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Abstract 

We present a method for designing a multidimen- 
sional order preserving extendible hashing scheme that 
allows the directory to grow almost linearly with the 
number of insertions, irrespective of the key distribu- 
tion. Such robustness in the design is achieved through 
the use of a hierarchical directory that grows in a man- 
ner similar to a multidimensional B-tree. For most prac- 
tical directory sizes of at most 2s* entries, we guarantee 
no more than three diik accesses for an exact match 
search. Like the grid file, the directory corresponds 
to a rectilinearly partitioned attribute space which is 
represented as d-dimensional extendible &ray. Hence 
range and partial-range searches are efficiently executed 
in 0(n~), where no is the number of rectangular cells 
that cover the response region. 

1. Introduction 

Given a file of records whose keys are composed of d-dimen- 

sional vectors K = (kl,kz , . . . , kd), we address the problem of 

the storage and maintenance of such a file under the operations 

of insertions, deletions and partial-range queries. Exact-match, 

partial-match and range queries are considered as special cases of 

the partial range queries. Let the attributes be defined by inte- 

gers 1,2,. . . , d and let S be a subset of the attributes with cardi- 

nality ]S] < d. For each attribute j, let [ai, pi] be some specified 

interval. Then the partial-range query recovers all records whose 

key @I, kz, . . . kd) satisfy the predicate 3 = j$s(s(oLj 5 kj < ai). 

The interest in such multidimensional data organization is 

expressed in many applications of relational, geographic, pi&o- 
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rial and geometric databases that require extensive associative, 

and region searching. The literature is adorned with diverse 

strategies for implementing such data organization. They span 

from tree structured methods such as the K-D-tree [l], the Quad- 

trees [6,19,22] and the K-D-B-trees [21], to multidimensional di- 

rect access methods such as the grid-file or multidimensional 

extendible hashing [7,8,12,15,18,20,23], the interpolation-based 

index method [3], multidimensional linear hashing [17], and dy- 

namic multipaging [14]. 

The direct access methods with the exception of dynamic 

multipaging, are all based on one or the other of two one di- 

mensional dynamic hashing : extendible hashing [4] and linear 

hashing [9]. The two diik access principle of extendible hashing 

and the fact that no special overflow organization is required, 

make it very attractive for adaptation in multiple key data or- 

ganization. 

The underlying principle of the multidimensional extendible 

hashing is as follows. Let each key be a d-dimensional vector 

K = (kl,kd,..., kd). In the sequel, our use of the term ‘key” 

K may also imply a record with a key value K, depending on 

context. A pseudo-key K’ corresponding to K is defined as 

K’ = (k;, k; ,..., kh),whereki=$j(kj),forj=1,2 ,..., d,isa 

binary value in [O,l]. The function $j defines a binary encoding 

of values of attribute j. Equivalently, ki may be conceived as 

an infinite sequence of O/l bits. Consider the geometric repre- 

sentation of the records of the file as points in a d-dimensional 

hypercube [0, 111 x (0,112 x . . . x [0, I],+ This space is termed the 

attribute space, bitmap or key space of the file. The dynamic 

direct. access lile organization schemes essentially partition the 

attribute space rectilinearly into rectangular regions or cells such 

that, for some predefined page capacity b, the number of points 

in a rectangular cell is no more than b. This explicit parti- 

tioned space is represented either as a directory whose entries 
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are pointers to the pages where the records are stored or as data 

pages. In the former representation, the attribute space may 

be conceived as partitioned explicitly into regions of rectangular 

cells where each region corresponds to a group of cells with a 

common page pointer. The significant differences between the 

various dynamic multidimensional hashing schemes is in the im- 

plementation of the directory and the organization of the data 

pages. 

To locate a record in two disk accesses, the directory is typ 

ically represented as a one level multidimensional array. It is 

shown in the analysis of extendible hashing and the grid file 

[5,11,20], that if the distributions of the keys in the attribute 

space is reasonably uniform, the directory size is superlinear. 

On the other hand non-uniform data distribution generates an 

almost exponential directory growth particularly for small data 

page capacities. The use of the scheme for efficient range search- 

ing requires order preservation in the sense that for each at- 

tribute j having key components &and kh, if &jl 5 k+, then 

kil 5 kL. Under such conditions one frequently encounters non- 

uniform data distributions and the directory growth becomes of 

much concern. 

