
USENIX Association

Proceedings of the
2001 USENIX Annual
Technical Conference

Boston, Massachusetts, USA
June 25–30, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Measuring Thin-Client Performance Using Slow-Motion Benchmarking

S. Jae Yang, Jason Nieh, and Naomi Novik
Department of Computer Science

 Columbia University
{sy180, nieh, nn80}@cs.columbia.edu

Abstract
Modern thin-client systems are designed to provide the same graphical interfaces and applications available
on traditional desktop computers while centralizing administration and allowing more efficient use of
computing resources. Despite the rapidly increasing popularity of these client-server systems, there are few
reliable analyses of their performance. Industry standard benchmark techniques commonly used for
measuring desktop system performance are ill-suited for measuring the performance of thin-client systems
because these benchmarks only measure application performance on the server, not the actual user-
perceived performance on the client.

To address this problem, we have developed slow-motion benchmarking, a new measurement technique for
evaluating thin-client systems. In slow-motion benchmarking, performance is measured by capturing
network packet traces between a thin client and its respective server during the execution of a slow-motion
version of a standard application benchmark. These results can then be used either independently or in
conjunction with standard benchmark results to yield an accurate and objective measure of the performance
of thin-client systems.

We have demonstrated the effectiveness of slow-motion benchmarking by using this technique to measure
the performance of several popular thin-client systems in various network environments on web and
multimedia workloads. Our results show that slow-motion benchmarking resolves the problems with using
standard benchmarks on thin-client systems and is an accurate tool for analyzing the performance of these
systems.

1 Introduction
The rising cost of support and maintenance for desktop
systems has fueled a growing interest in thin-client
computing. Modern thin-client systems are designed to
provide the same graphical interfaces and applications
available on desktop systems while centralizing
computing work on powerful servers to reduce
administration costs and make more efficient use of
shared computing resources.

While the term “thin-client computing” has been used
to refer to a variety of different client-server computing
architectures, the primary feature common to most thin-
client systems is that all application logic is executed on
the server, not on the client. The user interacts with a
lightweight client that is generally responsible only for
handling user input and output, such as receiving screen
display updates and sending user input back to the
server over a network connection. Unlike older client-
server architectures such as X [7], many modern thin-
client systems even run the window system on the
server. As a result, the client generally does not need
many resources, thus requiring fewer upgrades, and can

have a very simple configuration, reducing support
costs. Because of the potential cost benefits of thin-
client computing, a wide range of thin-client platforms
has been developed. Some application service providers
(ASPs) are even offering thin-client service over wide
area networks such as the Internet [8, 10, 22].

The growing popularity of thin-client systems makes it
important to develop techniques for analyzing their
performance, to assess the general feasibility of the
thin-client computing model, and to compare different
thin-client platforms. However, because thin-client
platforms are designed and used very differently from
traditional desktop systems, quantifying and measuring
their performance effectively is difficult. Standard
benchmarks for desktop system performance cannot be
relied upon to provide accurate results when used to
measure thin-client systems. Because benchmark
applications running in a thin-client system are
executed on the server, these benchmarks effectively
only measure the server’s performance and do not
accurately represent the user’s experience at the client-
side of the system. To make matters more difficult,
many of these systems are proprietary and closed-

source, making it difficult to instrument them and
obtain accurate results.

To address this problem, we introduce slow-motion
benchmarking, a new measurement technique for
evaluating thin-client systems. In slow-motion
benchmarking, performance is measured by capturing
network packet traces between a thin client and its
respective server during the execution of a slow-motion
version of a standard application benchmark. These
results can then be used either independently or in
conjunction with standard benchmark results to yield an
accurate and objective measure of user-perceived
performance for applications running over thin-client
systems.

To demonstrate the accuracy of this technique, we have
used slow-motion benchmarking to measure the
performance of four popular thin-client systems on both
web and multimedia applications. The thin-client
systems evaluated were Microsoft Terminal Services
[17], Citrix MetaFrame [4], AT&T VNC [32], and Sun
Ray [30]. We measured the performance of these
systems over various network access bandwidths,
ranging from ISDN up to LAN network environments.
Our results illustrate the performance differences
between these thin-client systems and demonstrate the
effectiveness of slow-motion benchmarking as a tool
for analyzing thin-client system performance. We have
also compared our results to the results obtained using
standard application benchmarking approaches. These
comparisons illustrate the limitations of previous thin-
client benchmarking efforts based on widely-used
industry standard benchmarks.

The rest of this paper is organized as follows. Section 2
describes how thin-client systems operate in further
detail and then explains the difficulties inherent in
measuring the performance of thin-client platforms with
standard benchmarks. Section 3 presents the slow-
motion benchmarking technique and discusses how it
can be used to measure thin-client performance. Section
4 presents examples of benchmarks that we have
modified for slow-motion benchmarking and describes
how these may be used to evaluate thin-client systems.
Section 5 compares slow-motion benchmarking to
standard benchmarking by presenting experimental
results that quantify the performance of popular thin-
client systems on web and multimedia application
workloads over different network bandwidths. Section
6 discusses related work. Finally, we summarize our
conclusions and discuss opportunities for future work.

2 Measuring Thin-Client Performance
To provide sufficient background for discussing the
issues in measuring thin-client performance, we first
describe in further detail how thin-client systems
operate. In this paper, we focus on thin-client systems
in which a user’s complete desktop computing
environment, including both application logic and the
windowing system, is entirely run on the server. This is
the architecture underlying most modern systems
referred to as thin-clients, such as Citrix MetaFrame
and Microsoft Terminal Services. One of its primary
advantages is that existing applications for standalone
systems can be used in such systems without
modification.

In this type of architecture, the two main components
are a client application that executes on a user’s local
desktop machine and a server application that executes
on a remote system. The end user’s machine can be a
hardware device designed specifically to run the client
application or simply a low-end personal computer. The
remote server machine typically runs a standard server
operating system, and the client and server
communicate across a network connection between the
desktop and server. The client sends input data across
the network to the server, and the server, after
executing application logic based on the user input,
returns display updates encoded using a platform-
specific remote display protocol. The updates may be
encoded as high-level graphics drawing commands, or
simply compressed pixel data. For instance, Citrix
MetaFrame encodes display updates as graphics
drawing commands while VNC encodes display
updates as compressed pixel data.

To improve remote display performance, especially in
environments where network bandwidth is limited,
thin-client systems often employ three optimization
techniques: compression, caching, and merging. With
compression, algorithms such as zlib or run-length
encoding can be applied to display updates to reduce
bandwidth requirements with only limited additional
processing overhead. With caching, a client cache can
be used to store display elements such as fonts and
bitmaps, so the client can obtain some frequently used
display elements locally rather than repeatedly
requesting them from the server. With merging, display
updates are queued on the server and then merged
before they are sent to the client. If two updates change
the same screen region, merging will suppress the older
update and only send the more recent update to the
client. In merging, display updates are sent
asynchronously with respect to application execution,
decoupling application rendering of visual output on the

server from the actual display of the output on the
client. Depending on the merging policy and the
network speed, there may be a significant time lapse
between the time application rendering occurs on the
server and the time the actual display occurs on the
client. These optimizations, particularly merging, can
make analyzing thin-client performance difficult.

