
Balanced Multidimensional Extendible Hash Tree

Ekaw J. Otoo

School of Computer Science
Carleton University

Ottawa, Canada, KlS 5B6.

Abstract

We present a method for designing a multidimen-
sional order preserving extendible hashing scheme that
allows the directory to grow almost linearly with the
number of insertions, irrespective of the key distribu-
tion. Such robustness in the design is achieved through
the use of a hierarchical directory that grows in a man-
ner similar to a multidimensional B-tree. For most prac-
tical directory sizes of at most 2s* entries, we guarantee
no more than three diik accesses for an exact match
search. Like the grid file, the directory corresponds
to a rectilinearly partitioned attribute space which is
represented as d-dimensional extendible &ray. Hence
range and partial-range searches are efficiently executed
in 0(n~), where no is the number of rectangular cells
that cover the response region.

1. Introduction

Given a file of records whose keys are composed of d-dimen-

sional vectors K = (kl,kz , . . . , kd), we address the problem of

the storage and maintenance of such a file under the operations

of insertions, deletions and partial-range queries. Exact-match,

partial-match and range queries are considered as special cases of

the partial range queries. Let the attributes be defined by inte-

gers 1,2,. . . , d and let S be a subset of the attributes with cardi-

nality]S] < d. For each attribute j, let [ai, pi] be some specified

interval. Then the partial-range query recovers all records whose

key @I, kz, . . . kd) satisfy the predicate 3 = j$s(s(oLj 5 kj < ai).

The interest in such multidimensional data organization is

expressed in many applications of relational, geographic, pi&o-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Q 1986 ACM-0-XY7YI-17Y-2/86/0300-0100 $00.75

rial and geometric databases that require extensive associative,

and region searching. The literature is adorned with diverse

strategies for implementing such data organization. They span

from tree structured methods such as the K-D-tree [l], the Quad-

trees [6,19,22] and the K-D-B-trees [21], to multidimensional di-

rect access methods such as the grid-file or multidimensional

extendible hashing [7,8,12,15,18,20,23], the interpolation-based

index method [3], multidimensional linear hashing [17], and dy-

namic multipaging [14].

The direct access methods with the exception of dynamic

multipaging, are all based on one or the other of two one di-

mensional dynamic hashing : extendible hashing [4] and linear

hashing [9]. The two diik access principle of extendible hashing

and the fact that no special overflow organization is required,

make it very attractive for adaptation in multiple key data or-

ganization.

The underlying principle of the multidimensional extendible

hashing is as follows. Let each key be a d-dimensional vector

K = (kl,kd,..., kd). In the sequel, our use of the term ‘key”

K may also imply a record with a key value K, depending on

context. A pseudo-key K’ corresponding to K is defined as

K’ = (k;, k; ,..., kh),whereki=$j(kj),forj=1,2 ,..., d,isa

binary value in [O,l]. The function $j defines a binary encoding

of values of attribute j. Equivalently, ki may be conceived as

an infinite sequence of O/l bits. Consider the geometric repre-

sentation of the records of the file as points in a d-dimensional

hypercube [0, 111 x (0,112 x . . . x [0, I],+ This space is termed the

attribute space, bitmap or key space of the file. The dynamic

direct. access lile organization schemes essentially partition the

attribute space rectilinearly into rectangular regions or cells such

that, for some predefined page capacity b, the number of points

in a rectangular cell is no more than b. This explicit parti-

tioned space is represented either as a directory whose entries

100

http://crossmark.crossref.org/dialog/?doi=10.1145%2F6012.6015&domain=pdf&date_stamp=1985-06-01

are pointers to the pages where the records are stored or as data

pages. In the former representation, the attribute space may

be conceived as partitioned explicitly into regions of rectangular

cells where each region corresponds to a group of cells with a

common page pointer. The significant differences between the

various dynamic multidimensional hashing schemes is in the im-

plementation of the directory and the organization of the data

pages.

To locate a record in two disk accesses, the directory is typ

ically represented as a one level multidimensional array. It is

shown in the analysis of extendible hashing and the grid file

[5,11,20], that if the distributions of the keys in the attribute

space is reasonably uniform, the directory size is superlinear.

On the other hand non-uniform data distribution generates an

almost exponential directory growth particularly for small data

page capacities. The use of the scheme for efficient range search-

ing requires order preservation in the sense that for each at-

tribute j having key components &and kh, if &jl 5 k+, then

kil 5 kL. Under such conditions one frequently encounters non-

uniform data distributions and the directory growth becomes of

much concern.

The question of organizing the directory for an order pre-

serving extendible hashing scheme so that it gracefully adapts

to the key distribution has only recently been addressed by

Burkhard [3], Krishnamurthy and Whang [S], O&e1 [18] and

Hinrichs [2]. There are two main ideas that have been advanced.

