
TOWARDS A SELF-ADAPTING 
CENTRALIZED

CONCURRENCY CONTROL ALGORITHM 

Haran Boral
Microeletronics & Computer Technology Corporation 
9430 Research Blvd., Echelon Bldg. #1, Suite 200 

Austin, TX 78759

Israel Gold
Computer Science Department 

Technion —  Israel Institute of Technology 
Haifa 32000 Israel

ABSTRACT

We introduce the notion of self-adapting concurrency control algorithms —  
concurrency control algorithms that consist of several rw and several ww 
synchronization techniques, and employ combinations of the techniques in a 
manner that attains a performance objective. We Consider synchronization 
techniques that use locking and certification. A general proof method for 
such algorithms is outlined and applied.

1. INTRODUCTION

Several centralized concurrency 

control algorithms have been pro

posed during the past several years. 

The majority of the algorithms are 

based, to one degree or another, on 

the Two Phased Locking method (2PL) 

[ESWA76] in which waiting is used to 

synchronize conflicting transac

tions; and on methods that allow 

conflicting transactions to run 

concurrently but use rollback in 

cases where inconsistent updates to 

the database could result [KUNG81] 

(known as Certification Methods 

because they certify a transaction 

for additional processing or commit, 

or cause it to abort).

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-128-8/84/006/0018 $00.75

At system design time a concurrency 

control algorithm is picked for the 

system (typically a 2PL variant) and 

incorporated into it. This design 

decision may be made based on some a 

priori knowledge of the expected use 

of the system or simply because the 

algorithm may appear to be (or 

actually may be) the best. Due to 

the complicated structure of soft

ware systems such as database 

management systems it is unlikely 

that the original algorithm incor

porated into the system will ever be 

changed or even be improved, despite 

the fact that the system may be used 

under a variety of workload condi

tions in two separate settings or 

even in the same setting over a long 

time interval.

Recently researchers have begun to 

compare several different algorithms 

in an attempt to reach some conclu

sion concerning their operational 

merit. Naturally, if a clear cut

http://crossmark.crossref.org/dialog/?doi=10.1145%2F971697.602263&domain=pdf&date_stamp=1984-06-01


conclusion can be reached about one 

algorithm being "best" at almost all 

times then that algorithm should be 

employed by all database management 

systems. The studies range from the 

purely abstract [PAPA79] to more 

"conventional" ones where such 

measures as transaction throughput 

and cost of the concurrency control 

mechanism are evaluated [AGRA83], 

[CARE83], [GALL82]. The conclusions 

so far seem to indicate that vari

ants of 2PL are cheap in terms of 

system resources required [CARE83] 

and lead to higher system throughput 

than certification algorithms. 

These studies, however, are by no 

means the last word since the 

simulations performed were not run 

under a wide variety of system 

workloads and parameters. In fact, 

not only does it appear as though no 

characterization of such workloads 

exists but that due to the changing 

application areas (e.g. artificial 

intelligence applications) the 

usefulness of such a characteriza

tion may be shortlived.

It is our thesis that the concur

rency control mechanism in a data

base management system should be a 

versatile piece of software that has 

the ability to adapt itself to the 

system workload (or environment). 

We envision a mechanism that "knows" 

about locking and certification and 

uses its knowledge in one of the 

following ways:

(1) Use one of several algorithms 
known to it for all the transac
tions. Periodically switch from 
one algorithm to another (based 
on the system workload).

(2) Use several algorithms concur
rently, each for a given prede
termined class of transactions 
and ensure that conflicts

between transactions from two 
different classes are resolved 
correctly.

A disadvantage of the first approach 

is that at any given moment exactly 

one algorithm is used to synchronize 

all the transactions. In an envi

ronment in which several transac

tions of different classes are run 

concurrently a concurrency control 

mechanism of this type may not 

perform well because of the need to 

change algorithms frequently. This 

approach has been investigated by 

Robinson [ROBI82].

In the second approach the alloca

tion of algorithms to classes may be 

done statically (as was done in the 

SDD-1 concurrency control mechanism 

[BERN80]!) or quasi-dynamically —  

by using an initial static alloca

tion that may change at run time. 