The performance of a thin-client system should be
judged by what the user experiences on the client.
There are two main problems encountered when trying
to analyze the performance of thin-client systems. The
first problem is how to correctly measure performance
of the overall system rather than simply the server’s
performance. The second, more subtle problem is how
to objectively measure the resulting display quality,
particularly given the display update optimizations that
may be employed. Three methods that have been used
to measure thin-client system performance are internal
application measurements with standard benchmarks,
client instrumentation, and network monitoring. We
discuss each of these methods below and their
limitations.

The first approach, commonly used for traditional
desktop systems, is to simply run a standard benchmark
on the system. For instance, a video playback
application could be run that reports the frame rate as a
measure of performance. However, this does not
provide an accurate measure of overall thin-client
performance because the application programs are
executed entirely on the server. Since application
execution is often decoupled from client display, the
results reported using internal application
measurements might not be an accurate reflection of
user-perceived performance on the client. The
benchmark program often runs on the server
irrespective of the status of the display on the client. A
video playback application, for example, would
measure the frame rate as rendered on the server, but if
many of the frames did not reach the client, the frame
rate reported by the benchmark would give an overly
optimistic view of performance.

A second, more accurate measurement method would
be to directly instrument the client. If appropriate
tracing mechanisms could be inserted into the thin-
client system to log input and output display events on
the client, very detailed measurements of thin-client
performance could be performed. However, many thin-
client systems are quite complex and instrumenting
them effectively would not be easy. Furthermore, the
information that could be obtained within these systems
would still not provide a direct measure of user-
perceived display quality. Running a video playback

application, for example, would result in thousands of
display updates. One would still be left with the
problem of how to determine how those display updates
translate into actual video frames to determine how
many video frames were delivered to the client. A more
practical problem is that many of the most popular thin-
client systems, such as Citrix MetaFrame, Windows
Terminal Services, SCO Tarantella, and Sun Ray, are
all proprietary, closed systems. Even the specification
of the remote display protocol used in these systems is
not available.

A third measurement method is network monitoring.
While just measuring application performance on the
server can be inaccurate and direct thin-client
instrumentation is often not possible, monitoring
network activity between the client and server during
the execution of an application can give us a closer
approximation to the user-perceived performance of
that application on the client-side. We can measure the
latency of operations such as web page downloads as
the time between the start and end of client-server
communication in response to those operations.
However, while this method enables us to more
accurately measure the latency of display updates for
such operations, we are still left with the question of
determining the resulting display quality. Fast
performance is naturally an important metric, but it is
insufficient when considered in isolation. The user’s
interactive experience is equally determined by the
visual quality of the updates, and in many cases
platforms may achieve high speed screen refresh rates
by discarding data, which does not necessarily lead to
good interactive performance from the user’s
perspective.

In particular, thin-client systems that use display update
merging may drop interim display updates if the client
cannot keep up with the rate of display updates
generated on the server. A thin-client platform that uses
this kind of policy will appear to perform well on
benchmarks measuring only the latency of display
updates, even at very low bandwidths, because it will
simply discard whatever data cannot be transmitted
quickly enough. This problem is exacerbated by most
standard benchmarks for measuring graphical
performance, which typically execute a rapid sequence
of tasks with frequent display changes. For instance, the
standard industry benchmark i-Bench [35] from Ziff-
Davis measures performance on web applications with
a rapid-fire series of web page downloads, each page
triggering the download of the next page when
complete. This technique works for traditional desktop
systems, but on a thin-client system, the server can end
up finishing one page download and starting the next

long before the client has finished displaying the first
page. The server may even stop sending the display
updates associated with the first page and send the
client on to the second regardless of whether the client
has finished its display.

Monitoring the amount of data transferred for display
updates at different network bandwidths can help to
determine when display update merging is occurring,
but other problems remain. For one, simple network
monitoring cannot quantify the amount of display
updates still being discarded at the highest available
bandwidths. In addition, because each thin-client
platform encodes display updates in its own proprietary
protocol, network monitoring alone cannot determine
whether the thin-client platforms are all transmitting the
same overall visual display data, making it impossible
to effectively compare the performance of the platforms
to each other. Monitoring network traffic at the client is
an improvement over server-side application
measurements, but we still cannot correctly measure
overall performance in a way that accounts for both
system response time and display quality.

3 Slow-Motion Benchmarking
To provide a more effective method for measuring thin-
client performance, we introduce slow-motion
benchmarking. In slow-motion benchmarking, we use
network packet traces to monitor the latency and data
transferred between the client and the server, but we
alter the benchmark application by introducing delays
between the separate visual components of that
benchmark, such as web pages or video frames, so that
the display update for each component is fully
completed on the client before the server begins
processing the next one.

Figure 1 and Figure 2 illustrate the difference in
network traffic between standard and slow-motion
versions of an i-Bench web benchmark that downloads
a sequence of web pages. The benchmark is described
in Section 4.1. The data presented is from

measurements for one thin-client platform, Citrix
MetaFrame, with a 100 Mbps network connection
between client and server. In the standard benchmark
with no delays, the pages run together and cannot be
separately identified, even at this high network
bandwidth. In the slow-motion version of the
benchmark with delays inserted between each page
download, the display update data for each separate
page is clearly demarcated.

With slow-motion benchmarking, we process the
network packet traces and use these gaps of idle time
between components to break up the results on a per-
component basis. This allows us to obtain the latency
and data transferred for each visual component
separately. We can then obtain overall results by taking
the sum of these results. The amount of the delay used
between visual components depends on the application
workload and platform being tested. The necessary
length of delay can be determined by monitoring the
network traffic and making the delays long enough to
achieve a clearly demarcated period between all the
visual components where client-server communication
drops to the idle level for that platform. This ensures
that each visual component is discrete and generated
completely.

Slow-motion benchmarking has many advantages. First
and most importantly, it ensures that display events
reliably complete on the client so that capturing them
using network monitoring provides an accurate measure
of system performance. Slow-motion benchmarking
ensures that clients display all visual components in the
same sequence, providing a common foundation for
making comparisons among thin-client systems.

Second, slow-motion benchmarking does not require
any invasive modification of thin-client systems, which
is difficult even for open-source systems such as VNC
and nearly impossible for proprietary systems.
Additionally, since no invasive instrumentation is
required, slow-motion benchmarking does not result in
any additional performance overhead for the thin-client

Figure 1: KB transferred at one-second intervals during a
sequence of web page downloads with no delays under
Citrix MetaFrame at 100 Mbps.

Figure 2: KB transferred at one-second intervals during a
slow-motion version of the same web page sequence. For
visual clarity, only a subset of the full 109-page sequence
represented by Figure 1 is shown here.

0

20

40
60

80

100

120

0 5 10 15 20 25 30 35 40 45
Time (s)

K
B

0

20

40

60

80

100

120

0 15 30 45 60 75 90 105 120
Time (s)

K
B

system being measured.