The question of organizing the directory for an order pre- 

serving extendible hashing scheme so that it gracefully adapts 

to the key distribution has only recently been addressed by 

Burkhard [3], Krishnamurthy and Whang [S], O&e1 [18] and 

Hinrichs [2]. There are two main ideas that have been advanced. 

The first advocates the use of a piecewise linear function. The 

second proposes the use of a two level directory. We present a 

general method for designing a multilevel directory associated 

with multidimensional extendible hashing that allow linear di- 

rectory growth. We show that a straight forward hierarchical 

built up of the directory fails to restrain the potential exponen- 

tial growth of the directory even for uniform key distribution. 

In (181, we developed the multidimensional extendible hash- 

ing (MDEH), and defined appropriate mapping function for the 

scheme. We resolve the shortcomings in the design so that non- 

uniform distributed keys may be satisfactorily handled with a 

directory of moderate size. This new scheme is referred to as a 

Balanced Hierarchical Multidimensional Extendible Hash ‘Dee 

(BMEH-tree). The method integrates the concepts of MDEH 

and the K-D-B-tree of Robinson [21]. Unlike any known meth- 

ods, the local depth maintained in the directory play a signif% 

cant role in determiniig the target page of a key. TO highlight 

the considerable reduction in directory size under uniform and 

non-uniform key distributions we compare the scheme with the 

one level directory design (MDEH) and an alternative multilevel 

directory design whose nodes are not height balanced. This la& 

ter design is referred to simple as a multidimensional extendible 

hash tree (MEH-tree). Our experimental studies show that the 

BMEH-tree is clearly superior in maintainiug the minimum di-’ 

rectory size under both uniform and non-uniform key distribu- 

tion. 

2. Design Concepts 

2.1. A Variant of Extendible Hashing 

The progression of the ideas involved in the design of the bal- 

anced multidimensional extendible hashing scheme begin with 

an order preserving variant of the extendible hashing technique 

of Fagin et al. [4]. This is outlined briefly here. Let each key 

be a single attribute value and for simplicity, consider this as 

a sequence of O/l bits K = zrzzzs. . . z,,,, of length w = 32 

say. The file organization is comprised of two levels: a directory 

which we denote by D, and a set of data pages (5, P2,. . . ,P,,}. 

The value nz varies in consonance with the file expansion and 

contraction. 

The directory is composed of a directory header D.H, called 

the ille depth and nd directory elements D1, Dz, . . . , D,,, where 

nd = 2D*R. Each directory element 01, consists of a page pointer 

Di.P and a local depth Di.h. The storage of the local depth as a 

component of the directory element differs from the original de- 

sign in [4] where the local depth is maintained in the data pages. 

Storing the local depth in the diitry allows an immediate 

deletion of empty pages. The local depth signifies the length of 

the common preilxes of the keys in a page. Suppose the binary 

bit sequence of a key K = xrzzxs . . . zw. Then the address i 

of the directory entry Di, corresponding to K, is determined by 

the first H prefix bits of K. This is defined by a function g as 

i=g(K,H) = c ~,2=-~. 
ll&R 

The manner in which the llle expands is illustrated hg 

Figure la. Suppose the key K = “lOlOl...’ is to be inserted 

and the global depth D.H = 2. Using the prefix bits “10” we 

determine the address g(K, D.H) = 2. The page pointer in 4 

is given by 4.P = P2, and the local depth at this address is 

D2.h = 1. Assuming the page Pz is full then a third page s will 

be allocated. The page pointers of the directory elements D2.P 

and Ds.p are set to P2 and PJ respectively. Similarly the local 
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Figure lb : 1-dimesional extendible 
hashing after directory expansion. 

Figure la: l-dimensional extendible 
hashing, H = 2 
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Figure 2 : Directory configuration for a 2-dimensional 
MDEH. The Pi’s denote page pointers. 
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depths D2.h and D3.h are increased to 2. The keys in the page 

9 are rehashed to be distributed between P2 and Ps. 

If the key to be inserted were K = ‘OllOl...“, then the 

directory element addressed would be Dr and the page pointer 

D1.P = 5. Splitting the page PI would result in increasing the 

local depth D1.h to 3. Since this exceeds the global depth, the 

global depth D.H is also increased to 3 with the consequence 

that the directory size is doubled. This gives the configuration 

shown in Figure lb. 