The quasi-dynamic approach seems to 

be the most promising of the three 

possibilities. A static allocation 

of algorithms may suffer because it 

is insensitive to the dynamics of 

the system.

We introduce the notion of integra

ted concurrency control algorithms 

(ICCAs) to implement the quasi

dynamic approach. An ICCA consists 

of a set of rw synchronization 

techniques and a set of ww synchro

nization techniques running concur

rently. Each transaction may be 

mapped statically (before it is run) 

and dynamically (during its execu

tion) to one rw technique and one ww 

technique. *

*We envision a class as composed of 
transactions that share some common 
feature, i.e., "short writers." 
This is to be distinguished from the 
characterization of classes in 
[BERN80].



The model we use is the private 

workspace model of [BERN81J. We 

introduce the use of the PRE_WRITE 

—  a "temporary write" —  in addi

tion to using DM_READs and DM-WRITEs 

to synchronize conflicting opera

tions. Since PRE-WRITEs do not 

affect the database state the 

concurrency control mechanism has 

complete freedom in choosing how to 

use them in synchronizing conflic

ting operations thereby enabling it 

to control the level of concurrency 

in the system.

In this paper we show that it is 

possible to construct a dynamic 

concurrency control mechanism that 

employs both waiting and rollback, 

concurrently, to synchronize con

flicting transactions. In Section 2 

we give an overview of the database 

management system (DBMS) model used 

in the paper. Section 3 discusses 

the Transaction Manager (TM) model 

both data structures and the 

operations the TM performs on them 

on behalf of transactions. In 

Section 4 we present four synchro

nization techniques based on 2PL and 

Certification. The notion of an 

Integrated Concurrency Control 

Algorithm (ICCA) is introduced in 

Section 5. In Section 6 we present 

a formalization of the techniques 

and give the proof method used to 

show an ICCA correct. We conclude 

with summary of present work in 

Section 7.

2. THE DATABASE MANAGMENT SYSTEM * 1

MODEL

In this section we discuss the DBMS 

model. The model utilizes private

1 workspaces allocated to active 

transactions to cache their previ-

ously read data items as well as 

those written by the transaction 

during its execution. Bernstein and 

Goodman [BERN81] and Rung and 

Robinson [KUNG81] used this model 

previously. The following descrip

tion closely models that of 

(BERN81].

A centralized DBMS can be seen as 

composed of two components: A

Transaction Manager (TM) and a Data 

Manager (DM). The TM controls 

interaction between users and the 

DBMS and is responsible for such 

functions as concurrency control. 

The DM is responsible for management 

of the database itself, i.e., 

accessing it. Two data manipulation 

operations are recognized by the DM: 

DM_READ(X) —  in which data item X 

is read; and, DM_WRITE(X,NEW_VALUE) 

—  in which the value NEW_VALUE is 

assigned to data item X in the 

database.

Users of the DBMS interact with it 

by running transactions. The TM 

maintains a private workspace for 

each active transaction in which 

copies of records read or written by 

the transaction are kept. From the 

DBMS point of view a transaction 

executes four types of operations: 

TRANS, READ, WRITE, and SNART. The 

actions taken by the TM upon receipt 

of these commands are described 

below.

TRANS: The TM initializes a private
workspace for the transaction.

READ(X): X is a data item. If X
already exists in the private 
workspace then its value is 
returned to the transaction by 
the TM. Otherwise the TM issues 
a DM_READ(X) operation to the DM. 
The .current value of X is re
turned to the TM which writes, it



in the transaction's private 
workspace and returns it to the 
transaction.

WRITE(X,NEW_VALUE): X is a data
item. new_valcje is a value to be 
assigned to X. The TM executes a 
PRE_WRITE(X,NEW_VALUE) operation 
on the transaction's private 
workspace. This has the effect 
of updating the previous value of 
X in the private workspace to 
NEW_VALUE if a copy of X existed 
in the private workspace. Other
wise, X is created in the work
space with the value NEW_VALUE. 
Note that a PRE_WRITE operation 
does not alter any values in the 
database itself. From a synch
ronization point of view each 
WRITE causes a PRE_WRITE to be 
executed.

