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Abstract 
Modern thin-client systems are designed to provide the same graphical interfaces and applications available 
on traditional desktop computers while centralizing administration and allowing more efficient use of 
computing resources. Despite the rapidly increasing popularity of these client-server systems, there are few 
reliable analyses of their performance. Industry standard benchmark techniques commonly used for 
measuring desktop system performance are ill-suited for measuring the performance of thin-client systems 
because these benchmarks only measure application performance on the server, not the actual user-
perceived performance on the client.  

To address this problem, we have developed slow-motion benchmarking, a new measurement technique for 
evaluating thin-client systems. In slow-motion benchmarking, performance is measured by capturing 
network packet traces between a thin client and its respective server during the execution of a slow-motion 
version of a standard application benchmark. These results can then be used either independently or in 
conjunction with standard benchmark results to yield an accurate and objective measure of the performance 
of thin-client systems.  

We have demonstrated the effectiveness of slow-motion benchmarking by using this technique to measure 
the performance of several popular thin-client systems in various network environments on web and 
multimedia workloads. Our results show that slow-motion benchmarking resolves the problems with using 
standard benchmarks on thin-client systems and is an accurate tool for analyzing the performance of these 
systems.  

1 Introduction 
The rising cost of support and maintenance for desktop 
systems has fueled a growing interest in thin-client 
computing. Modern thin-client systems are designed to 
provide the same graphical interfaces and applications 
available on desktop systems while centralizing 
computing work on powerful servers to reduce 
administration costs and make more efficient use of 
shared computing resources.  

While the term “thin-client computing” has been used 
to refer to a variety of different client-server computing 
architectures, the primary feature common to most thin-
client systems is that all application logic is executed on 
the server, not on the client. The user interacts with a 
lightweight client that is generally responsible only for 
handling user input and output, such as receiving screen 
display updates and sending user input back to the 
server over a network connection. Unlike older client-
server architectures such as X [7], many modern thin-
client systems even run the window system on the 
server. As a result, the client generally does not need 
many resources, thus requiring fewer upgrades, and can 

have a very simple configuration, reducing support 
costs. Because of the potential cost benefits of thin-
client computing, a wide range of thin-client platforms 
has been developed. Some application service providers 
(ASPs) are even offering thin-client service over wide 
area networks such as the Internet [8, 10, 22].  

The growing popularity of thin-client systems makes it 
important to develop techniques for analyzing their 
performance, to assess the general feasibility of the 
thin-client computing model, and to compare different 
thin-client platforms. However, because thin-client 
platforms are designed and used very differently from 
traditional desktop systems, quantifying and measuring 
their performance effectively is difficult. Standard 
benchmarks for desktop system performance cannot be 
relied upon to provide accurate results when used to 
measure thin-client systems. Because benchmark 
applications running in a thin-client system are 
executed on the server, these benchmarks effectively 
only measure the server’s performance and do not 
accurately represent the user’s experience at the client-
side of the system. To make matters more difficult, 
many of these systems are proprietary and closed-



 

source, making it difficult to instrument them and 
obtain accurate results. 

To address this problem, we introduce slow-motion 
benchmarking, a new measurement technique for 
evaluating thin-client systems. In slow-motion 
benchmarking, performance is measured by capturing 
network packet traces between a thin client and its 
respective server during the execution of a slow-motion 
version of a standard application benchmark. These 
results can then be used either independently or in 
conjunction with standard benchmark results to yield an 
accurate and objective measure of user-perceived 
performance for applications running over thin-client 
systems.  

To demonstrate the accuracy of this technique, we have 
used slow-motion benchmarking to measure the 
performance of four popular thin-client systems on both 
web and multimedia applications. The thin-client 
systems evaluated were Microsoft Terminal Services 
[17], Citrix MetaFrame [4], AT&T VNC [32], and Sun 
Ray [30]. We measured the performance of these 
systems over various network access bandwidths, 
ranging from ISDN up to LAN network environments. 
Our results illustrate the performance differences 
between these thin-client systems and demonstrate the 
effectiveness of slow-motion benchmarking as a tool 
for analyzing thin-client system performance. We have 
also compared our results to the results obtained using 
standard application benchmarking approaches. These 
comparisons illustrate the limitations of previous thin-
client benchmarking efforts based on widely-used 
industry standard benchmarks. 

The rest of this paper is organized as follows. Section 2 
describes how thin-client systems operate in further 
detail and then explains the difficulties inherent in 
measuring the performance of thin-client platforms with 
standard benchmarks. Section 3 presents the slow-
motion benchmarking technique and discusses how it 
can be used to measure thin-client performance. Section 
4 presents examples of benchmarks that we have 
modified for slow-motion benchmarking and describes 
how these may be used to evaluate thin-client systems. 
Section 5 compares slow-motion benchmarking to 
standard benchmarking by presenting experimental 
results that quantify the performance of popular thin-
client systems on web and multimedia application 
workloads over different network bandwidths. Section 
6 discusses related work. Finally, we summarize our 
conclusions and discuss opportunities for future work. 

2 Measuring Thin-Client Performance 
To provide sufficient background for discussing the 
issues in measuring thin-client performance, we first 
describe in further detail how thin-client systems 
operate. In this paper, we focus on thin-client systems 
in which a user’s complete desktop computing 
environment, including both application logic and the 
windowing system, is entirely run on the server. This is 
the architecture underlying most modern systems 
referred to as thin-clients, such as Citrix MetaFrame 
and Microsoft Terminal Services. One of its primary 
advantages is that existing applications for standalone 
systems can be used in such systems without 
modification.  

In this type of architecture, the two main components 
are a client application that executes on a user’s local 
desktop machine and a server application that executes 
on a remote system. The end user’s machine can be a 
hardware device designed specifically to run the client 
application or simply a low-end personal computer. The 
remote server machine typically runs a standard server 
operating system, and the client and server 
communicate across a network connection between the 
desktop and server. The client sends input data across 
the network to the server, and the server, after 
executing application logic based on the user input, 
returns display updates encoded using a platform-
specific remote display protocol. The updates may be 
encoded as high-level graphics drawing commands, or 
simply compressed pixel data. For instance, Citrix 
MetaFrame encodes display updates as graphics 
drawing commands while VNC encodes display 
updates as compressed pixel data.  