The extendible hashing scheme has been extensively anal- 

ysed (see (5,111). Under the assumption that, all possible config- 

urations of allocating N keys into pages of capacity b are equally 

likely, the directory size in extendible hashing is shown to be 

O((1 + l/b) logs N)N’+rlb). 

2.1. Multidimensional Extendible Hashing 
With One-Level Directory 

Consider now that each key is a vector K = (kr, k2 . . . , kd), 

where kj = zr-jZej.. . x,,,~, is a binary sequence. As in the 

preceding section, the file is organized in two levels of a directory 

and set of data pages. The directory is headed by d global depths 

H1,H2,.. .> Hd. A directory element D< consist of d local depths 

Di.(hl,ht - * * 3 hd), a value Diem, specifying the dimension along 

which the last directory expansion was made, and a page pointer 

Di.P. The relationship between the local and global depths are 

maintained independently for each dimension such that Di.hj < 

D.Hj, for j = 1,2,. . . , d. 

To determine the page address of the key K = (ki, kz, . . . kd), 

we first compute d index values 

;j=g(kj,Hj)= c x *SRjerj, for j=l,2 ,..., d. ‘j 

1pgIj 

These values form a d-tuple index (ii, is,. . , id) which is used 

to address the directory. Let 5 denote an appropriately defined 

mapping function. Then the address q, of a directory element Dp 

corresponding to the key K, is given by q = $(il,&,. . . id), The 

required mapping function 9 is essentially that of an extendible 

array of exponential varying order which is described in detail 

in (151. For completeness we restate it in Theorem 1. 

Theorem 1. The d-tuple index (&is,...,&) of a d-dimen- 

sionrrl extendible array A[0 : 2h1, 0 : 2b,. . . ,O : qhd], of ex- 

ponential varying order in which each dimension has infinite ex- 

tendibility can be mapped one-to-one onto the logical integer 

Backsee (0, 1,2,. . .}, by the function Jj defined 8s 

0, ifIXl$ij) = 0 ; 

$(G, i2, , . . id) = d d 
i. $v, Jj + C Cj * ii, otherwise; 

j=L 
i#= i#= 

where z = highest dimension index z s.t.; 

[log2 4 = y(llog2 ijJL 

Jj = 
1 

Zhx+’ if j < x; 
2h’ ifj2.z. 

and ‘Cj = fr Jr 
r=,++l 
-#I 

Considering the evaluation of the log’s and exponentiations 

as primitive operations, the time complexity of $ is O(d). The 

function 9 is easily modified to take care of the case where a di- 

mension does not have infinite extendibility and the cyclic choice 

of the dimensions skips over this. This corresponds to the case 

where the attribute values of a dimension may be coded by 8 

shorter string of binary digits than the rest. 

Given the directory element D,, the page pointer is denoted 

by D,.P. Assuming the page D,.P overflows. Then the keys 

in the page D,.P are split, with the consequence that the local 

depth D,,.h, of some dimension A, must be increased. Within 

the entry D,, the value of m is updated before being used, and 

is updated cyclically by assigning D,.m c (D,.m mod d) + 1. 

If in increasing Dp.hm, this value exceeds the global depth H,, 

then the directory is doubled along the dimension m. The effect 

of the cyclic doubling of a Zdimensional directory is illustrated 

by the Figure 2. The number indicated in each cell denotee the 

logical linear address of the cell. 

3. Hierarchical Directories 

The directory in the MDEH scheme above can easily degen- 

erate giving 8 considerable large directory size for two main rea- 

sons. Most data distributions encountered in practice are highly 

non-uniform particularly when order preservation is enforced. 

Data that is being processed dynamically often exhibit some 
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noise effect,, where a short burst of consecutive keys inserted 

differ only in the low order bits and therefore cause repeated 

splitting and directory expansion. Consider the one-dimensional 

extendible hashing scheme discussed in the preceding section. 

