
On the Implementation of a Simple Class of
Logic Queries for Databases

Domenico Saccd t
CRAI, Rende, Italy

Carlo Zaniolo
MCC, Austin, Texas

1. Introduction
We assume the reader familiar with the basic concepts
of refational databases (Ul] and with the logical query
language for databases; using PROLOG’s notation,
described in [U2]. A database logic query is expressed as
a triple <G ,LP ,D >, where G is a goal to be solved
using the rules of the logic program LP and the facts of
the relational database D. In thii paper, we study the
problem of efficient implementations of queries on recur-
sive rules without function symbols. We focus on an
important subclass, called canonical strongly linear
queries (CSL queries), and study the binding-passing
property, which entails the propagation of the initial
bindings (established by constants in the query goal)
during the top-down (as in backward chaining) execu-
tion phase.
The paper is organized as follows. In Section 2, we
define CSL queries and study the binding propagation
problem. In Section 3, we focus on l-bound CSL
queries, where the binding propagates to a single (but
not always the same)‘argument of the recursive predi-
cate. In Section 4, we study the problem of implement-
ing these queries. We use a unifying framework to pro-
vide a simple description of the following four methods:
the counting method (informally described in p+]), the
eager method (similar to that in [HN]), the magic set
method (presented in [B+]), and a new method here
introduced, called magic counting, which combines the
advantages of the first and the third. Extensions to and
proofs of these results are given in [SZ].

+ ~~~ work was done while thii author was visiting at MCC.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

0 1986 ACM-O-89791-179~2/86/0300-Oil16 $00.75

2. Bound CSL queries

A logic program will be said to be linear if it contains
at least one recursive rule and every rule has at most
one occurrence of a recursive predicate in the body. A
query <G ,LP ,D > is canonical strongly linear (CSL-
query) if LP is linear and contains exactly one recursive
rule (hence, exactly one recursive piedicate symbol, say
R), and the predicate symbol in G and in the head of
all rules in LP is R . For simplicity and without loss of
generality, we assume that all the arguments of our
predicates are variables.
In the following, & =< G ,LP ,D > denotes our CSL-
query, ri denotes the recursive rule in LP, and R
denotes the recursive predicate of ri . The binding-set of
the k-th argument of the head of ri, denoted by
BS,, (k) is defined as follows:

4 if x is in the k-th argument of the head of ri then
x EW, (k 1,

b) if xeBS,,(k) and there exists a database predicate
in the body of ri having x and y among its argu-
ments, then y EBSri (k).

LEMMA 1. 11 BS,,(~)IV~S,,(~)#0 then

BSr, (k)=BS,, (P 1. 0

We associate to & the following directed graph
Bg =<N ,A > (binding graph):

a) N={l, . . . , n}, where n is the arity of the
recursive predicate R ,

b) A ={(j,s) (xeBS,,(j), where x is the variable in
the s -th argument of R in the body of ri }.

We will say that our C&query & is bound (alias, it
has the binding-passing property), when the subgraph of
Bg induced by the set of nodes P is cyclic, where P is
defined as follows:
i) for each s , 15s In , if the s -th argument of the

goal G is a constant, then s is in P,

ii) if j EQ and (j ,s) isinBQ,thens isine.

The binding-passing property guarantees that the initial
bindings of the query can be propagated down, via
database relations, to any depth of recursion.

16

Example 1.. Consider the following LP (where E and
the P’s are database predicates):

rl: R(x~,x~,x~,x~,xs,xs):- P~(xI,YI), Pd~d2h

Pdx3,~1), P,(x47~4),