To improve remote display performance, especially in 
environments where network bandwidth is limited, 
thin-client systems often employ three optimization 
techniques: compression, caching, and merging. With 
compression, algorithms such as zlib or run-length 
encoding can be applied to display updates to reduce 
bandwidth requirements with only limited additional 
processing overhead. With caching, a client cache can 
be used to store display elements such as fonts and 
bitmaps, so the client can obtain some frequently used 
display elements locally rather than repeatedly 
requesting them from the server. With merging, display 
updates are queued on the server and then merged 
before they are sent to the client. If two updates change 
the same screen region, merging will suppress the older 
update and only send the more recent update to the 
client. In merging, display updates are sent 
asynchronously with respect to application execution, 
decoupling application rendering of visual output on the 



 

server from the actual display of the output on the 
client. Depending on the merging policy and the 
network speed, there may be a significant time lapse 
between the time application rendering occurs on the 
server and the time the actual display occurs on the 
client. These optimizations, particularly merging, can 
make analyzing thin-client performance difficult. 

The performance of a thin-client system should be 
judged by what the user experiences on the client. 
There are two main problems encountered when trying 
to analyze the performance of thin-client systems. The 
first problem is how to correctly measure performance 
of the overall system rather than simply the server’s 
performance. The second, more subtle problem is how 
to objectively measure the resulting display quality, 
particularly given the display update optimizations that 
may be employed. Three methods that have been used 
to measure thin-client system performance are internal 
application measurements with standard benchmarks, 
client instrumentation, and network monitoring. We 
discuss each of these methods below and their 
limitations. 

The first approach, commonly used for traditional 
desktop systems, is to simply run a standard benchmark 
on the system. For instance, a video playback 
application could be run that reports the frame rate as a 
measure of performance. However, this does not 
provide an accurate measure of overall thin-client 
performance because the application programs are 
executed entirely on the server. Since application 
execution is often decoupled from client display, the 
results reported using internal application 
measurements might not be an accurate reflection of 
user-perceived performance on the client. The 
benchmark program often runs on the server 
irrespective of the status of the display on the client. A 
video playback application, for example, would 
measure the frame rate as rendered on the server, but if 
many of the frames did not reach the client, the frame 
rate reported by the benchmark would give an overly 
optimistic view of performance. 

A second, more accurate measurement method would 
be to directly instrument the client. If appropriate 
tracing mechanisms could be inserted into the thin-
client system to log input and output display events on 
the client, very detailed measurements of thin-client 
performance could be performed. However, many thin-
client systems are quite complex and instrumenting 
them effectively would not be easy. Furthermore, the 
information that could be obtained within these systems 
would still not provide a direct measure of user-
perceived display quality. Running a video playback 

application, for example, would result in thousands of 
display updates. One would still be left with the 
problem of how to determine how those display updates 
translate into actual video frames to determine how 
many video frames were delivered to the client. A more 
practical problem is that many of the most popular thin-
client systems, such as Citrix MetaFrame, Windows 
Terminal Services, SCO Tarantella, and Sun Ray, are 
all proprietary, closed systems. Even the specification 
of the remote display protocol used in these systems is 
not available.  

A third measurement method is network monitoring. 
While just measuring application performance on the 
server can be inaccurate and direct thin-client 
instrumentation is often not possible, monitoring 
network activity between the client and server during 
the execution of an application can give us a closer 
approximation to the user-perceived performance of 
that application on the client-side. We can measure the 
latency of operations such as web page downloads as 
the time between the start and end of client-server 
communication in response to those operations. 
However, while this method enables us to more 
accurately measure the latency of display updates for 
such operations, we are still left with the question of 
determining the resulting display quality. Fast 
performance is naturally an important metric, but it is 
insufficient when considered in isolation. The user’s 
interactive experience is equally determined by the 
visual quality of the updates, and in many cases 
platforms may achieve high speed screen refresh rates 
by discarding data, which does not necessarily lead to 
good interactive performance from the user’s 
perspective.  

In particular, thin-client systems that use display update 
merging may drop interim display updates if the client 
cannot keep up with the rate of display updates 
generated on the server. A thin-client platform that uses 
this kind of policy will appear to perform well on 
benchmarks measuring only the latency of display 
updates, even at very low bandwidths, because it will 
simply discard whatever data cannot be transmitted 
quickly enough. This problem is exacerbated by most 
standard benchmarks for measuring graphical 
performance, which typically execute a rapid sequence 
of tasks with frequent display changes. For instance, the 
standard industry benchmark i-Bench [35] from Ziff-
Davis measures performance on web applications with 
a rapid-fire series of web page downloads, each page 
triggering the download of the next page when 
complete. This technique works for traditional desktop 
systems, but on a thin-client system, the server can end 
up finishing one page download and starting the next 



 

long before the client has finished displaying the first 
page. The server may even stop sending the display 
updates associated with the first page and send the 
client on to the second regardless of whether the client 
has finished its display.  

Monitoring the amount of data transferred for display 
updates at different network bandwidths can help to 
determine when display update merging is occurring, 
but other problems remain. For one, simple network 
monitoring cannot quantify the amount of display 
updates still being discarded at the highest available 
bandwidths. In addition, because each thin-client 
platform encodes display updates in its own proprietary 
protocol, network monitoring alone cannot determine 
whether the thin-client platforms are all transmitting the 
same overall visual display data, making it impossible 
to effectively compare the performance of the platforms 
to each other. Monitoring network traffic at the client is 
an improvement over server-side application 
measurements, but we still cannot correctly measure 
overall performance in a way that accounts for both 
system response time and display quality. 

3 Slow-Motion Benchmarking 
To provide a more effective method for measuring thin-
client performance, we introduce slow-motion 
benchmarking. In slow-motion benchmarking, we use 
network packet traces to monitor the latency and data 
transferred between the client and the server, but we 
alter the benchmark application by introducing delays 
between the separate visual components of that 
benchmark, such as web pages or video frames, so that 
the display update for each component is fully 
completed on the client before the server begins 
processing the next one.  

Figure 1 and Figure 2 illustrate the difference in 
network traffic between standard and slow-motion 
versions of an i-Bench web benchmark that downloads 
a sequence of web pages. The benchmark is described 
in Section 4.1. The data presented is from 

measurements for one thin-client platform, Citrix 
MetaFrame, with a 100 Mbps network connection 
between client and server. In the standard benchmark 
with no delays, the pages run together and cannot be 
separately identified, even at this high network 
bandwidth. In the slow-motion version of the 
benchmark with delays inserted between each page 
download, the display update data for each separate 
page is clearly demarcated. 