Assuming that each key is a 32-bit binary integer with maxi- 

.mum value M = 2s* - 1, then the worst, case directory size after 

inserting N 1 b + 1 keys, iz O(M/(b + 1)). Further the cost of 

key insertions becomes O(M/(b + 1)) directory accesses. Thii 

results from resetting half the number of page pointers in the 

directory when new page is allocated. It has been recommended 

that large page sizes be used since this tends to generate small 

directory sizes (111. Another proposed solution to controlling the 

generation of large directory sizes is the use of a hierarchical di- 

rectory. A design strategy for the case of single attribute keyed 

file is presented in [16]. The potential for the exponential growth 

of the directory is accentuated in the one-level multidimensional 

equivalent. described previously. We present the balanced hier- 

archical multidiiensional extendible hash tree (BMEH-tree) as 

a solution. 

3.1. The Basic Idea of the BMEH-tree 

The main idea of the scheme is to allocate the storage space 

of the directory in fixed size blocks or pages that form the nodes 

of a balanced M-ary tree. In general a block of the directory 

would be chosen to be of the same size as the data page. The 

‘leaf nodes in an l-level BMEH-tree is taken as the first level 

nodes of the directory which is considered to be at level 1. The 

root node is at level E All data pages are at the same level, 

i.e level 0. Only the leaf nodes of the directory contain pointers 

to data pages. The directory elements of the higher level nodes 

contain pointers to lower level nodes. A number of pointers in a 

node can point to the same node at a lower level (see Figure 3~). 

Let G, (2,. . . , & be the maximum file depths of each di- 

mension within a node, and let $ = C &. Then a node can 
lSj<d 

contain at most M = 24 elements. Each node in the tree is 

organized as in the one-level directory of the multidimensional 

extendible heahing scheme except that the global depths Hi, 

of each node can only increase up to b. Any subsequent, ex- 

pansion of the node results in node splitting. For simplicity we 

illustrate the node splitting process for a 24iinsional directory 

tree, where d = 2. Let 61 = (2 = 2. Starting with a single di- 

rectory node D:, the node doubles at each expansion etep until 

D$.H1 = (1 and 0i.H~ = t. 

Assuming that the key K = (“01011.. .“, ‘10100.. . “), is to 

be inserted and the directory is to be doubled. The directory 

entry in 0: determined by the key K, has the coordinate address 

(‘Ol”, ‘10”) = (1,2). Let this be denoted as Dj(1,2). We illus- 

trate this 88 the shaded cell in Figure 3a. Instead of doubling 

the node along the 6rst dimensions so that the first, three prefix 

bits are used in generating an index of the first dimensions, we 

split this node into two nodes, 0: and 0:. A third node Df, 

is created which now becomes the parents of of nodes b: and 

0:. The two entries in the node 0: are D:(O,O) and D:(l,O). 

The first entry points to the lower level node 0: and the second 

points to 0:. Each directory entry within each node maintains 

appropriate information of the local depth and the dimension m, 

which has just been extended. The schematic storage layout is 

illustrated in Figure 3b. 

In this scheme, the local depths play a significant role in 

determining the target page of any key K, as we traverse the 

directory tree. During the split, the local depth hl of every 

directory entry of the nodes 0: and 04 is decreased by one, 

except for two entries both of which are in either 0: or 0: 

that have pointers to the pages created from page splitting. If 

the page P, in Figure 3a is the page that triggered the page 

splitting, then the two pages generated are P,, and Pb as shown in 

Figure 3b. At the same time the local depth hl in the two entries 

Df(O,O) and D:(l, 0) are initialized to 1. The effect, of such a 

splitting process is that the directory tree grows towards the 

root, in the manner re miniscent of the K-D-B-tree of Robinson. 

[21]. Consequently the directory tree is completely balanced 

with respect. to the path length from the root to a data page. 

Carrying the example one step further in the expansion pro- 

cess, let us assume that the directory node 0: is split as a result 

of a key insertion into page 0: (2,2) .P = P. say. The result- 

ing configuration of the scheme after the node splits is shown 

in Figure 3c. The node 0: is split into two nodes 0: and 04 

on the dimension 2. The creation of these two nodes causes the 

,aexpanzion of the parent node Df and the global depth Do.& 

increases to 1. The pointers in the directory entries of the root, 

node are now defined aa Di(O,O).P = 01, Di(O,l).P = 0: 

