)

(i) u = l/2 (ii) a - U(0, 1)

CO& Value COS V&Z
Design f B(f)lT V(f) B(f)/T V(f)

PtWL, 0 1 0 0 0 1 0.0082 A, 0 + 0.0115 hz
ITYI 3 0 3 0.0121 *a + 0.0156 **
WY, LWLI 4 0.02722 AI + 0.11662 As 4 0.02966 *, + 0.13101 A2
IS, CLI 6 0.01718 A, + 0.155511.4~ 8 0.06563 A, + 0.16037 A2
IS, CL, Trl 11 0.07178 A, + 0.01944 A% 11 0.06568 A, + 0.1944 A2

A
2

120

110 -

100 -

CL, TY)

(S,CLI

40 -

20 -

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Fig. 2. Optimal design f’, as a function of (A,, A.) for the ship example; a = l/2.

incomplete database information for each query under assumptions (i) and (ii)
above; the detailed computations are given in Appendix A.

We define the u&a of a design f per tuple by V(f) = [I(#) - I(f)]/T (i.e., the
difference between the expected costs of incomplete database information per
ACM Transactions on Database System, Vol. 11, No. 2, June 1986.

Incomplete Information Costs and Database Design * 179

70

60

50

40

30

20
I

(S, CL,Tyl

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Fig. 3. Optimal design f’, as a function of (A,, A,) far the ship example; a - U(0, 1).

tuple under the null design and under design j). The net value of design f per
tuple is, obviously, V(j) - B(j)/‘I’, and the optimal design f* is the one which
maximizes the net value function. Clearly, the optimal design j* depends on the
parameters A, and A2, as well as on whether a = l/2 or (Y - U(0, 1). We examine
for each of the latter cases the dependence off* on (AX, AZ).

Table VIII summarizes the value and cost par tuple, V(j) and B(j)/T, for
the designs j E Y as a function of A, and A%. We consider first case (i) where
01 = l/2, depicted in the first two columns of the table. Clearly, all the single-
attribute designs are dominated by the empty design; optimal designs may consist
of zero, two, or three attributes. Furthermore, if AZ = 0, the optimal design is
empty as long as Al 5 102.85, and becomes (S, CL) (which are the relevant
attributes for query Q,) for all AZ 2 102.85. If A1 = 0, the optimal design is empty
for A2 5 34.3; it becomes {Ty, LWLJ for 34.3 5 AZ d 90, and then becomes IS,
CL, Tyj for Az 2 90: in the range 34.3 s Ap 5 90, indirect estimation of CL via
LWL is more efficient due to the lower data-related cost of LWL (compared to
CL). Ty is included in either case; this results from the desirability of avoiding
the value-extraction error cost, &, associated with Q2.

180 * H. Mend&on and A. N. Saharia

The optimal designs f* as a function of (A,, A,), when a = l/Z, are shown in
Figure 2. When both A, and A2 are very large, the design (S, CL, Tyj, including
all the relevant attributes, is optimal. For smaller values of A, and Ar, we obtain
one of the aforementioned designs with a preference for (Ty, LWL) when Ai is
small (since, for evaluating Qz, it is more efficient to obtain the exact value of
Ty while erring on CL, which is estimated via LWL), and a preference for
(S, CL] when A2 is small (since Ty is not required for the evaluation of Qi).

The last two columns of Table VIII correspond to the case where (I - U(0, 1);
the optimal designs f* as a function of (A,, AZ) are depicted in Figure 3.
Comparing Figure 3 to Figure 2, we observe that the general pattern is roughly
the same, with 6, [Ty, LWL] and then {S, CL, Ty] being the optimal designs
when A, = 0 and as A2 increases. When Az = 0, the optimal designs are first $J,
then (LWL], and then (S, CL]. The design (LWL) becomes relevant since, for
small values of a, we may obtain-under this design-p(a, B,, d,) > a, whereas
for a = l/2 we obtained the null answer throughout. Thus, the variability of 01
makes the results more sensitive to the specific design. Aside from this difference,
the general pattern of behavior is similar to that of Figure 3, although the
numerical results are, of course, different.

6. CONCLUDING REMARKS

This work has presented a methodology for approaching the conceptual design
of databases using a decision theoretic framework. We suggest that the conceptual
design problem inevitably involves a trade-off between the costs of incomplete
database information and the data-related costs; our methodology provides
systematic means for studying this trade-off in the design process. We illustrate
our approach through a number of examples, which provide insight to the nature
of this trade-off.