With slow-motion benchmarking, we process the 
network packet traces and use these gaps of idle time 
between components to break up the results on a per-
component basis. This allows us to obtain the latency 
and data transferred for each visual component 
separately. We can then obtain overall results by taking 
the sum of these results. The amount of the delay used 
between visual components depends on the application 
workload and platform being tested. The necessary 
length of delay can be determined by monitoring the 
network traffic and making the delays long enough to 
achieve a clearly demarcated period between all the 
visual components where client-server communication 
drops to the idle level for that platform. This ensures 
that each visual component is discrete and generated 
completely. 

Slow-motion benchmarking has many advantages. First 
and most importantly, it ensures that display events 
reliably complete on the client so that capturing them 
using network monitoring provides an accurate measure 
of system performance. Slow-motion benchmarking 
ensures that clients display all visual components in the 
same sequence, providing a common foundation for 
making comparisons among thin-client systems.  

Second, slow-motion benchmarking does not require 
any invasive modification of thin-client systems, which 
is difficult even for open-source systems such as VNC 
and nearly impossible for proprietary systems. 
Additionally, since no invasive instrumentation is 
required, slow-motion benchmarking does not result in 
any additional performance overhead for the thin-client 

Figure 1: KB transferred at one-second intervals during a 
sequence of web page downloads with no delays under 
Citrix MetaFrame at 100 Mbps. 

Figure 2: KB transferred at one-second intervals during a 
slow-motion version of the same web page sequence. For 
visual clarity, only a subset of the full 109-page sequence 
represented by Figure 1 is shown here. 
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system being measured.  

Third, slow-motion benchmarking provides an effective 
way to determine when display updates are being 
discarded. Since the modified benchmarks run at a 
slower rate, the resource requirements are reduced, 
which in turn reduces the likelihood that display 
updates will be discarded. We can then compare the 
amount of data transferred for the standard and slow-
motion versions of a given application benchmark to 
determine whether the display updates are being 
discarded even at the highest network bandwidths. In 
Section 4.2, we show how this is particularly useful for 
measuring the performance of video applications on 
thin-client systems.  

Fourth, slow-motion benchmarking is actually closer to 
standard user behavior for some applications, notably 
interactive activities such as web browsing. Unlike the 
behavior of web benchmarks such as those in i-Bench, 
most users do not click through a hundred web pages in 
near-instantaneous succession; they wait for a page to 
visually complete loading before they move on to the 
next one.  

Finally, the delays introduced with slow-motion 
benchmarking allow us to obtain results with finer 
granularity at the level of individual visual components. 
This is very useful for studying the effects of different 
thin-client remote display mechanisms on different 
kinds of display data. For instance, some platforms may 
prove to be better than others at downloading text-only 
web pages, while others may be superior at graphics-
heavy pages. These more detailed results enable us to 
make better judgments about the various design choices 
made in each thin-client platform. 

In designing slow-motion benchmarking, we made 
three assumptions. First, we assumed that introducing 
the delays between visual components would not 
inherently change the type or amount of data that 
should be transferred between client and server in a 
thin-client system. As far as we know, none of the thin-
client platforms fundamentally alter the way they 
encode and send updates based on the amount of time 
between visual components.  

Second, we assumed that there would not be extraneous 
packets in the data stream that would change our 
measurements. In particular, we assumed that the 
delays introduced between visual components would be 
directly reflected in noticeable gaps in the network 
packet traces captured. For almost all thin-client 
platforms and application benchmarks that we 
measured, there were no packets during the idle 
periods. However, on certain platforms such as Sun 

Ray, some small packets were transmitted even during 
idle periods, possibly to make sure that the connection 
had not been lost. However, we found that a judicious 
filtering process based on the volume of idle-time data 
allowed us to successfully distinguish the data 
transferred for the pages from the overhead.  

Third, we assumed that monitoring network traffic 
generated by the slow-motion benchmarks was a valid 
measure of overall performance. Network monitoring 
allows us to completely measure network and server 
latency, but may not provide a complete end-to-end 
measure of client latency. Network monitoring does 
account for all client latency that occurs between the 
first and last packet generated for a visual component. 
However, this technique does not account for any client 
processing time required for displaying a visual 
component that occurs before the first network packet 
or after the last network packet for that component. The 
impact of this limitation depends on the importance of 
client latency to the overall performance. If, as we 
expected, network and server latency were the 
dominant factors in overall performance, the additional 
client latency would not be significant. However, if the 
client latency were a significant component of overall 
performance, network monitoring might not completely 
measure end-to-end performance. Client latency would 
typically be large if the client were heavily loaded. We 
therefore compensated for this limitation by monitoring 
client load with standard system monitoring tools such 
as perfmon and sysload to check whether the client was 
heavily loaded. We found that client load was generally 
not an issue and that the network was typically the 
primary performance bottleneck. The one instance in 
which this was not the case was for VNC running over 
high network bandwidths. However as we discuss in 
Section 5.2.2, we also instrumented VNC directly and 
found that the packet traces accounted for all client 
latency for this platform. 

4 Examples of Slow-Motion Benchmarks 
To illustrate how slow-motion benchmarking can be 
used in practice, we describe two examples of how 
application benchmarks can be modified to use slow-
motion benchmarking. The two examples are taken 
from the Ziff-Davis i-Bench benchmark suite version 
1.5 [35], a benchmarking tool that has been used by 
numerous computer companies and Ziff-Davis Labs for 
measuring the performance of a variety of desktop and 
thin-client systems. The i-Bench benchmarks used were 
the Web Text Page Load and MPEG1 Video 
benchmarks, which can be used to measure system 



 

performance on web-based and multimedia 
applications. 

4.1  Web Text Page Load Benchmark 
The Web Text Page Load benchmark measures the total 
time required to download a Javascript-controlled 
sequence of web pages from a web server. In the 
unmodified benchmark, the web pages are downloaded 
one after another without user input using a Javascript-
enabled web browser, such as Netscape or Internet 
Explorer. Each page contains a small script initiated by 
the Javascript onLoad handler that immediately begins 
downloading the next page once the web browser has 
finished downloading the current one. The benchmark 
cycles through a set of 54 unique web pages twice and 
then reports the elapsed time in milliseconds on a 
separate web page. Including the final results page, a 
total of 109 web pages are downloaded during this test. 
The 54 pages contain both text and bitmap graphics, 
with some pages containing more text while others 
contain more graphics, with some common graphical 
elements included on each page. 