The first advocates the use of a piecewise linear function. The

second proposes the use of a two level directory. We present a

general method for designing a multilevel directory associated

with multidimensional extendible hashing that allow linear di-

rectory growth. We show that a straight forward hierarchical

built up of the directory fails to restrain the potential exponen-

tial growth of the directory even for uniform key distribution.

In (181, we developed the multidimensional extendible hash-

ing (MDEH), and defined appropriate mapping function for the

scheme. We resolve the shortcomings in the design so that non-

uniform distributed keys may be satisfactorily handled with a

directory of moderate size. This new scheme is referred to as a

Balanced Hierarchical Multidimensional Extendible Hash ‘Dee

(BMEH-tree). The method integrates the concepts of MDEH

and the K-D-B-tree of Robinson [21]. Unlike any known meth-

ods, the local depth maintained in the directory play a signif%

cant role in determiniig the target page of a key. TO highlight

the considerable reduction in directory size under uniform and

non-uniform key distributions we compare the scheme with the

one level directory design (MDEH) and an alternative multilevel

directory design whose nodes are not height balanced. This la&

ter design is referred to simple as a multidimensional extendible

hash tree (MEH-tree). Our experimental studies show that the

BMEH-tree is clearly superior in maintainiug the minimum di-’

rectory size under both uniform and non-uniform key distribu-

tion.

2. Design Concepts

2.1. A Variant of Extendible Hashing

The progression of the ideas involved in the design of the bal-

anced multidimensional extendible hashing scheme begin with

an order preserving variant of the extendible hashing technique

of Fagin et al. [4]. This is outlined briefly here. Let each key

be a single attribute value and for simplicity, consider this as

a sequence of O/l bits K = zrzzzs. . . z,,,, of length w = 32

say. The file organization is comprised of two levels: a directory

which we denote by D, and a set of data pages (5, P2,. . . ,P,,}.

The value nz varies in consonance with the file expansion and

contraction.

The directory is composed of a directory header D.H, called

the ille depth and nd directory elements D1, Dz, . . . , D,,, where

nd = 2D*R. Each directory element 01, consists of a page pointer

Di.P and a local depth Di.h. The storage of the local depth as a

component of the directory element differs from the original de-

sign in [4] where the local depth is maintained in the data pages.

Storing the local depth in the diitry allows an immediate

deletion of empty pages. The local depth signifies the length of

the common preilxes of the keys in a page. Suppose the binary

bit sequence of a key K = xrzzxs . . . zw. Then the address i

of the directory entry Di, corresponding to K, is determined by

the first H prefix bits of K. This is defined by a function g as

i=g(K,H) = c ~,2=-~.
ll&R

The manner in which the llle expands is illustrated hg

Figure la. Suppose the key K = “lOlOl...’ is to be inserted

and the global depth D.H = 2. Using the prefix bits “10” we

determine the address g(K, D.H) = 2. The page pointer in 4

is given by 4.P = P2, and the local depth at this address is

D2.h = 1. Assuming the page Pz is full then a third page s will

be allocated. The page pointers of the directory elements D2.P

and Ds.p are set to P2 and PJ respectively. Similarly the local

101

Figure lb : 1-dimesional extendible
hashing after directory expansion.

Figure la: l-dimensional extendible
hashing, H = 2

00..

01..

10..

11..

H=2

2 PO

2

R 1 Pl

1

P2

H =2

H1 =2
2-

000.

001.

010.

011.

100.

101.

110.

111.

I I I

3 PiI 1
3

1

BE
P3

1

P2

<1,1>;2 <1,1>;2 F-l- P2 13 p2

10 P3 14 P3

IT <2,2>;2 <2.2>;2

P5 P6
11 15

Figure 2 : Directory configuration for a 2-dimensional
MDEH. The Pi’s denote page pointers.

102

depths D2.h and D3.h are increased to 2. The keys in the page

9 are rehashed to be distributed between P2 and Ps.

If the key to be inserted were K = ‘OllOl...“, then the

directory element addressed would be Dr and the page pointer

D1.P = 5. Splitting the page PI would result in increasing the

local depth D1.h to 3. Since this exceeds the global depth, the

global depth D.H is also increased to 3 with the consequence

that the directory size is doubled. This gives the configuration

shown in Figure lb.

The extendible hashing scheme has been extensively anal-

ysed (see (5,111). Under the assumption that, all possible config-

urations of allocating N keys into pages of capacity b are equally

likely, the directory size in extendible hashing is shown to be

O((1 + l/b) logs N)N’+rlb).

