
RAL�TR���������

Implementing Hager�s exchange methods for matrix

pro�le reduction��

by

J� K� Reid and J� A� Scott

Abstract

Hager recently introduced down and up exchange methods for reducing the

pro�le of a sparse matrix with a symmetric sparsity pattern� The methods
are particularly useful for re�ning orderings that have been obtained using a
standard pro�le reduction algorithm� such as the Sloan method� The running
times for the exchange algorithms reported by Hager suggested their cost could

be prohibitive for practical applications� We examine how to implement the
exchange algorithms e�ciently� For a range real test problems� it is shown that
the cost of running our new implementation does not add a prohibitive overhead
to the cost of the original reordering�

Keywords� matrix pro�le� sparse matrices� exchange method�

� Current reports available from www�numerical�rl�ac�uk�reports�reports�html

Computational Science and Engineering Department�
Atlas Centre� Rutherford Appleton Laboratory�
Oxon OX�� �QX� England�

November �� �����

CONTENTS i

Contents

� Introduction �

� Implementation of the down exchange �

� Implementation of the up exchange �

� Numerical experiments �

� Concluding remarks ��

� Acknowledgements ��

� INTRODUCTION �

� Introduction

If Gaussian elimination is applied to a symmetric positive�de�nite matrix A of
order n� all zeros between the �rst entry of a row and the diagonal usually �ll

in �this happens if rows �� 	� � � � � n all have at least one entry to the left of
the diagonal
� Therefore� the total number of entries in each triangular factor
is the sum of the lengths of the rows of the original matrix� where each length
is counted from the �rst entry to the diagonal� This sum is also known as the

pro�le�
A variety of methods have been proposed for choosing a permutation of

the matrix that reduces the pro�le� Following the publication of the paper by
Cuthill and McKee �����
� graph theory and level sets� in particular� became

a standard approach for both bandwidth and pro�le reduction� Methods
proposed in the late ��
�s and early ����s include the Reverse Cuthill�McKee
�George and Liu� ����
� the Gibbs�King �Gibbs� ��
�
 and the Gibbs�Poole�

Stockmeyer �Gibbs� ��
�� Lewis� ����
 algorithms� The Sloan algorithm
�Sloan� ����� ����
 o�ered a considerable improvement over these methods
by introducing a second step in which the ordering obtained using the
pseudo�diameter from a variant of the Gibbs�Poole�Stockmeyer algorithm was

locally re�ned� The Sloan method has been widely used and a number of
enhancements to the original algorithm have been proposed �see� for example�
Du�� Reid and Scott� ����� Kumfert and Pothen� ���
� and Reid and
Scott� ����
� A high quality implementation of an enhanced version of the

Sloan algorithm is available within the mathematical software library HSL
�http���www�cse�clrc�ac�uk�Activity�HSL
 as routine MC���

A very di�erent approach was described by Barnard� Pothen and Simon

�����
� Their spectral method was based on computing the Fiedler vector

of the Laplacian matrix associated with the matrix A� A similar idea was
suggested independently by Paulino� Menezes� Gattass and Mukherjee �����a�
����b
� Kumfert and Pothen ����

 proposed combining the second step of the

Sloan algorithm with the spectral ordering� For large problems� the resulting
hybrid algorithm has been shown to give signi�cantly better orderings than
either the spectral method or the Sloan method alone� The main disadvantage

is that the hybrid algorithm requires the computation of the Fiedler vector of

a large matrix� and this can add considerably to the reordering cost �Hu and
Scott� ����� report that the CPU time can be up to �ve times that for the Sloan
algorithm
�

Motivated by the success of multilevel algorithms for graph partitioning�
Hu and Scott �����
 recently developed a multilevel algorithm for wavefront
and pro�le reduction� A series of graphs is generated� each coarser than the
preceding one� The enhanced Sloan algorithm is employed on the coarsest

graph� The coarse graph ordering is then recursively prolonged to the next �ner
graph� with local re�nement performed at each level� The �nal ordering on the
�nest graph gives an ordering for A� Extensive numerical experimentation has
shown that the multilevel approach gives orderings of similar quality to that of

the hybrid algorithm� whilst being signi�cantly faster�
Hager �����
 suggested two methods for improving any given permutation