There are two problems with using the unmodified Web 
Text Page Load benchmark for measuring thin-client 
performance. The first problem is that since the 
benchmark would execute in the web browser on the 
server of a thin-client system, the Javascript handler 
may indicate that a given web page has been 
completely downloaded on the server and move on to 
the next page while the given page has not yet been 
completely displayed on the client. The second problem 
is that since the benchmark only provides an overall 
latency measure for downloading an entire sequence of 
web pages, it does not provide an accurate measure of 
per page download latencies and how performance may 
vary with page content.  

We can address these problems by applying slow-
motion benchmarking as follows. The visual 
components of this benchmark are the individual web 
pages. To break up the benchmark into its separate 
components, we can simply alter the Javascript code 
used to load the successor page so that it introduces 
delays of several seconds between web pages. The 
delay should be long enough to ensure that the thin 
client receives and displays each page completely 
before the thin server began downloading the next web 
page. Furthermore, the delays should be long enough to 
ensure that there is no temporal overlap in transferring 
the data belonging to two consecutive pages. A longer 
delay might be required in systems with lower network 
bandwidth between client and server. 

By using a slow-motion version of the Web Text Page 
Load benchmark modified along these lines, we can 
ensure that each web page is completely displayed on 
the client and measure performance on a per-page basis. 
As a result, we can conduct performance comparisons 
of different thin-client systems knowing that each of 
them is correctly displaying the same set of web pages. 
In addition, we can use the per-page measurements to 
determine how page download latency and the amount 
of data transferred varies with page content. By 
performing these measurements with various network 
bandwidths between client and server, we can 
determine how the response time of a thin-client system 
varies with network access bandwidth. Given a model 
of how frequently users move between web pages, we 
can use the slow-motion benchmarking measurements 
to determine whether a thin-client system can provide 
sufficient response time for a given network connection 
to ensure a good web browsing experience. 

4.2 MPEG1 Video Benchmark 
The MPEG1 Video benchmark measures the total time 
required to playback an MPEG1 video file containing a 
mix of news and entertainment programming. The 
video is a 34.75 second clip that consists of 834 
352x240 pixel frames with an ideal frame rate of 24 
frames per second (fps). The ideal frame rate is the rate 
a video player would use for playing the video file in 
the absence of resource limitations that would make this 
impossible. The total size of the video file is 5.11 MB. 
In running the video benchmark on a thin-client system, 
the video player would run on the server and decode 
and render the MPEG1 video on the server. The remote 
display protocol of the thin-client system would then 
send the resulting display updates to the client. Note 
that unlike streaming MPEG media systems that 
transmit MPEG video to the client for decoding, thin-
client systems first decode the video on the server and 
then transmit display updates using their own remote 
display protocol. 

There are two problems with using the unmodified 
MPEG1 Video benchmark for measuring thin-client 
performance. The first problem is that playback time 
alone is a poor measure of video performance. Some 
video players discard video frames when the system is 
not fast enough to decode and display every frame. The 
second problem is that in thin-client systems, the 
system itself may also drop video frames by discarding 
their corresponding display updates when the network 
between the client and server is congested. The 
resulting lower video quality is not properly accounted 
for by either the playback-time metric or the video 
player’s accounting of dropped video frames. 



 

We can address these problems by applying slow-
motion benchmarking as follows. In this case, the visual 
components of the benchmark are the individual video 
frames. We can isolate these frames simply by reducing 
the video playback rate of the benchmark. The playback 
rate should be slow enough to ensure that there is 
enough time to decode and display each video frame 
before the next one needs to be processed. Although 
users would not actually watch video at such a greatly 
reduced playback rate, the measurements at this 
reduced playback rate can be used to establish the 
reference data transfer rate from the thin server to the 
client that corresponds to a “perfect” playback without 
discarded video frames. The data transfer rate can be 
calculated as the total data transferred divided by the 
total playback time. We can then compare the data 
transfer rate at the reduced playback rate with the 
corresponding full playback rate measurements to 
determine the video quality achieved at full playback 
rate. More specifically, we can use the following 
formula as a measure of video quality VQ at a given 
specified playback rate P: 

For example, suppose playing a video at an ideal 24 fps 
rate takes half a minute and results in 10 MB of data 
being transferred while playing the video at a slow-
motion ideal 1 fps rate takes 12 minutes and results in 
20 MB of data being transferred. Then, based on the 
above formula, the resulting video quality VQ at 24 fps 
will be 0.5 or 50%, which is what one would expect 
since the 24 fps video playback discarded half of the 
video data. The effectiveness of this formula depends 
on the platform’s ability to maintain the 1 fps frame 
rate. In our experiments, all of the platforms closely 
conformed to the frame rate. 

While this metric provides a useful, non-invasive way 

to measure video quality, it only accounts for the 
amount of data discarded and does not account for the 
fact that some video data may be more important to the 
overall display quality of a given video sequence than 
other data. For instance, discarding display updates 
corresponding to a video frame that looks almost the 
same as both the previous and next video frames in a 
sequence would not change the perceived display 
quality as much as discarding updates corresponding to 
a video frame that is unlike any of its neighboring 
frames. At the same time though, as discussed in 
Section 2, many of the thin-client systems use some 
form of compression to reduce the data size of their 
display updates. Compression effectively reduces data 
size by removing redundant information in the data. If 
we assume that the amount of unique information in a 
display update is a measure of its importance, then a 
compressed display update could be viewed in a rough 
sense as being scaled according to its importance. In 
this case, the proposed measure of video quality based 
on the amount of discarded compressed data effectively 
accounts for the fact that different display data may be 
of different importance. 

5 Experimental Results 
To demonstrate the effectiveness of slow-motion 
benchmarking, we evaluated four popular thin-client 
platforms using the unmodified and slow-motion 
versions of the web and video benchmarks described in 
Section 4. The platforms we measured were Citrix 
MetaFrame, Windows Terminal Services, AT&T VNC, 
and Sun Ray. Section 5.1 describes our experimental 
design, including the hardware and software testbed we 
used, the thin-client platform configurations we tested, 
and the experiments we conducted. Sections 5.2 and 5.3 
discuss our measurements and results comparing slow-
motion benchmarking against using the standard 
unmodified benchmarks. The results also contrast the 
performance of different thin-client systems on web and 
video applications. 

Figure 3: Testbed configuration. 
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5.1 Experimental Design 
5.1.1 Experimental Testbed 
Our testbed, shown in Figure 3, consisted of two pairs 
of client/server systems, a network simulator machine, 
a packet monitor machine, and a benchmark server. 
Only one client/server pair was active during any given 
test. The features of each system are summarized in 
Table 1, along with the SPEC95 performance numbers 
for each server system.  