P,(x,,~&

R (~I,~~,x&&s,~s),

Ps(Xs,Y*), P7(~51Yd

r2: R (x1,x2,x3,x4,5grx6):- E(xl,x2,~3,xqrx5,~6).

The binding graph of BGg is shown in Figure 1. The
CSL query Q =<R (a, 52, “3, x4, z5, x6), LP, D > is
bound. On the other hand, Q=<R(xl, x2, x3, x4, b,
xs) , LP ,D > is not bound.0

Figure 1. The Binding Graph for Example 1

Given a node i in Q’s binding graph Bg , we denote by
S(i) (resp., A (i)) the set of all nodes j in Bs such
that (i,j) (resp., (j,i)) is in Bg). Two nodes i, j are
S-equivalent (resp., A -equivalent) if S (i)=S (j) (resp.,
A (i)=A (j)). Being N the nodes of Bg , let N,, (resp.,
3,) denote those i EN s.t. S(i) is empty (resp., A (i)
is empty). Then, the partition of N-No induced by the
S-equivalence will be denoted by {N,, . . . , Nk } and
called the S-partition of Q (since Q is bound, k >O).
Symmetrically, the partition of N-e0 induced by the
A -equivalence will be denoted {N,, . . .) I?i } and
called the A-partition of Q . Let, now S (N,) denote the
mapping from (N,, . . . , Nk } to the power set of N,
such that S(Nq) = S(j) and j is any node in Nr.
Simmetrically, A (fig) = A (i) where i is any node in
fiq. It is then simple to prove that S is a bijection from
{N,, . . .,Nk}to{fil ,..., fil},withA itsinverse.
We will call this the SA-bijection of Q .
For Example 1, the S-partition can be listed as follows:
N,=(l), N2={2}, Ns={3}, N4={P}, Ns={5}. The
A-partition can be listed as follows: N,=(2), N+(3),
&={l}, fi,={4}, NS={6}. Then, the SA-bijection
maps Nq into fiq for 15 q 55.

We note that for each Np in {N,, . . . , Nk },
BS,,(j)=B$(s), where ri is the recursive rule in LP

and j ,s are any two nodes in Nq. Hence, we can abuse
the notation and set BS,,(N,)=BS,,(j), where i is any
node in N* and 15 q 5 k . In addition, given a conjunc-
tion L (possibly empty) of predicates, we denote by
V [L] the set of all variables appearing in all predicates
of L . If L is empty then V [L]=0.

THEOREM 1. Let Q=<R(ml, . . . , m,),LP,D >
be our CSL query.. Then the predicates in the body of ri
can be ordered in linear time to yield the joflowing
form:

ri : R (X Ir . . . , X,) :- L N’-rS’N”, . . .) L Nk ~s’NI’,

R(?,,...,:,),W

where x1, . . . , x,,,?~, . . . , f are variables (not
necessarily distinct) and

4 LNf’s(Nf) (l<q Sk), is the conjunction (possibly
empty) of all database predicates P jor which
V [P]EBS,(N,) and W is a conjunction (possibly
empty) of all other database predicates in ri .

c) For each q, i<q<k, V[L~*s(Nf)]nW=B and
for every P, l<p <k and
v IL N, -44 +-, v [I; 4 -‘RN, T&

P#Q,

d) FOT each non-empty L Nq-+s(Nf) (1Lq Sk),

V(LN94s(N*)]~V[R (z~,..,z,,)]={x~ 1 jEN,}
and
V [L Nf+s(Nf)], V [R (2 w,%)1={2i I j ES (No 1).

e) For each empty LNf”(4) (llq<_k), Xj=Za,
where j and s are any two elements of Np and
S (Nq), respectively. fl

For instance, we can label the predicates in rl of Exam-
ple 1 (where the predicates happen to be already in the
right order) as follows:

r 1: R (~~,~2,x3,x4,x5,x6):-

NI-+N,
Pl (Xl,Y 11, eN2 (Y l,i2)1

Na-+-tN,
p3

N,+N,
(x312 11, p4 (x 492 419

NPN,
p5 (x&6), R (~~&~2r~4,~5~~6),

P6(%Y2)9 P7@51Yd

Thus, the predicates in the body of rl have been
grouped in four non-empty L-conjunctions. The first
one (labelled N,+N2), consists of two database predi-
cates (PI and P2). Each of the other three L-
conjunctions contains one database predicate, namely,
J’s, P4 and Pg. Notice that the L-conjunction labelled
Ng+Ns is empty. Finally, Pe and P, end up in the
W-&junction.

17

Let us now consider the problem of implementing our
rules and queries using relational algebra. Queries on
non-recursive rules with only database predicates in the
body can be implemented by an expression of equijok
(with Cartesian products considered a special subcase of