2.1. Multidimensional Extendible Hashing
With One-Level Directory

Consider now that each key is a vector K = (kr, k2 . . . , kd),

where kj = zr-jZej.. . x,,,~, is a binary sequence. As in the

preceding section, the file is organized in two levels of a directory

and set of data pages. The directory is headed by d global depths

H1,H2,.. .> Hd. A directory element D< consist of d local depths

Di.(hl,ht - * * 3 hd), a value Diem, specifying the dimension along

which the last directory expansion was made, and a page pointer

Di.P. The relationship between the local and global depths are

maintained independently for each dimension such that Di.hj <

D.Hj, for j = 1,2,. . . , d.

To determine the page address of the key K = (ki, kz, . . . kd),

we first compute d index values

;j=g(kj,Hj)= c x *SRjerj, for j=l,2 ,..., d. ‘j

1pgIj

These values form a d-tuple index (ii, is,. . , id) which is used

to address the directory. Let 5 denote an appropriately defined

mapping function. Then the address q, of a directory element Dp

corresponding to the key K, is given by q = $(il,&,. . . id), The

required mapping function 9 is essentially that of an extendible

array of exponential varying order which is described in detail

in (151. For completeness we restate it in Theorem 1.

Theorem 1. The d-tuple index (&is,...,&) of a d-dimen-

sionrrl extendible array A[0 : 2h1, 0 : 2b,. . . ,O : qhd], of ex-

ponential varying order in which each dimension has infinite ex-

tendibility can be mapped one-to-one onto the logical integer

Backsee (0, 1,2,. . .}, by the function Jj defined 8s

0, ifIXl$ij) = 0 ;

$(G, i2, , . . id) = d d
i. $v, Jj + C Cj * ii, otherwise;

j=L
i#= i#=

where z = highest dimension index z s.t.;

[log2 4 = y(llog2 ijJL

Jj =
1

Zhx+’ if j < x;
2h’ ifj2.z.

and ‘Cj = fr Jr
r=,++l
-#I

Considering the evaluation of the log’s and exponentiations

as primitive operations, the time complexity of $ is O(d). The

function 9 is easily modified to take care of the case where a di-

mension does not have infinite extendibility and the cyclic choice

of the dimensions skips over this. This corresponds to the case

where the attribute values of a dimension may be coded by 8

shorter string of binary digits than the rest.

Given the directory element D,, the page pointer is denoted

by D,.P. Assuming the page D,.P overflows. Then the keys

in the page D,.P are split, with the consequence that the local

depth D,,.h, of some dimension A, must be increased. Within

the entry D,, the value of m is updated before being used, and

is updated cyclically by assigning D,.m c (D,.m mod d) + 1.

If in increasing Dp.hm, this value exceeds the global depth H,,

then the directory is doubled along the dimension m. The effect

of the cyclic doubling of a Zdimensional directory is illustrated

by the Figure 2. The number indicated in each cell denotee the

logical linear address of the cell.

3. Hierarchical Directories

The directory in the MDEH scheme above can easily degen-

erate giving 8 considerable large directory size for two main rea-

sons. Most data distributions encountered in practice are highly

non-uniform particularly when order preservation is enforced.

Data that is being processed dynamically often exhibit some

103

noise effect,, where a short burst of consecutive keys inserted

differ only in the low order bits and therefore cause repeated

splitting and directory expansion. Consider the one-dimensional

extendible hashing scheme discussed in the preceding section.

Assuming that each key is a 32-bit binary integer with maxi-

.mum value M = 2s* - 1, then the worst, case directory size after

inserting N 1 b + 1 keys, iz O(M/(b + 1)). Further the cost of

key insertions becomes O(M/(b + 1)) directory accesses. Thii

results from resetting half the number of page pointers in the

directory when new page is allocated. It has been recommended

that large page sizes be used since this tends to generate small

directory sizes (111. Another proposed solution to controlling the

generation of large directory sizes is the use of a hierarchical di-

rectory. A design strategy for the case of single attribute keyed

file is presented in [16]. The potential for the exponential growth

of the directory is accentuated in the one-level multidimensional

equivalent. described previously. We present the balanced hier-

archical multidiiensional extendible hash tree (BMEH-tree) as

a solution.

3.1. The Basic Idea of the BMEH-tree

The main idea of the scheme is to allocate the storage space

of the directory in fixed size blocks or pages that form the nodes

of a balanced M-ary tree. In general a block of the directory

would be chosen to be of the same size as the data page. The

‘leaf nodes in an l-level BMEH-tree is taken as the first level

nodes of the directory which is considered to be at level 1. The

root node is at level E All data pages are at the same level,

i.e level 0. Only the leaf nodes of the directory contain pointers

to data pages. The directory elements of the higher level nodes

contain pointers to lower level nodes. A number of pointers in a

node can point to the same node at a lower level (see Figure 3~).

