
Asymptotic Expansions for Closed Markovian Networks 
with State-Dependent Service Rates 

DEBASIS MITRA AND J. MCKENNA 

A T&T Bell Laboratories, Murray Hill, NJ 

Abstract. A method is presented for calculating the partition function, and from it, performance 
measures, for closed Markovian stochastic networks with queuing centers in which the service or 
processing rate depends on the center’s state or load. The analysis on which this method is based is new 
and a major extension of our earlier work on load-independent queuing networks. The method gives 
asymptotic expansions for the partition function in powers of l/N, where N is a parameter that reflects 
the size of the network. The expansions are particularly useful for large networks with many classes, 
each class having many customers. The end result is a decomposition by which expansion coefftcients 
are obtained exactly by linear combinations of partition function values of small network constructs 
called pseudonetworks. Effectively computable bounds are given for errors arising from the use of a 
finite number of expansion terms. This method is important because load dependence is at once an 
essential element of sophisticated network models of computers, computer communications, and 
switching. teletraflic, and manufacturing systems, and the cause of very intensive computations in 
conventional techniques. With this method, very large load-dependent networks can be analyzed, 
whereas previously only small networks were computationally tractable. 

Categories and Subject Descriptors: D.4.8 [Operating System]: Performance-qfrcuinI:g theory; 
G.m [Miscellaneous]: yzrwing theor!, 

General Terms: Performance, Theory, Verification 
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1. Introduction 

During the past two decades, Markovian queuing networks have emerged as one 
of the most important tools for modeling computer systems, computer communi- 
cations, and switching, teletraffic, and manufacturing systems [ 12, 241. This was in 
large measure because an important class of such networks that is analytically 
tractable, the so-called local balance [2], quasi-reversible [ 111, or, simply, product- 
fbrm networks, was discovered. Tractability is preserved even in the presence of 
queuing or processing centers in which the service rate depends, with some 
restrictions, on the load or state of the center. Sophisticated models of practical 
systems quite often require such load-dependent processors [24]. For example, 
teletrafftc models [7] frequently concern centers with multiple servers, perhaps the 
most common example of load-dependent queuing. Another major reason for 
interest in networks with load-dependent centers is that such networks, when 
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appropriately chosen [6], approximate the behavior of non-product-form networks. 
Unfortunately, the element of load dependence makes the analysis of such networks 
very computation intensive [3]. Therefore, their use has been confined to relatively 
small networks, since large networks have required either intractably large calcu- 
lations or heuristics [ 1, 4, 8, 14, 23, 271, which, although useful, are handicapped 
by one or more of the following: errors of unknown magnitude, unknown range of 
applicability, questions of uniqueness, and problems with convergence [ 141. 

In this paper we report on a new computational method, based on mathematical 
foundations, which should alleviate the situation. This method is particularly 
valuable when the network has many classes, each with a large population. The 
theory significantly extends the theory in [ 15]-[ 171 for load-independent, closed, 
product-form networks of a very genera1 type. In [ 171 we reported the discovery of 
an integral representation for the partition function of such a network. This integral 
[ 151 contained a large parameter N, which in a natural way described the large size 
of the network. In [ 151 we were able to obtain an asymptotic expansion for this 
integral in inverse powers of N for multimode, multiclass networks in “normal 
usage.” In [ 161 we introduced the notion of “moment partition functions” and 
showed that the most genera1 moments of queue lengths can be given as ratios of 
these quantities. By first giving integral representations to the moment partition 
functions, we were then able to extend to them the complete treatment previously 
given to the partition function. 

The theory given here departs in several fundamental respects from the earlier 
work. It is therefore quite remarkable that the end results, that is, the computational 
algorithms and error bounds, are conceptually similar to the corresponding results 
for load-independent networks. The common key to the calculations is the follow- 
ing decomposition: The terms of the asymptotic expansion may be calculated 
exactly by linearly combining many partition function values of small network 
constructs, called pseudonetworks. When the original network has a load- 
dependent center, then the pseudonetwork has a corresponding center that is load 
dependent. The load dependence in the construct is derived from the load depend- 
ence in the original network by means of an explicit formula. The error analysis 
gives explicit bounds for the error incurred from the use of only a finite number of 
terms of the asymptotic expansion. The form and efficacy of the bounds are similar 
regardless of the nature of the dependence on the load. 

This paper assumes as before that the network is in “normal usage,” that is, that 
none of the processors are utilized very heavily. However, the technical requirement 
associated with normal usage is considerably relaxed here. By allowing the 
pseudonetwork to be load dependent, even when the original network is load 
independent, it is always possible to satisfy this requirement. The combination 
of the relaxed normal usage requirement and load-dependent pseudonetwork has 
the effect of significantly extending the class of networks that is analyzable by the 
computational method given here. In particular, the method may now be applied 
to smaller networks where it requires fewer computations than the conventional 
recursions. 

This paper only treats partition functions. The extension to moment partition 
functions and thus to the calculation of arbitrary moments of queue lengths follows 
along the lines of [ 161. The extension to networks with open and closed classes is 
possible since it has been shown in an unpublished work [21] that performance 
measures of a mixed network follow directly from the analysis based on integral 
representations of an associated closed network construct. The detailed technical 
development in this paper is restricted to the case of a network with only one 
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center which has general load dependence. However, the computational algorithm, 
in particular, the structure of the pseudonetwork, and the composition of the 
expansion coefficients from the pseudonetwork, for networks with more than one 
load-dependent center is clearly indicated in Section 7. 

The computational methods derived from asymptotic expansions have been 
incorporated in a software package called PANACEA. An early version of 
PANACEA that handles only closed networks is described in [20]. It is noteworthy 
that PANACEA computes not only performance measures but also their lower and 
upper bounds. 

1.1 OVERVIEW OF RESULTS 

(1) We start with the convolutional representation 

G,(K) = o-~s, G4K - nh(n), (1.1) < 

where G, and G,-, are, respectively, the partition functions for the network with 
and without the load-dependent node with index q. 

(2) We show that G,(K) is simply and exactly related to an integral I. This 
representation is valid for small and large networks, with or without infinite server 
(IS) node and for all levels of usage. 

(3) We introduce a parameter N, which in a natural way describes the size of the 
network. For large networks with IS centers, that is, networks with large populations 
and small values of ratios of mean service times to mean think times, the parameter 
N is large. 