We believe that our approach has the potential of developing into an important
design tool, but this agenda calls for further analysis based on the results
presented here. First, our results clearly indicate some of the qualitative proper-
ties of the optimal design and its dependence on various query parameters and
characteristics. These properties call for generalization into explicit design rules
which would guide database administrators in performing this function. The
results could have a major impact on the prevailing approach to database design,
which starts from a given “universal relation” database which includes all the
attributes of interest and seeks an equivalent representation (that is “better” in
some design sense; (cf. [HI)). We suggest that the decision on database attributes
should be incorporated into this process rather than being performed separately
on an ad-hoc basis. Further, since the physical design also has important
implications on the data-related costs (cf. [l, 15]), this problem may also be
treated in the same context.

A more immediate direction for further research focuses on the algorithmic
aspects of the design problem, namely-on its efficient solution for large data
bases. A major part of this algorithmic task is the optimization problem itself,
which may be formulated as a subset selection problem. The task then is to
exploit the special structure of the database design problem and to suggest
efficient computational procedures for its solution; this will be undertaken in a
forthcoming paper.

InCOmplete Information Costs and Database Design - 181

APPENDIX A. Detailed Derivation of the Costs of Incomplete Database
Information (Section 5)

AS. Query Q,
A.l.l. The null design f = 6: Here, for each tuple t,

ph, B,, d,) = Pr(CL = MI Pr(Sp > 30) = 7/45

(using Tables III and IV).

For a = l/2, we obtain

f g,/z(p(r, B,, d), 0) = 7/45 (1 - l/2) = 7/90;

when 01- U(0, I), we have

f&b-r, B,, 4, 0) = l/2 7/45 38/45 = 133/2025 = 0.06568.

A.l.2. f= (Ty]: Here,

Hence, for a = l/2, g,,,(p(n, B., d& 0) = 0 for Ty = carrier, and g,,,(p(a, B.,
d,), 0) = 7/45 for Ty = sub. Together, Edgl,2(p(a. B,, d), 0) = 7/90, with a null
answer set. When a - U(0, l), we obtain

Eg(p(~, B,, d), 0) = l/2 . 14/45 31/45 = 0.05358.
d

A.1.3. f = (LWL): Here,

ph, B., d,) = Pr(CL = M 1 LWLJ Pr{S > 30)

i

0.8 0.4 = 0.32 if LWL=M
0.2 0.4 = 0.08 if LWL=I =
0 if LWL=P
0.1 0.4 = 0.04 if LWL = A.

For a = l/2, we obtain

5 g,,z(p(r, B,, dt), 0) = 7/18 0.16 + 5/18 0.04 + 2/9 0.02 = 0.07778.

When a - U(0, 1).

Eg,,,(p(s, B., d,), 0) = 7/18 0.1088 + 5/18 0.0368 + Z/9 0.0192 = 0.0568.
d

A.l.4. f = {Ty, LWLJ: Here,

p(r, B., dt) = Pr{CL = M 1 LWLJ Pr(S 2 30 I Ty),

which is 0 if Ty = carrier or if LWL = P. Otherwise,

f

0.08 for Ty = sub, LWL = A
p(r, B,, d,) = 0.16 for Ty = sub, LWL = I

0.64 for Ty = sub, LWL = M.

For a = l/2, the answer will include all tuples with 5 = sub and LWL = M;
ACM Trenssetians on Database Systems, Vol. 11, No. 2, June 19%.

182 * H. Mend&on and A. N. Saharia

also,

0.08 0.5 = 0.04 for Ty = sub, LWL = A

~/AP(~, B., 4)s 0) = ;I;; : ;:f 1 ;:;;
for Ty = sub, LWL = I
for Ty = sub, LWL = M

0 otherwise,

hence,

Eg,,,(p(a, B,, d), 0)) = l/2 2/9 0.04 + l/2 5/18 0.08
d

+ l/2 7/18 0.18 = 0.05056.

When 01 - U(0, l), a similar calculation yields

5 g(p(x, B,, d), 0) = 0.03582.

A.1.5. f 2 {S, CL]: Here, the answer will always include the ships satisfying
the exact retrieval criteria, and consequently the cost of incomplete database
information is zero.

A.2. Query Q2. Consider a given design f and a tuple t. The tuple will be
selected for display if and only if

ph, Br, dt) 2 01 + h ntrz@J, (A.1)

where 1 - m&d,) is the probability mass of the mode of the conditional
distribution of Ty given d*. The corresponding expected cost is

gdp, 6) = mintp, l/2 + 61 - Wp,

when a = l/2, or the function g(p, 6) given by (4.4) when a - U(0, l), where

P = ph, B,, 4) and d = By m&&) = m&t).

We now examine the expected cost per tuple as we vary the design f.

