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Abstract

Hager recently introduced down and up exchange methods for reducing the
profile of a sparse matrix with a symmetric sparsity pattern. The methods
are particularly useful for refining orderings that have been obtained using a
standard profile reduction algorithm, such as the Sloan method. The running
times for the exchange algorithms reported by Hager suggested their cost could
be prohibitive for practical applications. We examine how to implement the
exchange algorithms efficiently. For a range real test problems, it is shown that
the cost of running our new implementation does not add a prohibitive overhead
to the cost of the original reordering.
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1 INTRODUCTION 1

1 Introduction

If Gaussian elimination is applied to a symmetric positive-definite matrix A of
order n, all zeros between the first entry of a row and the diagonal usually fill
in (this happens if rows 2, 3, ..., n all have at least one entry to the left of
the diagonal). Therefore, the total number of entries in each triangular factor
is the sum of the lengths of the rows of the original matrix, where each length
is counted from the first entry to the diagonal. This sum is also known as the
profile.

A variety of methods have been proposed for choosing a permutation of
the matrix that reduces the profile. Following the publication of the paper by
Cuthill and McKee (1969), graph theory and level sets, in particular, became
a standard approach for both bandwidth and profile reduction. Methods
proposed in the late 1970s and early 1980s include the Reverse Cuthill-McKee
(George and Liu, 1981), the Gibbs-King (Gibbs, 1976) and the Gibbs-Poole-
Stockmeyer (Gibbs, 1976, Lewis, 1982) algorithms. The Sloan algorithm
(Sloan, 1986, 1989) offered a considerable improvement over these methods
by introducing a second step in which the ordering obtained using the
pseudo-diameter from a variant of the Gibbs-Poole-Stockmeyer algorithm was
locally refined. The Sloan method has been widely used and a number of
enhancements to the original algorithm have been proposed (see, for example,
Duff, Reid and Scott, 1989, Kumfert and Pothen, 1997, and Reid and
Scott, 1999). A high quality implementation of an enhanced version of the
Sloan algorithm is available within the mathematical software library HSL
(http://www.cse.clrc.ac.uk/Activity /HSL) as routine MC60.

A very different approach was described by Barnard, Pothen and Simon
(1995). Their spectral method was based on computing the Fiedler vector
of the Laplacian matrix associated with the matrix A. A similar idea was
suggested independently by Paulino, Menezes, Gattass and Mukherjee (1994a,
1994b). Kumfert and Pothen (1997) proposed combining the second step of the
Sloan algorithm with the spectral ordering. For large problems, the resulting
hybrid algorithm has been shown to give significantly better orderings than
either the spectral method or the Sloan method alone. The main disadvantage
is that the hybrid algorithm requires the computation of the Fiedler vector of
a large matrix, and this can add considerably to the reordering cost (Hu and
Scott, 2001, report that the CPU time can be up to five times that for the Sloan
algorithm).

Motivated by the success of multilevel algorithms for graph partitioning,
Hu and Scott (2001) recently developed a multilevel algorithm for wavefront
and profile reduction. A series of graphs is generated, each coarser than the
preceding one. The enhanced Sloan algorithm is employed on the coarsest
graph. The coarse graph ordering is then recursively prolonged to the next finer
graph, with local refinement performed at each level. The final ordering on the
finest graph gives an ordering for A. Extensive numerical experimentation has
shown that the multilevel approach gives orderings of similar quality to that of
the hybrid algorithm, whilst being significantly faster.

Hager (2000) suggested two methods for improving any given permutation
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for profile reduction. His down exchange algorithm involves a cyclic
permutation, that is, the successive exchange of rows (k,k+ 1), (k+ 1,k + 2),

., (I=1,1) of the permuted matrix and interchanging corresponding columns.
For a given k, Hager finds the value of [ that most reduces the profile. He
performs a pass over the matrix with k& taking the values n — 1, n — 2, ...,
1; he calculates [ for each k and, if this gives a profile reduction, applies the
corresponding permutation.

Hager’s up exchange is similar, with the direction reversed. For a given k,
he exchanges rows and columns (k,k —1),(k — 1,k — 2),...,(l + 1,1), finding
the value of [ that most reduces the profile. He performs a pass over the matrix
with k taking the values 2, 3, ..., n.

Hager proposes using the down exchange and up exchange schemes in an
iterative fashion: the down exchange algorithm is first applied, followed by the
up exchange algorithm, followed by the down exchange algorithm, and so on.