(4) It is shown that there exists an asymptotic expansion 

WV - i $> as N-03, (1.2) 
n=O 

where the expansion coefficients {An) are exactly specified. 
(5) Each expansion coefftcient is shown to be exactly equivalent to a linear 

combination of many partition function values of small networks, which we call 
pseudonetworks. These constructs have the same topology as the original network, 
except that IS centers are not present. The pseudonetworks have at least as many 
load-dependent centers as the original network. These networks are small in the I 
sense that, to calculate the expansion coefficients Ao, A,, . . . , A,, we need to 
consider one pseudonetwork, which has a total network population of 2r. In 
practice r = 4 has typically proved both necessary and adequate [20]. 

A simple and explicit formula is given for characterizing the load dependence of 
node q in the pseudonetwork in terms of the load dependence of node q in the 
original network. 

(6) We prove the following, which establishes the asymptotic property of the 
expansion in (1.2) and also provides complete and effectively computable error 
bounds: 

0 I (-1)’ Z(N) - 1 $ 5 (-1)’ j$ 
[ 

r-1 1 r= 1,2, . . . . (1.3) 
n=O 

That is, the error incurred from using only the leading r terms of the expansion in 
(1.2) alternates in sign and is bounded (in magnitude) by the (r + 1)th term of the 
expansion. 

(7) We assume that the processing centers in the network are in “normal usage.” 
In this paper we are substantially relaxing this requirement over our earlier work 
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since a load-dependent center can always be considered in normal usage by 
truncating in a natural way a sequence that arises in the analysis. Truncation 
always gives load dependence in the corresponding center of the pseudonetwork, 
but also lower error bounds. 

(8) In addition to the foregoing, we derive an “alternative” integral representa- 
tion of Z(N) that yields the same pseudonetworks as the first representation does. 

(9) Thus this paper contains two derivations that are somewhat independent, 
even though a deliberate effort is made to establish equivalences at various 
intermediate points. The aforementioned “alternative” representation is developed 
in Appendix A. Yet another, third, course based on distributions (the “delta 
function” and its derivatives) has great appeal; Appendix A provides some clues 
but a systematic development is not undertaken in this paper. 

2. Integral Representations for the Partition Function 

2.1 PRODUCT FORM. We recapitulate some of the well-known results [2] con- 
cerning product form in stochastic networks and present them in the form that 
will be used later. Let p be the number of classes of jobs and reserve the symbol j 
for indexing class. Hence, when the index for summation or multiplication is 
omitted, it is understood the missing index is j where 1 5 j 5 p. A total of s service 
centers are allowed. We find it natural to distinguish the centers of Types 1, 2, and 
4, which have queuing from the remaining centers of Type 3, which do not. (The 
definition of Type 1 through 4 centers is given in [2].) Thus centers 1 through q 
will be queuing centers, while (q + 1) through s will be Type 3 centers, which have 
also been called think nodes and infinite server (IS) nodes. We reserve the symbol 
i for indexing centers. Also, whenever class and center indices appear together, the 
first always refers to class. 

Let N,, be the random variable denoting in steady state the number of jobs of 
classj at center i, and N = (N,,) the p x s matrix whose (j, i) element is the random 
variable N,,. Let n denote a p x s matrix whose elements are nonnegative integers, 
and let n; = (n,,, n2,, . . . , n,,,)’ denote the ith column of n. In this paper we consider 
closed networks where the population of jobs in class j is a constant, K,. The state 
space of N is the set S of matrices n, which have integer compo_nents, and satisfy 
the population constraints 

S = (n) 0 5 n,,, 1 n,, = K,, 1 5 j 5 p, 1 5 i 5 s}. (2.1) 
r=l 

Then the well-known results on closed networks with product-form stationary 
distributions can be given in the following form: 

44 = jj i x,(w). (2.2) 
I I 

As mentioned earlier, in this paper we initially allow only one queuing center, say 
the center indexed by q, to have general state-dependent service rates. Hence 

(2.3) 

where ny = C, n,u, e,;y is the relative arrival rate of class j jobs to center q, and pLy(k) 
is the service rate when there are k jobs queued. We assume the usual sufficient 
condition for product form, namely, the state-dependent service rates are inde- 
pendent of the class of the job being serviced. 
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where p and a are positive real constants. Let pJy = e,,/p, so that 

573 

f(n) = 
r(a + n + 1) 

r(a+l) ’ 
n2 1. (2.10) 

Notice in (2.9) that pLy(k) is linear with k for small k and asymptotically, with large 
k, approaches a constant, a characterization somewhat similar to that of the 
multiple server. 

2.2.4 Norton Equivalent of Identical FCFS Centers. It is known that a subnet- 
work of a quasi-reversible [ 1 l] or local balance [2] network may be exactly lumped 
into one load-dependent center, and this property is sometimes referred to as 
Norton’s theorem [5] in analogy to a similar result in electrical circuit theory. We 
now consider the qth center to be the Norton equivalent of (r + 1) load-independent 
first-come, first-served (FCFS) centers (r 2 0) with common service rate P. 

It is quite easy to show that with pJy = e,,/p, 

f(n) = (r + W r(r + n + 1) -= 
r! l?(r+l) ’ 

n 5: 1. (2.11) 

The forms in (2.10) and (2.11) are identical for purposes of mathematical analysis. 

2.2.5 Norton Equivalent of FCFS Centers with Distinct Service Rates. We 
consider the qth center of our network to be the Norton equivalent of r load- 
independent, FCFS centers with distinct service rates pl, ~2, . . . , pL,, (When the 
service rates are not all distinct, a slightly modified analysis applies.) It may be 
shown that with P,~ = e,y, 

f(n) = n! C M, ' ",, n> 1, 
m,+...+m;n PI ..* PL, 

(2.12) 

=n!ij$ 
k=l Pi’ 

n2 1, (2.13) 

where, ak = l/n lfl; (1 - &/,A,), 1 I k 5 r. Equation (2.13) is obtained from (2.12) 
by inverting a partial fraction representation of F(z) = C (-z)“f(n)/n!. 