SNART: The TM checks whether
allowing the transaction to 
commit (by making its changes 
permanent in the database) will 
leave the database in a consis
tent state. In the event that it 
does not, the transaction will be 
aborted. Otherwise the TM issues 
a DM_WRITE command for every 
previously executed PRE_WRITE 
command. This has the effect of 
making the last change to X in 
the private workspace a (tempo
rarily) permanent value in the 
database. After all DM_WRITEs 
have been issued the private 
workspace is discarded —  the 
transaction has completed. Fom a 
synchronization point of view all 
the transaction's DM_WRITEs are 
executed atomically.

A transaction execution can be seen 

as composed of two phases. In the 

first phase the transaction reads 

values from the database, performs 

various computations and writes 

results into its private workspace. 

In the second phase, which takes 

place after the transaction finishes 

all computations, the TM first goes 

through (a possibly empty) procedure 

to ensure that committing the 

transaction will not cause inconsis

tencies, and then (a possibly empty) 

sequence of writes to the database 

(as described above). It is impor

tant to realize that this second 

phase is atomic.2

The notion of a (logical) private 

workspace is basic to our work. All 

references to data items in the 

private workspace are made through 

the TM which gives it the power to 

control the concurrency level in the 

system. Thus, the notion of a 

private workspace presented in this 

paper differs from .that used by 

Network based database management 

system, where the user program 

"contains" its own private workspace 

(or user work area) which can be 

accessed at any time independently 

of the database management system.

3. THE TRANSACTION MANAGER MODEL

In this section we examine in more 

detail the actions taken by the TM 

upon receipt of a request from a 

transaction. We describe the data 

structures involved as well as the 

operations performed on them. 

These, in turn, will be used in the 

next sections to describe the 

actions taken by the various synch

ronization techniques.

Two data structures are required by 

the TM for its operation. One is a 

graph (known as the Serialization 

Graph —  SG) that represents prece

dence relationships among conflic

ting transactions. Two transactions 

conflict if they access the same 

data item and one issues a WRITE 

request. The second is a table of 

flags (FT) in which a list of 

transactions and their modes of 

access to data items is maintained.

2
The physical implementation of the 
commit procedure need not be atomic 
as long as it appears atomic to the 
outside world. Rung and Robinson 
[KUNG81] discussed several ways of 
implementing non-atomic commits. In 
this paper we will refer to atomic 
commits from a logical point of 
view.



A node in SG represents an active or 

a committed transaction. An edge

(Ti' Tj> in the graph indicates that 

in any execution order transaction 

precedes transaction Tj. SG is

used to represent all such prece

dence relationshps regardless of 

whether they originated in the 

deadlock detection phase of 2PL or 

in the detection of a conflict in a 

Certification algorithm.

An entry in FT exists for every data 

item that has been accessed, and 

consists of several pairs <FLAG, 

TRANSACTION_IDENTIFIER>. Each pair 

identifies the transaction that 

accessed the data item and the mode 

of access (READ or WRITE). No 

restriction is placed on the number 

and/or type of pairs associated with 

a single data item in an entry. It 

is up to the concurrency control 

mechanism to interpret the pairs in 

a single entry and to decide how to 

use that information.

Three types of flags are recognized:

(1) An r-flag indicates that a 
DM_READ operation was executed 
on this item on behalf of the 
transaction holding the flag.

(2) A p-flag indicates that a still 
active transaction issued a 
WRITE request on thifl data 
item. At commit time of a 
transaction all its p-flags are 
converted to c-flags if the 
transaction is allowed to 
commit.

(3) A c-flag indicates that a 
DM_WRITE operation was executed 
on this data item on behalf of 
the committed. transaction 
holding the flag.

A TRANS operation causes the TM to 

add a node to SG representing the 

new transaction. Edges are added to 

SG by the synchronization techniques 

as described in the next section.

At execution time a READ or a WRITE 

request received by the TM undergoes 

a possibly empty waiting phase then 

a possibly empty synchronization 

phase followed by its execution.

In the waiting phase some synchroni

zation techniques may force the 

requesting transaction to wait until 

transactions that "hold" conflicting 

flags on the same data item have 

completed execution, whereas other 

techniques always enable continua

tion of the execution to the synch

ronization phase. Edges are added 

to SG to reflect the precedence 

relation imposed by the waiting.