Third, slow-motion benchmarking provides an effective
way to determine when display updates are being
discarded. Since the modified benchmarks run at a
slower rate, the resource requirements are reduced,
which in turn reduces the likelihood that display
updates will be discarded. We can then compare the
amount of data transferred for the standard and slow-
motion versions of a given application benchmark to
determine whether the display updates are being
discarded even at the highest network bandwidths. In
Section 4.2, we show how this is particularly useful for
measuring the performance of video applications on
thin-client systems.

Fourth, slow-motion benchmarking is actually closer to
standard user behavior for some applications, notably
interactive activities such as web browsing. Unlike the
behavior of web benchmarks such as those in i-Bench,
most users do not click through a hundred web pages in
near-instantaneous succession; they wait for a page to
visually complete loading before they move on to the
next one.

Finally, the delays introduced with slow-motion
benchmarking allow us to obtain results with finer
granularity at the level of individual visual components.
This is very useful for studying the effects of different
thin-client remote display mechanisms on different
kinds of display data. For instance, some platforms may
prove to be better than others at downloading text-only
web pages, while others may be superior at graphics-
heavy pages. These more detailed results enable us to
make better judgments about the various design choices
made in each thin-client platform.

In designing slow-motion benchmarking, we made
three assumptions. First, we assumed that introducing
the delays between visual components would not
inherently change the type or amount of data that
should be transferred between client and server in a
thin-client system. As far as we know, none of the thin-
client platforms fundamentally alter the way they
encode and send updates based on the amount of time
between visual components.

Second, we assumed that there would not be extraneous
packets in the data stream that would change our
measurements. In particular, we assumed that the
delays introduced between visual components would be
directly reflected in noticeable gaps in the network
packet traces captured. For almost all thin-client
platforms and application benchmarks that we
measured, there were no packets during the idle
periods. However, on certain platforms such as Sun

Ray, some small packets were transmitted even during
idle periods, possibly to make sure that the connection
had not been lost. However, we found that a judicious
filtering process based on the volume of idle-time data
allowed us to successfully distinguish the data
transferred for the pages from the overhead.

Third, we assumed that monitoring network traffic
generated by the slow-motion benchmarks was a valid
measure of overall performance. Network monitoring
allows us to completely measure network and server
latency, but may not provide a complete end-to-end
measure of client latency. Network monitoring does
account for all client latency that occurs between the
first and last packet generated for a visual component.
However, this technique does not account for any client
processing time required for displaying a visual
component that occurs before the first network packet
or after the last network packet for that component. The
impact of this limitation depends on the importance of
client latency to the overall performance. If, as we
expected, network and server latency were the
dominant factors in overall performance, the additional
client latency would not be significant. However, if the
client latency were a significant component of overall
performance, network monitoring might not completely
measure end-to-end performance. Client latency would
typically be large if the client were heavily loaded. We
therefore compensated for this limitation by monitoring
client load with standard system monitoring tools such
as perfmon and sysload to check whether the client was
heavily loaded. We found that client load was generally
not an issue and that the network was typically the
primary performance bottleneck. The one instance in
which this was not the case was for VNC running over
high network bandwidths. However as we discuss in
Section 5.2.2, we also instrumented VNC directly and
found that the packet traces accounted for all client
latency for this platform.

4 Examples of Slow-Motion Benchmarks
To illustrate how slow-motion benchmarking can be
used in practice, we describe two examples of how
application benchmarks can be modified to use slow-
motion benchmarking. The two examples are taken
from the Ziff-Davis i-Bench benchmark suite version
1.5 [35], a benchmarking tool that has been used by
numerous computer companies and Ziff-Davis Labs for
measuring the performance of a variety of desktop and
thin-client systems. The i-Bench benchmarks used were
the Web Text Page Load and MPEG1 Video
benchmarks, which can be used to measure system

performance on web-based and multimedia
applications.

4.1 Web Text Page Load Benchmark
The Web Text Page Load benchmark measures the total
time required to download a Javascript-controlled
sequence of web pages from a web server. In the
unmodified benchmark, the web pages are downloaded
one after another without user input using a Javascript-
enabled web browser, such as Netscape or Internet
Explorer. Each page contains a small script initiated by
the Javascript onLoad handler that immediately begins
downloading the next page once the web browser has
finished downloading the current one. The benchmark
cycles through a set of 54 unique web pages twice and
then reports the elapsed time in milliseconds on a
separate web page. Including the final results page, a
total of 109 web pages are downloaded during this test.
The 54 pages contain both text and bitmap graphics,
with some pages containing more text while others
contain more graphics, with some common graphical
elements included on each page.

There are two problems with using the unmodified Web
Text Page Load benchmark for measuring thin-client
performance. The first problem is that since the
benchmark would execute in the web browser on the
server of a thin-client system, the Javascript handler
may indicate that a given web page has been
completely downloaded on the server and move on to
the next page while the given page has not yet been
completely displayed on the client. The second problem
is that since the benchmark only provides an overall
latency measure for downloading an entire sequence of
web pages, it does not provide an accurate measure of
per page download latencies and how performance may
vary with page content.

We can address these problems by applying slow-
motion benchmarking as follows. The visual
components of this benchmark are the individual web
pages. To break up the benchmark into its separate
components, we can simply alter the Javascript code
used to load the successor page so that it introduces
delays of several seconds between web pages. The
delay should be long enough to ensure that the thin
client receives and displays each page completely
before the thin server began downloading the next web
page. Furthermore, the delays should be long enough to
ensure that there is no temporal overlap in transferring
the data belonging to two consecutive pages. A longer
delay might be required in systems with lower network
bandwidth between client and server.

By using a slow-motion version of the Web Text Page
Load benchmark modified along these lines, we can
ensure that each web page is completely displayed on
the client and measure performance on a per-page basis.
As a result, we can conduct performance comparisons
of different thin-client systems knowing that each of
them is correctly displaying the same set of web pages.
In addition, we can use the per-page measurements to
determine how page download latency and the amount
of data transferred varies with page content. By
performing these measurements with various network
bandwidths between client and server, we can
determine how the response time of a thin-client system
varies with network access bandwidth. Given a model
of how frequently users move between web pages, we
can use the slow-motion benchmarking measurements
to determine whether a thin-client system can provide
sufficient response time for a given network connection
to ensure a good web browsing experience.

4.2 MPEG1 Video Benchmark
The MPEG1 Video benchmark measures the total time
required to playback an MPEG1 video file containing a
mix of news and entertainment programming. The
video is a 34.75 second clip that consists of 834
352x240 pixel frames with an ideal frame rate of 24
frames per second (fps). The ideal frame rate is the rate
a video player would use for playing the video file in
the absence of resource limitations that would make this
impossible. The total size of the video file is 5.11 MB.
In running the video benchmark on a thin-client system,
the video player would run on the server and decode
and render the MPEG1 video on the server. The remote
display protocol of the thin-client system would then
send the resulting display updates to the client. Note
that unlike streaming MPEG media systems that
transmit MPEG video to the client for decoding, thin-
client systems first decode the video on the server and
then transmit display updates using their own remote
display protocol.