2.3 INTEGRAL REPRESENTATION FOR THE PARTiTION FUNCTION 

IN (2.2) G is the partition function, and it is explicitly 

G,(K) = c n ~40. (2.14) 
DES i=l 

We have added the subscript q to specify the number of queuing centers, since we 
also need to consider G,-,(K), which is defined in an analogous manner but without 
the qth center. Thus, G4-i(K) is the partition function of a network without load- 
dependent centers. It is known [3] that the following convolutional representation 
relates the two partition functions: 

G,(K) = c G-I@ - nh,(n), 
and also [ 161 that 

(2.15) 

(2.16) 
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where, 

u = (Ul, u2, . . . , w-d’, 

1 = (1, 1, . . .) l)‘, 

K = WI, K2, . . . , K,)‘, 

Q&, = (u 124, 2 0, 1 5 i 5 q - l), 

Dq-i(K, u) = ii (P,O + P/W? 
J=l 

PJ = (P,l, Pj2, * * * ) Pj.4-I)‘, 

P/o = i PJI. 

1=y+l 

Note that p, and u are (q - I)-tuples, while K is a p-tuple. Observe too that, not 
surprisingly, the parameters pJ, for all the Type 3 centers appear lumped together 
in PJo. 

We may now combine (2.5) (2.15), and (2.16) to obtain 

G,(K) = ,$.rrN a:-, e-l’” S c n b/o + p;#+“’ P,“: 

,,,+. .+,,p=Wl J (4 - n,)! 

7 du, (2.17) 
. 

where K = C KJ. But an application of Leibniz’s rule gives 

c -= 1 d” n (PjO + pi U + p,yt)’ -- 9 
n,+. .+,I,=??, J (K) - n,)! n,! m! dt” J Kj! r=o 

and thus we arrive at the following: 

PROPOSITION 1 

(2.18) 

where, 

D,K U, t) = ii (P,O + P: U + pJ$)‘. 

/=I 
(2.19) 

Note that the representation holds regardless of whether IS, that is, Type 3, 
centers are visited ( pJo # 0) or not ( pJo = 0) by class j jobs. 

In the rest of the paper we follow convention and write 

j$ D,(K, u, 0) = $ D,(K, u, t) . 
I=0 

Note that in (2.18) we may correctly extend the range of m to 0 5 m < 03. This 
is because D, is a polynomial in t of degree K, and consequently the mth derivative 
with respect to t is zero for m > K. 

3. Large Networks in Normal Usage 

We henceforth consider only networks in which the route for each class always 
contains an IS, that is, Type 3, center. Specifically, 

P/o > O, j= 1,2 > *-*, P. (3.1) 
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3.1 LARGE NETWORK NORMALIZATIONS. For large networks, certainly, we ex- 
pect the class populations K, to be large. But, at the same time, we expect the ratio 
of normalized processing time to think time, p,i/p,O, to be smaller for increased 
class populations. Instead of working with large and small parameters simultane- 
ously, let us introduce a large parameter N to reflect the size of the network and 
normalize network parameters to be about 1 in order-of-magnitude estimation. 

Although there is great latitude in the selection of the large parameter, we have 
found the following to work well in practice: 

N=max @ , 
1.J 11 PJI 

where the maximum is on the set of nonzero pJ,. Now define for 1 5 j 5 p 

r, P E p,, 
p/o 

and 
PJO 

(3.2) 

We expect all these newly defined quantities to be O(1). We have also defined 
K = C KI and this quantity is given by ,8N, where p = C p,. 

Note that the function D, in Proposition 1 may be expressed in terms of the 
newly introduced normalized parameters as 

(3.3) 

3.2 NORMAL USAGE AND ITS CONSEQUENCES. Define 

’ KJPJ, a, P 1 - c - 
J=I PJO ’ 

lrilq. (3.4) 

We have previously [ 15, 161 defined the load-independent queuing center i to be 
in normal usage if the following condition is satisfied: 

cl!, > 0. 

We now give the condition for the load-dependent queuing center q to be in normal 
usage. From (2Sb) and (3.4) 

where 

% = 1 -Ii KJ%, 1 -b, (3.5a) 
& /=I P/o k 

A, P f: K, 2 . 
/=I J 

However, since pLy can be any positive number, it can always be chosen so that 
CQ > 0. Instead, we say the load-dependent node q is in normal usage if 

5, A 1 - x,c, > 0, (3.6a) 

where 

(3.6b) 
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(We always assume c, < ~0, which includes all realistic cases we know of.) Thus we 
obtain &, from CQ by replacing l/p, in (3.5a) by lim,,, (l/pJn)). 

Although the condition G, > 0 seems, at least superficially, to be a reasonable 
extension of the condition (Y+, > 0 for load-independent queuing centers, it will be 
seen subsequently that it is a very natural condition with deep consequences. In 
the first place, (3.6a) can be written as 0 < X, < l/c,, so it is always possible to 
pick a positive number p4 such that X, < .CL~ < l/c,. In other words, if the load- 
dependent node q is in normal usage, it is possible to choose a positive number pL4 
so that simultaneously cyy > 0, where CQ is defined in (3.9, and pycy < 1. 

We now define a transformation of the sequence (f(n)] into the sequence {4(n)) 

by 

@(I?) P f f(n + m) (I my)“, n=0,1,2 ).... 
m=O 

(3.7) 

This new sequence, besides being of independent interest, is also basic to 
the computational procedure given in this paper since it will be shown later 
that it characterizes the load dependence of the corresponding center in the 
pseudonetwork. 

If use is made of (2.5b), (3.4) (3.9, it can be seen that the series on the right- 
hand side of (3.7) can be written in the following three equivalent ways 

i ... m$o/(Z*,+n)ny, (3.8b) 
m,=o P i 

i . . . j, f(C m, + n) n (‘p~~~o)m’. (3.8c) 
m,=o P i 

We now see from (3.8a) that the convergence of the series defining (4(n)] is 
independent of the choice of pcLy, and that the condition of normal usage, (3.6), is 
sufficient to ensure the convergence of these series. 

Examination of (3.8c) shows that 4(O) admits of a simple physical interpretation; 
it is the partition function of the queuing center in isolation. The convergence of 
the series for d(O) is therefore equivalent to the stochastic stability of a hypothetical 
open network consisting only of the qth node subject to Poisson loads. The rate of 
this offered traffic for classj equals the rate of jobs departing another hypothetical 
IS node with a constant population K, and mean service time P,~. Similarly 4(n) 
for n > 0 may be interpreted as the partition function of this isolated hypothetical 
node conditioned on there being y1 jobs resident in the node. 