In many applications, it is important that reordering the matrix to reduce
the profile is done as quickly and efficiently as possible. If a large number
of matrices having the same sparsity pattern are to be factored or if storage
restrictions require the smallest possible profile, it may be worthwhile to spend
a relatively large amount of time computing a permutation that minimizes
the profile. However, if the matrix needs to be factored only once, the cost
of reducing the profile must be compared with that required for the matrix
factorization; in such circumstances, a slightly larger profile may be acceptable if
it can be computed cheaply. Hager presents timings for his exchange algorithms
that show they are expensive to run compared with algorithms such as the Sloan
algorithm that are used to produce the initial reordering. Hager also reports
that, in general, he found the down exchange algorithm to be significantly faster
than the up exchange algorithm (typically by a factor of between 4 and 10). We
have considered carefully how the exchange algorithms should be implemented.
In Sections 2 and 3, we explain how to implement the down and up exchange
methods efficiently. In particular, careful implementation of the up exchange
algorithm results in it running much faster than Hager reported. Results for a
set of test matrices arising from practical applications are presented in Section 4.
The profile reductions achieved using the Hager exchanges are given together
with the CPU times required to achieve these reductions. Concluding remarks
are made in Section 5.

2 Implementation of the down exchange

Any reduction in the profile leads to a corresponding increase in the total
number of zeros ahead of the first entries of the rows. Therefore, we can
minimize the profile by maximizing this total. By symmetry, this is also the
total number of zeros ahead of the first entries of the columns. This total is
unaffected by column permutations, so we can delay applying them and work
solely with row permutations in the body of the code. We need a representation
of the pattern of the whole symmetric matrix, including the diagonal.

We have chosen to hold the structure of the original matrix unchanged while
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the permutations are found. We hold the current permutation and its inverse
in two integer arrays perm and inv_perm of length n and update these as each
cyclic permutation (k,[) is found. This involves far less work than updating the
matrix structure.

In describing the algorithm (and in writing the code) it is very important
to distinguish between original row indices and permuted row indices. Unless
otherwise stated, array subscripts and stored row indices refer to original indices
so that they do not need to be altered with each cyclic permutation (k,l). In
this description, ‘first’, ‘second’, ‘in front’, ‘beyond’, ... refers to the position in
the column when the rows have been permuted. We hope that the context will
make it clear whether the row index is original or permuted.

We define a gain to be a decrease to the profile and a loss to be an increase to
the profile. The net gain is the difference between the gain and the loss resulting
from a permutation. Thus, at each stage we are seeking the maximum net gain.

When permuted rows k and k + 1 are exchanged, there is a gain of one for
each column with its first entry in row & and its second entry after row &k + 1,
and there is a loss of one for each column with its first entry in row k& + 1. As
the further interchanges (k + 1,k +2), ...are performed, there is a further gain
in each column that gained from the first interchange until the second entry of
the column is reached. There is also a loss of one as each other first entry is
encountered. Hager sweeps forward from row & accumulating the net gain at
each stage until there are no columns with a potential for gain. The row for
which the maximum gain is found provides the index [.

We illustrate this by the example shown in Figure la. Exchanging rows 1
and 2 gives a gain in columns 1, 3, 4 and 6 and a loss in column 2. Following
this with an exchange of rows 2 and 3 gives a further gain in columns 4 and 6
and a loss in column 5. Exchanging rows 3 and 4 gives a further gain in column
6 with no loss. No further gains are possible. The net gains are 3, 4, 5 so we
choose [ to be 4. The matrix pattern after the row exchanges is given in Figure
1b and Figure 1c shows the pattern after the row and column permutations.

1 2 3 4 5 6

1 x X X

2 X

3 X X X
4 X X X
5 X X X X
6 X X X

Figure la. Original matrix.
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1 X

2 X X X

3 X X X

4 X X X X
5 X X X X
6 X X X

Figure 1b. Row permuted matrix

1 2 3 4 5 6
1 x
2 X X X
3 X X X
4 X X X X
) X X X X
6 X X X

Figure 1c. Row and column permuted matrix
An informal code to find [ for a given k is as follows:

net_gain = 0
max_gain = 0
gain = (number of columns with first entry in row k)
dom=%k+1, n
gain = gain - (number of columns with first entry in row k
and second entry in row m)
if (gain == 0) exit
loss = (number of columns with first entry in row m)
net_gain = net_gain + gain - loss
if (net_gain > max_gain) then
max_gain = net_gain
l=m
end if
end do

Note that the exit from the loop usually occurs quite early since the second
entry of each column is usually near the first (it is often adjacent).