these), unions, projects and select operators. For exam-
ple, if we have the rule

r : V(s J) :- P (g ,Y), Q (Y J), P (w ,z),

where P and Q are database predicates, then the query
< V(zrrzZ), {T }, {P ,Q}> can be implemented-by the
following expression V =xzz (P wQ wP), where P
and Q now stand for the database relations denoted by
the corresponding database predicates in r , and w
corresponds to the natural join of these relations once
we regard variables in the predicates as column names
of the corresponding relations. A minor complication
with this notation of convenience occurs when the same
variable appears several times in a predicate. Then, the
join must be preceded by a select operator which selects
only those tuples having identical values in all identi-
cally named columns. This operation, which basically
corresponds to unification (since there are no constants
and function symbols), will be denoted by p. Thus the
answer to the previous query when

7: V(z,z) := P(s,Y), Q(YJ), P(z,z)

is V=rSz (PwQ wp(P)), where p here stands for
c’rz2. Since the p operator yields relations where
equally named columns are identical, any of these can
then be used to perform the joins or projects.

The answer to a CSL query can be computed by a
hxpoint iteration over a relational algebra expression,
and due to the absence of function symbols and the
finiteness of the database, the process terminates.
Theorem 1, tell us that said relational algebra expres-
sion has the following form:
R = ?TX(L~l+S(N1)W. . . wLNt’s(Nt)w&,W) ” ,I$
where E denotes the contribution of the non-recursive
rules to the fixpoint computation, and L N, -4% 1 and

W, which we call L -joins, are relations constructed by
taking the natural join of the database relations in the
corresponding L-conjunctions if these are not empty,
and identity relations (over finite database domains)
otherwise. For instance in Example 1, L N1-rS(N’) =
plwp2 and LNr+N~ = p,NtN1, LN”N4 = ~7~~4

and ~~~~~~ = pp*Ns while LNpN” is the identity
relation defined, for example, over the second column of
P 2. Moreover, W =P gap 7’
Let z and 2 be two lists of column names and let
TIP..., T, . be relations. Let Tj’X<-z,2, T, denote
A<~,,~,,(T~wT,.), where Tj (resp., T,) is the list of
column names of Tj (resp., T,) which are in
<ZU.%>. We denote by DC,~,~<T~, . . . , T, > the
following relational algebra expression:

where the D< operations are performed in the order
they are written (thus, first compute T lw<z 2, T2

giving ?s, then compute !f~,~,t>Ts g&g ?,,
and so on).
We can now state a useful corollary of Theorem 1.
COROLLARY I.

~x(~N4Nt)W. . . wL,Nt4”t)~ww) =

,Ix,ti<~N-lW), R, &+WJ, w>

where CX -4N.) is the list of relations corresponding
to all conjunctions L Nq-ts(Nq) in the body 01 the recur-
sive rule ri , which are di$erent jrom L N. *s(ffa). 0

3. Properties of l-bound CSL queries

Let Q =< G ,LP ,D > be a CSL-query and let Bg be
the binding graph of Q, Q is l-bound if it is bound
with only one argument of G constant, and both the
indegree and outdegree of every node in Bq are 51.

PROPOSITION 1. Given a l-bound CSL-query
Q=<R(ml,m2, . . ., ms,. .,m,), LP,D>, with

mq a constant and all other m; variables (not

necessarily distinct), then

4 each Nk in the S-partition and each ak in the A-
partition are singleton, and

b) there exists a non-empty list o/ singletons
<Nil! . . . 9 Nj, > (called the active binding cycle
oj Qj such that they belong to both the S-partition
and the A-partition, and Nj,={q }, S(Nj,)=Njl

and/or each Nj,,lss sp-1, S(Nj,)=Nj,+,. 0

In [SZ] it is shown that the recognition of whether Q is
a l-bound CSL-query and the construction of its active
binding cycle can be done in linear time.