� IMPLEMENTATION OF THE DOWN EXCHANGE �

for pro�le reduction� His down exchange algorithm involves a cyclic
permutation� that is� the successive exchange of rows �k� k� �
� �k � �� k � �
�
� � � � �l��� l
 of the permuted matrix and interchanging corresponding columns�
For a given k� Hager �nds the value of l that most reduces the pro�le� He

performs a pass over the matrix with k taking the values n � �� n � �� � � � �
�� he calculates l for each k and� if this gives a pro�le reduction� applies the
corresponding permutation�

Hager�s up exchange is similar� with the direction reversed� For a given k�
he exchanges rows and columns �k� k � �
� �k � �� k � �
� � � � � �l � �� l
� �nding
the value of l that most reduces the pro�le� He performs a pass over the matrix
with k taking the values �� 	� � � � � n�

Hager proposes using the down exchange and up exchange schemes in an
iterative fashion� the down exchange algorithm is �rst applied� followed by the
up exchange algorithm� followed by the down exchange algorithm� and so on�

In many applications� it is important that reordering the matrix to reduce

the pro�le is done as quickly and e�ciently as possible� If a large number
of matrices having the same sparsity pattern are to be factored or if storage
restrictions require the smallest possible pro�le� it may be worthwhile to spend

a relatively large amount of time computing a permutation that minimizes
the pro�le� However� if the matrix needs to be factored only once� the cost
of reducing the pro�le must be compared with that required for the matrix
factorization� in such circumstances� a slightly larger pro�le may be acceptable if

it can be computed cheaply� Hager presents timings for his exchange algorithms
that show they are expensive to run compared with algorithms such as the Sloan
algorithm that are used to produce the initial reordering� Hager also reports

that� in general� he found the down exchange algorithm to be signi�cantly faster
than the up exchange algorithm �typically by a factor of between � and ��
� We
have considered carefully how the exchange algorithms should be implemented�
In Sections � and 	� we explain how to implement the down and up exchange

methods e�ciently� In particular� careful implementation of the up exchange
algorithm results in it running much faster than Hager reported� Results for a
set of test matrices arising from practical applications are presented in Section ��
The pro�le reductions achieved using the Hager exchanges are given together

with the CPU times required to achieve these reductions� Concluding remarks
are made in Section ��

� Implementation of the down exchange

Any reduction in the pro�le leads to a corresponding increase in the total
number of zeros ahead of the �rst entries of the rows� Therefore� we can

minimize the pro�le by maximizing this total� By symmetry� this is also the
total number of zeros ahead of the �rst entries of the columns� This total is
una�ected by column permutations� so we can delay applying them and work

solely with row permutations in the body of the code� We need a representation
of the pattern of the whole symmetric matrix� including the diagonal�

We have chosen to hold the structure of the original matrix unchanged while

� IMPLEMENTATION OF THE DOWN EXCHANGE 	

the permutations are found� We hold the current permutation and its inverse
in two integer arrays perm and inv perm of length n and update these as each
cyclic permutation �k� l
 is found� This involves far less work than updating the
matrix structure�

In describing the algorithm �and in writing the code
 it is very important
to distinguish between original row indices and permuted row indices� Unless
otherwise stated� array subscripts and stored row indices refer to original indices

so that they do not need to be altered with each cyclic permutation �k� l
� In
this description� ��rst�� �second�� �in front�� �beyond�� � � � refers to the position in
the column when the rows have been permuted� We hope that the context will
make it clear whether the row index is original or permuted�

We de�ne a gain to be a decrease to the pro�le and a loss to be an increase to
the pro�le� The net gain is the di�erence between the gain and the loss resulting
from a permutation� Thus� at each stage we are seeking the maximum net gain�

When permuted rows k and k � � are exchanged� there is a gain of one for

each column with its �rst entry in row k and its second entry after row k � ��
and there is a loss of one for each column with its �rst entry in row k � �� As
the further interchanges �k��� k��
� � � � are performed� there is a further gain

in each column that gained from the �rst interchange until the second entry of
the column is reached� There is also a loss of one as each other �rst entry is
encountered� Hager sweeps forward from row k accumulating the net gain at
each stage until there are no columns with a potential for gain� The row for

which the maximum gain is found provides the index l�
We illustrate this by the example shown in Figure �a� Exchanging rows �

and � gives a gain in columns �� 	� � and � and a loss in column �� Following

this with an exchange of rows � and 	 gives a further gain in columns � and �
and a loss in column �� Exchanging rows 	 and � gives a further gain in column
� with no loss� No further gains are possible� The net gains are 	� �� � so we
choose l to be �� The matrix pattern after the row exchanges is given in Figure