Let G, (2,. . . , & be the maximum file depths of each di-

mension within a node, and let $ = C &. Then a node can
lSj<d

contain at most M = 24 elements. Each node in the tree is

organized as in the one-level directory of the multidimensional

extendible heahing scheme except that the global depths Hi,

of each node can only increase up to b. Any subsequent, ex-

pansion of the node results in node splitting. For simplicity we

illustrate the node splitting process for a 24iinsional directory

tree, where d = 2. Let 61 = (2 = 2. Starting with a single di-

rectory node D:, the node doubles at each expansion etep until

D$.H1 = (1 and 0i.H~ = t.

Assuming that the key K = (“01011.. .“, ‘10100.. . “), is to

be inserted and the directory is to be doubled. The directory

entry in 0: determined by the key K, has the coordinate address

(‘Ol”, ‘10”) = (1,2). Let this be denoted as Dj(1,2). We illus-

trate this 88 the shaded cell in Figure 3a. Instead of doubling

the node along the 6rst dimensions so that the first, three prefix

bits are used in generating an index of the first dimensions, we

split this node into two nodes, 0: and 0:. A third node Df,

is created which now becomes the parents of of nodes b: and

0:. The two entries in the node 0: are D:(O,O) and D:(l,O).

The first entry points to the lower level node 0: and the second

points to 0:. Each directory entry within each node maintains

appropriate information of the local depth and the dimension m,

which has just been extended. The schematic storage layout is

illustrated in Figure 3b.

In this scheme, the local depths play a significant role in

determining the target page of any key K, as we traverse the

directory tree. During the split, the local depth hl of every

directory entry of the nodes 0: and 04 is decreased by one,

except for two entries both of which are in either 0: or 0:

that have pointers to the pages created from page splitting. If

the page P, in Figure 3a is the page that triggered the page

splitting, then the two pages generated are P,, and Pb as shown in

Figure 3b. At the same time the local depth hl in the two entries

Df(O,O) and D:(l, 0) are initialized to 1. The effect, of such a

splitting process is that the directory tree grows towards the

root, in the manner re miniscent of the K-D-B-tree of Robinson.

[21]. Consequently the directory tree is completely balanced

with respect. to the path length from the root to a data page.

Carrying the example one step further in the expansion pro-

cess, let us assume that the directory node 0: is split as a result

of a key insertion into page 0: (2,2) .P = P. say. The result-

ing configuration of the scheme after the node splits is shown

in Figure 3c. The node 0: is split into two nodes 0: and 04

on the dimension 2. The creation of these two nodes causes the

,aexpanzion of the parent node Df and the global depth Do.&

increases to 1. The pointers in the directory entries of the root,

node are now defined aa Di(O,O).P = 01, Di(O,l).P = 0:

and D:(l,O).P = D:(l,l).P = 0:. At the first, level of the

directory tree, the two pages involved in the split are given by

D:(2,2) = P,, and Di(2,3).P = Pb. The split&b process is car-

ried out, for each dimension in turn, cyclically, until the root node

becomes full. This may generate further splitting and eventually

cause the root node to split, as well.

104

Figure 3a
10.. 11..

P,

II,- 2

i!e

00

01

10

11

Figure 3c

105

To address the page of the key K = (‘0101.. . “, ‘1010.. . “)

in Figure 3c, the first bit a0”, of the first component key value

and bit ‘1” of the second component key determine the address

of the entry Df(0, 1) at the root node. The pointer in this en-

try is 0:. Suppose the local depths are Df(O,l).hr = 1 and

0: (0,1) .hr = 0. This implies that we strip off the first bit of the

first key component but none from the second key component

when determining the correct directory entry of node 0:. The

directory entry from the rest of’the key values, is generated as

D~(“lCr, ‘19”) or D:(2,2). The page pointer of thii directory

element gives the target page of the key K as Di(2,2).P = PI.

The algorithm for searching for a key K = (kr, kz,. . . kd)

in a balanced hierarchical extendible hash tree is specified as

follows. The variable ROOT specifies the address of the root

node.’ We assume that the routine GetPage retrieves into

main memory, the page corresponding to either the directory

node or data page pointer P and returns a pointer to the main

memory address where the page resides.

Algorithm EXM-Search((kr, kz,. . . ,kd), ROOT)
begin

NodePtr +- GetPage(ROOT);
vi + kj for j= 1,2,...,d;
Set ii + g(vj, NodePtr 7 *Hi), for j = 1,2,. . . d;
Set Q + Q(ir,ir,. . . ,id);
SeD P +- NodePtr t .D(q).P;
if P is a directory node pointer then
begin

Remove the first NodePtr t .D(q).hj bits from
vi,for j=1,2 ,..., d;
EXMJlearch((vr, ~2,. . . , vd), P);

end else
begin

Read the page P into memory and search for
the key K;
if found then return (“found”)
else return(“not found”);

end;
end;

Let Q = C
l<j<d

cj denote the sum of the global depths allowed

in a node. If the total number of prefix bits used in addressing

a directory of size nd, is w, then the maximum number of levels

in the tree e = [w/$1. For instance, choosing 4 = 9 gives f 5 3

for w 5 27 and L 5 4 when w 5 36. Considering that the root

node can always be retained in memory, it takes at most 3 diik

accesses to locate a record of a file with a diiectory size fld 5 2*‘.