For efficient execution, it is clearly important to be able to find gain and
loss quickly. We do this by using three integer arrays of length n:

e num_first(7) holds the number of columns with their first entry in row ¢,
1=1,2,...,n.

e num second(7) holds the number of columns with their first entry in row
k and second entry in permuted row 7,7 =1, 2, ..., n.
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e second(j) holds the permuted index of the second entry of column j if
the first entry is in row k and zero otherwise, j =1, 2, ..., n.

We can calculate num_second efficiently for each row k by starting with all
components having the value zero and restoring this afterwards. We search
each column j with a first entry in row k to find its second entry second(j) and
add one to num_second(second(j)). Once [ has been found, for each column j
with a first entry in row k, we set num_second(second(j)) back to zero.

For each cyclic permutation (k,l), we also need to revise the array
num first. There is a change of first entry in a column only if its first entry
is in row k and its second entry is not beyond row [. Therefore, for each
column j with first entry in row k and second(j) < [, we subtract one from
num first(inv_perm(k)) and add one to num first(inv_perm(second(j))).

It is clear that we need to be able to find the columns with their first entry
in row k quickly. We therefore link all the first entries that lie in a given row.
We do this by using two further integer arrays of length n:

e start(i) holds the index of a column (if any) that has its first entry in
rowi, 1t =1,2,...,n.

e next(j) holds the index of another column (if any) that has its first entry
in the same row as column 7, 7 =1, 2, ..., n.

It is easy to update this for a cyclic permutation (k,l). We run through
the column indices j in the linked list for row k; if second(j) < I, we
remove j from the list for row k& and insert it at the front of the list for row
inv_perm(second(j)). Imserting it at the front avoids the need to search the
list.

3 Implementation of the up exchange

For the up exchange algorithm, we again maximize the total number of zeros
ahead of the first entries of the columns. As before, we need a representation of
the pattern of the whole symmetric matrix, including the diagonal, and work
with row permutations only.

We again hold the structure of the original matrix unchanged while the
permutations are found. We again hold the current permutation and its inverse
in two integer arrays perm and inv_perm of length n and update these as each
cyclic permutation (k,!) is found.

When rows k and k —1 are exchanged, there is a gain of one for each column
with its first entry in row k —1 and a zero in row k, and there is a loss of one for
each column with its first entry in row k. For efficient coding of the algorithm,
we found it necessary to regard this as a gain of one for each column with its
first entry in row k£ — 1 and a loss of one for each column with an entry in row
k and its first entry in row k or k — 1 (so that a column with an entry in row k
and it first entry in row k& — 1 contributes a net gain of zero).

In each further interchange, row k (temporarily in row m+ 1) moves to row
m and row m moves torow m—+1, m =k —2,k—3, ..., 1. There is a further
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gain of one for each column with its first entry in row m and a further loss of
one in each column with an entry in row k and its first entry in rows &, ... m.

We illustrate this by the example shown in Figure 2a with & = 5.
Exchanging row 5 with row 4 gives a gain in columns 4 and 6 and a loss in
column 4. Following this with an exchange of row 5 (now in row 4) with row
3 gives a gain in column 3 and a loss in column 4. Next, the exchange of row
5 (now in row 3) with row 2 gives a gain in columns 2 and 5 and a loss in
columns 2, 4 and 5. Finally, the exchange of row 5 (now in row 2) with row 1
gives a gain in column 1 and losses in columns 2, 4 and 5. The net gains are 1,
1, 0, -2, so we choose | = k — 1 = 4. The matrix after the row permutation is
given in Figure 2b and Figure 2c shows the matrix after the row and column
permutations.

1 2 3 4 5 6
1 x
2 X X
3 X
4 X X X
) X X X
6 X X

Figure 2a. Original matrix

1 2 3 4 5 6
1 x
2 X X
3 X
4 X X X
5 X X X
6 X X

Figure 2b. Row permuted matrix

1 2 3 4 5 6
1 x
2 X X
3 X
4 X X X
5 X X X
6 X X

Figure 2c. Row and column permuted matrix
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An informal code to find ! for a given k is shown in Figure 3.

net_gain = 0
max_gain = 0
loss = (number of columns with first entry in row k)
dom-=k-1, 1, -1
new_loss = (number of columns with first entry in row m
and an entry in row k)

loss loss + new_loss
gain
net_gain = net_gain + gain - loss
if (net_gain > max_gain) then

(number of columns with first entry in row m)

max_gain = net_gain
l=m
end if
end do

Figure 3.