There are two problems with using the unmodified
MPEG1 Video benchmark for measuring thin-client
performance. The first problem is that playback time
alone is a poor measure of video performance. Some
video players discard video frames when the system is
not fast enough to decode and display every frame. The
second problem is that in thin-client systems, the
system itself may also drop video frames by discarding
their corresponding display updates when the network
between the client and server is congested. The
resulting lower video quality is not properly accounted
for by either the playback-time metric or the video
player’s accounting of dropped video frames.

We can address these problems by applying slow-
motion benchmarking as follows. In this case, the visual
components of the benchmark are the individual video
frames. We can isolate these frames simply by reducing
the video playback rate of the benchmark. The playback
rate should be slow enough to ensure that there is
enough time to decode and display each video frame
before the next one needs to be processed. Although
users would not actually watch video at such a greatly
reduced playback rate, the measurements at this
reduced playback rate can be used to establish the
reference data transfer rate from the thin server to the
client that corresponds to a “perfect” playback without
discarded video frames. The data transfer rate can be
calculated as the total data transferred divided by the
total playback time. We can then compare the data
transfer rate at the reduced playback rate with the
corresponding full playback rate measurements to
determine the video quality achieved at full playback
rate. More specifically, we can use the following
formula as a measure of video quality VQ at a given
specified playback rate P:

For example, suppose playing a video at an ideal 24 fps
rate takes half a minute and results in 10 MB of data
being transferred while playing the video at a slow-
motion ideal 1 fps rate takes 12 minutes and results in
20 MB of data being transferred. Then, based on the
above formula, the resulting video quality VQ at 24 fps
will be 0.5 or 50%, which is what one would expect
since the 24 fps video playback discarded half of the
video data. The effectiveness of this formula depends
on the platform’s ability to maintain the 1 fps frame
rate. In our experiments, all of the platforms closely
conformed to the frame rate.

While this metric provides a useful, non-invasive way

to measure video quality, it only accounts for the
amount of data discarded and does not account for the
fact that some video data may be more important to the
overall display quality of a given video sequence than
other data. For instance, discarding display updates
corresponding to a video frame that looks almost the
same as both the previous and next video frames in a
sequence would not change the perceived display
quality as much as discarding updates corresponding to
a video frame that is unlike any of its neighboring
frames. At the same time though, as discussed in
Section 2, many of the thin-client systems use some
form of compression to reduce the data size of their
display updates. Compression effectively reduces data
size by removing redundant information in the data. If
we assume that the amount of unique information in a
display update is a measure of its importance, then a
compressed display update could be viewed in a rough
sense as being scaled according to its importance. In
this case, the proposed measure of video quality based
on the amount of discarded compressed data effectively
accounts for the fact that different display data may be
of different importance.

5 Experimental Results
To demonstrate the effectiveness of slow-motion
benchmarking, we evaluated four popular thin-client
platforms using the unmodified and slow-motion
versions of the web and video benchmarks described in
Section 4. The platforms we measured were Citrix
MetaFrame, Windows Terminal Services, AT&T VNC,
and Sun Ray. Section 5.1 describes our experimental
design, including the hardware and software testbed we
used, the thin-client platform configurations we tested,
and the experiments we conducted. Sections 5.2 and 5.3
discuss our measurements and results comparing slow-
motion benchmarking against using the standard
unmodified benchmarks. The results also contrast the
performance of different thin-client systems on web and
video applications.

Figure 3: Testbed configuration.

Sun Thin Server PC Thin Server
Packet

Monitor
Network
Simulator

Benchmark
ServerPC Thin Client

Sun Thin Client

West Hub East Hub Benchmark Hub

DataTransferred(P) / PlaybackTime(P)

IdealFPS(P)

DataTransferred(slow-mo) / PlaybackTime(slow-mo)

IdealFPS(slow-mo)

VQ(P) =

5.1 Experimental Design
5.1.1 Experimental Testbed
Our testbed, shown in Figure 3, consisted of two pairs
of client/server systems, a network simulator machine,
a packet monitor machine, and a benchmark server.
Only one client/server pair was active during any given
test. The features of each system are summarized in
Table 1, along with the SPEC95 performance numbers
for each server system.

The client/server systems included a Sun Ray thin client
machine and a Sun server, and a PC client and server.
The Sun thin server was used only for Sun Ray testing
while the PC server was configured as a dual-boot
machine to support the various Windows- and Linux-
based thin-client systems. The Sun Ray client was
considerably less powerful than the PC client, with only
a 100 MHz uSPARC CPU and 8 MB of RAM
compared to a 450 MHz Pentium II with 128 MB of
RAM in the PC client. However, the large difference in

client processing power was not a factor in our
evaluations, as the client systems were not generally
heavily loaded during testing.

As shown in Figure 3, the network simulator machine
was placed between the thin client and thin server
machines to control the bandwidth between them. This
simulator ran a software package called The Cloud
[29], which allowed us to vary the effective bandwidth
between the two network interface cards installed in the
system. The thin clients and thin servers were separated
from one another on isolated 100 Mbps networks. The
server-side network was then connected to one of the
network interfaces in the network simulator PC, and the
client-side network was connected to the other
interface.

To ensure that this simulator did not itself introduce
extra delay into our tests, we measured round-trip ping
times from the client to the server at 100 Mbps, with
and without the simulator inserted between the client

Role / Model Hardware OS / Window System Software
PC Thin Client
Micron Client Pro

450 MHz Intel PII
128 MB RAM
14.6 GB Disk
10/100BaseT NIC
nVidia Riva TNT graphics
adapter, 16 MB SDRAM

MS Win NT 4.0 Workstation SP6
Caldera OpenLinux 2.4, Xfree86
3.3.6, KDE 1.1.2

Citrix ICA Win32 Client
MS RDP5 Client
VNC Win32 3.3.3r7 Client

Sun Thin Client
Sun Ray I

100 MHz Sun uSPARC IIep
8 MB RAM
10/100BaseT NIC
ATI Rage 128 graphics adapter

Sun Ray OS N/A

Packet Monitor
Micron Client Pro

450 MHz Intel PII
128 MB RAM
14.6 GB Disk
10/100BaseT NIC

MS Win 2000 Professional AG Group’s Etherpeek 4

Network Simulator
Micron Client Pro

450 MHz Intel PII
128 MB RAM
14.6 GB Disk
2 10/100BaseT NICs

MS Win NT 4.0 Server SP6a Shunra Software The Cloud
1.1

PC Thin Server
Micron Client Pro
(SPEC95 – 17.2
int, 12.9 fp)

450 MHz Intel PII
128 MB RAM
14.6 GB Disk
2 10/100BaseT NICs

MS Win 2000 Advanced Server
Caldera OpenLinux 2.4, Xfree86
3.3.6, KDE 1.1.2

Citrix MetaFrame 1.8
MS Win 2000 Terminal
Services
AT&T VNC 3.3.3r2 for Linux
Netscape Communicator 4.72

Sun Thin Server
Sun Ultra-10
Creator 3D
(SPEC95 – 14.2
int, 16.9 fp)

333 MHz UltraSPARC IIi
384 MB RAM
9 GB Disk
2 10/100BaseT NICs

Sun Solaris 7 Generic 106541-08,
OpenWindows 3.6.1, CDE 1.3.5

Sun Ray Server 1.2_10.d Beta
Netscape Communicator 4.72

Benchmark Server
Micron Client Pro

450 MHz Intel PII
128 MB RAM
14.6 GB Disk
10/100BaseT NIC

MS Win NT 4.0 Server SP6a Ziff-Davis i-Bench 1.5
MS Internet Information
Server

Network Hub
Linksys NH1005

3 10/100 5-Port Hubs N/A N/A

Table 1: Summary of testbed configuration.

and the server. There were no significant differences
and round-trip ping times were roughly 0.6 ms in both
cases.