It may also be seen from (3.6) that if center q is load independent with mean 
service rate pqr then c, = l/pLq, and hence from (3.6), &, is equal to (Ye as defined in 
(3.4). Thus the general definition of normal usage given above reduces to the 
definition of normal usage previously given for load-independent queuing centers. 

We assume that all the queuind centers in the network are in normal usage. 
In many practical situations the value off(n) for 1 5 n 5 K, the total network 

population, will be known but not its functional form. In these cases, as Proposition 
1 shows, we may takef(n) = 0, n > K. However, f(n) = 0, n > K, is equivalent to 
setting pq(k) = ~0, k > K; this implies from (3.6) that c, = 0 and hence cYy = 1 > 0 
from (3.6). Then the centrr q is in normul usuge and the series defining 1$(n)) 
obviously converge. In fact 4(n) = 0, n > K. 
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In certain other situations in which the functional form of (f(n)) is known for 
all n, such as in the load-independent and multiple homogeneous server cases, 
there may be practical advantages in following the other, also correct, course of 
not settingf(n) = 0, n > K. In the load-independent case, the main advantage is 
that the pseudonetworks are themselves load independent iff(n) = n!, n 2 1; they 
are load dependent iff(n) = n!, n 5 K, = 0, y1> K. The pseudonetwork calculations 
are obviously simpler if they are load independent. The errors bounds, however 
(see Section 6.4) will always be lower if the course involving truncation is followed. 

To summarize, “normal usage” is guaranteed in the case most likely to occur 
out of necessity and choice, namely, the series {f(n)) is truncated at n = K < 00. 
Truncation always gives lower error bounds. The technical content of “normal 
usage ” is almost entirely concerned with the case in which the series (f(n)), 
0 I n I 00, is used, when available, without truncation. The latter course was 
followed in our earlier work [ 15, 161. The procedure, based on appropriate 
truncations, is new to this paper. Although the effect of relaxation is small for very 
large networks, the main gain is in connection with small- and medium-sized 
networks, where it makes the asymptotic method of calculations also attractive in 
comparison to alternative methods. 

3.3 EXAMPLES OF {4(n)). The sequence (4(n)) may always be numerically 
evaluated. However, for the canonical cases of load dependence stated in Section 
2.2 we have obtained closed-form expressions. In all these cases, the functional 
form off(n) is known for all rt and it is used to compute 4(n) without truncation. 

3.3.1 Load Independence. Normal usage corresponds to CY > 0. 

n! 
d4n) = - &l+1 ) n 1 0. (3.9) 

This form is the reason that a load-independent center remains load independent 
in the pseudonetwork; see Section 5. 

3.3.2 Multiple(s) Homogeneous Servers. Normal usage corresponds to s - 1 + 
a > 0. Also, 

s n! 
4@)‘(SS I)!($- 1 +g+’ 

-S-$“(l -cx)~ (rn+n)!Y- 1 
m! [ * stsm+n I 

9 nIs-2, 
m=O 

s n! 
=&CS- 1 +(Y)“+l’ 

n>s- 1. (3.10) 

3.3.3 Load Dependence Due to Hefes. For the sequence (f(n)) given in (2. lo), 
normal usage corresponds to CY > 0. Also, 

(3.11) 

3.3.4 Norton Equivalent of (r + 1) Identical FCFS Centers (see (2.11)). Normal 
usage corresponds to CY > 0. Also, 

1 r(n + r + 1) 
fm) = n+r+l qr + 1) ’ n 2 0. a (3.12) 
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3.3.5 Norton Equivalent of r FCFS Centers with Distinct Service Rates (see 
(2.12)). Normal usage corresponds to 

-1+a>o. 

Also, 

(3.13) 

3.4 TRANSFORMATION TO INTEGRAL REPRESENTING PARTITION FUNCTION. 
We here exploit normal usage in the load-independent centers, that is, 

(Yi > 0, l%i5q-1, (3.14) 

to make a simplifying transformation to the integral representation in Proposi- 
tion 1. Make the change of variables 

O!jUi --) Ui, lsinq-1, (3.15) 

and observe that on account of (3.14) the region of integration is unchanged. The 
parameters for center i, 1 5 i I q - 1, are renormalized with respect to CY; thus 

fji 4 5, 15j5p, lsisq-1, (3.16) 
ai 

so that, in particular, 

rj u+i!ju. (3.17) 

With these changes we have the following form for the partition function: 

PROPOSITION 2 

where 

ON) = S ON f(m) ame cc-, e-l’” m.. m! atm du, I=0 

(3.18) 

(3.19) 

and 

O(N-‘, U, t) = fi [exp (- pjp,!u)] 1 + i (5; u + I’jqt) 
@jN 

. (3.20) 
j=l 

The term in square brackets in (3.18) is never computed in practice since 
performance measures are given by ratios of partition function values. For this 
reason, from now on we are only concerned with the integral Z(N). 

At times, we find it useful to view B(N-‘, u, t) as a function of a real variable N. 
At such times it is useful to keep in mind that the function is of interest at the 
discrete points where @jN, 1 I j % p, are integers. Note, in particular, with reference 
to (3.19) that 

ame 
m > /3N and /3jN, 1 5 j 5 p, are integers + - = 0. 

atm 
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For this reason we may (i) takef(m) to have any value we want in the range 
m > K = PN, and (ii) write (3.19) also as 

Z(N) = s + e-“” miof$ $ du. 
Q-1 I=0 

(3.2 1) 

We take note of two items here. First, the sequence in whichf(m) = 0 for m > K 
is a special case of the infinite sequence (f(m))Lo assumed in (3.21). Second, 
regardless of the manner in which the infinite sequence is defined, only the values 
off(m), m I K, determine Z(N). 

The asymptotic expansion in l/N for Z(N) will however depend on the infinite 
sequence (f(m)). In fact, as we see in Section 6.4, the special infinite sequence in 
which f(m) = 0, m > K, gives the smallest error bounds in our computational 
procedure. 