To avoid unnecessary cycles of this loop, Hager holds the number of zeros in
row k that have not already been used to reduce the profile, say in the variable
nzk. The further improvement to the net gain is bounded by nzk-loss so the
loop can be left if the inequality

net_gain + nzk - loss <= max_gain

holds. Unfortunately, nzk will start with a value near n, so that a large number
of loop executions is likely to be needed.

Hager remarks that a row without any first entries can be skipped since it
yields no gains and may yield losses; he uses a linked list to limit loop executions
to rows with first entries. Since it is likely that there are many such rows, he
also limits the length of each cyclic permutation to 1000.

The number of tests may be further reduced by taking advantage of the
special role played by rows that have a first entry in a column that also has
an entry in row k. We will call these step rows. Their significance lies in the
fact that loss changes only in these rows. We store the permuted indices of
these rows in the array steps and sort them in decreasing order. To find these
indices quickly we need the integer array of length n:

e first(j) holds the index of the first entry of column j, 7 =1, 2, ..., n.

To ensure that we include an interval with loss at its greatest (which is the
number of entries in row k), we include 0 as a step row.

For efficient execution, it is important to be able to find gain quickly. We
do this by using an array of size n:

e num first(7) holds number of columns with first entry in row i, 1 = 1, 2,
coy M
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To avoid having to cycle though the loop of Figure 3, we also hold the
accumulation of gain over rows that are adjacent in the permuted order. We
do this by using another array of size n:

e gains(7) holds sum(num first(inv_perm(i:n))),i=1,2, ..., n.

For each cyclic permutation (k,l), we need to revise these arrays. There is
a change of first entry in a column only if it has an entry in row k and its first
entry is not in front of row [. Therefore, for each column j with an entry in row
k and perm(first(j)) > [, we add one to num_first(inv_perm(k)), subtract
one from num_first(first(j)), and reset first(j). Only components k, k — 1,
..., L+ 1 of gains change and these can be recalculated in the loop that resets
the changed components of the permutation and inverse permutation vectors.

The loss value is fixed for each interval between step rows, that is, for m
in the range

p=steps(i)+1>m>qg=-steps(i+1)+1
and the net gain is
net_gain(m) = net_gain(p) + gains(m) — gains(p) — loss * (p — m).
The inequality
net_gain(m) < net_gain(p) + gains(q) — gains(p) — loss * (p — m).
may be deduced. If m is to be advantageous, the inequality
net_gain(m) > max_gain

must hold, where max_gain is the best net gain found up to and including row
p. A fortiori, the inequality

net_gain(p) + gains(q) — gains(p) — loss % (p — m) > max_gain
must hold, that is, the inequality
m > p — (net_gain(p) + gains(q) — gains(p) — max_gain)/loss

must hold.  This inequality may tell us immediately that there is no
advantageous row in the interval. Otherwise, it gives us a new bound

¢ = int(p + (net_gain(p) + gains(q) — gains(p) — max_gain)/loss)

beyond which we do not need to test. If ¢ > ¢, we apply the same test with ¢
replacing g; otherwise, we test the remaining interval directly.

Our code has an outer loop which we call outer within which we test a
single interval thus:
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p = steps(i-1) + 1
q = steps(i) + 1
! Search between p-1 and q
do
next = p - (net_gaint+gains(q)-gains(p)-max_gain)/loss
if (next >= p) exit outer
if (next <= q) exit

q = next
end do
! Simple search between p-1 and q
do p = p-1,q,-1
net_gain = net_gain + num_first(inv_perm(p)) - loss
if (net_gain > max_gain) then
l=p
max_gain = net_gain
end if
if (net_gain+gains(q)-gains(p)-loss <= max_gain) exit
end do

Figure 4.

We treat the rows in which loss is zero specially (they are always
advantageous) and apply this algorithm to each interval in turn. The effect
of using this code was dramatic; this is illustrated in Section 4.