and D:(l,O).P = D:(l,l).P = 0:. At the first, level of the 

directory tree, the two pages involved in the split are given by 

D:(2,2) = P,, and Di(2,3).P = Pb. The split&b process is car- 

ried out, for each dimension in turn, cyclically, until the root node 

becomes full. This may generate further splitting and eventually 

cause the root node to split, as well. 
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To address the page of the key K = (‘0101.. . “, ‘1010.. . “) 

in Figure 3c, the first bit a0”, of the first component key value 

and bit ‘1” of the second component key determine the address 

of the entry Df(0, 1) at the root node. The pointer in this en- 

try is 0:. Suppose the local depths are Df(O,l).hr = 1 and 

0: (0,1) .hr = 0. This implies that we strip off the first bit of the 

first key component but none from the second key component 

when determining the correct directory entry of node 0:. The 

directory entry from the rest of’the key values, is generated as 

D~(“lCr, ‘19”) or D:(2,2). The page pointer of thii directory 

element gives the target page of the key K as Di(2,2).P = PI. 

The algorithm for searching for a key K = (kr, kz,. . . kd) 

in a balanced hierarchical extendible hash tree is specified as 

follows. The variable ROOT specifies the address of the root 

node.’ We assume that the routine GetPage retrieves into 

main memory, the page corresponding to either the directory 

node or data page pointer P and returns a pointer to the main 

memory address where the page resides. 

Algorithm EXM-Search((kr, kz,. . . ,kd), ROOT) 
begin 

NodePtr +- GetPage(ROOT); 
vi + kj for j= 1,2,...,d; 
Set ii + g(vj, NodePtr 7 *Hi), for j = 1,2,. . . d; 
Set Q + Q(ir,ir,. . . ,id); 
SeD P +- NodePtr t .D(q).P; 
if P is a directory node pointer then 
begin 

Remove the first NodePtr t .D(q).hj bits from 
vi,for j=1,2 ,..., d; 
EXMJlearch((vr, ~2,. . . , vd), P); 

end else 
begin 

Read the page P into memory and search for 
the key K; 
if found then return (“found”) 
else return( “not found”); 

end; 
end; 

Let Q = C 
l<j<d 

cj denote the sum of the global depths allowed 

in a node. If the total number of prefix bits used in addressing 

a directory of size nd, is w, then the maximum number of levels 

in the tree e = [w/$1. For instance, choosing 4 = 9 gives f 5 3 

for w 5 27 and L 5 4 when w 5 36. Considering that the root 

node can always be retained in memory, it takes at most 3 diik 

accesses to locate a record of a file with a diiectory size fld 5 2*‘. 

4. Insertions, Deletions and Retrievals 

4.1. Insertions 

The discussions in the preceding section leads to the follow- 

ing algorithm UBMEH-TreeJnsert” for inserting a record with 

key K = hkz, . . . , kd) into a balanced multidimensional ex- 

tendible hashing structure. The algorithm has some dependent 

routines whose functions only are described. We assume that a 

global stack ‘STACK” is available. 
Push (NodePtr, I, STACK) : This routine pushes the node 

pointer NodePtr and the index I into a stack STACK. 
Pop (NodePtr, I, STACK) : The function of this routine is to 

pop the values I and NodePtr from the stack STACK. 
Expand,Dir(Node, PI, P2, m) : The routine expands the direc- 

tory node in a manner corresponding to that of an ex- 
tendible array of exponential varying order. The pointer 
fields of two entries in this node are set to contain PI 
and and 4. 

Split-Node (Node, Pl,Pz, m) : This routine splits the node 
given by Node. The pointer fields of two entries in one 
of the new nodes are updated with the values of PI and 
9. The values PI and P2 are respectively reset to Node 
and the new allocated page involved in the split. The 
routine returns false if the ROOT node is split. 

Algorithm BMEH,Insert(K = (kl, kz, . . . , kd), ROOT); 
begin 

uj+kj,for j=1,2 ,..., d, 
P + ROOT; 
Initialize the STACK to empty; 
while P is a directory pointer do 

NodePtr + GetPage( 
ij t g(vj, NodePtr T *Hi); 
qt $(il&eaeai,4); 