To monitor the client-server network traffic, we used a
PC running Etherpeek 4 [1], a software packet monitor
that timestamps and records all packet traffic visible to
the PC. As shown in Figure 3, we primarily used the
packet monitor to observe client-side network traffic. In
order to capture all packet traffic being sent in both
directions between the thin client and server, we used
hubs rather than switches in our testbed. Since traffic
going through a hub is broadcast to all other machines
connected to the hub, this enabled us to record network
traffic between the client and server simply by
connecting the packet monitor to the hub that the data
was passing through.

A limitation of this network setup is that the hubs are
half-duplex, so that traffic cannot be sent through the
hub from client to server and from server to client
concurrently. Since most data in these thin-client
platforms is traveling from the server to the client in
any case, it is unlikely that the half-duplex network
added significant delay to our experiments.

Other options are possible, each with its disadvantages.
One alternative would be to run a packet monitor on the
thin client or thin server, but Etherpeek is highly
resource-intensive and would undoubtedly adversely
affect performance results. Furthermore, in the case of
the Sun Ray thin client device, it is not possible to run a
packet monitor locally on the client. Another alternative
would be to use port-mirroring switches to support full-
duplex network connections, but mirroring typically
would only allow monitoring of either client to server
traffic or vice versa, not both at the same time, as
mirroring a duplex port in both directions
simultaneously can result in packet loss [6].

Finally, we also had a separate benchmark server,
which was used to run our modified version of the web
page benchmark described in Section 4.1. To ensure
that network traffic from the benchmark server did not
interfere with the network connection between thin
client and thin server, the benchmark server was
connected to the testbed using a separate hub, as shown
in Figure 3. Each thin server had two 100 Mbps
network interfaces, one connected to the network
simulator and through that to the client, the other

connected to the benchmark server on a separate
channel.

5.1.2 Thin-Client Platforms
The versions of the four thin-client systems tested are
shown in the last column of Table 1. Citrix MetaFrame
and Terminal Services were run with Windows 2000
servers while VNC and Sun Ray were run with UNIX
servers, Linux and Solaris. It was necessary to use
different server operating systems because Terminal
Services is part of Windows 2000, VNC performs much
better on UNIX than Windows [32], and Sun Ray only
works with Solaris. However to minimize system
differences across thin-client platforms, all platforms
except for Sun Ray used the exact same server
hardware and same client OS and hardware.

The thin-client platform configurations used for our
experiments are listed in Table 2. To minimize
application environment differences, we used common
thin-client configuration options and common
applications across all platforms whenever possible.
Where it was not possible to configure all the platforms
in the same way, we generally used default settings for
the platforms in question.

For all of our experiments, the video resolution of the
thin client was set to 1024x768 resolution with 8-bit
color, as this was the lowest common denominator
supported by all of the platforms. However, the Sun
Ray client was set to 24-bit color, since the Sun Ray
display protocol is based on a 24-bit color encoding.
Displaying in 8-bit color requires the Sun Ray server to
convert all pixels to a pseudo 8-bit color stored in 24
bits of information before they are sent over the
network. As a result, displaying in 8-bit color reduces
the display quality and increases the server overhead,
but does not reduce the bandwidth requirements.

5.1.3 Benchmarks
We ran the benchmarks described in Section 4 on each
of the four thin-client platforms. We measured the
platforms using both the standard unmodified
benchmarks and their respective slow-motion versions.
We used the network simulator to vary the network
bandwidth between client and server to examine the
impact of bandwidth limitations on thin-client
performance. We measured performance at four
network bandwidths, 128 Kbps, 1.5 Mbps, 10 Mbps,

Platform Citrix MetaFrame
(Citrix Win2K)

Terminal Services
(RDP Win2K)

VNC Linux Sun Ray

Display 1024x768, 8-bit 1024x768, 8-bit 1024x768, 8-bit 1024x768, 24-bit

Transport TCP/IP TCP/IP TCP/IP UDP/IP
Options Disk cache off, memory cache

on, compression on
Disk cache off, memory cache
on, compression on

Hextile encoding,
copyrect on

N/A

Table 2: Thin-client platform configurations.

and 100 Mbps, roughly corresponding to ISDN,
DSL/T1, and LAN network environments, respectively.

To run the Web Text Page Load benchmark, we used
Netscape Navigator 4.72, as it is available on all the
platforms under study. The browser’s memory cache
and disk cache were cleared before each test run. In all
cases, the Netscape browser window was 1024x768 in
size, so the region being updated was the same on each
system. Nevertheless, Netscape on Windows 2000
performs somewhat differently from Netscape on Linux
and Solaris. For instance, in the Unix version, fonts
appear smaller by default and a blank gray page appears
between page downloads. These effects would tend to
increase the amount of data that would need to be
transferred on screen updates using a Unix-based thin-
client platform. Our experience with various thin-client
platforms indicate that these effects are minor in
general, but should be taken into account when
considering small thin-client performance differences
across Unix and Windows systems.

To run the MPEG1 Video benchmark, we used
Microsoft Windows Media Player version 6.4.09.1109
for the Windows-based thin clients and MpegTV
version 1.1 for the Unix-based thin clients. In order to
facilitate a fair comparison between all platforms
despite using two different players, we configured the
two players so they had the same size video window
and otherwise appeared as similar as possible. Since the
only portion of the display that is updated is the video
window, both Unix- and Windows-based thin clients
are effectively performing the same tasks.

5.2 Web Benchmark Results
5.2.1 Standard Benchmark Results
Figure 4 and Figure 5 show the results of running the
unmodified Web Text Page Load benchmark on each of
the thin-client platforms. Figure 4 shows the total
latency for the unmodified benchmark on each
platform. To provide some context for these results, a
per-page latency of less than one second has been
shown to be desirable to ensure that the flow of a user’s
browsing experience is not interrupted [20]. Given the
109 web pages in the Web Text Page Load benchmark,
a total latency of less than 109 seconds is necessary for
good performance.

At first glance, it appears that VNC performs extremely
well, maintaining the same low latency across all
bandwidths and outperforming the other platforms,
46% faster than its nearest competitor, RDP, at 100
Mbps, while Sun Ray appears to perform much worse
than the other platforms, 20% slower than RDP at 100
Mbps. In addition, both Citrix and VNC still appear to

be performing well on the benchmark even at 128 Kbps
with average per-page download speed of less than 1
second. However, examining the data transferred results
in Figure 5 shows that VNC discards a substantial
amount of display data at lower bandwidths, while the
other platforms transmit a consistent amount of data
and slow down playback as necessary.