The client/server systems included a Sun Ray thin client 
machine and a Sun server, and a PC client and server. 
The Sun thin server was used only for Sun Ray testing 
while the PC server was configured as a dual-boot 
machine to support the various Windows- and Linux-
based thin-client systems. The Sun Ray client was 
considerably less powerful than the PC client, with only 
a 100 MHz uSPARC CPU and 8 MB of RAM 
compared to a 450 MHz Pentium II with 128 MB of 
RAM in the PC client. However, the large difference in 

client processing power was not a factor in our 
evaluations, as the client systems were not generally 
heavily loaded during testing.  

As shown in Figure 3, the network simulator machine 
was placed between the thin client and thin server 
machines to control the bandwidth between them. This 
simulator ran a software package called The Cloud 
[29], which allowed us to vary the effective bandwidth 
between the two network interface cards installed in the 
system. The thin clients and thin servers were separated 
from one another on isolated 100 Mbps networks. The 
server-side network was then connected to one of the 
network interfaces in the network simulator PC, and the 
client-side network was connected to the other 
interface.  

To ensure that this simulator did not itself introduce 
extra delay into our tests, we measured round-trip ping 
times from the client to the server at 100 Mbps, with 
and without the simulator inserted between the client 

Role / Model Hardware OS / Window System Software 
PC Thin Client 
Micron Client Pro 

450 MHz Intel PII 
128 MB RAM 
14.6 GB Disk 
10/100BaseT NIC 
nVidia Riva TNT graphics 
adapter, 16 MB SDRAM 

MS Win NT 4.0 Workstation SP6 
Caldera OpenLinux 2.4, Xfree86 
3.3.6, KDE 1.1.2 

Citrix ICA Win32 Client 
MS RDP5 Client 
VNC Win32 3.3.3r7 Client 

Sun Thin Client 
Sun Ray I 

100 MHz Sun uSPARC IIep 
8 MB RAM 
10/100BaseT NIC 
ATI Rage 128 graphics adapter 

Sun Ray OS N/A 

Packet Monitor 
Micron Client Pro 

450 MHz Intel PII 
128 MB RAM 
14.6 GB Disk 
10/100BaseT NIC 

MS Win 2000 Professional AG Group’s Etherpeek 4 
 

Network Simulator 
Micron Client Pro 

450 MHz Intel PII 
128 MB RAM 
14.6 GB Disk 
2 10/100BaseT NICs 

MS Win NT 4.0 Server SP6a Shunra Software The Cloud 
1.1 

PC Thin Server 
Micron Client Pro 
(SPEC95 – 17.2 
int, 12.9 fp) 

450 MHz Intel PII 
128 MB RAM 
14.6 GB Disk 
2 10/100BaseT NICs 

MS Win 2000 Advanced Server 
Caldera OpenLinux 2.4, Xfree86 
3.3.6, KDE 1.1.2 

Citrix MetaFrame 1.8 
MS Win 2000 Terminal 
Services 
AT&T VNC 3.3.3r2 for Linux 
Netscape Communicator 4.72 

Sun Thin Server 
Sun Ultra-10 
Creator 3D 
(SPEC95 – 14.2 
int, 16.9 fp) 

333 MHz UltraSPARC IIi 
384 MB RAM 
9 GB Disk 
2 10/100BaseT NICs 

Sun Solaris 7 Generic 106541-08, 
OpenWindows 3.6.1, CDE 1.3.5 

Sun Ray Server 1.2_10.d Beta 
Netscape Communicator 4.72 

Benchmark Server 
Micron Client Pro 

450 MHz Intel PII 
128 MB RAM 
14.6 GB Disk 
10/100BaseT NIC 

MS Win NT 4.0 Server SP6a Ziff-Davis i-Bench 1.5 
MS Internet Information 
Server 

Network Hub 
Linksys NH1005 

3 10/100 5-Port Hubs N/A N/A 

Table 1: Summary of testbed configuration. 



 

and the server. There were no significant differences 
and round-trip ping times were roughly 0.6 ms in both 
cases. 

To monitor the client-server network traffic, we used a 
PC running Etherpeek 4 [1], a software packet monitor 
that timestamps and records all packet traffic visible to 
the PC. As shown in Figure 3, we primarily used the 
packet monitor to observe client-side network traffic. In 
order to capture all packet traffic being sent in both 
directions between the thin client and server, we used 
hubs rather than switches in our testbed. Since traffic 
going through a hub is broadcast to all other machines 
connected to the hub, this enabled us to record network 
traffic between the client and server simply by 
connecting the packet monitor to the hub that the data 
was passing through. 

A limitation of this network setup is that the hubs are 
half-duplex, so that traffic cannot be sent through the 
hub from client to server and from server to client 
concurrently. Since most data in these thin-client 
platforms is traveling from the server to the client in 
any case, it is unlikely that the half-duplex network 
added significant delay to our experiments.  

Other options are possible, each with its disadvantages. 
One alternative would be to run a packet monitor on the 
thin client or thin server, but Etherpeek is highly 
resource-intensive and would undoubtedly adversely 
affect performance results. Furthermore, in the case of 
the Sun Ray thin client device, it is not possible to run a 
packet monitor locally on the client. Another alternative 
would be to use port-mirroring switches to support full-
duplex network connections, but mirroring typically 
would only allow monitoring of either client to server 
traffic or vice versa, not both at the same time, as 
mirroring a duplex port in both directions 
simultaneously can result in packet loss [6]. 

Finally, we also had a separate benchmark server, 
which was used to run our modified version of the web 
page benchmark described in Section 4.1. To ensure 
that network traffic from the benchmark server did not 
interfere with the network connection between thin 
client and thin server, the benchmark server was 
connected to the testbed using a separate hub, as shown 
in Figure 3. Each thin server had two 100 Mbps 
network interfaces, one connected to the network 
simulator and through that to the client, the other 

connected to the benchmark server on a separate 
channel. 

5.1.2 Thin-Client Platforms 
The versions of the four thin-client systems tested are 
shown in the last column of Table 1. Citrix MetaFrame 
and Terminal Services were run with Windows 2000 
servers while VNC and Sun Ray were run with UNIX 
servers, Linux and Solaris. It was necessary to use 
different server operating systems because Terminal 
Services is part of Windows 2000, VNC performs much 
better on UNIX than Windows [32], and Sun Ray only 
works with Solaris. However to minimize system 
differences across thin-client platforms, all platforms 
except for Sun Ray used the exact same server 
hardware and same client OS and hardware. 