4 Numerical experiments

In this Section we present numerical results. Our test problems are listed in
Table 4.1. This set is taken from Kumfert and Pothen (1997) and represents
a range of application areas: structural analysis, fluid dynamics, and linear
programs from stochastic optimization and multicommodity flows. All our
experiments were performed on a Compaq DS20, using the Compaq Fortran
90 compiler V5.4A-1472 with the -O option. The statistic used in our tables of
results is the normalised profile defined by

P

n

where n is the order of the matrix and P the profile. All CPU times are given
in seconds.

In Table 4.2, we present the normalised profiles for the original matrix,
for the enhanced Sloan algorithm as implemented in the HSL code MC60,
for the hybrid algorithm (Kumfert and Pothen, 1997) and for the multilevel
algorithm (Hu and Scott, 2001). For each ordering we also give the normalised
profiles after applying the down exchange algorithm followed by the up exchange
algorithm five times. We see that the largest reductions in the profile result
from the initial reordering; using the Hager exchange algorithms results in
further more modest reductions. The size of these reductions is very problem
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Table 4.1: The test suite

Identifier Order  Entries Comment
barth 6691 19748 | 2D CFD problem
barth4 6019 17473 | 2D CFD problem
barthb 15606 45878 | 2D CFD problem
bcsstk30 28924 1007284 | 3D stiffness matrix
commanche _dual 7920 11880 | 3D CFD problem
copterl 17222 96921 | 3D structural problem
copter2 55476 352238 | 3D structural problem
finance256 37376 130560 | Linear program problem
financeb12 74752 261120 | Linear program problem
fordl 18728 41424 | 3D structural problem
ford2 100196 222246 | 3D structural problem
nasasrb 54870 1311227 | 3D structural problem
onera_dual 85567 166817 | 3D CFD problem
pdsi0 16558 66550 | Linear program problem
shuttle_eddy 10429 46585 | 3D structural problem
skirt 45361 1268164 | 3D structural problem
tandem_dual 94069 183212 | 3D CFD problem
tandem_vtx 18454 117448 | 3D CFD problem

dependent. For a number of problems, including bcsstk30, shuttle_eddy, and
skirt, the improvements are less than 1 per cent. However, the reductions can
be more significant. For example, for fordl and ford2, the MC60 profiles are
improved by 21 and 18 per cent, respectively. We remark that it is important
to have a good initial reordering before the application of Hager’s exchange
algorithms. For our test cases, the smallest profiles were obtained after applying
Hager’s algorithm to the best initial reordering.

In Table 4.3, we present the normalised profiles and CPU times for applying
the exchange algorithms to the MC60 orderings. Results are given for a single
application of Hager down/up, for repeating the down/up exchanges 5 times,
and for repeating the down/up exchanges without limit until there is no further
reduction in the profile. The greatest reductions result from the first application
of the exchange algorithm, although for a number of problems, including ford2
and tandem_dual, useful further reductions are achieved by repeatedly applying
the exchange algorithm. On the basis of these results, by default we limit the
number of down/up exchanges to 5. For a number of problems, the cost of a
single application of the exchange algorithms is significantly greater than the
initial MC60 ordering cost but, because of our efficient implementation of the
Hager up exchanges, we feel that most users would be unlikely to find this cost
prohibitive.

Our final implementation of the up exchange algorithm has had a huge effect
on the CPU time, and we illustrate this in Table 4.4. We denote by Simple the
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Table 4.2: Normalised profiles for the original matrix, the MC60, hybrid and
multilevel orderings, and for these orderings followed by 5 applications of the
Hager down/up exchanges (denoted by +Hager).

Identifier Original MC60 Hybrid Multi.
+Hager +Hager +Hager
barth 2370.6 70.8 67.7 59.3 56.8  62.1 59.6
barthé 359.7 54.5 51.2 47.9 45.3  49.3 46.6
barthb 261.0 91.8 84.9 82.5 77.6  92.7 81.3
bcsstk30 543.4 5434  534.2 272.5 272.1 273.6  273.0
commanche_dual 2089.8 42.3 39.3 43.8 419 351 33.3
copterl 1103.3  346.2  331.3 354.7 331.5 351.6  335.5
copter2 19541.8  685.2  650.9 590.7 562.9 698.1  654.5
finance256 6459.7  169.4 1674 172.3 168.7 127.4 1244
financeb12 12859.2  158.2  156.9 156.8 152.1 114.0 113.2
fordl 1880.4  126.3 99.9 104.3 88.8 101.9 85.2
ford2 3715.6  407.9 334.2 358.6 299.0 304.8  260.0
nasasrb 3712 346.9  344.3 351.7 3471 323.1  321.2
onera_dual 8287.8 1025.2  933.7 545.1 520.9 656.0  628.8
pds10 1090.3  559.0  535.0 532.0 513.5 632.3  559.8
shuttle_eddy 1118.7 59.4 59.2 57.0 57.0 572 57.0
skirt 1011.1  808.0  807.9 615.7 615.6 657.7  657.2
tandem dual 5183.0 701.3  626.2 448.5 4327 420.6 4079