Push(P, q, STACK); 
Left-Shift (Vi, NodePtr t .D(q).hj); j = 1,2. . . d; 
P + NodePtr t .D(q).P; 

endwhile; 
ifP=NILthen 
begin 

allocate a new data page PK; 
using the value of NodePtr t .D(q).m and 
the difference between the global depth NodePtr t .& 
and the local depth NodePtr t .D(q),h,,,, 
determine all directory entries having the same 
file depths as the one given in NodePtr t .D(q), 
and set the pointer field values to PK. 
Store the key in page PK and return; 

end else 
begin 

PI C- GetPage( { read into memory page P } 
if page P already contains key K then 

print (‘error message”) and return; 
if page P is not full then 

store record in page P 
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else begb 
allocate a new page PK; 
set P2 + GetPoge(PK); 
copy content of page P into a temporal 
storage Q; 
Set Co&Split + true; 
while Cent-Split do 

Pop (NodePtr, q, STACK); 
if number of entries in NodePtr t .D 5 Z” 
then begin 

Expand-Dir(NodePtr t,Pi,Pz,m); 

Set Cant-Split + false; 
end else 

Cant,Split + Split-Node (NodePtr t, 

Pl,P2,4 

endwhile 
Batch insert ali keys in 8; 
BMEH,Insert(K = (kr, kz, . . . ,kd), ROOT); 

.endlf 
endlf 

end { algorithm BMEHJnsert }; 

The BhfEH-tree organization allows the worst case number 

of directory splitting and worst case number of directory accesses 

per record insertion to be controlled according to the choice of 

the values &,.5,... cd. We have the following theorems which 

we state below. 

Theorem 2. In a balsnced d dimensional extendible hash tree 

with parameters d, b, W, [ii, for j = 1,2,. . . d, Jet 4 = C 
lljld 

tj be 

the speciiied bound on the number of bits allowed for addressing 

within a node of the BMEH-tree. Then for a directory using at 

most w bits to address an entry, the worst casa number of node 

splits for an insertion is %& + I, where L = [w/+1. 

Sketch of Proof 

Let the maximum number of bits used in addressing apge 

in a the BMEH-Tree organization be w and define.4 = C [j. 
j=l 

The maximum number of levels in the directory is ,L = [w/4]. 

For simplicity we assume that all the key components participate 

in the address calculation with equal number of bit encodings. 

The worst case number of splits occurs when, in attempting to 

insert the (b+l)st key, all the keys agree in the first w-l bits 

compared but has at least one key that differs on the last bit. 

The directory tree generated is such that there is one root 

node on level L, (4 + 1) nodes on level L - 1, (29 + 1) nodes on 

level L - 2 and so on. On level i, there are (L - i)+ + 1 nodes. 

The total number of nodes in the directory then is 
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= 2+ v- W(- qe- l)d I L. 
2 2 

Since these nd nodes are generated from nd - 1 splits plus one 

extra from the page split, the worst case number of node splits 

is given by (gw + e). m 

Theorem 3. In a bslanced d dimensional extendible hash tree 

withpammetersd,b,cu,t,forj=1,2 ,... d,Jet+= C cj be 
lsjld 

the speciiied bound on the number of bits allowed for addressing 

wittin a node of the BM’EH&ee. Then fdr a directory using 

at most w bits to address an entry, the worst case number of 

directory node accesses for an insertion is O(#), where L = 

bJ/41* 

The argument for the proof of Theorem 3 follows from The- 

orem 2. 

4.2. Deletion 

The splitting process is easily reversed to handle deletions. 

The nodes may be recursively merged, starting from the bottom 

until possibly the root node is deleted. The deletions process 

does no encounter the problem of deadlocks as in the grid-file 

(7, 121, since we adhere strictly to the reversal of the insertion 

process. The details of how this is performed is easily derived 

from the insertion algorithm. 

4.3. An Example 

The following examples illustrates the essential concepts of 

the BMEH-tree. Consider the storage of the l-dimensional keys 

of Table 1 using balanced hierarchical f-dimensional hash tree. 

Suppose the parameters specified are (1 = (2 = 2, and the 

page capacity b = 2. Then the Figure 4 shows the configuration 

of the scheme after all key insertions are made. The explicit 

attribute space partitioning induced in this case is shown in Fig- 

ure 5. 