The thin-client platform configurations used for our 
experiments are listed in Table 2. To minimize 
application environment differences, we used common 
thin-client configuration options and common 
applications across all platforms whenever possible. 
Where it was not possible to configure all the platforms 
in the same way, we generally used default settings for 
the platforms in question. 

For all of our experiments, the video resolution of the 
thin client was set to 1024x768 resolution with 8-bit 
color, as this was the lowest common denominator 
supported by all of the platforms. However, the Sun 
Ray client was set to 24-bit color, since the Sun Ray 
display protocol is based on a 24-bit color encoding. 
Displaying in 8-bit color requires the Sun Ray server to 
convert all pixels to a pseudo 8-bit color stored in 24 
bits of information before they are sent over the 
network. As a result, displaying in 8-bit color reduces 
the display quality and increases the server overhead, 
but does not reduce the bandwidth requirements.  

5.1.3 Benchmarks 
We ran the benchmarks described in Section 4 on each 
of the four thin-client platforms. We measured the 
platforms using both the standard unmodified 
benchmarks and their respective slow-motion versions. 
We used the network simulator to vary the network 
bandwidth between client and server to examine the 
impact of bandwidth limitations on thin-client 
performance. We measured performance at four 
network bandwidths, 128 Kbps, 1.5 Mbps, 10 Mbps, 

Platform Citrix MetaFrame 
(Citrix Win2K) 

Terminal Services 
(RDP Win2K) 

VNC Linux Sun Ray 

Display 1024x768, 8-bit 1024x768, 8-bit 1024x768, 8-bit 1024x768, 24-bit 

Transport TCP/IP TCP/IP TCP/IP UDP/IP 
Options Disk cache off, memory cache 

on, compression on 
Disk cache off, memory cache 
on, compression on 

Hextile encoding, 
copyrect on 

N/A 

Table 2: Thin-client platform configurations. 



 

and 100 Mbps, roughly corresponding to ISDN, 
DSL/T1, and LAN network environments, respectively. 

To run the Web Text Page Load benchmark, we used 
Netscape Navigator 4.72, as it is available on all the 
platforms under study. The browser’s memory cache 
and disk cache were cleared before each test run. In all 
cases, the Netscape browser window was 1024x768 in 
size, so the region being updated was the same on each 
system. Nevertheless, Netscape on Windows 2000 
performs somewhat differently from Netscape on Linux 
and Solaris. For instance, in the Unix version, fonts 
appear smaller by default and a blank gray page appears 
between page downloads. These effects would tend to 
increase the amount of data that would need to be 
transferred on screen updates using a Unix-based thin-
client platform. Our experience with various thin-client 
platforms indicate that these effects are minor in 
general, but should be taken into account when 
considering small thin-client performance differences 
across Unix and Windows systems. 

To run the MPEG1 Video benchmark, we used 
Microsoft Windows Media Player version 6.4.09.1109 
for the Windows-based thin clients and MpegTV 
version 1.1 for the Unix-based thin clients. In order to 
facilitate a fair comparison between all platforms 
despite using two different players, we configured the 
two players so they had the same size video window 
and otherwise appeared as similar as possible. Since the 
only portion of the display that is updated is the video 
window, both Unix- and Windows-based thin clients 
are effectively performing the same tasks. 

5.2 Web Benchmark Results 
5.2.1 Standard Benchmark Results 
Figure 4 and Figure 5 show the results of running the 
unmodified Web Text Page Load benchmark on each of 
the thin-client platforms. Figure 4 shows the total 
latency for the unmodified benchmark on each 
platform. To provide some context for these results, a 
per-page latency of less than one second has been 
shown to be desirable to ensure that the flow of a user’s 
browsing experience is not interrupted [20]. Given the 
109 web pages in the Web Text Page Load benchmark, 
a total latency of less than 109 seconds is necessary for 
good performance.  

At first glance, it appears that VNC performs extremely 
well, maintaining the same low latency across all 
bandwidths and outperforming the other platforms, 
46% faster than its nearest competitor, RDP, at 100 
Mbps, while Sun Ray appears to perform much worse 
than the other platforms, 20% slower than RDP at 100 
Mbps. In addition, both Citrix and VNC still appear to 

be performing well on the benchmark even at 128 Kbps 
with average per-page download speed of less than 1 
second. However, examining the data transferred results 
in Figure 5 shows that VNC discards a substantial 
amount of display data at lower bandwidths, while the 
other platforms transmit a consistent amount of data 
and slow down playback as necessary.  

This highlights the problems with the results from the 
standard benchmark. Because we do not know exactly 
how the data is being encoded and compressed under 
each platform, we have no way of establishing a 
baseline for how much data should be transferred to the 
client by each system. As a result, we have no way of 
knowing whether the pages are being fully transferred 
to the client, even at 100 Mbps. We also cannot be sure 
that each platform is transmitting updates 
corresponding to the same pages, so the data transfer 
results are not an accurate measure of the relative 
efficiency of the platforms. As a result, we cannot draw 
conclusions about the relative performance of the 

Figure 4: Total latency for unmodified web benchmark. 
Using Sun Ray, the benchmark did not complete at 128 
Kbps. 

Figure 5: Total data transferred for unmodified web 
benchmark. 
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systems when they are effectively being tested on 
different sequences of pages. 

Visual observation of the platforms during the course of 
the test revealed another weakness of the standard 
benchmark. The pages stream by at such a fast rate that 
the sequence is not a realistic model of web browsing 
behavior. Real users typically do not interact with a 
browser in a rapid-fire manner but rather wait for a 
page to load before clicking on to the next page. This 
rapid rate causes a “pipelining” effect that hides the 
latency that results when each page is loaded from a 
standing start, which would be experienced in typical 
use.  

5.2.2 Slow-Motion Benchmark Results 
Figure 6 and Figure 7 show the results of running the 
slow-motion version of the Web Text Page Load 
benchmark on the four thin-client platforms. Figure 6 
shows the total latency for downloading the 109 web 
pages, calculated as the sum of the individual page 
download latencies. A progressive improvement in 
performance with increased bandwidth is now visible 
for all of the platforms, even VNC Linux, which 
showed exaggerated performance at lower bandwidth 
under the unmodified benchmark. 