4. Asymptotic Expansions 

4.1 EXPANSIONS AND ERROR BOUNDS. We return to the representation of 
the partition function in Proposition 2 and (3.21). We show in Proposition 8, 
Section 6, that, for all values of N such that @jN, 1 I j I p, are positive integers, 

forr= 1,2,.... 
t=o 

Now multiply (4.1) byf(m)/m! and sum with respect to m for 0 I m I 0~: 

(4.1) 

5 (-1)’ L 
N’ (4.2) 

for r = 1, 2, . . . . Multiply (4.2) by e-l’” and integrate with respect to u E Q&-r : 

I 
5 (-l)$, r= 1,2, . . . . (4.3a) 

where 

A,, P -$ .s + e-l’” c m ftrn) a” am e du n=O, 1, . . . . (4.3b) 
Qq-I m=O m ! a(N-‘)n at m l/N=0 ’ 

/=o 

In particular, therefore, we have for all values of N such that @jN, 1 I j 5 p, are 
positive integers, 

Z(N) - i $, as N-co, 
n=O 

as well as bounds on the error incurred by truncating the expansion. 
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In Section 4.2 we describe a simple transformation that reduces the infinite sum 
in (4.3b) to a finite sum. Section 5 uses the latter form to obtain an exact procedure 
for computing each of the expansion coefficients. This procedure uses the 
pseudonetwork and its partition function for the exact computation. 

4.2 A SIMPLIFYING TRANSFORMATION FOR THE EXPANSION COEFFICIENTS. We 
show here that there is a function H(N-‘, u, t) simply related to B(N-‘, u, t), 
possessing an attractive algebraic structure and for which 

i f(m) a” am - ___ - fqo, u, 0) m=O m! d(W’)” atm 
= ; 4(m) am a --~ 

m! at” d(P) WO, u, 01, n=o, l,..., (4.5) m=O 

where the sequence (4(m)) is as defined in Section 3.3. 
The function H is defined thus: 

O(N-‘, u, t) P exp[(l - cu,)t]H(N-‘, u, t); (4.6) 

that is, from (3.4) and (3.20) 

H(N-‘, U, t) = fl eXp[-/3j(i;lU + l?jqt)] 1 + a (i?jU + I?jqt) 

BjN 

. (4.7) 
I 

The function H has been investigated before [ 151 and we give without proof a 
statement of the property that we will find useful. 

PROPOSITION 3. Let 

h&l, t) P L a” n! a(jjql H(o, up 0, n = 0, 1, 2, . . . ) 

where h,(u, t) is a multinomial of degree 2n in the p variables (i;iu + I’jqt), 
1 5 j 5 p, and a polynomial in t of degree 2n. 

To see (4.5), observe that from (4.6), for n = 0, 1, . . . and m = 0, 1, 2, . . . , 

-9 (4.9) 

since from Proposition 3, akh,/atk = 0 for k > 2n. 
Multiply (4.9) by f(m) and sum with respect to m to obtain, after recalling the 

definition of (4(n)) in (3.7) and exchanging the order of summations, for 
n=o, l,..., 

(4.10) 

which is equivalent to (4.5). 
We take stock of the progress made toward computation of the expansion 

coefficients in the following, which combines (4.3), (4.4), and (4.10) and amply 
demonstrates the utility of the transformation just described. 
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PROPOSITION 4 
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Z(N)- i $7 as N-W, 
n=O 

(4.11) 

where 

I 1 du, n=O,l,.... (4.12) 
I=0 

References [ 151 and [ 161 have given systematic, recursive procedures for gener- 
ating the multinomials h,(u, t). We reproduce here the leading elements: 

Mu, t) = 1, n = 0, 

=- h C pj(F;U + lYjqt)*, n = 1, 

= i s pj(i;j'U + rjqt)3 

J 

+ f s p,2(F/U + rjgt)4 

J 

+ $ ,z, @j,@j,(~j:U + rj,qt)*(Fj:U + ri,J)*, y1= 2. (4.13) 
JI#Jz 

We note that in our procedure for computing the sequence (A,], the explicit 
differentiation with respect to t indicated in (4.12) is not explicitly undertaken. 
Instead, by noting that such differentiations are inherent to the definition of 
partition functions of load-dependent networks (see Proposition l), we represent 
A,, as a linear combination of partition functions of constructs called pseudo- 
networks. This is undertaken in Section 5. 

5. Computation of Expansion Coeficients 
5.1 PSEUDONETWORKS. For any k = (k, , k2, . . . , kP), a p-tuple of nonnegative 

integers, define 

g(k) = c me- 
n,,+. .+n,,=k, 

where, by convention ni = C,“=l nji, 1 5 i 5 q. 
A comparison with (2.14) in Section 2.3 indicates the g(k) is a partition function 

of a certain closed network. This network lacks IS centers but contains, as does the 
original network, (q - 1) load-independent queuing centers and one load-dependent 
queuing center. The load-independent centers have processing rates (Pii), where, 
see (3.16) Fj; = I’jJai. The load-dependence in the qth center is determined by 
the sequence (4(n)). The number of classes in this network is p, as in the original 
network. The p-tuple k denotes the population distribution in the network. 

We refer to the network underlying (5.1) as a pseudonetwork. 
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If all queuing centers in the original network are load independent, then from 
(3.7), 

and 

g(k) = L z . . . C (5.2) 
aq n,,+. .+n,,=k, np,+. .+nw=kP i=l 

where 

r. i; =z! 
Jq , 1 sjsp. 

% 

The form in (5.2) without the multiplicative constant l/a, in the right-hand side 
has been used in [ 151 and [ 161 to define pseudonetworks. 

From the result in Proposition 1 it also follows that 

where 

k= i kj. 
j=l 

5.2 EXPANSION COEFFICIENTS IN TERMS OF PSEUDONETWORK’S PARTITION 
FUNCTION. Compare (5.3) with the expression for A,, in (4.12) after recalling 
Proposition 3. This Proposition states that h,(u, t) is a multinomial in (t! u + I’jqt), 

1 5 j 5 p, of degree 2n and hence it may be expressed as a sum of terms, each 
term being within a multiplicative constant of nj(F, u + I'j,t)'j for some (kj), 2 kj 
5 2n. Therefore, the expansion coefficient A,, may be expressed as a linear 
combination of g(k), C kj % 2n. 

The following expressions for the leading expansion coefficients illustrate the 
procedure. We have used the expressions in (4.13). 

Ao = g(O), 

Al = - C Pj g(W, (5.4) 

AZ = 2 x /3j g(3ej) + 3 I: P,’ g(kj) + $ ,Z, Pj, Pi, gG%, + 2%), 
j i J&J2 

where j, j, , j, are class indices each with range [ 1, p] and ej is the ptuple with the 
jth element unity and all other elements zero. 