An alternative to the BhIEH-tree is another tree structured 

directory which we refer to as a multidimensional extendible 

hash tree (MEH-tree). In thii scheme the tree grows from the 

root downwards. Although this design is simpler to implement, 

the reduction in the directory size is not significant compared to 

the one-level directory design of a multidiiensional extendible 

hashing scheme (MDEH). In some instances and even for uni- 

form distributed keys, the directory size in an MEH-tree struc- 

ture can be worse than the one-level directory. This scheme has 

been implemented for comparison with the BMEH-tree. 



begin 
q + Q(il,iz,. . . ,i,J; P + NodePtr t .D(q).P; 
lfP has not been accessed then 
begin 

if P is not a data page then 
begin 

Left-Shift(vi, NodePtr t .D(q).hj), and 
Left-Shift(uj, NodePtr 1 .D(q).hj), 
for j= l,Z...d; 
PRG-Search((q, : ur,, . . . ,vh : uk),P); 

end else 
Retrieve all records that satisfy the range 
predicate 7; 

aa; 
Set j 6 0, and Search,Region.c “false”; 
while j 5 d and NOT Search-Region do 
begin 

ij + ij + 1; 
if ij > IJj then 

begiuSetijtLj; jtj+l;end 
else 

Search-Region + ?rue”; 
end; 

end; 
end; 

Theorem 4 In a balanced d dimensional extendible hash 

tree with parameters d, w, b, (3 for j = 1,2,. . . d, let S C 

I&%..., d}. Then a a query that requests the retrieval of aII 

records with key K = (kl, 4,. . . kd satisfying the predicate 7 = 

jt4s(aj 5 kjbsj) can be processed in 0(.6a~) disk accesses, where 

nR is the number of rectangular cells of the partitioned space 

that cover the query region and L = [w/41. 

Table 1 : A set of binary encoded keys. 

KK:. 
= (1110,010) 

K3 
= (1011,101) 
= (0101, 101) 

K4 = (1100,101) 
K5 = (0001,111) 

is = (0100’010) 
= (0010 100) 

K8 = (0111: 100) 
y. = (0001,001) 

= (0110,010) 
Kll = (1000,110) 

K12 = (0111,001) 
K13 = (0011,000) 
K14 = (1100,000) 
K15 = (1001,011) 
K16 = (1101,001) 
K17 = (0011,100) 
K18 = (1110,011) 
K19 = (0111,011) 
K20 = (OGOl,OlO) 
K21 = (1001,001) 
K22 = (0110,011) 

4.4. Partial Range Retrievals 

The BMEH-tree facilitates the processing of partial-range 

queries. Let S be a subset of the integers {1,2, . . . ,d}, rep 

resenting the dimensions in the scheme. For each j E S, let 

[oj,pj] be a specified interval. Suppose we desire the set of 

records whose keys K = (kl, kz, . . . , ka) satisfy the predicate 

7 = ,$$(oj 5 kj 5 ai). Then the algorithm PRG-Search recur-’ 

sively traverses the directory node in depth-first-search order 

to retrieve the records in the pages whose corresponding cells 

are covered by the query region. We assume the existence of an 

order preserving binary encoding function $, and a procedure 

Left,Shift(x,y) which shifts the bits in x, y places to the left. 

The algorithm takes a parameter ROOT, which is the address 

of the root node of the directory tree, and pairs of binary ime. 

gers kj,, kj. (one pair for each dimension), which are defined as 

follows. 

kj, = Jlh), ifjES; 
%OOOO . . . n, otherwise. 

kj, = I%%), ifje S; 
‘11111.. . “, otherwise. 

AlgorithmPRG,Search((kr, : kl,, . . . , k,+ : k,+,,), ROOT); 
begin 

NodePtr + GetPage(ROOT); 
Set vi * 4; Uj * kj,,; ii + Lj + g(~j, NodePtr t .Hj), 

andUj+g(kj~,NodePtrfJIj),forj=1,2,...,d; 
Set Search-Region + ‘true ‘; 
while Search-Region do 

Sketch of Proof 

Consider the rectilinear partitioning of the attribute space 

induced by the BMEH-tree. For an orthogonal range query, the 

query region is overlapped by a number of such cells. In the 

worst case each cell contains a pointer to a separate data page 

which can be arranged to be accessed once. If the total number 

of cells covering the query region is taR and the cost of accessing 

each page is at most L then we require O(L + no) to retrieve the 

requested records. H 

6. Experimental Results 

As a 6rst step towards understanding the behaviour of the 

balanced multidimensional extendible hash tree organisation, 

we study some performance characteristics through simulation; 
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These measures are compared with those of the multidiien- 

sional extendible hashing with one-level directory (MDEH), and 

the multidimensional extendible hash tree (MEH-tree) for data 

page sizes of 8, 16, 32 and 64. 