A.2.1. f= 4: Here,p(vr, B,, d,) = Pr(CL = M) = 7/18 and mTy(d,) = l/2. This
implies that (A.l) will not be satisfied, hence the answer set will always be
empty. The corresponding expected cost is 7/36 both when a = l/2 and when
a - U(0, 1).

A.2.2. f = (TyJ: Here, p(r, B., dt) = Pr(CL = MJ = 7/18, with an accurate
value of Ty. When LI = l/2, the answer set is null and the expected cost is 7/36.
When a - U(0, l), we have g(p(r, B., d,), 6) = g(7/18,0) = l/2 7/18 11/18
= 0.1188.

A.2.3. f = {LWLJ: Here, p(r, B,, d,) = Pr{CL = M (LWLJ, which is equal to
0.1 when LWL = A, 0 when LWL = P, 0.2 when LWL = I, andp(n, B,, d,) =
0.8 when LWL = M. For a = l/2, condition (A.l) cannot be satisfied since
m,(d,) = l/2, hence the answer set will be null and the expected cost will be
7/36. When a - U(0, l), we have

i

l/2 0.1 = 0.05 LWL=A

dp, 6) = O
LWL=P

l/2 0.2 = 0.1 LWL=I
l/2 0.8 - l/2 (0.8 - 0.5)’ = 0.355 LWL=M

ACM Transactions on Database Systems, “0,. 11, No. 2, June 1986.

Incomplete Information Costs and Database Design * 183

and the expected cost is thus:

2/9 0.5 + 5/18 . 0.1 + 7/18 0.355 = 0.1769.

Note that the optimal answer set will be null whenever a 2 0.3; for 01 < 0.3, the
answer will include all ships with LWL = M, with an arbitrary type.

A.2.4. f= (Ty, LWL{: Here, p(r, B,, d,) are the same as in A.2.3, but m&&)
= 0 since Ty is known with certainty. When a = l/2, (A.l) is satisfied only when
LWL = M (p = 0.8), hence only ships with LWL = M will be selected for display
(with their accurate Type provided in response to the query). The corresponding
expected cost per tuple is

2/9 0.05 + l/9 0 + 5/18 0.1 + 7/18 0.1 = 0.07778.

When a - U(0, l), since p 2 8 for all LWL, we have g(p, 6) = l/2 p -
1/2(p - 8)’ = l/2 p(1 -p), hence the expected cost per tuple is

2/9 l/2 0.1 0.9 + 5/18 l/2 0.2 0.8 + 7/18 l/2 0.8 0.2 = 0.06333.

Note that here the only cost component is the retrieval cost, since there are no
errors in the estimation of Ty.

A.2.5. f = (S, CL}: Since CL is known with certainty, the retrieval cost
component is zero, and we can focus on the value-extraction cost. Further, S can
be useful in the estimation of Ty (see Table V): if 20 5 S, < 25, then Type must
be carrier (with probability l), and m(d,) = 0 (i.e., there is no estimation error).
If 25 5 St < 30, the modal Type is carrier, and m(d,) = 0.25. If 30 5 St < 40,
then Type must be sub (with probability l), and again m(d,) = 0.

Let a = l/2. Since CL is known with certainty, the selection criterion (A.l)
becomes: CL = M and m,,(d,) 5 l/2; but w(d,) is at most l/4, hence any tuple
with CL = M will be selected, and gI12(p, 6) = 6, which is positive (l/4) only if
25 5 St < 30. Thus the expected cost is Pr{CL = MI . Pr(25 5 S < 30) l/4 =
0.038a89.

When a - U(0, l), the selection criterion (A.l) becomes CL = M and 1 2 a +
m&d,). This means that any tuple with CL = M and 20 zz S, < 25 or CL = M
and 30 5 S, < 40 will be selected, tuples with CL = M and 25 c S, < 30 will be
selected if a 5 3/4, and rejected if a > 3/4. The resulting expected cost is 7/18.
0.4.g(1, l/4) = 0.03403.

Clearly, the same result holds for f = {S, CL, LWL}.

A.2.6. f= {S, CL, Tyl orf= IS, CL, LWL, Tyl: The expected cost of incomplete
database information is clearly zero in these cases.

APPENDIX 6. Summary of Notation

Xt Information object t.
dt Database tuple t.

The design mapping; d, = f(q).
Qh, B., ,: The query “find all information objects t such that r(x& B.;

display t and YJ(x,).”
B Information request; 0 = (Q, a).

a, The answer set consisting of all the tuples selected in response
to a query.

ACM Transactions on Database Systems, Vol. 11, No. 2, June 1986.