This highlights the problems with the results from the
standard benchmark. Because we do not know exactly
how the data is being encoded and compressed under
each platform, we have no way of establishing a
baseline for how much data should be transferred to the
client by each system. As a result, we have no way of
knowing whether the pages are being fully transferred
to the client, even at 100 Mbps. We also cannot be sure
that each platform is transmitting updates
corresponding to the same pages, so the data transfer
results are not an accurate measure of the relative
efficiency of the platforms. As a result, we cannot draw
conclusions about the relative performance of the

Figure 4: Total latency for unmodified web benchmark.
Using Sun Ray, the benchmark did not complete at 128
Kbps.

Figure 5: Total data transferred for unmodified web
benchmark.

10

100

1000

Citrix Win2K RDP Win2K VNC Linux Sun Ray

To
ta

l L
at

en
cy

 (s
)

128 Kbps 1.5 Mbps 10 Mbps 100 Mbps

0.1

1

10

100

Citrix Win2K RDP Win2K VNC Linux Sun Ray

To
ta

l D
at

a
Tr

an
sf

er
re

d
(M

B
)

128 Kbps 1.5 Mbps 10 Mbps 100 Mbps

systems when they are effectively being tested on
different sequences of pages.

Visual observation of the platforms during the course of
the test revealed another weakness of the standard
benchmark. The pages stream by at such a fast rate that
the sequence is not a realistic model of web browsing
behavior. Real users typically do not interact with a
browser in a rapid-fire manner but rather wait for a
page to load before clicking on to the next page. This
rapid rate causes a “pipelining” effect that hides the
latency that results when each page is loaded from a
standing start, which would be experienced in typical
use.

5.2.2 Slow-Motion Benchmark Results
Figure 6 and Figure 7 show the results of running the
slow-motion version of the Web Text Page Load
benchmark on the four thin-client platforms. Figure 6
shows the total latency for downloading the 109 web
pages, calculated as the sum of the individual page
download latencies. A progressive improvement in
performance with increased bandwidth is now visible
for all of the platforms, even VNC Linux, which
showed exaggerated performance at lower bandwidth
under the unmodified benchmark.

As shown in Figure 7, the amount of data transferred
now remains almost constant for all of the platforms
across all bandwidths. However, we note that VNC
transmits slightly less data at lower bandwidths because
it uses a client-pull update policy in which each display
update is sent in response to an explicit client request.
At low network bandwidths, each display update takes
longer to transmit, resulting in the client sending fewer
update requests and receiving fewer display updates.
The unsent interim updates are merged by the server.
This does not affect the overall results as we are only
interested in the total per-page latency for displaying
the entire viewable web page. The absence of interim
updates received at high bandwidths when the client
can send more update requests does not affect the final
visual quality or per page download latency.

Comparing Figure 4 and Figure 6, the measurements
show that the total latency for the slow-motion
benchmark is from 10% (for Sun Ray) to 63% (for
VNC) higher than for the standard unmodified
benchmark. There are three reasons for the difference in
latency. First, none of the thin-client platforms discard
display updates for the slow-motion benchmark. A
comparison of Figure 5 and Figure 7 shows that VNC
no longer discards display updates for pages in the
slow-motion benchmark as it did for the unmodified
benchmark. VNC transfers more data in the slow-
motion case even at 100 Mbps, indicating that VNC

was discarding data even at the highest bandwidth when
running the unmodified benchmark. Second, in using
the slow-motion benchmark, each web page is
downloaded from a standing start after the previous
page is completely downloaded. None of the latency is
hidden by “pipelining” page downloads. Third, for

Figure 6: Total latency for slow-motion web
benchmark.

Figure 7: Total data transferred for slow-motion web
benchmark.

Figure 8: Per-page latency for VNC Linux running the
slow-motion benchmark at 100 Mbps.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 5 9 13 17 21 25 29 33 37 41 45 49 53
Pages

Pa
ge

 L
at

en
cy

 (s
)

2430

10

100

1000

Citrix Win2K RDP Win2K VNC Linux Sun Ray

To
ta

l L
at

en
cy

 (s
)

128 Kbps 1.5 Mbps 10 Mbps 100 Mbps

0.1

1

10

100

Citrix Win2K RDP Win2K VNC Linux Sun Ray

To
ta

l D
at

a
Tr

an
sf

er
re

d
(M

B
)

128 Kbps 1.5 Mbps 10 Mbps 100 Mbps

Citrix and RDP, there were two web pages, pages 23
and 49 in the second iteration of downloading the
pages, that consistently took 3-4 seconds to download
for the slow-motion benchmark that did not take as long
in the unmodified benchmark. We discovered that the
long delays were due to an unusual interaction between
Netscape and these two thin-client platforms. While
these extra delays were not present when using the
unmodified benchmark, the slow-motion benchmark
provides a more realistic measurement of web browsing
performance.

Figure 6 shows that all of the thin-client platforms
deliver acceptable web browsing performance at LAN
network bandwidths and that all of the platforms except
Sun Ray provide sub-second performance at 1.5 Mbps
as well. As shown in Figure 7, since Sun Ray provides
higher quality 24-bit display as opposed to the 8-bit
displays of the other platforms, it consumes much more
network bandwidth, resulting in lower performance at
low bandwidths. Note that none of the platforms
provide good response time at 128 Kbps, despite the
claims made by Citrix and Microsoft that their thin-
client platforms can deliver good performance even at
dialup modem speeds.

Overall, VNC and Sun Ray were faster at higher
network bandwidths while Citrix and RDP performed
better at lower network bandwidths. This suggests that
the more complex optimizations and higher-level
encoding primitives used by Citrix and RDP are
beneficial at lower network bandwidths when reducing
the amount of data transferred significantly reduces
network latency. However, the simpler architectures of
VNC and Sun Ray have lower processing overhead and
hence perform better when bandwidth is more plentiful
and data transfer speed is not the dominant factor.

Slow-motion benchmarking also allows us to obtain
actual per-page results. Figure 8 shows a subset of the
per-page latency results for one of the platforms, VNC.
Due to space limitations, we only include the latency,
but the per-page data transferred can also be obtained.
For all pages except one, VNC provides excellent web
browsing performance with page download latencies
well below a second. Much information about the way
the different platforms handle different types of pages is
hidden by the aggregate results, but with the standard
unmodified benchmark it is impossible to obtain the
per-page data.

To further validate the accuracy and appropriateness of
the slow-motion benchmarking technique, we internally
instrumented the open-source platform VNC. By
instrumenting VNC, we could obtain end-to-end
latency measurements that also completely include any

client latency. We repeated the experiments with the
instrumented version of VNC and compared the results
with the packet capture data. The slow-motion results
using network monitoring were verified to be within
4.3% of the instrumented VNC results in measuring the
total data transferred and within 1.1% in recording the
total latency. Furthermore, there was little variance in
the results corresponding to each individual page across
multiple runs. Of all the thin-client platforms measured,
VNC had the highest client load and yet the slow-
motion network monitoring results and internal
instrumentation results showed little difference. The
main reason for this is that the VNC client sends a
message back to the server when it has finished
processing the latest display update. As a result, the
packet traces completely capture the client latency
without direct client instrumentation.