The important feature of these expressions, which holds in general, is that they 
are identical to the expressions given in [ 151 for networks with load-independent 
queuing centers. The sole caveat is that the value of A0 is given as 1 in [ 151, which 
happens to be the value of g(0) as defined there, while here g(0) = 4(O). 

On account of the above-mentioned feature, the enumerations and characteri- 
zations of the pseudonetworks given previously [ 15, 161 apply as well in the present 
load-dependent context. The computational efftciencies that stem from the 
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decomposition principle underlying the use of pseudonetworks have also been 
previously documented [20]. We summarize in 

PROPOSITION 5. The expansion coeficients Ao, A,, . . . , A,(r 2 0) are obtained 
by linearly combining the partition function values of the pseudonetwork in which 
the network population over all classes is 2r. 

With small populations in the pseudonetworks, the recursive techniques given 
in [3] for calculating partition functions of load-dependent networks may be used 
to analyze the individual pseudonetworks. 

6. Proof of Asymptoticity Error Analysis 
6.1 A BASIC LEMMA. Define for x 2 0, s 2 0, 

A(x, s) B (1 + xs)“? (6.1) 

We have previously proved in [ 151 that for n = 0, 1, 2, . . . 

0 5 (-1)” 5 A(x, s) % (-1)” 2 A(0, s), olxlq (6.2) 

that is, A(x, s) is a completely monotonic function [ 181 of x for all x 2 0. We state 
in the following proposition that a similar property is also true for dmA(x, s)/asm, 
m 2 1, for all sufficiently small x. The proof is in Appendix B. 

PROPOSITION 6 

W 5 4x, 4 = PmWQ&, 4, 

where 

Pnl(x) = 

and 

4x, 4 
Q&, 4 = (m - 1Y (1 + xs)m, 

(ii) Form=1,2 ,..., n=0,1,2 ,..., s?O 

0 5 (-1)” $ Prn(x> 5 C-1)” g Pd9, 

0 5 (-1)” -& QJX) 5 (-1)” -$ CL(O), 

mr 1, 

if m=l, 

if mr2, 

rnz 1. 

(6.3) 

(6.4) 

(6.5) 

o~xe--&; (6.6) 

OIXICQ. (6.7) 

(iii) Form= 1,2, . . . . n=O, 1,2 ,..., srOandO~x5 l/(m- I), 

0 I (-1)” $5 A(x, s) I (-1)” -$ $ A(0, s). (6.8) 

6.2 COMPLETE MONOTONICITY IN THE INTEGRAL. We use the proposition just 
stated to establish that the function 0 and its derivatives with respect to t possess 
certain remarkable properties. Recall that we have previously shown that the 
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partition function G,(K) is simply related to the integral Z(N), where 

du; (6.9) 

B(N-‘, U, t) = fi [exp(-@jF'u)] 
j=l 

t/U + Fjqt 'jN 

N . (6.10) 

It is convenient to write 

B(N-‘3 U, t) = fi Bj(N-‘3 U, t), 
j=l 

where 

i!!U + l?jqt 'IN 

N , 

Now note that for 0 5 m 5 pN, 

(6.1 la) 

1 <j(:p. (6.11b) 

(6.12a) 

where the sum is taken over integral ml, m2, . . . , m, such that 

0 5 mj 5 PjN, 1 sjlp, and ml+m2f . . . +m,=m. (6.12b) 

The first set of constraints follows from the fact that 0, is a polynomial in t of 
degree bj N. 

At this stage it will be useful to view 

(6.13) 

as a nonnegative real variable. In particular, therefore, from (6.1 I), 

0 = d(U, U, t) = fi Oj(W, UT t), 

j=l 
(6.14a) 

where 

ej(Cd, U, t) = exp(-/3,1?;‘u)(l + Cd(i;jU + rjgt))'j'". (6.14b) 

Weclaimthatforlrj~p,m=0,1,2 ,..., n=0,1,2 ,..., uEQ&~, 

0 5 (-1)” 5 & BJ(W, II, t) 

5 (-1)” 7 dz $ ej(O, U, t), 
Pi 05WS-- 

m- 1 , 
(6.15) 

that is, PBj/dtm is a completely monotonic function of w E [0, pj/(m - l)]. Note 
that the interval 0 5 w 5 pjl(m - 1) subsumes the range 0 5 m 5 BjN in which 
d”Oj/& m is of interest in (6.12). 

The proof of (6.15) follows from Proposition 6. For 

[exP(Pj~‘41&(~, U, t) = 4% 9, (6.16a) 
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where 
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; = 4 /3j(F!U + F,qt) = S. (6.16b) 

With this identification, (6.15) is equivalent to (6.8) in statement (iii) of the 
proposition. 

By using (6.15) in (6.12), it is now straightforward to establish the complete 
monotonicity of d'V/at m as a function of w for 0 5 w 5 p/m since sums and 
products of completely monotonic functions are themselves completely monotonic 
[ 181. In summary, we have 

PROPOSITION 7. For 0 5 m 5 p/w, n = 0, 1, 2, . . . , u E Q-, 

6.3 ERROR ANALYSIS. An immediate 
P/w,r=l,2 ,..., 

5 (-1)” $ -& 0(0, u, t). 
Wn 

(6.17) 

corollary to (6.17) is that for 0 5 m 5 

o~(-l)‘-&B(w,u,o)-r~ W” 
[ n=O 1’. 

$-&-$ NO, w 0) l-1 
~(-l)rw~‘~d”le(o,u,o) . 

1’ r! awr atm I- 
For, by Taylor’s theorem, 

(-l)~-$B(w,u,o)-r~ Wfl 
[ -I. 

-$&-& fw4 u, 0) n=O II 

= t-1)’ ;; -& g 0th u, O), 

(6.18) 

(6.19) 

where 0 < ,$ < w. But the right-hand side is subject to the lower and upper bounds 
given in Proposition 7, and these give (6.18). 

With respect to the range of validity of (6.18), observe that for w > P/m but such 
that /3,/w, 1 5 j I p, are integers, (6.18) is also true; in fact, d’V/& m = 0. This is 
apparent from consulting (6.11) and (6.12). 

In summary we have 

PROPOSITION 8. For all values of w where @j/w, 1 5 j 5 p, are positive integers 

0 5 (-1)’ [ -& 0(w, 
It, 

0) - ‘S n=O W” 1. ~&~S(O,u,O, I-1 
5 (-1)‘w’ 

1 
A- d’ E fI(O, u, 
r! do’ at” 0) 

i 
(6.20) 

forr= 1,2,.... 