The experiments are conducted for two classes of data dis 

tributions : 

1. uniform distributed keys in which each key component is a 

pseudo random integer in [0,2’l- l] (we investigate this for 

2- and t-dimensional keysj; 

2. a two dimensional (bivariate) normal distributed keys where 

each component of the key vector is a truncated discretized 

normal in (0, 231 - 11. 

Each run of the experiment consists of inserting N = 40,000, 

keys and computing the averages of the performance measures 

on the last 4,000 keys inserted. In the BMEH-tree and the 

MEH-tree, the node sizes are restricted to 64 entries only, i.e., 

Q = 6. For d = 2, we have (1 = (2 = 3, and for d = 3, we have 

6 = (2 = 6s = 2. This is to allow for a fast build up of the 

number of directory levels. The performance parameters derived 

are :- 

: the .average number of disk reads for c successful exact- 

match search. 

: the average number of disk reads for an unsuccessful exact- 

match search. 

: the average number of disk accesses for a key insertion. 

We consider a disk access as either a disk read or a write. 

: the directory size (in number of directory elements) gen- 

erated after 40,000 key insertions. 

: the average load factor which is defined as the ratio of 

the number of keys inserted to the amount of storage space 

made available by data pages allocated. 

The result of the simulations are summarized in the Tables 2, 

3, and 4. In Figures 6 and 7, we show the graphs of the variation 

of the directory size (tad) as random keys are inserted for the 

two cases of a-dimensional uniform and non-uniform distributed 

keys. The BMEH-tree is clearly superior in maintaining a much 

smaller directory size in either case. Further the directory grows 

almost linearly with the number of keys inserted. 

6. Conclusion 

Using the balanced multidimensional extendible hash tree 

technique gives us a new method of data organization that im- 

proves upon the one-level directory method of multidimensional 

extendible hashing and the grid-file. The method inherently 

controls the possible exponential growth of the directory with- 

out compromising on the O(1) disk access principle guaranteed 

in extendible hashing schemes. Not only does the BMEH-tree 

maintain an almost linear growth for both uniform and non- 

unform data distribution, the average number of disk accesses 

for a key insertion is considerable less than in the MDEH scheme. 

We draw the readers attention particularly to the value of p in 

Table 3 when b = 8. 

The ideas in the BMEH-tree may be extended to generate 

another breed of tree structures that may be characterized as 

Balanced Binary Quadtree, Octtree etc. This is easily achieved 

by setting cj = 1, for every dimension and deleting some of 

the information retained in the directory elements. The stan- 

dard Quadtree [19, 221 and its derivatives have previously been 

known to be difficult to balance. The BMEH-tree is,a natural 

candidate for the physical design of such data base systems as in 

relational, geographic , geometric, pictorial and CAD databases, 

whose applications require a high degree of associative or spatial 

searching. 
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Figure 4 : The BMRH-&cc obtained after inserting the keys of Table 1. 
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Figure. 5 : The partitioned attribute space induced by the BMEH-tree. 

Table 2: Results for 2-dimensional uniform distributed keys. 

Table 3: Results for 2-dimensional normal distributed keys. 

per. insertion p MEH-Tree 1 6.198 1 4.110 1 3.503 I-3.256 ] 
BMDEH-Tree 7.213 5.646 3.715 3.346 

Avg. load MDEH 0.692 0.682 0.658 0.626 
factor, ct MEH-TIW 0.692 0.682 0.658 0.626 

BMM-% 0.692 0.682 0.658 0.626 

Diitoly size MDEH-TIE 65,536 8,192 4,096 1,024 _ 
for 40,000 MB-l-TIW 1 ~71.264 1 10,432 I 4,160 I 4,160 

insertions, Q BMEX-Tree 17,984 1 7,296 1 2,560 1,088 

1 Performance 1 Method of I Page Capcity, b 1 
1 8 I 16 t 32 I 64 
1 2.000 1 2.000 1 2.000 
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Table 4: Results for 3dimensional uniform distributed keys. 
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