In the synchronization phase the 

request is synchronized with con

flicting operations from other 

transactions. The result of this 

synchronization may be abortion of 

the issuing transaction or continua

tion with execution. Edges are 

added to SG to reflect the prece

dence relation imposed by the 

execution of the request.

Execution of the request includes 

appending the appropriate flag to FT 

and issuing the appropriate DM_READ, 

operation to the DM, or executing a 

PRE_WRITE directly by the TM.

A SNART operation causes the TM to 

perform a possibly empty validation 

phase to ensure that allowing the 

transaction to commit will not leave 

the database in an inconsistent 

state.

The difference between the synchro

nization techniques presented in the 

next section is in the manner in 

which they act in each of the three 

phases described above. What is



common to all the techniques is that 

they update SG during each phase 

they undergo. For example, a 

technique that undergoes the waiting 

phase and discovers that transaction 

Ti must wait for transaction Tj will 

add the edge (Tj, T^) to SG. 

Similarly, FT is also updated for 

every request.

Note that we have specified above 

various operations that add nodes 

and edges to SG and pairs to FT. 

Information about committed trans

actions remains in these data 

structures although it can be shown 

that it need not be kept indefin

itely. All traces of aborted 

transactions, however, are removed 

from both SG and FT. That is, the 

node representing an aborted trans

action in SG is removed along with 

all incoming and outgong edges. All 

pairs detailing the accesses made by 

the aborted transaction are also 

removed from FT.

4. SYNCHRONIZATION TECHNIQUES

The Decomposition Theorem of concur

rency control [BERN81] enables the 

designer of a concurrency control 

mechanism to address himself to two 

subproblems, namely: synchronization 

of READ WRITE requests (^-synchro

nization) and synchronization of 

WRITE WRITE requests (ww-synchroni- 

zation) rather than to a single more 

complex problem —  that of concur

rency control.. An rw (ww) synchro

nization technique is defined to be 

the procedure that guarantees 

correct rw (ww) synchronization. 

The concurrency control mechanism 

must then ensure that the use of a 

given rw synchronization technique 

together with a given ww synchroni

zation technique will yield serial

izable execution orders.

The decomposition theorem serves as 

the foundation for the notion of an 

integrated concurrency control 

algorithm. Rather than the use of 

one rw technique together with one 

ww technique as is the norm in 

working systems and the plethora of 

proposed algorithms, we suggest 

designing an algorithm that would be 

composed of several rw techniques 

and several ww techniques. The 

number of techniques to be used at a 

given instance is something that 

would be left up to the system 

designer. The decision may be made 

statically or dynamically as indica

ted in Section 1. In this section 

we will present two rw techniques 

and two ww techniques. In Sections 

5 and 6 we will discuss their use in 

ICCAs and present the proof method 

to show their correctness.

4.1 Characterization of Synchroni

zation Techniques

We propose two characterization 

parameters for synchronization tech

niques: Synchronization Strategy

and Synchronization Time. By synch

ronization strategy we mean the 

method used to synchronize conflic

ting transactions. We differentiate 

between methods that use locking (in 

particular 2PL) and methods that use 

rollbacks (in our case certification 

methods). Synchronization between 

two conflicting transactions may be 

performed at the time the conflicts 

occurred (i.e., at execution time —  

ET) or during the commit procedure 

(commit time synchronization —  CT) 

that each transaction must undergo



before its updates to the database 

take effect.

The meaning of ET synchronization is 

that the order in which READ and 

WRITE operations arrive is important 

and that the synchronization algo

rithm must take that order into 

account. In a 2PL algorithm this 

order is determined by the flags 

transaction hold and by maintaining 

a queue of waiting transactions for 

flagged data items.

The meaning of CT synchronization is 

that the arrival order of READ and 

WRITE operations is unimportant. 

Thus, the CT synchronization algo

rithm need only collect and maintain 

information about each transaction's 

conflicts at execution time to 

enable it to discover inconsis

tencies at commit time.

Using these two characterization 

parameters we can obtain four 

synchronization techniques for each 

of the two types of synchronization. 

For example, we may use certifica

tion synchronization at transaction 

execution time or transaction commit 

time for either the rw or ww synch

ronizations.

We use the following notation to 

represent the possible techniques. 