An important benefit of slow-motion benchmarking for
measuring interactive responsiveness is the
reproducibility of the results. One way to measure
interactive performance is to monitor actual user
activity, but it is essentially impossible for a user to
repeat the exact same set of experiments with the exact
same timing characteristics. In contrast, slow-motion
benchmarking can be used to provide better
reproducibility of results. We gauged the
reproducibility of the slow-motion benchmark data by
calculating the standard deviation after five trials of
each test. The largest standard deviation observed was
4.7% of the mean, but typically 3% or lower.

5.3 Video Benchmark Results
5.3.1 Standard Benchmark Results
Figure 9 and Figure 10 show the results of running the
standard unmodified MPEG1 Video benchmark on the
four thin-client platforms. Figure 9 shows the playback
time for the MPEG video benchmark at the ideal frame
rate of 24 fps. Unfortunately, playback time remained
relatively static on all of the platforms and did not

Figure 9: Playback time for unmodified video benchmark.
Using Sun Ray, the benchmark did not complete at 128
Kbps.

0
20
40
60
80

100
120
140

Citrix Win2K RDP Win2K VNC Sun Ray

Pl
ay

ba
ck

 T
im

e
(s

)

128 Kbps 1.5 Mbps 10 Mbps 100 Mbps

correspond with the subjective performance, which
degraded rapidly at lower bandwidths.

This subjective observation is supported by the data
transfer measurements. Figure 10 shows the data
transferred during playback, which degrades rapidly at
lower bandwidths even when playback time remains
low. For instance, the data transferred by VNC at 100
Mbps is 30 times greater than that transferred at 128
Kbps despite the near-constant playback time. Clearly,
we cannot use the playback time alone as a measure of
the video quality because not all the frames are being
fully displayed. The amount of data transferred must be
incorporated into any metric of video quality.

We could represent the video quality as a percentage of
the ideal data transfer rate. However, this ideal data
transfer rate cannot be determined with the unmodified
benchmark. If we assumed that the 100 Mbps rate was
the ideal, we might conclude that all of the platforms
perform well at both 100 Mbps and 10 Mbps: they
maintain a high playback time and transmit roughly the
same amount of data at both bandwidths. This does not
correlate with the subjective performance: visually,
only Sun Ray achieved good performance even at 100
Mbps.

5.3.2 Slow-Motion Benchmark Results
Slow-motion benchmarking again allows us to clarify
the picture. Figure 10 also shows the amount of data
transferred when the benchmark was run in slow-
motion at a frame rate of 1 fps with network bandwidth
of 100 Mbps. At this frame rate, bandwidth limitations
were not an issue and each frame of the video was
transmitted separately and fully displayed on the client
before the subsequent frame was begun. This yields a
baseline by which to measure the results from the
standard benchmark, using the formula for video
quality described in Section 4.2.

Figure 11 shows this measure of video quality for each
of the platforms. We can now obtain a clearer picture of
how well each of the platforms perform at high
bandwidths and in comparison to each other, despite the
nearly-level playback time seen in Figure 9.

Out of all the thin-client platforms, Sun Ray alone
achieves good performance, with 96% video quality at
100 Mbps despite the fact that it sends an order of
magnitude more data than any other platform at 24 fps.
None of the other platforms has good performance even
at LAN bandwidths. The fact that Sun Ray sends much
more data than any other platform indicates that the
poor performance of these other platforms at 100 Mbps
is not due to bandwidth limitations but is rather due to

their display update mechanisms, which are poorly
suited to video applications.

6 Related Work
In this paper, we have focused on thin-client systems in
which both applications and the window system are
completely executed on the server. These systems are
the most popular thin-client systems today and many of
them have been developed [4, 5, 15, 16, 24, 26, 27, 30,
32].

Three other types of systems that are sometimes
referred to as thin-client systems are network window
systems, browser-based systems, and remote control
computing systems. The most notable example of a
network window system is the X Window system [25].
Unlike the systems discussed in this paper, X runs the

Figure 10: Total data transferred in unmodified video
benchmark at 24 fps, and in the slow-motion video
benchmark at 100 Mbps bandwidth and 1 fps. Sun Ray
data transferred at 100 Mbps was equivalent at both
frame rates.

Figure 11: Video quality as percentage of data
transferred in the slow-motion video benchmark.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Citrix Win2K RDP Win2K VNC Sun Ray

Vi
de

o
Q

ua
lit

y
128 Kbps 1.5 Mbps 10 Mbps 100 Mbps

212.08

212

0

10

20

30

40

50

60

70

80

Citrix Win2K RDP Win2K VNC Sun Ray

D
at

a
Tr

an
sf

er
re

d
(M

B
)

128 Kbps 1.5 Mbps 10 Mbps
100 Mbps 100 Mbps:1fps

window system on the client and as a result requires
more substantial client resources in order to perform
well. To run X applications over lower bandwidth
networks, a low-bandwidth X (LBX) proxy server
extension [13] was developed and released as part of
X11R6.3. Browser-based systems employ a web
browser client as a user interface to an application
server. These systems require applications to be
modified to support a web-based interface. Remote
control computing systems such as Laplink [14] and PC
Anywhere [21] enable users to remotely control a PC
by sending screen updates to remote client PCs. They
also run all application and window system logic on the
server, but they do not support multiple users at the
same time.

There have been several studies of thin-client
performance that have focused on evaluating one or two
systems. Danskin conducted an early study of the X
protocol [7] and Schmidt, Lam, and Northcutt
examined the performance of Sun Ray [26]. Both of
these studies relied on source code access for internal
system instrumentation. Thin-client platform vendors
such as Citrix and Microsoft have done internal
performance testing of their products as well, but have
not published any reliable experimental results [4,
16,17]. Wong and Seltzer studied the performance of
Windows NT Terminal Server for office productivity
tools and web browsing [33] by monitoring network
traffic generated from a real user session. This provides
a human measure of user-perceived performance, but
makes repeatable results difficult. Tolly Research
measured the performance of Citrix MetaFrame on
various scripted application workloads [31], however
the study suggests that problems in using standard
scripted application workloads as described in this
paper were not properly considered.

A few performance studies have compared a wider
range of thin-client systems. Some of our previous
work led to the development of slow-motion
benchmarking [19]. Howard has presented performance
results for various hardware thin-clients based on tests
from the i-Bench benchmark suite [12]. This work
suffers from the same problems in measurement
technique that we described in Section 2. It relies on the
results reported by the standard benchmarks, which
only measure benchmark performance at the server-
side. In addition, the work was based on Microsoft
Internet Explorer 5.01, which does not properly
interpret the Javascript onLoad handler used in the i-
Bench Web Text Page Load benchmark. This causes
successive pages to begin loading before the previous
pages have fully displayed, resulting in unpredictable
measurements of total web page download latencies.