As shown in Figure 7, the amount of data transferred 
now remains almost constant for all of the platforms 
across all bandwidths. However, we note that VNC 
transmits slightly less data at lower bandwidths because 
it uses a client-pull update policy in which each display 
update is sent in response to an explicit client request. 
At low network bandwidths, each display update takes 
longer to transmit, resulting in the client sending fewer 
update requests and receiving fewer display updates. 
The unsent interim updates are merged by the server. 
This does not affect the overall results as we are only 
interested in the total per-page latency for displaying 
the entire viewable web page. The absence of interim 
updates received at high bandwidths when the client 
can send more update requests does not affect the final 
visual quality or per page download latency. 

Comparing Figure 4 and Figure 6, the measurements 
show that the total latency for the slow-motion 
benchmark is from 10% (for Sun Ray) to 63% (for 
VNC) higher than for the standard unmodified 
benchmark. There are three reasons for the difference in 
latency. First, none of the thin-client platforms discard 
display updates for the slow-motion benchmark. A 
comparison of Figure 5 and Figure 7 shows that VNC 
no longer discards display updates for pages in the 
slow-motion benchmark as it did for the unmodified 
benchmark. VNC transfers more data in the slow-
motion case even at 100 Mbps, indicating that VNC 

was discarding data even at the highest bandwidth when 
running the unmodified benchmark. Second, in using 
the slow-motion benchmark, each web page is 
downloaded from a standing start after the previous 
page is completely downloaded. None of the latency is 
hidden by “pipelining” page downloads. Third, for 

Figure 6: Total latency for slow-motion web 
benchmark. 

Figure 7: Total data transferred for slow-motion web 
benchmark. 

Figure 8: Per-page latency for VNC Linux running the 
slow-motion benchmark at 100 Mbps. 
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Citrix and RDP, there were two web pages, pages 23 
and 49 in the second iteration of downloading the 
pages, that consistently took 3-4 seconds to download 
for the slow-motion benchmark that did not take as long 
in the unmodified benchmark. We discovered that the 
long delays were due to an unusual interaction between 
Netscape and these two thin-client platforms. While 
these extra delays were not present when using the 
unmodified benchmark, the slow-motion benchmark 
provides a more realistic measurement of web browsing 
performance. 

Figure 6 shows that all of the thin-client platforms 
deliver acceptable web browsing performance at LAN 
network bandwidths and that all of the platforms except 
Sun Ray provide sub-second performance at 1.5 Mbps 
as well. As shown in Figure 7, since Sun Ray provides 
higher quality 24-bit display as opposed to the 8-bit 
displays of the other platforms, it consumes much more 
network bandwidth, resulting in lower performance at 
low bandwidths. Note that none of the platforms 
provide good response time at 128 Kbps, despite the 
claims made by Citrix and Microsoft that their thin-
client platforms can deliver good performance even at 
dialup modem speeds. 

Overall, VNC and Sun Ray were faster at higher 
network bandwidths while Citrix and RDP performed 
better at lower network bandwidths. This suggests that 
the more complex optimizations and higher-level 
encoding primitives used by Citrix and RDP are 
beneficial at lower network bandwidths when reducing 
the amount of data transferred significantly reduces 
network latency. However, the simpler architectures of 
VNC and Sun Ray have lower processing overhead and 
hence perform better when bandwidth is more plentiful 
and data transfer speed is not the dominant factor. 

Slow-motion benchmarking also allows us to obtain 
actual per-page results. Figure 8 shows a subset of the 
per-page latency results for one of the platforms, VNC. 
Due to space limitations, we only include the latency, 
but the per-page data transferred can also be obtained. 
For all pages except one, VNC provides excellent web 
browsing performance with page download latencies 
well below a second. Much information about the way 
the different platforms handle different types of pages is 
hidden by the aggregate results, but with the standard 
unmodified benchmark it is impossible to obtain the 
per-page data. 

To further validate the accuracy and appropriateness of 
the slow-motion benchmarking technique, we internally 
instrumented the open-source platform VNC. By 
instrumenting VNC, we could obtain end-to-end 
latency measurements that also completely include any 

client latency. We repeated the experiments with the 
instrumented version of VNC and compared the results 
with the packet capture data. The slow-motion results 
using network monitoring were verified to be within 
4.3% of the instrumented VNC results in measuring the 
total data transferred and within 1.1% in recording the 
total latency. Furthermore, there was little variance in 
the results corresponding to each individual page across 
multiple runs. Of all the thin-client platforms measured, 
VNC had the highest client load and yet the slow-
motion network monitoring results and internal 
instrumentation results showed little difference. The 
main reason for this is that the VNC client sends a 
message back to the server when it has finished 
processing the latest display update. As a result, the 
packet traces completely capture the client latency 
without direct client instrumentation. 

An important benefit of slow-motion benchmarking for 
measuring interactive responsiveness is the 
reproducibility of the results. One way to measure 
interactive performance is to monitor actual user 
activity, but it is essentially impossible for a user to 
repeat the exact same set of experiments with the exact 
same timing characteristics. In contrast, slow-motion 
benchmarking can be used to provide better 
reproducibility of results. We gauged the 
reproducibility of the slow-motion benchmark data by 
calculating the standard deviation after five trials of 
each test. The largest standard deviation observed was 
4.7% of the mean, but typically 3% or lower. 

5.3 Video Benchmark Results 
5.3.1 Standard Benchmark Results 
Figure 9 and Figure 10 show the results of running the 
standard unmodified MPEG1 Video benchmark on the 
four thin-client platforms. Figure 9 shows the playback 
time for the MPEG video benchmark at the ideal frame 
rate of 24 fps. Unfortunately, playback time remained 
relatively static on all of the platforms and did not 

Figure 9: Playback time for unmodified video benchmark. 
Using Sun Ray, the benchmark did not complete at 128 
Kbps. 
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correspond with the subjective performance, which 
degraded rapidly at lower bandwidths.  

This subjective observation is supported by the data 
transfer measurements. Figure 10 shows the data 
transferred during playback, which degrades rapidly at 
lower bandwidths even when playback time remains 
low. For instance, the data transferred by VNC at 100 
Mbps is 30 times greater than that transferred at 128 
Kbps despite the near-constant playback time. Clearly, 
we cannot use the playback time alone as a measure of 
the video quality because not all the frames are being 
fully displayed. The amount of data transferred must be 
incorporated into any metric of video quality. 