Each technique's name will be 

composed of three components: 

synchronization strategy (2PL or 

CERT), synchronization item (ET or 

CT), and synchronization type (rw 

and ww). For example, CERT-CT-ww is 

a technique that uses the certifica

tion approach to achieve synchroni

zation at transaction commit time. 

Figure 1 summarizes all eight 

possible techniques. In Section 4.3

we give brief descriptions of the 

actions taken by four of the tech

niques —  some of the remainder are 

of no interest (e.g., 2PL-CT-*)

whereas others (e.g., CERT-CT-rw) 

are omitted for reasons of comple

xity and paper's length. Before 

describing the techniques we intro

duce, in the next section, the 

notion of a transaction's WaitFor 

Set.

4.2 The WaitFor Set of a Transac

tion

From a correctness point of view a 

transaction that is waiting for a 

flag need not wait for all active 

transactions that hold conflicting 

flags to terminate. For example, if 

using 2PL synchronization re

quests an r-flag on X and Tj also 

using 2PL holds a p-flag on X then 

clearly Tj should wait for Tj and 

this should be reflected by an edge 

in SG from Tj to Tj. If, however, 

T^ which uses a certification 

synchronization strategy holds a 

p-flag on X, from a correctness 

point of view we may choose to have 

T. wait for Tv. or not do so. Either 

way would be correct (provided the 

synchronization phase operates 

correctly). This decision is a 

policy decision and for that reason 

we chose not to make it at this 

point.^ Rather, we allow the 

implementor to define a waitfor set 

of transactions in terms of concur

rency level desired.

Definition 1, below, formalizes this 

notion.

^We were influenced to a great 
degree in this part of our design by 
Robinson's notion of separation of 
correctness and policy in concur
rency control [ROBI82J.



Definition 1; The WaitFor Set of a 

transaction f°r rw (ww) synchro

nization, WFS rw(ww) (Ta) is the set 

of all transactions holding a 

conflicting flag on the data item 

is attempting to access that Tj must 

wait for in its rw (ww) waiting 

phase. The Minimal WaitFor Set of a 

transaction T^ for rw (ww) synchro

nization MWFSrw(ww) (T j) consists of 

only those transactions for which T̂  

must wait to ensure correctness of 

rw (ww) synchronization.

We say that transaction Tj is using 

strict 2PL policy for rw(ww) synch

ronization when WFSr yt (w v ) (Tj) = the 
set of all transactions holding a 

conflicting flag on the data item Tj 

is attempting to access. We say 

that transaction T^ is using stan

dard 2PL policy for rw(ww) synchro

nization when WFSrw(ww) (T^ = ÎTj | 

Tj is using 2PL for rw(ww) synchro

nization]. If the. same synchroniza

tion policy applies to rw and ww 

synchronization type designation of 

the type will be omitted. For 

transaction Tj using CERT synchroni

zation strategy we define WFSrw (T̂ )

The waitfor set of a transaction T^ 

is implementation dependent and may 

be defined by means of synchroni

zation techniques, transaction 

classes, the concurrency level 

desired, and even as a function of 

waiting time on a givn request or 

all its past requests.

4.3 The Synchronization Techniques

To facilitate the description of the 

various techniques below we utilize

a compatibility-action matrix (c-a 

matrix). An entry in the matrix 

indicates how a synchronization 

technique interprets the values of 

existing flags on a data item when 

processing a request from a trans

action to access that item. In 

addition, the entry specifies what 

edges are added to SG. The c-a 

matrices for all four techniques 

described below are shown in Figure 

2.

4.3.1 RW Synchronization Techniques

Rw synchronization techniques 

synchronize between DM_READ and 

PRE_WRITE operations as well as 

DM_READ and DM_WRITE operations. In 

the following, if adding an edge to 

SG causes a cycle in the graph the 

transaction that caused the cycle is 

aborted, all its flags released and 

all information about it removed 

from SG.

4.3.1.1 2PL-ET-rw

Assume T^ is using 2PL-ET-rw and let 

Tj be an active transaction in 

WFS (t 4). The c-a matrix in Figure 

2 for 2PL-ET-rw applies to the 

waiting phase. During its waiting 

phase T^'s request can not proceed 

to the synchronization phase as long 

as Tj owns a conflicting flag. The 

c-a matrix for CERT-ET-rw describes 

the actions taken in the synchroni

zation phase.