4. Insertions, Deletions and Retrievals

4.1. Insertions

The discussions in the preceding section leads to the follow-

ing algorithm UBMEH-TreeJnsert” for inserting a record with

key K = hkz, . . . , kd) into a balanced multidimensional ex-

tendible hashing structure. The algorithm has some dependent

routines whose functions only are described. We assume that a

global stack ‘STACK” is available.
Push (NodePtr, I, STACK) : This routine pushes the node

pointer NodePtr and the index I into a stack STACK.
Pop (NodePtr, I, STACK) : The function of this routine is to

pop the values I and NodePtr from the stack STACK.
Expand,Dir(Node, PI, P2, m) : The routine expands the direc-

tory node in a manner corresponding to that of an ex-
tendible array of exponential varying order. The pointer
fields of two entries in this node are set to contain PI
and and 4.

Split-Node (Node, Pl,Pz, m) : This routine splits the node
given by Node. The pointer fields of two entries in one
of the new nodes are updated with the values of PI and
9. The values PI and P2 are respectively reset to Node
and the new allocated page involved in the split. The
routine returns false if the ROOT node is split.

Algorithm BMEH,Insert(K = (kl, kz, . . . , kd), ROOT);
begin

uj+kj,for j=1,2 ,..., d,
P + ROOT;
Initialize the STACK to empty;
while P is a directory pointer do

NodePtr + GetPage(
ij t g(vj, NodePtr T *Hi);
qt $(il&eaeai,4);

Push(P, q, STACK);
Left-Shift (Vi, NodePtr t .D(q).hj); j = 1,2. . . d;
P + NodePtr t .D(q).P;

endwhile;
ifP=NILthen
begin

allocate a new data page PK;
using the value of NodePtr t .D(q).m and
the difference between the global depth NodePtr t .&
and the local depth NodePtr t .D(q),h,,,,
determine all directory entries having the same
file depths as the one given in NodePtr t .D(q),
and set the pointer field values to PK.
Store the key in page PK and return;

end else
begin

PI C- GetPage({ read into memory page P }
if page P already contains key K then

print (‘error message”) and return;
if page P is not full then

store record in page P

106

else begb
allocate a new page PK;
set P2 + GetPoge(PK);
copy content of page P into a temporal
storage Q;
Set Co&Split + true;
while Cent-Split do

Pop (NodePtr, q, STACK);
if number of entries in NodePtr t .D 5 Z”
then begin

Expand-Dir(NodePtr t,Pi,Pz,m);

Set Cant-Split + false;
end else

Cant,Split + Split-Node (NodePtr t,

Pl,P2,4

endwhile
Batch insert ali keys in 8;
BMEH,Insert(K = (kr, kz, . . . ,kd), ROOT);

.endlf
endlf

end { algorithm BMEHJnsert };

The BhfEH-tree organization allows the worst case number

of directory splitting and worst case number of directory accesses

per record insertion to be controlled according to the choice of

the values &,.5,... cd. We have the following theorems which

we state below.

Theorem 2. In a balsnced d dimensional extendible hash tree

with parameters d, b, W, [ii, for j = 1,2,. . . d, Jet 4 = C
lljld

tj be

the speciiied bound on the number of bits allowed for addressing

within a node of the BMEH-tree. Then for a directory using at

most w bits to address an entry, the worst casa number of node

splits for an insertion is %& + I, where L = [w/+1.

Sketch of Proof

Let the maximum number of bits used in addressing apge

in a the BMEH-Tree organization be w and define.4 = C [j.
j=l

The maximum number of levels in the directory is ,L = [w/4].

For simplicity we assume that all the key components participate

in the address calculation with equal number of bit encodings.

The worst case number of splits occurs when, in attempting to

insert the (b+l)st key, all the keys agree in the first w-l bits

compared but has at least one key that differs on the last bit.

The directory tree generated is such that there is one root

node on level L, (4 + 1) nodes on level L - 1, (29 + 1) nodes on

level L - 2 and so on. On level i, there are (L - i)+ + 1 nodes.

The total number of nodes in the directory then is

107

= 2+ v- W(- qe- l)d I L.
2 2

Since these nd nodes are generated from nd - 1 splits plus one

extra from the page split, the worst case number of node splits

is given by (gw + e). m

Theorem 3. In a bslanced d dimensional extendible hash tree

withpammetersd,b,cu,t,forj=1,2 ,... d,Jet+= C cj be
lsjld

the speciiied bound on the number of bits allowed for addressing

wittin a node of the BM’EH&ee. Then fdr a directory using

at most w bits to address an entry, the worst case number of

directory node accesses for an insertion is O(#), where L =

bJ/41*

The argument for the proof of Theorem 3 follows from The-

orem 2.