tandem_vtx 4390.7  329.1  309.8 282.6 271.8 2764 2684
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Table 4.3: Normalised profiles and CPU times for MC60 and for applying the
Hager exchange algorithm to the MC60 orderings. The numbers in parentheses

are the number of times the down/up exchange algorithms are applied; inf.

indicates no limit.

Identifier MC60 +Hager +Hager +Hager

down/up (1) down/up (5)  down/up (inf.)

Profile Time Profile Time Profile Time Profile Time

barth 70.8  0.05 68.1 0.02 67.7  0.09 67.6 0.16
barth4 54.5  0.03 51.3  0.02 51.2  0.07 50.8 0.32
barthb 91.8  0.10 85.4  0.08 84.9  0.22 82.7 0.94
bcsstk30 543.3  0.96 534.2  0.41 534.2 1.23 534.2 1.23
commanche_dual 42.3.2 0.03 39.6 0.02 39.3 0.09 39.1 0.18
copterl 346.2  0.13 331.3  0.20 331.3  0.31 331.3 0.31
copter?2 685.2  0.60 653.7  0.70 650.9 1.88 650.0 7.72
finance256 169.4  0.26 167.4  0.10 167.4  0.38 167.4 0.38
financeb512 158.2  0.55 156.9  0.22 156.9  0.81 156.0 0.82
fordil 126.3 0.09 105.5 0.14 99.9 0.36 97.5 1.41
ford2 4079  0.71 349.3 2.71 334.2 5.14 328.9 15.31
nasasrb 346.0 1.29 344.3  0.55 344.3 2.80 344.3 2.80
onera_dual 1025.2  0.65 955.0  3.39 933.7  6.62 910.0 28.13
pds10 559.0 0.13 536.6  0.10 535.5  0.35 535.0 0.48
shuttle_eddy 59.4 0.06 59.2 0.02 59.2 0.11 59.2 0.37
skirt 808.0 1.28 807.8  0.56 807.9 1.69 807.9 1.69
tandem_dual 701.3  0.66 650.1 2.11 626.2  4.90 611.0 17.34
tandem_vtx 329.1 0.15 315.7  0.11 309.8  0.44 305.5 2.29
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implementation based on the Figure 3 code; Simple (1000) denotes combining
this with Hager’s proposed limit of 1000 on the length of each cylic permutation;
New denotes our final implementation that uses the Figure 4 code. In each case,
the Hager down exchange followed by the up exchange is applied 5 times to the
ordering obtained from MC60. For comparison, timings are also given for MC60.

Table 4.4: CPU times for MC60 and for 5 applications of the Hager down/up
exchanges. Simple is based on the Figure 3 code; Simple (1000) use the Figure
3 code with a limit of 1000 on the length of each cylic permutation; New uses
the Figure 4 code.

Identifier MC60 Simple Simple(1000) New
barth 0.05 0.78 0.71 0.09
barth4 0.03 0.57 0.55 0.07
barthb 0.10 4.32 1.82 0.22
bcsstk30 0.96 2.11 3.33 0.09
commanche_dual 0.03 1.52 0.81 0.09
copterl 0.13 3.24 1.53 0.31
copter2 0.60 40.31 7.86 1.88
finance256 0.26 19.26 3.27 0.38
financeb512 0.55 78.64 6.73 0.81
fordl 0.09 7.38 2.13 0.36
ford2 0.71  256.07 15.04 5.14
nasasrb 1.29 10.33 7.46 2.80
onera_dual 0.65 237.05 15.98 6.62
pds10 0.13 6.12 2.12 0.35
shuttle_eddy 0.06 1.23 1.03 0.11
skirt 1.28 4.97 3.71 1.69
tandem_dual 0.66  247.55 14.78 4.90
tandem_vtx 0.15 3.68 2.16 0.44