4.3.1.2 CERT-ET-rw

Assume T a is using CERT-ET-rw and 

let Tj hold a flag on data item X. 

T^'s waiting phase is null. During 

its synchronization phase, T^



resolves conflicts with Tj's flags 

using a c-a matrix for CERT-ET-rw.

4.3.2 WW Synchronization Techniques

Ww synchronization techniques 

synchronize between conflicting 

PRE_WRITE operations of active 

transactions as well as PRE_WRITE 

operations of an active transaction 

and conflicting DM_WRITE operations 

of committed transactions.

4.3.2.1. 2PL-ET-WW

The meaning of the c-a matrix 

entries in 2PL-ET-ww is as in the 

matrix for 2PL-ET-rw. Conflicts 

between two active transactions are 

synchronized in the waiting phase of 

a request whereas conflicts between 

an active and a committed transac

tion are synchronized during the 

request's synchronization phase.

4.3.2.2 CERT-CT-ww

In this technique synchronization is 

performed at commit time. All WRITE 

requests are allowed to run unhin

dered. The c-a matrix for this 

technique applies to the commit 

phase of the transaction. The 

committing transaction T^ follows 

all transactions committed earlier 

and indicates that active writers 

will follow it (synchronization with 

active writers is required only when 

they use the 2PL-ET-ww synchroniza

tion technique).

5. INTEGRATED CONCURRENCY CONTROL 

ALGORITHMS

In this section we give a formal 

definition of an ICCA. We also 

outline the proof method used in

showing an ICCA to be correct. In 

the next section we give the theo

retical basis and give an example of 

a proof of correctness.

Definition 2; An Integrated Concur

rency Control Algorithm (ICCA) is a

triple (srw' sww' F), where

" Srw is a non empty set of rw-

synchronization techniques

Srw is a non empty set of ww-

synchronization techniques, and 

- F is a mapping function F: T ->

S x S • At any given instance
1TW W W

each T^ in T is mapped to exactly 

one Srw technique and one Sww 

technique.

I l l
Example 1;

ICCAj = U 2PL-ET-rw,CERT-ET-rwi,

£ CERT-CT-ww],

F: if T^ is a reader then 

CERT-ET-rw X CERT-CT-ww 

else

2PL-ET-rw X CERT-CT-ww

)

I I I
An ICCA operates correctly if it 

allows only serializable execution 

orders and it avoids deadlock 

situations. How do we prove a given 

ICCA as correct? We need to show 

that each constraint placed on the 

total execution order by an opera

tion is represented in SG regardless 

of the transactions involved, and 

more importantly, regardless of the 

synchronization technique used 

presently and/or techniques used to 

synchronize the conflicting transac

tions in the past. It will be shown 

subsequently that the four tech

niques introduced in the previous 

section indeed satisfy this condi

tion .



6. FORMALIZATION

6.1 Serializability

Our model differs from those of 

others in our use of the PRE_WRITE 

operation to synchronize conflicting 

transactions. In particular, we saw 

that some of the techniques cause 

transactions to wait in the presence 

of a conflicting p-flag and others 

do not. In this section we review 

the basic serializability theory4 

results and show that our use of 

PRE_WRITE as a synchronization 

primitive does not affect known 

results. We also introduce several 

new precedence relations to be used 

in the proof of correctness of 

ICCAs.

Definition 3: Let T = ÎT. t■ ' — ' -■ ■ v 2 f * * *

Tn l be a set of transactions. E,

the execution schedue of T, is 

modeled by Ls, the synchronization 

log of T, which consists of DM_READ, 

PRE_WRITE, and DM_WRITE operations 

in the order in which they were 

scheduled. L, the execution log of 

T, is derived from Ls 5y removing 

from it all PRE_WRITE operations.

on X made by transaction T^. 

Finally, [X] < Oj[X] means that

0A[X] precedes Oj[X] in Ls.

* o
Definition 4: L is serializable if

it is computationally equivalent to 

a serial synchronization log.

I l l

Theorem 1: Ls is serializable iff L

is serializable.

I l l
Theorem 1 establishes that to obtain 

serializable synchronization logs it 

is sufficient to maintain seriali

zable execution logs. That is, use 

of the PRE_WRITE operation as a 

synchronization primitive while 

maintaining serializable execution 

logs does not affect the basic 

theory.