4.2. Deletion

The splitting process is easily reversed to handle deletions.

The nodes may be recursively merged, starting from the bottom

until possibly the root node is deleted. The deletions process

does no encounter the problem of deadlocks as in the grid-file

(7, 121, since we adhere strictly to the reversal of the insertion

process. The details of how this is performed is easily derived

from the insertion algorithm.

4.3. An Example

The following examples illustrates the essential concepts of

the BMEH-tree. Consider the storage of the l-dimensional keys

of Table 1 using balanced hierarchical f-dimensional hash tree.

Suppose the parameters specified are (1 = (2 = 2, and the

page capacity b = 2. Then the Figure 4 shows the configuration

of the scheme after all key insertions are made. The explicit

attribute space partitioning induced in this case is shown in Fig-

ure 5.

An alternative to the BhIEH-tree is another tree structured

directory which we refer to as a multidimensional extendible

hash tree (MEH-tree). In thii scheme the tree grows from the

root downwards. Although this design is simpler to implement,

the reduction in the directory size is not significant compared to

the one-level directory design of a multidiiensional extendible

hashing scheme (MDEH). In some instances and even for uni-

form distributed keys, the directory size in an MEH-tree struc-

ture can be worse than the one-level directory. This scheme has

been implemented for comparison with the BMEH-tree.

begin
q + Q(il,iz,. . . ,i,J; P + NodePtr t .D(q).P;
lfP has not been accessed then
begin

if P is not a data page then
begin

Left-Shift(vi, NodePtr t .D(q).hj), and
Left-Shift(uj, NodePtr 1 .D(q).hj),
for j= l,Z...d;
PRG-Search((q, : ur,, . . . ,vh : uk),P);

end else
Retrieve all records that satisfy the range
predicate 7;

aa;
Set j 6 0, and Search,Region.c “false”;
while j 5 d and NOT Search-Region do
begin

ij + ij + 1;
if ij > IJj then

begiuSetijtLj; jtj+l;end
else

Search-Region + ?rue”;
end;

end;
end;

Theorem 4 In a balanced d dimensional extendible hash

tree with parameters d, w, b, (3 for j = 1,2,. . . d, let S C

I&%..., d}. Then a a query that requests the retrieval of aII

records with key K = (kl, 4,. . . kd satisfying the predicate 7 =

jt4s(aj 5 kjbsj) can be processed in 0(.6a~) disk accesses, where

nR is the number of rectangular cells of the partitioned space

that cover the query region and L = [w/41.

Table 1 : A set of binary encoded keys.

KK:.
= (1110,010)

K3
= (1011,101)
= (0101, 101)

K4 = (1100,101)
K5 = (0001,111)

is = (0100’010)
= (0010 100)

K8 = (0111: 100)
y. = (0001,001)

= (0110,010)
Kll = (1000,110)

K12 = (0111,001)
K13 = (0011,000)
K14 = (1100,000)
K15 = (1001,011)
K16 = (1101,001)
K17 = (0011,100)
K18 = (1110,011)
K19 = (0111,011)
K20 = (OGOl,OlO)
K21 = (1001,001)
K22 = (0110,011)

4.4. Partial Range Retrievals

The BMEH-tree facilitates the processing of partial-range

queries. Let S be a subset of the integers {1,2, . . . ,d}, rep

resenting the dimensions in the scheme. For each j E S, let

[oj,pj] be a specified interval. Suppose we desire the set of

records whose keys K = (kl, kz, . . . , ka) satisfy the predicate

7 = ,$$(oj 5 kj 5 ai). Then the algorithm PRG-Search recur-’

sively traverses the directory node in depth-first-search order

to retrieve the records in the pages whose corresponding cells

are covered by the query region. We assume the existence of an

order preserving binary encoding function $, and a procedure

Left,Shift(x,y) which shifts the bits in x, y places to the left.

The algorithm takes a parameter ROOT, which is the address

of the root node of the directory tree, and pairs of binary ime.

gers kj,, kj. (one pair for each dimension), which are defined as

follows.

kj, = Jlh), ifjES;
%OOOO . . . n, otherwise.

kj, = I%%), ifje S;
‘11111.. . “, otherwise.