�b and Figure �c shows the pattern after the row and column permutations�

� � 	 � � �

� � � � �

� �

	 � � �

� � � �

� � � � �

� � � �

Figure �a� Original matrix�

� IMPLEMENTATION OF THE DOWN EXCHANGE �

� � 	 � � �
� �

� � � �

	 � � �

� � � � �

� � � � �

� � � �

Figure �b� Row permuted matrix

� � 	 � � �
� �

� � � �

	 � � �

� � � � �

� � � � �

� � � �

Figure �c� Row and column permuted matrix

An informal code to �nd l for a given k is as follows�

net�gain � �

max�gain � �

gain � �number of columns with first entry in row k�

do m � k��� n

gain � gain 	 �number of columns with first entry in row k

and second entry in row m�

if �gain �� �� exit

loss � �number of columns with first entry in row m�

net�gain � net�gain � gain 	 loss

if �net�gain
 max�gain� then

max�gain � net�gain

l � m

end if

end do

Note that the exit from the loop usually occurs quite early since the second
entry of each column is usually near the �rst �it is often adjacent
�

For e�cient execution� it is clearly important to be able to �nd gain and
loss quickly� We do this by using three integer arrays of length n�

� num first�i
 holds the number of columns with their �rst entry in row i�
i � �� �� � � � � n�

� num second�i
 holds the number of columns with their �rst entry in row
k and second entry in permuted row i� i � �� �� � � � � n�

� IMPLEMENTATION OF THE UP EXCHANGE �

� second�j
 holds the permuted index of the second entry of column j if
the �rst entry is in row k and zero otherwise� j � �� �� � � � � n�

We can calculate num second e�ciently for each row k by starting with all
components having the value zero and restoring this afterwards� We search
each column j with a �rst entry in row k to �nd its second entry second�j
 and

add one to num second�second�j

� Once l has been found� for each column j
with a �rst entry in row k� we set num second�second�j

 back to zero�

For each cyclic permutation �k� l
� we also need to revise the array
num first� There is a change of �rst entry in a column only if its �rst entry

is in row k and its second entry is not beyond row l� Therefore� for each
column j with �rst entry in row k and second�j
 � l� we subtract one from
num first�inv perm�k

 and add one to num first�inv perm�second�j

�

It is clear that we need to be able to �nd the columns with their �rst entry
in row k quickly� We therefore link all the �rst entries that lie in a given row�
We do this by using two further integer arrays of length n�

� start�i
 holds the index of a column �if any
 that has its �rst entry in
row i� i � �� �� � � � � n�

� next�j
 holds the index of another column �if any
 that has its �rst entry
in the same row as column j� j � �� �� � � � � n�

It is easy to update this for a cyclic permutation �k� l
� We run through
the column indices j in the linked list for row k� if second�j
 � l� we
remove j from the list for row k and insert it at the front of the list for row

inv perm�second�j

� Inserting it at the front avoids the need to search the
list�

� Implementation of the up exchange

For the up exchange algorithm� we again maximize the total number of zeros
ahead of the �rst entries of the columns� As before� we need a representation of
the pattern of the whole symmetric matrix� including the diagonal� and work

with row permutations only�
We again hold the structure of the original matrix unchanged while the

permutations are found� We again hold the current permutation and its inverse

in two integer arrays perm and inv perm of length n and update these as each
cyclic permutation �k� l
 is found�

When rows k and k�� are exchanged� there is a gain of one for each column
with its �rst entry in row k�� and a zero in row k� and there is a loss of one for

each column with its �rst entry in row k� For e�cient coding of the algorithm�
we found it necessary to regard this as a gain of one for each column with its
�rst entry in row k � � and a loss of one for each column with an entry in row
k and its �rst entry in row k or k� � �so that a column with an entry in row k

and it �rst entry in row k � � contributes a net gain of zero
�
In each further interchange� row k �temporarily in row m��
 moves to row

m and row m moves to row m� �� m � k� �� k� 	� � � � � �� There is a further

� IMPLEMENTATION OF THE UP EXCHANGE �

gain of one for each column with its �rst entry in row m and a further loss of
one in each column with an entry in row k and its �rst entry in rows k� � � �m�

We illustrate this by the example shown in Figure �a with k � ��
Exchanging row � with row � gives a gain in columns � and � and a loss in

column �� Following this with an exchange of row � �now in row �
 with row
	 gives a gain in column 	 and a loss in column �� Next� the exchange of row
� �now in row 	
 with row � gives a gain in columns � and � and a loss in

columns �� � and �� Finally� the exchange of row � �now in row �
 with row �
gives a gain in column � and losses in columns �� � and �� The net gains are ��
�� �� ��� so we choose l � k � � � �� The matrix after the row permutation is
given in Figure �b and Figure �c shows the matrix after the row and column

permutations�

� � 	 � � �
� �

� � �

	 �

� � � �

� � � �

� � �

Figure �a� Original matrix

� � 	 � � �
� �

� � �

	 �

� � � �

� � � �

� � �

Figure �b� Row permuted matrix

� � 	 � � �

� �

� � �

	 �

� � � �

� � � �

� � �

Figure �c� Row and column permuted matrix

� IMPLEMENTATION OF THE UP EXCHANGE

An informal code to �nd l for a given k is shown in Figure 	�

net�gain � �

max�gain � �

loss � �number of columns with first entry in row k�

do m � k	�� �� 	�

new�loss � �number of columns with first entry in row m

and an entry in row k�

loss � loss � new�loss

gain � �number of columns with first entry in row m�

net�gain � net�gain � gain 	 loss

if �net�gain
 max�gain� then

max�gain � net�gain

l � m

end if

end do

Figure 	�

To avoid unnecessary cycles of this loop� Hager holds the number of zeros in

row k that have not already been used to reduce the pro�le� say in the variable
nzk� The further improvement to the net gain is bounded by nzk	loss so the
loop can be left if the inequality

net�gain � nzk 	 loss �� max�gain

holds� Unfortunately� nzk will start with a value near n� so that a large number

of loop executions is likely to be needed�
Hager remarks that a row without any �rst entries can be skipped since it

yields no gains and may yield losses� he uses a linked list to limit loop executions

to rows with �rst entries� Since it is likely that there are many such rows� he

also limits the length of each cyclic permutation to �����
The number of tests may be further reduced by taking advantage of the

special role played by rows that have a �rst entry in a column that also has

an entry in row k� We will call these step rows� Their signi�cance lies in the

fact that loss changes only in these rows� We store the permuted indices of

these rows in the array steps and sort them in decreasing order� To �nd these
indices quickly we need the integer array of length n�

� first�j
 holds the index of the �rst entry of column j� j � �� �� � � � � n�

To ensure that we include an interval with loss at its greatest �which is the

number of entries in row k
� we include � as a step row�
For e�cient execution� it is important to be able to �nd gain quickly� We

do this by using an array of size n�

� num first�i
 holds number of columns with �rst entry in row i� i � �� ��

� � � � n�

� IMPLEMENTATION OF THE UP EXCHANGE �

To avoid having to cycle though the loop of Figure 	� we also hold the
accumulation of gain over rows that are adjacent in the permuted order� We
do this by using another array of size n�

� gains�i
 holds sum�num first�inv perm�i � n���� i � �� �� � � � � n�

For each cyclic permutation �k� l
� we need to revise these arrays� There is

a change of �rst entry in a column only if it has an entry in row k and its �rst
entry is not in front of row l� Therefore� for each column j with an entry in row
k and perm�first�j

 � l� we add one to num first�inv perm�k

� subtract
one from num first�first�j

� and reset first�j
� Only components k� k� ��

� � � � l�� of gains change and these can be recalculated in the loop that resets
the changed components of the permutation and inverse permutation vectors�

The loss value is �xed for each interval between step rows� that is� for m

in the range

p � steps�i
 � � � m � q � steps�i� �
 � �

and the net gain is

net gain�m
 � net gain�p
 � gains�m
� gains�p
� loss � �p�m
�

The inequality

net gain�m
 � net gain�p
 � gains�q
� gains�p
� loss � �p�m
�

may be deduced� If m is to be advantageous� the inequality

net gain�m
 � max gain

must hold� where max gain is the best net gain found up to and including row
p� A fortiori� the inequality

net gain�p
 � gains�q
� gains�p
� loss � �p�m
 � max gain

must hold� that is� the inequality

m � p� �net gain�p
 � gains�q
� gains�p
� max gain
�loss

must hold� This inequality may tell us immediately that there is no
advantageous row in the interval� Otherwise� it gives us a new bound

q� � int�p� �net gain�p
 � gains�q
� gains�p
� max gain
�loss

beyond which we do not need to test� If q� � q� we apply the same test with q�

replacing q� otherwise� we test the remaining interval directly�

Our code has an outer loop which we call outer within which we test a
single interval thus�

� NUMERICAL EXPERIMENTS �

p � steps�i	�� � �

q � steps�i� � �

� Search between p	� and q

do

next � p 	 �net�gain�gains�q�	gains�p�	max�gain�
loss

if �next
� p� exit outer

if �next �� q� exit

q � next

end do

� Simple search between p	� and q

do p � p	��q�	�

net�gain � net�gain � num�first�inv�perm�p�� 	 loss

if �net�gain
 max�gain� then

l � p

max�gain � net�gain

end if

if �net�gain�gains�q�	gains�p�	loss �� max�gain� exit

end do

Figure ��

We treat the rows in which loss is zero specially �they are always

advantageous
 and apply this algorithm to each interval in turn� The e�ect
of using this code was dramatic� this is illustrated in Section ��

� Numerical experiments

In this Section we present numerical results� Our test problems are listed in
Table ���� This set is taken from Kumfert and Pothen ����

 and represents
a range of application areas� structural analysis� �uid dynamics� and linear
programs from stochastic optimization and multicommodity �ows� All our

experiments were performed on a Compaq DS��� using the Compaq Fortran
�� compiler V���A���
� with the �O option� The statistic used in our tables of
results is the normalised pro�le de�ned by

P

n

where n is the order of the matrix and P the pro�le� All CPU times are given
in seconds�

In Table ���� we present the normalised pro�les for the original matrix�

for the enhanced Sloan algorithm as implemented in the HSL code MC���
for the hybrid algorithm �Kumfert and Pothen� ���

 and for the multilevel
algorithm �Hu and Scott� ����
� For each ordering we also give the normalised
pro�les after applying the down exchange algorithm followed by the up exchange

algorithm �ve times� We see that the largest reductions in the pro�le result
from the initial reordering� using the Hager exchange algorithms results in
further more modest reductions� The size of these reductions is very problem

� NUMERICAL EXPERIMENTS ��

Table ���� The test suite

Identi�er Order Entries Comment

barth ���� ��
�� �D CFD problem
barth� ���� �
�
	 �D CFD problem
barth� ����� ���
� �D CFD problem

bcsstk�� ����� ���
��� 	D sti�ness matrix
commanche dual
��� ����� 	D CFD problem
copter� �
��� ����� 	D structural problem
copter� ���
� 	���	� 	D structural problem

finance��� 	
	
� �	���� Linear program problem
finance���
�
�� ������ Linear program problem
ford� ��
�� ����� 	D structural problem

ford� ������ ������ 	D structural problem
nasasrb ���
� �	����
 	D structural problem

onera dual ����
 �����
 	D CFD problem
pds�� ����� ����� Linear program problem

shuttle eddy ����� ����� 	D structural problem
skirt ��	�� ������� 	D structural problem
tandem dual ����� ��	��� 	D CFD problem
tandem vtx ����� ��
��� 	D CFD problem

dependent� For a number of problems� including bcsstk��� shuttle eddy� and
skirt� the improvements are less than � per cent� However� the reductions can

be more signi�cant� For example� for ford� and ford�� the MC�� pro�les are
improved by �� and �� per cent� respectively� We remark that it is important
to have a good initial reordering before the application of Hager�s exchange

algorithms� For our test cases� the smallest pro�les were obtained after applying
Hager�s algorithm to the best initial reordering�

In Table ��	� we present the normalised pro�les and CPU times for applying
the exchange algorithms to the MC�� orderings� Results are given for a single

application of Hager down�up� for repeating the down�up exchanges � times�
and for repeating the down�up exchanges without limit until there is no further
reduction in the pro�le� The greatest reductions result from the �rst application
of the exchange algorithm� although for a number of problems� including ford�

and tandem dual� useful further reductions are achieved by repeatedly applying
the exchange algorithm� On the basis of these results� by default we limit the
number of down�up exchanges to �� For a number of problems� the cost of a

single application of the exchange algorithms is signi�cantly greater than the
initial MC�� ordering cost but� because of our e�cient implementation of the
Hager up exchanges� we feel that most users would be unlikely to �nd this cost
prohibitive�

Our �nal implementation of the up exchange algorithm has had a huge e�ect
on the CPU time� and we illustrate this in Table ���� We denote by Simple the

� NUMERICAL EXPERIMENTS ��

Table ���� Normalised pro�les for the original matrix� the MC��� hybrid and
multilevel orderings� and for these orderings followed by � applications of the
Hager down�up exchanges �denoted by �Hager
�

Identi�er Original MC�� Hybrid Multi�
�Hager �Hager �Hager

barth ������ ���	 ����
���
��	 ����
���
barth� �
���

�

���
���

��
���
���
barth� ����� ���	 	
�� 	��
 ���� ���� 	���
bcsstk��

��

��

�
�� ����
 ����� ����� �����
commanche dual ��	��	
��� ����
��	
��� �
�� ����
copter� ������ �
��� ����� �

�� ����
 �
��� ��
�

copter� ��

��	 �	
�� �
���
����
���� ��	�� �

�

finance��� �

��� ����
 ����
 ����� ��	�� ����
 ��
�

finance��� ��	
��� �
	�� �
��� �
��	 �
��� ��
�� �����
ford� �		��
 ����� ���� ��
�� 		�	 ����� 	
��
ford� ���
��
���� ��
�� �
	�� ����� ��
�	 �����
nasasrb ����� �
��� �

�� �
��� �
��� ����� �����
onera dual 	�	��	 ���
�� �����

��
���� �
��� ��	�	
pds�� ������

���
�
��
����
���
 �����

��	
shuttle eddy ���	��
��

���
���
���
���
���
skirt ������ 	�	�� 	���� ��
�� ��
�� �
��� �
���
tandem dual
�	��� ����� �����

	�

����
����
����
tandem vtx
����� ����� ����	 �	��� ����	 ����
 ��	�

� NUMERICAL EXPERIMENTS ��

Table ��	� Normalised pro�les and CPU times for MC�� and for applying the
Hager exchange algorithm to the MC�� orderings� The numbers in parentheses

are the number of times the down�up exchange algorithms are applied� inf�
indicates no limit�

Identi�er MC�� �Hager �Hager �Hager
down�up ��� down�up �
� down�up �inf��

Pro�le Time Pro�le Time Pro�le Time Pro�le Time
barth ���	 ���
 �	�� ���� ���� ���� ���� ����
barth�

�
 ����
��� ����
��� ����
��	 ����
barth� ���	 ���� 	
�
 ���	 	
�� ���� 	��� ���

bcsstk��

��� ����
�
�� ��
�
�
�� ����
�
�� ����
commanche dual
����� ���� ���� ���� ���� ���� ���� ���	
copter� �
��� ���� ����� ���� ����� ���� ����� ����
copter� �	
�� ���� �
��� ���� �
��� ��		 �
��� ����
finance��� ����
 ���� ����
 ���� ����
 ���	 ����
 ���	
finance��� �
	�� ��

 �
��� ���� �
��� ��	� �
��� ��	�
ford� ����� ���� ��
�
 ���
 ���� ���� ���
 ��
�
ford�
���� ���� �
��� ���� ��
��
��
 ��	�� �
���
nasasrb �
��� ���� �

�� ��

 �

�� ��	� �

�� ��	�
onera dual ���
�� ���
 �

�� ���� ����� ���� ����� �	���
pds��

��� ����
���� ����
�
�
 ���

�
�� ��
	
shuttle eddy
��
 ����
��� ����
��� ����
��� ����
skirt 	�	�� ���	 	���	 ��
� 	���� ���� 	���� ����
tandem dual ����� ���� �
��� ���� �����
��� ����� ����

tandem vtx ����� ���
 ��
�� ���� ����	 ��

 ��
�
 ����

� NUMERICAL EXPERIMENTS �	

implementation based on the Figure 	 code� Simple������ denotes combining
this with Hager�s proposed limit of ���� on the length of each cylic permutation�
New denotes our �nal implementation that uses the Figure � code� In each case�
the Hager down exchange followed by the up exchange is applied � times to the

ordering obtained from MC��� For comparison� timings are also given for MC���

Table ���� CPU times for MC�� and for � applications of the Hager down�up
exchanges� Simple is based on the Figure 	 code� Simple������ use the Figure

	 code with a limit of ���� on the length of each cylic permutation� New uses
the Figure � code�

Identi�er MC�� Simple Simple������ New
barth ���
 ���	 ���� ����
barth� ���� ��
� ��

 ����
barth� ����
��� ��	� ����
bcsstk�� ���� ���� ���� ����
commanche dual ���� ��
� ��	� ����
copter� ���� ���
 ��
� ����
copter� ����
���� ��	� ��		
finance��� ���� ����� ���� ���	
finance��� ��

 �	��
 ���� ��	�
ford� ���� ���	 ���� ����
ford� ���� �
���� �
��

��

nasasrb ���� ����� ��
� ��	�
onera dual ���
 �����
 �
��	 ����
pds�� ���� ���� ���� ���

shuttle eddy ���� ���� ���� ����
skirt ���	
��� ���� ����
tandem dual ���� �
��

 �
��	
���
tandem vtx ���
 ���	 ���� ��

We observe that� for the larger problems� Simple������ is much faster

than Simple� The savings for problems ford�� nasasrb and tandem dual are
particularly impressive� However� limiting the length of the cylic permutation
does not necessarily result in a reduction in the CPU time when the Hager

down�up exchanges are applied more than once� this is illustrated by problem
bcsstk��� Furthermore� we found that it may result in a slight loss of quality�
For example� for problem ford�� Simple reduces the MC�� pro�le by �� per
cent whereas the reduction with Simple������ is �� per cent� Simple and New

produce the same pro�les but the performance of New is a dramatic improvement
over that of Simple� We did experiment with limiting the length of the cylic
permutation within New but decided against incorporating such a limit because
of the possibility of larger pro�les and� with the e�ciency of New� the CPU time

savings were small�
Table ��� presents results for three problems in greater detail� For each

application of an exchange algorithm we record the CPU time taken together

with the total reduction in the normalised pro�le achieved so far� The problems

� NUMERICAL EXPERIMENTS ��

Table ���� The reductions in the normalised MC�� pro�les and the CPU times
taken for the Hager down and up exchange algorithms�

Iteration commanche dual ford� pds��

Total Total Total
Reduction Time Reduction Time Reduction Time

� down ��
�� ����� ������ ���
� �����
 �����
up ���	� �����
	���� ��

 ������ ���
�

� down ��	�� ����� ���
�
 ��
�� ������ ����

up ��	
� ����� �
���� ����� ���	
� ���
�

� down ����� ����� �����
 ����� ������ ����

up ����	 ����� ������ ����� �����	 ���
�

 down ���
� ����
 ����	� ���	
 ������ �����
up ���
� ����� ���	�� ����� ������ ���
�

 down ����� ����� ������ ����� ������ �����
up ����
 ����� ������ ����� ������ ���
�

� down ����� ����
 �
�
�� ����� ������ �����
up ����
 ����� �
���� ����� ������ ���
�

� down ����� ����� �
���� ���
� ������ �����
up ���
� ����� ����	� ����� ������ �����

	 down ���
� ����
 ������ ����	
up ���
� ����� ����
	 �����

� down ���

 ����
 ������ �����
up ���
� ����� ������ ����

�� down ����� ����� ����	
 �����
up ����� ����� �	��
� ����	

�� down ����� ����
 �	���� ���	�
up ����� ����� �	���
 �����

�� down �	���� ���	�
up �	�
�� �����

�� down �	�
�� ���	�
up �	���� ����	

�
 down �	��
� ���	�
up �	���� �����

�
 down �	���
 ���		
up �	���� �����

�� down �	�	�� ���	�
up �	�		� �����

�
 down �	�		
 ����	
up �	�		
 �����

�� down �	���� ���	�
up �	���� �����

� CONCLUDING REMARKS ��

were chosen to illustrate the di�erent behaviours we observed� In each case�
the �rst application of the down exchange gave the largest pro�le reduction�
For pds��� applying the up exchange gave a further improvement of less than
� per cent of the �rst reduction and stagnation was quickly reached� For