Let us now study the impact of the database D upon a
query. The image set of a set T with respect to the
L-join L Nh4s(NA), denoted IN4*s(N4)(T), is con-
structed as follows:

where Nh ={ j} and S(N,,)={s}, and the L-
conjunction LNA-ts(Nh) is not empty. On the other
hand, if ~N’-ts(h) * IS empty, by Theorem 1 (part e), we
set INA-rS(K)(T)=T.
The magic graph of Q is the directed graph
MGg - -<MS ,Eg >r where the set of nodes MS and
the set of arcs Ee are defined as follows:

a) [Nj,,a], where a denotes the given constant in the
q-th argument of the query goal, is in MQ and it
is called the source node, moreover

b) if (N,, ,b] is in MS and c is in IN44S(N4)({b})
then [S(Nn),c] is in MS and ([Nb,b],[S(Nb),c])
is in Eg .

18

The magic graph is a p-partite graph, where p is the
size of the active binding cycle, and it can be con-
structed in linear time.

For each iV,, in the active binding cycle, let M>
denote all the nodes in MQ that have Nh as first com-

ponent. M$ will be called a magic set.

A l-bound CSL query Q will be said to be acyckc
(cyclic) when its magic graph MGg is acyclic (cyclic).
Q will be called regular if it is acyclic and for each pair
of nodes s , j in MQ , all directed paths from s to j
have the same length.
FACT 1. The collection of non-empty magic sets is a
partition oj the nodes of the magic graph. Furthermore,
ijsome magic set is empty then the query is regular. 0

For the LP of Example 1, the active binding cycle of
Q=<R(a,z2,*.. ,s&LP,D> is the cycle
<N1,N2,N3> of Figure 1. Let D be:

P I= {(a A 11, (ad 2h (6 cd 4))

f’2= {(blah (bl,ad3 (b+d)

P3= {(a19a3h (a2,a31r (a31a4))

Then, the magic graph of Q is that of Figure 2. We
note that Q is regular. If we replace the tuple (a3,a4)
in Ps by (as,a) then Q becomes cyclic, whereas if we
add the tuple (u lra4) to P, then Q becomes acyclic
but not regular.

We now define another covering (possibly infinite) of
the nodes of a magic graph. Each element of this cover-
ing contains all nodes which have the same distance
from the source node (note that all nodes are reachable
from the source node). It turns out that the same node
may appear in many elements of this covering.
Let Md=([Ni,,a]}. For each t, t >l, let M& =
{j 1 j EMU and there is a (possibly cyclic) path from
/Nj,,a] to j of length t-l}: Furthermore, for each t ,
t 21, if Mb is not empty then Mb will be called a
counting set. Obviously, if the magic graph is cyclic
then there are infinite counting sets.
FACT 2. The counting sets are a covering oj the nodes
oj the magic graph. Furthermore, ij Mh is a COUnhng

set then Mb CM?, where h -((t -1) mod p)-t-l. ti

Facf 2 says that all nodes in a counting set have the
same first component, which is moreover uniquely
determined once the index t is given. This means that

we can drop this redundant first component and regard
counting sets as being sets of database values. Having
made this convention for the rest.of the paper, we can
state the following property:

FACT 3. For each t, t >I, M~=zI~~~‘(~~)(M,$-~),
where h =((t-1) mod p)+l.

The depth of the magic graph is defined as the max-
imum length of directed paths in MGQ .

l [N17 adI

T
l [N3, a31

t

WI, a 1

Figure 2. A Regular Magic Graph

PROPOSITION 2. The counting sets of an acyclic I-
bound CSL-query Q can be computed in O(e2) time,
vlhere e is the total number oj arcs in the magic graph
of Q . FurthCrmore, the number of counting sets is t $1,
where t is the depth of the magic graph. 0

PROPOSITION 3, Let Q be a f-bound CSL-query. The
counting sets of Q are a partition of the nodes of the
magic graph MGo ij and only ij Q is regular. Further-
more, ij Q is regular then the counting sets can be com-
puted in 0 (e) time, where e is the number of arcs in

magic graph oj Q. 0