AlgorithmPRG,Search((kr, : kl,, . . . , k,+ : k,+,,), ROOT);
begin

NodePtr + GetPage(ROOT);
Set vi * 4; Uj * kj,,; ii + Lj + g(~j, NodePtr t .Hj),

andUj+g(kj~,NodePtrfJIj),forj=1,2,...,d;
Set Search-Region + ‘true ‘;
while Search-Region do

Sketch of Proof

Consider the rectilinear partitioning of the attribute space

induced by the BMEH-tree. For an orthogonal range query, the

query region is overlapped by a number of such cells. In the

worst case each cell contains a pointer to a separate data page

which can be arranged to be accessed once. If the total number

of cells covering the query region is taR and the cost of accessing

each page is at most L then we require O(L + no) to retrieve the

requested records. H

6. Experimental Results

As a 6rst step towards understanding the behaviour of the

balanced multidimensional extendible hash tree organisation,

we study some performance characteristics through simulation;

108

These measures are compared with those of the multidiien-

sional extendible hashing with one-level directory (MDEH), and

the multidimensional extendible hash tree (MEH-tree) for data

page sizes of 8, 16, 32 and 64.

The experiments are conducted for two classes of data dis

tributions :

1. uniform distributed keys in which each key component is a

pseudo random integer in [0,2’l- l] (we investigate this for

2- and t-dimensional keysj;

2. a two dimensional (bivariate) normal distributed keys where

each component of the key vector is a truncated discretized

normal in (0, 231 - 11.

Each run of the experiment consists of inserting N = 40,000,

keys and computing the averages of the performance measures

on the last 4,000 keys inserted. In the BMEH-tree and the

MEH-tree, the node sizes are restricted to 64 entries only, i.e.,

Q = 6. For d = 2, we have (1 = (2 = 3, and for d = 3, we have

6 = (2 = 6s = 2. This is to allow for a fast build up of the

number of directory levels. The performance parameters derived

are :-

: the .average number of disk reads for c successful exact-

match search.

: the average number of disk reads for an unsuccessful exact-

match search.

: the average number of disk accesses for a key insertion.

We consider a disk access as either a disk read or a write.

: the directory size (in number of directory elements) gen-

erated after 40,000 key insertions.

: the average load factor which is defined as the ratio of

the number of keys inserted to the amount of storage space

made available by data pages allocated.

The result of the simulations are summarized in the Tables 2,

3, and 4. In Figures 6 and 7, we show the graphs of the variation

of the directory size (tad) as random keys are inserted for the

two cases of a-dimensional uniform and non-uniform distributed

keys. The BMEH-tree is clearly superior in maintaining a much

smaller directory size in either case. Further the directory grows

almost linearly with the number of keys inserted.

6. Conclusion

Using the balanced multidimensional extendible hash tree

technique gives us a new method of data organization that im-

proves upon the one-level directory method of multidimensional

extendible hashing and the grid-file. The method inherently

controls the possible exponential growth of the directory with-

out compromising on the O(1) disk access principle guaranteed

in extendible hashing schemes. Not only does the BMEH-tree

maintain an almost linear growth for both uniform and non-

unform data distribution, the average number of disk accesses

for a key insertion is considerable less than in the MDEH scheme.

We draw the readers attention particularly to the value of p in

Table 3 when b = 8.

The ideas in the BMEH-tree may be extended to generate

another breed of tree structures that may be characterized as

Balanced Binary Quadtree, Octtree etc. This is easily achieved

by setting cj = 1, for every dimension and deleting some of

the information retained in the directory elements. The stan-

dard Quadtree [19, 221 and its derivatives have previously been

known to be difficult to balance. The BMEH-tree is,a natural

candidate for the physical design of such data base systems as in

relational, geographic , geometric, pictorial and CAD databases,

whose applications require a high degree of associative or spatial

searching.

Acknowledgment

We wish to express our thanks to the department of Com-
puter and System Engineering at Carleton University for the use
of their VAX/780 in running our simulations. The independent
implementation of this work by George Wang for solving some
Geometric problems is very much appreciated. This research
is supported in part by the Natural Sciences and Engineering
Research Council of Canada under grant No A0317-102B.

References

PI

PI

[31

PI

Bentley,J. L. Multidimensional binary search tree in database
organization. IEEE Trans. on Soft. Eng., SE-5, 4 (1979),
333-340.
Bayer R. and McCreight, E. Organization and maintenance
of large ordered indexes. Acto Informaticcr, I, 9 (1972), 17%
189

Burkhard W. A. Index maintenance for non-uniform record
distributi&. Proe. SIGACT-SIGMOD Symp. on Principles
of Database Syst., Waterloo, Canada 1984), 173-180.

Fagin, R., Nievergelt, J., Pippenger, N. and Strong, H. R.
Extendible hashing: a fast access method for dynamic files.
ACM bans. on Database Sy8t. 4, 3, (1979), 815-344.

109

[g] Flajolet, P. On the performance evaluation of extendible
hashing and trie searching. Acte Znformotico .QQ (1988), 3&i-
369.

[6] Finkel, R. A. and Bentley, J. L. Quad trees :. a data structure
for retrieval on composite keys. Acto Znformotico, 4 (1974),

VI

PI

PI

PO1

Pll

PI

PI

1-Q.
Hinrichs, K., The grid file system : implementation and case
studies of applications. Ph. D Diesettotion, Swiss Federal
Institute of Technology, Zurich (1985).