This result, which is also given in (4. I), is the key to the error analysis in Section 
4.1. For, by multiplying byf(m)/m !, summing with respect to m for 0 5 m < 03, 
multiplying by e-l’“, and, finally, integrating with respect to u E Q4+-,, we obtain 
the error bounds given in (4.3). 
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6.4 TRUNCATION ALWAVSGIVES LOWER ERROR BOUNDS. In Sections 1.1, 3.2, 
and 3.4, we have claimed that truncating the series (f(n)) at n = K always gives 
lower error bounds. This is seen to be true by recalling the following chain of facts. 
From (3.7) it is clear that, for each II, $(n) is smaller with truncation. From this 
observation and (5.1) it follows that for each k, g(k) is smaller with truncation. As 
a consequence (see (5.4)), each expansion coefficient A, is smaller in magnitude 
with truncation. The claim is substantiated, finally, by inspecting (4.3a) which gives 
the error bounds. 

7. Generalization to Networks with Several Load-Dependent Centers 
So far, our notational system has been directed at the asymmetric case in which all 
but one of the q queuing centers in the network are load independent. Let us first 
make a few small modifications to correct this. These changes are suggested from 
the point of view that all q queuing centers are load dependent with load indepen- 
dence as a special case. First let (2.4a) apply for 1 5 i I q with n;! replaced byfi(nJ. 
In the same vein let the sequence {4i(n)) be defined as in (3.6) for 1 I i I q. Also, 
let the partition function of the pseudonetwork given in (5.1) be replaced by the 
following symmetrical form: 

g(k) = 1 ..- 2 
n,,+...+n,,=k, 

(7.1) 

Note that the multiplicative constant l/nP=;’ (Y; applied to the expression in (5.1) 
gives the expression in (7.1). 

With these modifications incorporated, it can be shown that 

(7.2) 

where I(N) has the expansion given in (4.4) with the error bounds in (4.3a) and 
the expansion coefficients (An] are composed from partition function values exactly 
as specified in Section 5. For instance, the leading expansion terms are given by 
(5.4). 

The reader should verify that the above is consistent with the detailed results 
given earlier for the case of only one center with general load dependence. 

Also, with these changes we are free to exercise the option that has been provided 
for the load-dependent center, namely, appropriate truncation of the series {j( .)] 
and @4-N. 

8. Conclusions 
A complete theory has been developed for generating the entire asymptotic expan- 
sion of the partition function of a general class of Markovian, closed queuing 
networks with centers in which the service rate depends on the load. The theory, 
which is not simple, yields a simple computational technique. Equation (5.4) 
encapsulates the procedure; it states that the leading coefficients of the expansion 
are exactly given as linear combinations of many values of the partition function 
of the pseudonetwork, a construct. The computation of these values may be 
undertaken by any conventional procedure since the class populations in the 
pseudonetwork are small, as attested to by (5.4). The computational technique is 
accompanied by an error bound that is explicit and effective. If the need for more 
accurate solutions exists, then typically this is satisfied by computing additional 
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terms of the expansion. Finally, the technique is free of problems related to 
numerical stability, convergence, and uniqueness. 

Appendix A. Alternative Integral Representation of Partition Function 

We make an observation that is quite important, even though the approach that it 
suggests is not systematically developed in this paper. Given the sequence {f(n)], 
we may ask for a kernel function p(t) such that 

S 
m 

PW” dt = f(n), nz 1. (Al) 
0 

In fact our previous work [ 15, 161 on the load-independent case [f(n) = n!, 
p(t) = e-‘1 relied on such a representation. For the examples in 2.2.3, 2.2.4, and 
2.25, respectively, it is easy to verify the following solutions for the kernel function 

1 1 r 
p(t) = r(a + l) e-‘I”, z e-‘t : C akt4eegk’. 

k=l 
&‘I 

For the case of s homogeneous servers (see 2.2.2) a kernel function is a distribution 
[91: 

p(t) = & ems’ - 
s-2 

1 (-l)?,P)(t), 
m=O 

(A3) 

where 

and 6(“)(t) is the mth derivative of the unit impulse function. 
It is also known that any sequence {f(n)) has a representation 

f(n) = lrn t” dm(O, nz 1, (A4) 

in which m(t) is a function of bounded variation [26]. The function m(t) is not 
unique, and, in general, it is a difficult task to determine an m(t) given {f(n)]. It 
should be noted that the representations (Al) and (A4) are the same for the 
examples of p(t) given in (A2). We need only set m(t) = Jb P(T) dr to see this. 
However, the two representations are different in the case of s homogeneous servers 
for s 2 3. Note that, if (Al) holds, then 

S 
m 

o p(t)e”-*)‘” dt = 4(n), n 2 0, (A5) 

where 4(n) is defined in (3.7). 
A very useful representation of a class of sequences {f(n)], which we make use 

of, can be obtained in terms of double integrals. It is seen that this class includes 
all the cases of interest in this paper. The representation is motivated by work of 
Rooney [22], but we give a self-contained derivation here. 

Instead of (f(n)), consider the sequence {g(n)) defined by 

g(O) = 1, g(n) cf!@ 
n! ’ 

nr 1. 
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j& g(n+l) 
I I g(n) = P&l < 1, PI- 

the condition of normal usage for the node guarantees absolute convergence of the 
series CL0 g(n) [ 131. Next, define the function 

m(w) = kio gw-w’2~kw, (A7) 

where LL(W) is the Laguerre polynomial of order k [ 191. Because of the inequality 
P61 

1 e-““2Lk(w) 1 5 1, 0 5 w, k=O, 1, . . . . 648) 

it follows that the series defining m(w) is uniformly and absolutely convergent, and 
so m(w) is well defined. Further, the series defining m(w) can be multiplied by 
e-‘/‘“L,(w) and integrated from 0 to 00 term by term. Since [ 191 

S 
m 

e-“J$(w)L,(w) dw = &.k, (49) 
0 

we have shown that 

S 
m 

e -““Ln(w)m(w) dw = g(n), n=o, 1, . . . . (AlO) 
0 

The representation (AlO) can now be combined with the standard integral repre- 
sentation of the Laguerre polynomial [ 191, 

L,(w) = 5 S 
m 

e-“v”Jo(2&) dv, 
. 0 (Al 1) 

to yield the desired representation. 

f(n) = n!g(n) = o- o- 
SD- 

e-“v”Jo(2&) dv 
I 
ew’2m(w) dw. 6412) 

In (A12) Jo(x) is the Bessel function of the first kind of order zero. Note that the 
order of integration in (A12) cannot be interchanged. 