4. Methods for implementing l-bound CSL
queries

Let Q=<R(ml,m2, . . . , mq, . . . , m,),LP,D> be
a l-bound CSL-query, where me is a constant (say a),
whereas all other rni are variables (not necessarily dis-
tinct). Because of Proposition 1, we can assume,
without loss of generality, that <N1, Nz, . . . , Np+
Np > is the active binding cycle of Q , with N,=(q },

N2 = S(N,) , . . . , Np
also A,

= S(N,,), N, = WV,);

=S(N,)=N,, lt2=S(N1)=N2 ,..,,
IcTp’ S(Np-,) - lVp . Thus, by Theorem 1, our recur-
sive rule Ti can be written 89 follows:

19

ri : R (5 1,22, . . .) 2,):-
L Nr+Ns , L-N*, :, . , LNI-+NI,

L ~+I+W’,+I) ,.a*, ,+-1S(Nt) 9

R(3i.1,22r . . . > ?,), W

where zr, . . . , z,,Zr, . . . , 0, are variables (not
necessarily distinct) and L N1-tN2, . . . , L h5 *‘tNk 1, and
W are conjunctions (possibly empty) of database predi-
cates which have the properties stated by Theorem 1.
Because of the definition of CSL queries, all other rules
in LP are non-recursive and have the form:

Rj(zl,zg, . . . , z,,) :- EJ’ (34

where z1,z2, . . . , z, are variables (not necessarily dis-
tinct), and E j is a non-empty conjunction of database
predicates.
Let us now solve our query Q using backward chaining
(top-down) execution. We have to compute

Answer (Q) = qm, =a)(k 1)

Thus the answer to our query can be computed once we
have relation k r. In turn, &r can be computed as fol-
lows:

,.
R,= PRl

RI= q(L N’-+N’W * . . wri +aW) u E

where E is the union of relational algebra expression
that implements all the non-recursive rules (3.1), and p
is the select operator which select tuples where identi-
cally named columns are identical.
Therefore, the computation of fir leads to the evalua-
tion of a z, and this lead to the evaluation of fi s, and
so on. Using Corollary 1, we can write this top-down
evaluation sequence as follows:

Answer (Q) = q,,+ =2 $h I)
1

Rl = P(R 1)

Rl = =p,a]<L NL’N2,& 2,CN1+N2, W > u E
L

R2 = 102)

R2 = [X~X,~I<LN~N9R3,cNI-‘Ns,W> u E

. . *

4 = dRp)

RP = rxjx,B,<~N’*N’,k,+,,CN~+N1,W> u E

R P+l = P(Rp+l)

R p+l = ‘x~~,~~<L N1’N2,ip+2,~N1+N2, W > u E

. . *
A

Rt = P@,)

Rt = LX,X,~l<LNA~S(NA),~~+lrCNA~S(NA),W>~E

. . .

where h =((t -1) mod p)+l and p is the size of the
active binding cycle. Furthermore, X=<s r, . , . , zn >
and k=<Z,, . . . ,4, >.

Answer (Q) is the limit of the following computation:
for each level s , set &+r=0 and compute
Answer ’ (Q) using the first 2Xs +l equations. Then,
we obtain the sequence Answer ‘(Q), Answer 2(Q)

* . , where Answer 6 (Q) E Answer 6 +l(Q), ,and the
knit is Answer (Q). But Answer (Q) is finite; therefore,
for some t , Answer (Q) = Answer t (Q). Hence, our
goal is to find such a t . To this end, we start by pro-
pagating downward the initial binding provided by the
selection on (rnp =a). This means that the expression
for computing R r can be replaced by

R 1= ~(z,=a)k[x,,]<L N1-+N2,& 2, C N1-+N2, W > u E).

since the column xB of R1 corresponds to the column
mp of R 1.

Let us now denote by zj$ the element of a singleton set
Nh in the active binding cycle (thus, zN, will denote xp ,
since N,={q }). Moreover, we can further propagate
the initial binding by noting that the variable zN, is not
in CN”N2 nor in W by (Theorem 1, part c) (i.e., the
corresponding relations do not have a column named
zjv,). Hence, we can write

R, =LX~~,~~<~~~~,=~~(L~“~‘),~~,C~~~~~,W>

u qzN,=a ,(E 1

Again by Theorem 1 (part d), both L N1-rNZ and l?,
have a column named $N,, whereas all other columns of
the two relations have different names. It follows that
we can propagate the selection to the expression for
computing R z using A~, (o(~,,~=~)(L N’-tN2)), and so on.

By Fact 3, ikf&=(: } and iV$=INL’N2(Mg’)=
~~~p(b(~~,=l. ))(L N1dN2)). Hence, we can write: 