We could represent the video quality as a percentage of 
the ideal data transfer rate. However, this ideal data 
transfer rate cannot be determined with the unmodified 
benchmark. If we assumed that the 100 Mbps rate was 
the ideal, we might conclude that all of the platforms 
perform well at both 100 Mbps and 10 Mbps: they 
maintain a high playback time and transmit roughly the 
same amount of data at both bandwidths. This does not 
correlate with the subjective performance: visually, 
only Sun Ray achieved good performance even at 100 
Mbps.  

5.3.2 Slow-Motion Benchmark Results 
Slow-motion benchmarking again allows us to clarify 
the picture. Figure 10 also shows the amount of data 
transferred when the benchmark was run in slow-
motion at a frame rate of 1 fps with network bandwidth 
of 100 Mbps. At this frame rate, bandwidth limitations 
were not an issue and each frame of the video was 
transmitted separately and fully displayed on the client 
before the subsequent frame was begun. This yields a 
baseline by which to measure the results from the 
standard benchmark, using the formula for video 
quality described in Section 4.2.  

Figure 11 shows this measure of video quality for each 
of the platforms. We can now obtain a clearer picture of 
how well each of the platforms perform at high 
bandwidths and in comparison to each other, despite the 
nearly-level playback time seen in Figure 9. 

Out of all the thin-client platforms, Sun Ray alone 
achieves good performance, with 96% video quality at 
100 Mbps despite the fact that it sends an order of 
magnitude more data than any other platform at 24 fps. 
None of the other platforms has good performance even 
at LAN bandwidths. The fact that Sun Ray sends much 
more data than any other platform indicates that the 
poor performance of these other platforms at 100 Mbps 
is not due to bandwidth limitations but is rather due to 

their display update mechanisms, which are poorly 
suited to video applications.  

6 Related Work 
In this paper, we have focused on thin-client systems in 
which both applications and the window system are 
completely executed on the server. These systems are 
the most popular thin-client systems today and many of 
them have been developed [4, 5, 15, 16, 24, 26, 27, 30, 
32].  

Three other types of systems that are sometimes 
referred to as thin-client systems are network window 
systems, browser-based systems, and remote control 
computing systems. The most notable example of a 
network window system is the X Window system [25]. 
Unlike the systems discussed in this paper, X runs the 

Figure 10: Total data transferred in unmodified video 
benchmark at 24 fps, and in the slow-motion video 
benchmark at 100 Mbps bandwidth and 1 fps. Sun Ray 
data transferred at 100 Mbps was equivalent at both 
frame rates. 

Figure 11: Video quality as percentage of data 
transferred in the slow-motion video benchmark. 
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window system on the client and as a result requires 
more substantial client resources in order to perform 
well. To run X applications over lower bandwidth 
networks, a low-bandwidth X (LBX) proxy server 
extension [13] was developed and released as part of 
X11R6.3. Browser-based systems employ a web 
browser client as a user interface to an application 
server. These systems require applications to be 
modified to support a web-based interface. Remote 
control computing systems such as Laplink [14] and PC 
Anywhere [21] enable users to remotely control a PC 
by sending screen updates to remote client PCs. They 
also run all application and window system logic on the 
server, but they do not support multiple users at the 
same time. 

There have been several studies of thin-client 
performance that have focused on evaluating one or two 
systems. Danskin conducted an early study of the X 
protocol [7] and Schmidt, Lam, and Northcutt 
examined the performance of Sun Ray [26]. Both of 
these studies relied on source code access for internal 
system instrumentation. Thin-client platform vendors 
such as Citrix and Microsoft have done internal 
performance testing of their products as well, but have 
not published any reliable experimental results [4, 
16,17]. Wong and Seltzer studied the performance of 
Windows NT Terminal Server for office productivity 
tools and web browsing [33] by monitoring network 
traffic generated from a real user session. This provides 
a human measure of user-perceived performance, but 
makes repeatable results difficult. Tolly Research 
measured the performance of Citrix MetaFrame on 
various scripted application workloads [31], however 
the study suggests that problems in using standard 
scripted application workloads as described in this 
paper were not properly considered.  

A few performance studies have compared a wider 
range of thin-client systems. Some of our previous 
work led to the development of slow-motion 
benchmarking [19]. Howard has presented performance 
results for various hardware thin-clients based on tests 
from the i-Bench benchmark suite [12]. This work 
suffers from the same problems in measurement 
technique that we described in Section 2. It relies on the 
results reported by the standard benchmarks, which 
only measure benchmark performance at the server-
side. In addition, the work was based on Microsoft 
Internet Explorer 5.01, which does not properly 
interpret the Javascript onLoad handler used in the i-
Bench Web Text Page Load benchmark. This causes 
successive pages to begin loading before the previous 
pages have fully displayed, resulting in unpredictable 
measurements of total web page download latencies. 

Netscape Navigator 4.7 does not suffer from this 
problem, which is one of the reasons we used this 
browser platform for our work. 

7 Conclusions and Future Work 
We have introduced slow-motion benchmarking, a new 
measurement technique that requires no invasive 
instrumentation and yet provides accurate 
measurements for evaluating thin-client systems. Slow-
motion benchmarking introduces delays into standard 
application benchmarks to isolate the visual 
components of those benchmarks. This ensures that the 
components are displayed correctly on the client when 
the benchmark is run, even when the client display is 
decoupled from the server processing as in many thin-
client systems. Slow-motion benchmarking utilizes 
network traffic monitoring at the client rather than 
relying on application measurements at the server to 
provide a more complete measure of user-perceived 
performance at the client. 

We have demonstrated the effectiveness of slow-motion 
benchmarking on a wide range of popular thin-client 
platforms. Our quantitative results show that slow-
motion benchmarking provides far more accurate 
measurements than standard benchmarking approaches 
that have been used for evaluating thin-client systems. 
Our comparisons across different thin-client systems 
indicate that these systems have widely different 
performance on web and video applications. Our results 
suggest that current remote display mechanisms used in 
thin-client systems may be useful for web browsing at 
lower network bandwidths. However, these same 
mechanisms may adversely impact the ability of thin-
client systems to support multimedia applications. 

We are currently using slow-motion benchmarking to 
evaluate a wide range of thin-client platforms in 
different network environments. As ASPs continue to 
increase in popularity, one important area of research is 
evaluating the performance of thin-client computing in 
wide-area network environments. Slow-motion 
benchmarking provides a useful tool for characterizing 
and analyzing the design choices in thin-client systems 
to determine what mechanisms are best suited for 
supporting future wide-area computing services.  
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