Krishnamurthy, R. and Whang, K. Multilevel grid file. Drop
Report, IBM Reecorch Lob., Yorktown Beighte

Litwin, W. Linear hashing: a new tool for table and fde
addressing. Proc. 6th Znt’l. Conf. on Very Large Databases,
Montreal (1980), U 8-283.

Lomet, D. B. A high performance universal key associa-
tive access method. Proc. ACM SZGMOD Conf., Son Jose,
(1983). 190-131

Mendelson, H. Analysis of extendible hashing. IEEE Trans.
on Soft. Eng. SE-8, 6 (198g), 611419.

Nievergelt, J., Hinterberger, J. and Sevcik, K. C. The grid
6le : an adaptive symmetric multikey 6le structure. ACM
Trans. on Database Syet., 9, 1 (1984), 88-71.

Orenstein, J. and Merrett, T. H. A class of data structure
for associative searching. Proc. of ACM SXGACT-SJGMOD
Symp. on Principles of Database Syst., Waterloo, Canada
(1984), 181-190.

[IS] Otw, E. J. A mapping function for the directory of a mul-
tidimensional extendible hashing. Proe. 10th Znt’l Conf. on
Very Lorge Dotobases, Singapore (1984), 49%506.

PI

(171

PI

PI

I201

WI

WI

P31

Otoo, E. J. Linearizing the directory growth in extendible
hashing. Techinicol Report No SCS77, School of Computer
Science, Carleton University, Auguet, 1985.
Ouksel, M. and Scheue rmann, P. Storage mapping for multi-
dimensional linear dynamic hashing. Proc. ACM SZGA CT-
SZGMOD Symp. on Principles of Database Syst., Atlonta,
Georgia (IQ88), QO-105..
Ouksel, M. The interpolation-based grid file. Proc. of fourth
ACM SZGACT-SZGMOD Symp. on Principles of Dotobase
Sy8t., Portland, Oregon (1985), l?O-87.
Overmars, M. H. and Leuween, J. Dynamic multidimen-
sional data structures based on quad- and K-D- trees. Acta
Znformotico, 17 (f988), 667-285. ’
Regnier, M. Analysis of grid file algorithms. BIT, 85 {1985),
335-357.
Robinson, 3. T. The K-D-B-tree : a search structure for
large multidiiensional dynamic indexes. Proc. A CM SZG-
MOD Conf. Ann Abor, Michigan (1981), l&18).
Samet, H. The quad tree and related hierarchical data struc-
tures. ACM Comput. Survey, 16, 8 (1984), 187460.
Tamminen, M. The extendible cell method for closest point
problem. BIT gg (198g), g&.jl.

[14] Otoo, E. J. and Merrett, T. H. Dynamic multipaging : a stor-
age structure for fast associative searching. Tech. Report No
SCS.54, School of Computer Science, Carleton Univereity,
Ottawa.

Figure 4 : The BMRH-&cc obtained after inserting the keys of Table 1.

110

Figure. 5 : The partitioned attribute space induced by the BMEH-tree.

Table 2: Results for 2-dimensional uniform distributed keys.

Table 3: Results for 2-dimensional normal distributed keys.

per. insertion p MEH-Tree 1 6.198 1 4.110 1 3.503 I-3.256]
BMDEH-Tree 7.213 5.646 3.715 3.346

Avg. load MDEH 0.692 0.682 0.658 0.626
factor, ct MEH-TIW 0.692 0.682 0.658 0.626

BMM-% 0.692 0.682 0.658 0.626

Diitoly size MDEH-TIE 65,536 8,192 4,096 1,024 _
for 40,000 MB-l-TIW 1 ~71.264 1 10,432 I 4,160 I 4,160

insertions, Q BMEX-Tree 17,984 1 7,296 1 2,560 1,088

1 Performance 1 Method of I Page Capcity, b 1
1 8 I 16 t 32 I 64
1 2.000 1 2.000 1 2.000

111

Table 4: Results for 3dimensional uniform distributed keys.

I
Figure 6:

II -

IO -

9-
“2

P
B-

9 f-

!i 6-
b
i-5

5-

I
1

4-

NUMBER OF KEYS N x IO3

112

65.

60-

55-
GROWTH ff DIRECTORY SIZE FOR
Z-DIMENSIONAL (bivoriale) NORMAL
DISTRIBUTED KEY6

22 50-

x
p 45-

t3 a-

E
w 35-
&

i 30-

s 25-

b
(L zo-

I
1 15-

IO-

Page cqmcily b = 16

-

S-

0 5 IO 15 20 25 30 35 40

NUMBER OF KEYS N I IO3

113