Answer (Q ) = I? r 
,. 

Rl = P@ 1) 

RI = yx,yl<qrp,,=~,# 
NI+N~),J@NPN~J,+~> 

u qz+fd (E 1 

. 
Rz = dR2) 

R z = yx,q<qmr;;~# N2+Na),ll s,CN@N: w > 

u qz”,=Mq~ (E 1 

. . 1 

fi, = P& ) 

R, = rx[x,$]<u(+f*)(L Np -+N1),Rp +1,c 4 -+I%, w > 

u qz,,=q,@ ) 

20 



Ei, +1= P(R, +d 

&+I= M,x.k~--,~~=,b+~,(~ N1+)&2,CNI-tN: W > 

u U(SN ,&q +lJE ) 

. . . 

Notice that if L Nh-rs(Nh) happens to be an empty con- 
junction then we can assume that the selection . 
%J,=M~) is applied to R,+l since zNA =&j’(N,) 

(Theorem 1 part e). 

If the query Q is acyclic then the counting sets are 
finite and, then, there is an M,$+’ which is empty. 
Therefore, &+r=0. Hence, we have that 

R, = q,r=M# 1 

Then we can compute RtwI , . . . , Answer (Q ) by solv- 
ing the expressions of the first t levels. However, since 

we already know that the q-th column of the result 
only contains the value a, we can use a more efficient 
method which returns as result the projection of fir on 
all columns but the q-th. An informal description of 
this method (called the counting method) can be found 
in [B+]. Let us now present an algorithm for this 
method. (In the algorithm shown below, by A[--Zj] we 
denote the projection on all columns but those named 
"j)* 

Counting Algorithm 

1) Compute the counting sets MS’, . . . , M,$ and 
set h =((t -1) mod p )+l. 

2) Set R, =“[-z~J(“(z~,=M~)(~ ))* 

3) for v=t,t-1, . . . ,2 do 
begin 

4) Set & =p(R,). 

5) Set w =V -1 and g =((w -1) mod p )+l. 
6) Compute R, as 

~(-Zrr.l(‘x(X,2l 
<A cN,4N,),w> 

” ’ 

u u;, ‘&j, 
7) Set h’=g . 

end 

8) Set Answer (Q )=p(R 1). 

After observing that portions of the answer can be com- 
puted while constructing the counting sets, we obtain a 
new algorithm (called the eager method) which is simi- 

lar to that presented in [HN]. (In the algorithm shown 
below, t represents the number of counting sets). 

Eager Algorithm 

1) Set Md={Nl,a}, 

2) Set Answer (Q )=+N~(~(zN,=~d)(E 1). 

3) for u =2, . . , , t do 
begin 

4) Set h ==((u -1) mod p )+l and 
MJ=JNA-+S(NI)O~-~) 

5) Set R u =+Np(zN‘=Mo .)(E )I* 

6) for v=u,u--1,. . . ,2do 
begin 

7) 
8) 
9) 

10) 

Set R, =p(R, 1. 