We observe that, for the larger problems, Simple (1000) is much faster
than Simple. The savings for problems ford2, nasasrb and tandem_dual are
particularly impressive. However, limiting the length of the cylic permutation
does not necessarily result in a reduction in the CPU time when the Hager
down/up exchanges are applied more than once; this is illustrated by problem
bcsstk30. Furthermore, we found that it may result in a slight loss of quality.
For example, for problem ford2, Simple reduces the MC60 profile by 18 per
cent whereas the reduction with Simple (1000) is 16 per cent. Simple and New
produce the same profiles but the performance of New is a dramatic improvement
over that of Simple. We did experiment with limiting the length of the cylic
permutation within New but decided against incorporating such a limit because
of the possibility of larger profiles and, with the efficiency of New, the CPU time
savings were small.

Table 4.5 presents results for three problems in greater detail. For each
application of an exchange algorithm we record the CPU time taken together
with the total reduction in the normalised profile achieved so far. The problems
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Table 4.5: The reductions in the normalised MC60 profiles and the CPU times
taken for the Hager down and up exchange algorithms.

Tteration commanche_dual ford2 pds10
Total Total Total
Reduction Time Reduction Time Reduction Time
1 down 2.593 0.013 37.272  1.357 22.064 0.060
up 2.682 0.011 58.606 1.444 22.326  0.041
2 down 2.820 0.006 63.464 0.472 23.761 0.025
up 2.846 0.010 65.226  0.327 23.842  0.040
3 down 2.962 0.006 67.794 0.302 23.906 0.024
up 2.978 0.011 69.377 0.316 23.908 0.040
4 down 3.046  0.005 70.981 0.285 23.910 0.023
up 3.050 0.011 71.866 0.269 23.910 0.040
5 down 3.060 0.006 72.900 0.231 23.910 0.023
up 3.065 0.011 73.679 0.262 23.910 0.040
6 down 3.072  0.005 74.513 0.229 23.910 0.023
up 3.074 0.011 75.136  0.227 23.911  0.040
7 down 3.131  0.006 75.739 0.251 23.911 0.023
up 3.141 0.011 76.182 0.233 23.911 0.037
8 down 3.147  0.005 76.669 0.198
up 3.147  0.011 76.958 0.231
9 down 3.155 0.005 77.366 0.206
up 3.156  0.011 77.629 0.225
10 down 3.160 0.006 77.785 0.193
up 3.160 0.011 78.047 0.238
11 down 3.160 0.005 78.219 0.186
up 3.160 0.011 78.295 0.213
12 down 78.330 0.183
up 78.496 0.211
13 down 78.591 0.183
up 78.609 0.208
14 down 78.640 0.183
up 78.672 0.212
15 down 78.724 0.188
up 78.737 0.211
20 down 78.869 0.180
up 78.883 0.220
25 down 78.884 0.178
up 78.885 0.207
30 down 78.912  0.180

up 78.912  0.207
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were chosen to illustrate the different behaviours we observed. In each case,
the first application of the down exchange gave the largest profile reduction.
For pds10, applying the up exchange gave a further improvement of less than
2 per cent of the first reduction and stagnation was quickly reached. For
commanche_dual, the first up exchange gave a 3 per cent reduction and most
of the reduction resulting from repeated applications of the Hager algorithms
came from the down exchanges. The first up exchange for ford2 gave a
reduction of about 37 per cent. Thereafter the improvements rapidly declined
to less than 1 per cent but a total of 30 iterations were required until there
was no improvement at all. Regarding CPU times, after the first down/up
exchange, the CPU times for each exchange quickly become constant, with
each up exchange generally taking less than twice as long as the corresponding
down exchange.

5 Concluding remarks

We have examined in detail how to efficiently implement the exchange
algorithms of Hager. In particular, we have described how to implement the
up exchanges so that their cost is no longer prohibitive. Our implementations
have turned what are interesting profile reduction algorithms into practical
algorithms that can be used to refine existing orderings. Based on our findings,
we plan to include our codes in HSL as routine MC67. MC67 will allow the user
to apply the Hager down/up exchanges to any given ordering; in particular, the
user interface will be designed so that it will be straightforward for the user to
run the exchange algorithms to refine the ordering produced by the HSL code
MC60. The limit on the number of iterations will be a parameter under the
user’s control.
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