184 - H. Mend&m and A. N. Saharia

da; 0, D)

A(@)
Z(f)

Expected cost associated with answer o to information request 0
when the database state is D.
Frequency of information request 0.
Expected cost of incomplete database information under
design f.
Expected data-related cost under design f.
Set of feasible designs.
Optimal design, minimizing Z(f) + B(f) among f E 9.
Attribute values displayed for tuple tin a value-extracting query.
Cost multiplier for information request 8.
Relative cost of false alarm.
Relative cost of omission.
Value-extraction cost for tuple t.
Minimal expected value-extraction cost for tuple t.
Pr(vr(x,) E B, 1 &j, the probability that tuple t satisfies the re-
trieval criteria.

&(P, 8)

dP, 6)

C(P)

NO)

Expected cost of incomplete database information when
p(r, B,, d,) = p and the expected value-extraction cost is 6.
.%gm(p, 0
g(p, 0) (for retrieval queries).
X(S)s(S), the frequency-weighted importance of information
request 8.

REFERENCES
1. CHEN, P. P., AND YAO, S. B. Design and performance tools for database ~ystem~. In Proceedings

o, the Intermtionnl Conference on Very Large Databases, 19’77,3-15.
2. CHOW, D., AND Yu, C. T. On the construction of feedback queries. J. ACM 29 (198% 127-151.
3. Cooo, E. F. Extending the database relational model to capture more meaning. ACM Tmm.

Database Syst. 4,4 (Dec. 1979), 395-434.
4. HEINE, M. H. Design equations for retrieval systems based on the Swets model. J. Am. See.

Inf. Sci. 25 (1974), 183-198.
5. I~IELINSKI, T., AND LIPSKI, W., JR. Incomplete information in relational databases. J. ACM

31,4 (Oct. 1984),761-791.
6. KARLEN, S., AND TAYLOR, H. M. A First Course in Stochastic Processes. Academic Press, New

York, 1975.
7. KRWT, D. H. A threshold rule applied to the retrieval decision model. J. Am. SK hf. Sci. 29

(1978), 77-80.
8. KRAFI‘, D. H., AND BOOKSTEIN, A. Evaluation of information retrieval systems: A decision

theory approach. J. Am. Sot. Inf. Sci. 29 (1978), 31-40.
9. LIPSKI, W. On semantic issues connected with incomplete information databases. ACM Trans.

Database Syst. 4,3 (Sept. 1979), X2-296.
10. LIPSKI, W. On databases with incomplete information. J. ACM 261 (Jan. 198% 41-70.
11. MAIER, D. The Theory of Relotiaml Databases. Computer Science Press, Rockville, Md., 1984.
12. MARSCHAK, J., AND RADNER, R. Economic Theory of Team. Yale University Press, New Haven,

CO”“., 1972.
13. SALTON, G. Dynamic Informothn and Library Processing. Prentice-Hall, Englewwd Cliffs,

NJ., 1976.
14. SALTON, G., BUCKLEY. C., AND Yu, C. T. An evaluation of term dependence models in

information retrieval. In Research and Development in Information Retried, Lecture Notes in
Computer Science, 146, G. Salton and H.-J. Schneider, Bds., Springer-Ye&g, New York, 1983.

Incomplete Information Costs and Database Design * 185

15. SCHKOLNICK, M. A survey of physical database design methodology and techniques. In Pm-
medings of the Inlernatiomzl Conference an Very Large Dotabases, 19X3,474-467.

16. SWETS, J. A. Information retrieval systems. Science 242 (1963), 245-250.
17. SWETS, J. A. Effectiveness of information retrieval methods. Am. Doe. 20 (1969), 72-69.
18. ULLMAN, J. D. Principles of Database Systems. 2nd ed., Computer Science Press, Rockville,

Md., 1982.
19. VASSILIOU, Y. Null values in data base management: A denotation4 semantics approach. In

Proceedings of the ACM-SIGMOD International Symposium on Management of Data (Boston,
Mass., May SOJune 1, 1979), ACM, New York, X2-169.

20. VASSILIOU, Y. Functional dependencies and incomplete information. In Pmeeedings o/ the 6th
Internntionol Conference on Very Large Datoba.w (Montreal, Oct. l-3, 1980). ACM, New York,
260-269.

21. WINKLER, R. L., AND HAYS, W. L. Statistics. Holt, Rinehart & Winston, New York, 1975.
22. WONC, E. A statistical approach to incomplete information in database systems. ACM Tmns.

Database Syst. 7,3 (Sept. 1982). 4’70-488.
23. Yu, C. T., LUK, W. S ., AND SIU, M. K. On models of information retrieval. Inf. Syst. 4 (1979).

205-218.

Received March 1985; revised October 1985; accepted November 1985