Set w =V -1 and g =((w -1) mod p )+l. 
Compute R,,, as 

Set h =g . 

end 

11) Set Answer (Q )=Answer (Q )up(R 1). 

end 

We now have the following result concerning correct- 
ness (defined as the property that the given procedure 
terminates and produces all the answers to the given 
query [VW. 
THEOREM 2 The counting method and the eager 
method are correct with respect to a l-bound CSL query 
Q ij and only if Q is acyclic. IJ 
It can also be shown that the counting method works 
better (in terms of tuples retrieved) than the eager 
method for all acyclic l-bound CSL queries, On the 
other hand, the eager method is more storage efficient 
since only the current counting set needs to be kept. 
However, as it will be shown later in this section, keep- 
ing all counting sets is very important for checking the 
termination condition for cyclic queries. 

The magic set method [B+] is described next, In [B+], 
it is assumed that the active binding cycle is given as 
input. In our case, all is needed is the query. In this 
method the results are computed bottom-up using, at 
each level, the magic set MN instead of the correspond- 

% ing counting’ set Mi CM*. Once the value of R 
remains unchanged for an entire cycle, the iteration 
stops and the result is computed by means of a selec- 
tion. 

Magic Set Algorithm 

1) 
N 

Compute the magic sets M2, . , . , MQ~, and 
set, h =l fi=Ivl, cycle =l, end =jalse. 

2) Set R =R ,=o+,,~~~(E). 

21 



3) while end =jaLse do 
begin 

4) Set ri =p(R ). 

5) Set N=A (A). 

6) Compute R as 

‘x[x,n]<“(Z,=Mfl(L N’qh, CN’&,W> 

lJ U(Q+q)(E 1 
7) if cycle <p then 

8) Set cycle = cycle -i-l. 
else 

Q> if R =R 1 then set end =true 
else set cycle =l and R ,=R . 

10) Set fi=N. 
end 

11) Set Answer (Q )=ut,,,, =,)(p(R )). 

THEOREM 3. The magic set method is correct with 
respect to all f-bound CSL queries. 0 

Performance-wise neither the Coqnting Method nor the 
Magic Set Method is superior in all cases, since the 
former applies a sharper selection at the various steps 
of the bottom-up computation than the latter, but com- 
puting all counting sets may be more expensive (because 
of duplicates) than computing the magic sets. However, 
when the query is regular, by Proposition 4, the count- 
ing sets can be computed as efficiently as the magic 
sets. Thus, we have the following result. 

THEOREM 4. IJ P and p denote the numbers of data- 
base tuples respectively retrieved by the counting method 
and the magic set method in a regular l-bound CSL- 
query, then, P <P +0 (t ), where t is the depth of the 
magic graph. D 

The 0 (t ) possible loss of performance of the Counting 
Method versus the Magic Set Method can be considered 
negligible in view of the fact that the computation of 
magic sets requires at least 0 (t ) time. On the other 
side, it may happen that P=P+r and r is of some 
order of magnitude greater than t . Therefore, it is rea- 
sonable to assume that the counting method works 
better than the magic set method for regular queries. 
Unfortunately, we do not want to construct the magic 
graph before deciding which is the best method to 
apply. Instead, we can use a new and and efficient 
method, called the magic counting method, which is 
correct with respect to all l-bound CSL queries and 
coincides with the counting method when the query is 
regular. 
The magic counting method starts by computing tne 
counting sets, but once it detects that some part of the 
magic graph is Don-regular, it also it removes duplicate 
nodes. Eventually, some counting sets will be used to 
construct subsets of the magic sets. Thus, the method 
constructs a subclass C of the counting sets and a class 
M of smaller magic sets such that CUM is a partition 
of the nodes of the magic graph. The magic counting 

sets are the elements of CUM, where C = (~,&!j 1 “~4 
is a counting set and for each counting set 
M; ,v > u , M; f1M4 =0}, and 

M = {fit 1 A$?#0 and i’$/ = Mg- (MuEcM,$)}. 
d 

PROPOSITION 4. The magic counting sets are a par- 
tition oj the nodes oj the magic graph and can be com- 
puted in 0 (e ) time, where e is the number of arcs in 
the magic graph. 0 

We are’now ready to present the algorithm of the magic 
counting method. 

Magic Counting Algorithm 

1) Compute the magic counting sets in C uM. 

2) If Mf0 then 
begin . 