commanche dual� the �rst up exchange gave a 	 per cent reduction and most
of the reduction resulting from repeated applications of the Hager algorithms
came from the down exchanges� The �rst up exchange for ford� gave a

reduction of about 	
 per cent� Thereafter the improvements rapidly declined
to less than � per cent but a total of 	� iterations were required until there
was no improvement at all� Regarding CPU times� after the �rst down�up
exchange� the CPU times for each exchange quickly become constant� with

each up exchange generally taking less than twice as long as the corresponding
down exchange�

� Concluding remarks

We have examined in detail how to e�ciently implement the exchange
algorithms of Hager� In particular� we have described how to implement the

up exchanges so that their cost is no longer prohibitive� Our implementations
have turned what are interesting pro�le reduction algorithms into practical
algorithms that can be used to re�ne existing orderings� Based on our �ndings�

we plan to include our codes in HSL as routine MC��� MC�� will allow the user
to apply the Hager down�up exchanges to any given ordering� in particular� the
user interface will be designed so that it will be straightforward for the user to
run the exchange algorithms to re�ne the ordering produced by the HSL code

MC��� The limit on the number of iterations will be a parameter under the
user�s control�

� Acknowledgements

The second author was funded by the EPSRC Grant GR�M
�����

References

S�T� Barnard� A� Pothen� and H� Simon� A spectral algorithm for envelope

reduction of sparse matrices� Numerical Linear Algebra with Applications�
�� 	�
����� �����

E� Cuthill and J� McKee� Reducing the bandwidth of sparse symmetricmatrices�
in �Proceedings of the ��th National Conference of the ACM�� Brandon

Systems Press� �����

I�S� Du�� J�K� Reid� and J�A� Scott� The use of pro�le reduction algorithms
with a frontal code� Inter� Journal on Numerical Methods in Engineering�
�	� ���������� �����

REFERENCES ��

A� George and J�W��H� Liu� Computer Solution of Large Sparse Positive

De�nite Systems� Prentice�Hall� New Jersey� U�S�A�� �����

N�E� Gibbs� A hybird pro�le reduction algorithm� ACM Trans� Mathematical

Software� �� 	
��	�
� ��
��

W�W� Hager� Minimizing the pro�le of a matrix� Department of Mathematics�

University of Florida �www�math�u��edu��hager�
� ����� To appear in
SIAM J� Scienti�c Computing�

Y�F� Hu and J�A� Scott� A multilevel algorithm for wavefront reduction� SIAM
J� Scienti�c Computing� to appear� �����

G� Kumfert and A� Pothen� Two improved algorithms for envelope and

wavefront reduction� BIT� �	� �������� ���
�

J�G� Lewis� Implementation of the Gibbs�Poole�Stockmeyer and Gibbs�King
algorithms� ACM Trans� Mathematical Software� 	� �������� �����

G�H� Paulino� I�F� Menezes� M� Gattass� and S� Mukherjee� Node and element
resequencing using the Laplacian of a �nite element graph� Part I general

concepts and algorithm and numerical results� Inter� Journal on Numerical

Methods in Engineering� �
� ��	������� ����a�

G�H� Paulino� I�F� Menezes� M� Gattass� and S� Mukherjee� Node and element
resequencing using the Laplacian of a �nite element graph� Part II

implementation and numerical results� Inter� Journal on Numerical

Methods in Engineering� �
� ��	������� ����b�

J�K� Reid and J�A� Scott� Ordering symmetric sparse matrices for small pro�le

and wavefront� Inter� Journal on Numerical Methods in Engineering�
��� �
	
��
��� �����

S�W� Sloan� An algorithm for pro�le and wavefront reduction of sparse matrices�
Inter� Journal on Numerical Methods in Engineering� ��� �	����	��� �����

S�W� Sloan� A FORTRAN program for pro�le and wavefront reduction� Inter�
Journal on Numerical Methods in Engineering� �	� �������
�� �����

	Abstract
	Contents
	 Introduction
	 Implementation of the down exchange
	 Implementation of the up exchange
	 Numerical experiments
	 Concluding remarks
	 Acknowledgements
	References