It will turn out that closed-form expressions for m(w) will not be needed for 
computational purposes. However, as an example, the weight function for the 
homogeneous S-server queuing node of 2.2.2 is 

We now use the double integral representation (A12) of f(n) to obtain another 
representation of the partition function. Replace f(m) in (2.17) by (A12), and 
interchange the order of integration and (finite) summation. Then, as in [ 161, it is 
straightforward to show that 

-““D,(K, u)J0(2&3 du eX’*m(x) dx. 
I 

(A14) 



Asymptotic Expansions for Closed Markovian Networks 

In (A14), 
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u = (UI, U2, . . . . UJ’, 

Pj = (Pjl, PjZ, - - - P Pjq)‘, 

1 = (1, 1, . . .) l)‘, 
(A15) 

Dq(K U) = fi (Pjo + P; U)', 
j=l 

and pjo and K are as in (2.16). 
We next examine the relationship between the representation (2.18) and (A14) 

for G(K). For any polynomial p(t), the Hankel transform relation holds [25]: 
m m 

e-‘p(t) = 
J u- 

o e-“p(u)Jo(2&) du Jo(2&) dx. 1 6416) 
0 

The following generating function for the Laguerre polynomials is known [ 191: 

Jo(2JZ) = i e-’ 5 L(x). 
n=O (A17) 

It is easy to show that, if (Al 7) is substituted into (A16), the order of summation 
and integration can be interchanged and the factor of e-’ can be canceled on both 
sides of the equation to yield 

PM = ZF e-“p(u)Jo(2&) du L,(x) dx 5. 1 I. (‘418) n=O 
However, (A 18) implies immediately that 

o e-“p(u)Jo(2&) du L,(x) dx = $ p(t) 1 . (A19) 
t=o 

If expression (A7) for m(w) is now substituted into (A 14), it is easy to see that the 
order of summation and integration can be interchanged, since D,(K, u) is a 
polynomial in u,. If this is done, and use is made of (A19) and the definition of 
D,(K, u), it is seen that (A14) reduces to (2.18). 

Since we assume that all the centers are in normal usage, from the remarks 
following (3.6), we can always choose pL4 so that m(w) is well defined and CY~ > 0. 

Hence 

(Yi > 0, lsilq. 

Then if we make the change of variables 

CJ!iUi + Ui, 1 Silq, x = aqv, 

we obtain the following expression for Z(N) as defined in (3.18) and (3.19): 

Z(N) = e-““H(N-‘, u)Jo(2G) du 1 e”12fi(v) dv. L4W 
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where we have partitioned the q vector u into a q - 1 vector, u4-,, and the last 
component u,, u = (uq-, , u,), and 

h(v) = exp[-$1 - a,)v]m(a,v) = j. g(n)exp(-fv)l,((a,v). (A22) 

However [ 191, 

L,(a,v) = ; n (Yiq(l 
0 j=O J 

- a,)“-‘L, (v), (~23) 

and if we substitute this expression for &(a,~) into (A22) and interchange the order 
of summation, we obtain 

h(V) = i b(j)e-v’2Lj(V), (~24) 
j=O 

where 

03 
i(j) = a’, z( 1 “f’ (1 

n=O 
- cQg(n +j) = +$ WW 

with 4(n) defined in (3.7). If we replace H(N-‘, u) in (A20) by its expansion in 
powers l/N, we formally obtain an expansion of the form (4.4), but now the 
coefficients A, are 

A, = jy= [s,: e-l.“h&, ) 9Jo(2J;bv) duJ?“%w dv. (AW 

However, if expression (A24) for h(v) is substituted into (A26), the order of 
summation and integration are interchanged (valid since h, is a polynomial), and 
use is made of (A 17) and (A25), it is clear that the expressions (4.12) and (A26) for 
A, are the same. Expression (A26) thus provides an alternative expression for the 
coeffkients in the asymptotic expansion of I(N). 

Appendix B. Proof of Proposition 6 

(i) Let the induction hypothesis be 

5 4x, 4 = Pr(x)Qrk s), r=l,2 )..., m, 031) 

where the functions P, and Qr, r 2 1, are as defined in (6.5) and (6.6). It may be 
directly verified that (B 1) is true for m = 1. 

Now, from (Bl), 

a m+l 
m+l 4x, 4 = Pm(x) $ Qm (x, s) as 

W = Pm+~(x)Qm+~(x, s), 
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since the functions (P,(x)) satisfy the recursion 
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P,+,(x) = -Pm(x) 
( ) 
x - ; 9 m L 1. 

This completes the inductive proof. 

(ii) To show (6.6) it is enough to prove that for the range of m, IZ, S, and x in the 
statement, 

0 5 (-1)$+(x). 

For, (B4) implies that (- l)‘W’Pm(x)/dx” is a nonnegative, monotonic nonincreasing 
function of x, and, therefore, the right inequality in (6.6) follows. 

The proof of (B4) is again by induction. The induction hypothesis is 

0 5 (-1)$+x), r=l,2 ,..., m, n=0,1,2 )...) 

Now, from (B3), it follows that for n = 0, 1, 2, . . . , 

(-l)?$_+,(x) = 5 &P,(x) - (-lY& 
{ I 

xP,(x) 

= 
( 1 
; - x (-l)+&(x) + n(-l)+&(x) 

2 0, for 0 I x zz L m’ 

(B5) 

This completes the inductive proof of (6.6). 
The proof of (6.7) is straightforward. Equation 6.3 shows that A(x, s) is a 

completely monotonic function of x for all x 2 0, and the same is easily verified 
to be true for (1 + XS)-~. As the product of completely monotonic functions is 
completely monotonic [ 181, &(x, s) is also a completely monotonic function 
of x for all x 2 0. 

(iii) As P,(x) and C&(x, s) have been shown in (ii) to be completely monotonic 
for m, n, s, and x in the range of interest here, it follows that their product is also 
completely monotonic, which is what (6.8) states. Cl 
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