3) Perform Steps 3 - 10 of the algorithm of the 
Magic Set Method 

4) If 1 C I=0 then 

5) Set Answer (Q )=a(,, =a )(p(R )). 

6) else Set E =EUR . 
end 

7) If 1 C 1 >0 then 
begin 

8) Set t = ) C 1 
9) Perform Steps 2 - 8 of the algorithm of the 

Counting Method. 
end 

THEOREM 5. Let Q be a l-bound CSL-query. 

a) The magic counting method is correct with respect 

to Q. 

b) Ij P and p respectively denote the the numbers of 
database tuples retrieved by the magic counting 
method and the magic set method, then for a l- 
bound CSL query, P <j+O(c ), where c is the 
number OJ the magic counting sets that are aLso 
counting sets. 

c) IJ Q is regular then the magic counting method 
coincides with the counting method. 0 

It turns out that the magic counting method works 
better than the other methods in most cases. Actually, 
it could work worse than the eager method or the 
counting method only if the query is acyclic but not 
regular. But then, to guarantee termination, one must 
check that there is no cycle in the database; unfor- 
tunately, it not easy to distinguish non-regularity from 
cyclicity (the transitive closure of all nodes in the magic 
graph must be computed, whereas all methods compute 
only the closure of the source node). Therefore, the 
magic counting method appears to be the best all- 
afound algorithm. 

22 



Example 2. Consider the following l-bound C&-query 
Q =<R (a ,y ),LP ,D >, where LP is 

rl: R(x,y):- E(x,y). 

r2: R (x ,y) :- L(x,xd, R(xI,Y,), W(Y,,Y 1. 

and D is one of the following three databases (this 
example is taken from [B+]): 
Case a): 

(a ,6i) and (bi,c) (iii In) are in the relation L, 
(c ,d) is in E, (d ,ei) and (ci,f ) (l_<i <n) are in 
W, and L., W and E do not contain other tuples. 

Case 6): 

(ai,ai+r) (l<i <n) and (al,ai) (3<i In) are in 
the relation L , (a,, ,b,) is in E, (bitbi-1) 

(2si In) are in W, and L ,W and E do not con- 
tain other tuples. 

Case c): 

( ai,ai+l) (l<i In) are in the relation L, (ai,bi) 
(S<i_<n) are inE, (bi,Ci_,) (2<i_<n) are in W, 
and L , W and E do not contain other tuples. 

It is easy to see that the performances of the methods 
described in this paper with respect to Q are: 

Notice that Q is regular in the cases a) and c), whereas 
it is acyclic but not regular in the case b). 0 

ACKNOWLEDGEMENT. 
We wish to thank Francois Bancilhon for many helpful 
discussions and comments. 

5. References 

PI 

P+l 

KW 

ISZI 

Iv11 

WI 

WI 

Bancilhon, F., “A note on the performance of 
Rule Based Systems”, MCC Technical Report, 
1985. 

Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D, 
“Magic sets and other strange ways to implement 
logic programsn, Proc. 5th ACM SIGMOD- 
SIGACT Symp. on Principles of Database Sys- 
tems, 1986. 
Chandra, A.K., Harel, D., “Horn clauses and the 
fixpoint hierarchy”, Proc. ACM SIGMOD- 
SIGACT Symp. on Principles of Database Sys- 
tems, 1982, pp. 158-163. 
Henschen, L.J., Naqvi, S. A., “On compiling 
queries in recursive first-order databases”, JACM 
31, 1, 1984, pp. 47-85. 
Sac&., D., Zaniolo, C., “Implementation of 
strongly linear logic queries for databases”, 
unpublished manuscript, 1985. 
Ullman, J.D., Principles of Database Systems, 
Computer Science Press, Rockvllle, Md., 1982. 

Ullman, J.D., “Implementation of logical query 
languages for databases”, TODS 10, 3, 1985, pp. 
289-321. 
van Emden, M.H., Kowalski, R., “The semantics 
of predicate logic as a programming language”, 
JACM 29, 4, 1976, pp. 733-742. 

23 