Netscape Navigator 4.7 does not suffer from this
problem, which is one of the reasons we used this
browser platform for our work.

7 Conclusions and Future Work
We have introduced slow-motion benchmarking, a new
measurement technique that requires no invasive
instrumentation and yet provides accurate
measurements for evaluating thin-client systems. Slow-
motion benchmarking introduces delays into standard
application benchmarks to isolate the visual
components of those benchmarks. This ensures that the
components are displayed correctly on the client when
the benchmark is run, even when the client display is
decoupled from the server processing as in many thin-
client systems. Slow-motion benchmarking utilizes
network traffic monitoring at the client rather than
relying on application measurements at the server to
provide a more complete measure of user-perceived
performance at the client.

We have demonstrated the effectiveness of slow-motion
benchmarking on a wide range of popular thin-client
platforms. Our quantitative results show that slow-
motion benchmarking provides far more accurate
measurements than standard benchmarking approaches
that have been used for evaluating thin-client systems.
Our comparisons across different thin-client systems
indicate that these systems have widely different
performance on web and video applications. Our results
suggest that current remote display mechanisms used in
thin-client systems may be useful for web browsing at
lower network bandwidths. However, these same
mechanisms may adversely impact the ability of thin-
client systems to support multimedia applications.

We are currently using slow-motion benchmarking to
evaluate a wide range of thin-client platforms in
different network environments. As ASPs continue to
increase in popularity, one important area of research is
evaluating the performance of thin-client computing in
wide-area network environments. Slow-motion
benchmarking provides a useful tool for characterizing
and analyzing the design choices in thin-client systems
to determine what mechanisms are best suited for
supporting future wide-area computing services.

8 Acknowledgements
We thank Haoqiang Zheng for developing the
instrumented version of VNC used in our experiments.
Haoqiang, Albert Lai, Rahul Joshi, and Carla Goldburg,
all assisted with many of the thin-client performance
measurements and helped set up the thin-client testbed.

Allyn Vogel of Ziff-Davis Media, Inc. provided us with
valuable information on i-Bench. We also thank the
anonymous USENIX referees and our shepherd Vern
Paxson, who provided helpful comments on earlier
drafts of this paper. This work was supported in part by
an NSF CAREER Award and Sun Microsystems.

References
1. AG Group, Inc., Etherpeek 4, http://www.aggroup.com.
2. Boca Research, “Citrix ICA Technology Brief,”
Technical White Paper, Boca Raton, FL, 1999.
3. M. Chapman, http://www.rdesktop.org.
4. Citrix Systems, “Citrix MetaFrame 1.8 Backgrounder,”
Citrix White Paper, June 1998.
5. B. C. Cumberland, G. Carius, A. Muir, Microsoft
Windows NT Server 4.0, Terminal Server Edition: Technical
Reference, Microsoft Press, Redmond, WA, Aug. 1999.
6. J. Curtis, “Port Mirroring: The Duplex Paradox,”
Network World Fusion, Oct. 1998.
7. J. Danskin, P. Hanrahan, “Profiling the X Protocol,”
Proceedings of the SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, Nashville,
TN, 1994.
8. Desktop.com, http://www.desktop.com.
9. Expertcity.com, “Desktop Streaming Technology and
Security,” Expertcity White Paper, Santa Barbara, CA, 2000.
10. Futurelink, http://www.futurelink.net.
11. GraphOn GO-Global, http://www.graphon.com.
12. B. Howard, “Thin Is Back,” PC Magazine 19(7), Ziff-
Davis Media, New York, NY, Apr. 2000.
13. “Broadway / X Web FAQ,”
http://www.broadwayinfo.com/bwfaq.htm.
14. LapLink.com, Inc., LapLink 2000 User’s Guide, Bothell,
WA, 1999.
15. T. W. Mathers, S. P. Genoway, Windows NT Thin Client
Solutions: Implementing Terminal Server and Citrix
MetaFrame, Macmillan Technical Publishing, Indianapolis,
IN, Nov. 1998.
16. Microsoft Corporation, “Microsoft Windows NT Server
4.0, Terminal Server Edition: An Architectural Overview,”
Technical White Paper, Redmond, WA, 1998.
17. Microsoft Corporation, “Windows 2000 Terminal
Services Capacity Planning,” Technical White Paper,
Redmond, WA, 2000.

18. J. Nieh, S. J. Yang, “Measuring the Multimedia
Performance of Server-Based Computing,” Proceedings of
the 10th International Workshop on Network and Operating
System Support for Digital Audio and Video, Chapel Hill, NC,
June 2000.
19. J. Nieh, S. J. Yang, and N. Novik, “A Comparison of
Thin-Client Computing Architectures,” Technical Report
CUCS-022-00, Department of Computer Science, Columbia
University, Nov. 2000.
20. J. Nielsen, Usability Engineering, Morgan Kaufman, San
Francisco, CA, 1994.
21. PC Anywhere, http://www.symantec.com/pcanywhere.
22. Personable.com, http://www.personable.com.
23. T. Richardson, Q. Stafford-Fraser, K. R. Wood and A.
Hopper, “Virtual Network Computing,” IEEE Internet
Computing, 2(1), Jan./Feb. 1998.
24. The Santa Cruz Operation, “Tarantella Web-Enabling
Software: The Adaptive Internet Protocol,” A SCO Technical
White Paper, Dec. 1998.
25. R. W. Scheifler and J. Gettys, “The X Window System,”
ACM Transactions on Graphics, 5(2), Apr. 1986.
26. B. K. Schmidt, M. S. Lam, J. D. Northcutt, “The
Interactive Performance of SLIM: A Stateless, Thin-Client
Architecture,” Proceedings of the 17th ACM Symposium on
Operating Systems Principles, Dec. 1999.
27. A. Shaw, K. R. Burgess, J. M. Pullan, P. C. Cartwright,
“Method of Displaying an Application on a Variety of Client
Devices in a Client/Server Network, “ US Patent US6104392,
Aug. 2000.
28. B. Shneiderman, Designing the User Interface:
Strategies for Effective Human-Computer Interaction, 2nd
ed., Addison-Wesley, Reading, MA, 1992.
29. Shunra Software, The Cloud, http://www.shunra.com.
30. Sun Microsystems, Sun Ray 1 Enterprise Appliance,
http://www.sun.com/products/sunray1.
31. Tolly Research, “Thin-Client Networking: Bandwidth
Consumption Using Citrix ICA,” IT clarity, Feb. 2000.
32. Virtual Network Computing,
http://www.uk.research.att.com/vnc.
33. A. Y. Wong, M. Seltzer, “Evaluating Windows NT
Terminal Server Performance,” Proceedings of the Third
USENIX Windows NT Symposium, Seattle, WA, July 1999.
34. S. J. Yang, J. Nieh, “Thin Is In,” PC Magazine, 19(13),
Ziff Davis Media, NY, July 2000.
35. Ziff-Davis, Inc., i-Bench version 1.5,
http://i-bench.zdnet.com.