Definition 5 sets the background for 

stating the Decomposition Theorem in 

our extended model.

Definition 5: For each data item X,

we define the binary relations — >u' 

where values for u are given below, 

as follows:

In subsequent lemma and theorem 

statements we shall assume that T, 

E, L, and Ls as defined in Defini

tion 3 are given. Furthermore, 

references to Ti and are to any 

two transactions in T. A DM_READ(X) 

operation by transaction T^ will be 

denoted by r^[X]. Similarly, p^ [X] 

and wi[x] will denote PRE_WRITE and 

DM_WRITE operations (respectively)

4
For the sake of brevity, we elimin
ate the definitions of the various 
terms, such as computational equiva
lence ,

(1 ) Ti ^rw Ti
if r^X] < Wj [X] in

LS

(2 ) T. . 
1

LS-
'’wr Ti

if wA [X] <
ri

[X] in

(3) T . 
1 ^ww Ti

if Wĵ  [X] <
Wj

[X] in

LS

(4) T . 
1

! V

Ti
if r^X] <

pj
[X] in

LS

(5) T.
1 >pr TJ

if Pj[X] < ri[xl <

Wj
T.

[X] in L^

(6 ) — > „ T . if Wĵ [X] < P-i[X] in
1

LS
wp 1 3

Ti " V  TJ if Pj[X] < wi[X] <
W j[x] in L°

(7)



(8) Ti  -->pp Tj i f  P i t «  < P j [x)
and [X] < Wj [X] in Ls

(9) Ti —  > T • rwr 3 if Ti ” >rw Ti
or

Ti — > T • wr 3
(1 0 ) T.

1 — > T . rpr j if Ti ~"">rP Ti
or

Ti pr x3
(1 1 ) Ti —  > T • pwp j if Ti >pw Ti

or

Ti wp *3
(12) Ti — > Tj if Ti —  > * ‘ T . rwr j or Ti

(13) — > — > Tj if TA ■— > Tj or

— > Tk and Tk — > — > Tj

The binary relations (l)-(3), (9),

and (12) are exactly those defined 

in [BERN81]. The remaining rela

tions are new relations introduced 

in this paper based on our use of 

the PRE_WRITE as a synchronization 

primitive. Clearly all of these 

relations can be derived from Ls.

Theorem 2 (Decomposition); Let

--> and — > be asociated with rwr ww
an execution schedule E modeled by 

Ls. E is serializable if:

(1 ) — >rwr and — >ww are acyclic,

and -v

(2) There is a total ordering of the 

transactions consistent with all

>rwr and aH  — >ww -‘relation
ships.

Lemmas 1 and 2 will be used subse

quently.

Lemma 1: — > — >
------- rpr —  rw

Corollary, 1 : ~ > rpr U - > wr a  ~ > rwr

Lemma 2: —  > 3  —  >
------- pwp —  ww

6 .2 Formalization of the Tech

niques

The following lemma characterizes 

the correspondence between the 

relations defined above and edges 

in SG.

Lemma 3 The relations — >rp,

>pr' >rw' >wr' __:>pw' -->wp' 
and — >ww derived from Ls, and SG

maintained by the synchronization 

techniques satisfy the following 

conditions:

(1) If T^ is using 2PL-ET-rw then:

(a) if Tj — >w.r. Ta then (Tj , T ^  

is an edge in SG.

(b) if Tj — >rp T£ then (Tj, T ^  

is an edge in SG.

(c) if Tj in WFSrw(Ti) then Tt 

— >pr Tj is not in — >pr.

(d) if Tj not in W F S ^ T ^  then 

if — >pr Tj then (Tif Tj) 

is an edge in SG.

(2) If T. is using CERT-ET-rw then:

(a) if Ta — >pr Tj then (Ti, Tj) 

is an edge in SG.

(b) if Tj — >rp T. then (Tj, 

is an edge in SG.

(c) if Tj — >wr T£ then (Tj, T^) 

is an edge in SG.

(3) If T^ is using 2PL-ET-ww then:

(a) if
Tj “ >wp Ti then (Tj' V

is an edge in SG.

(b) if T.
1

in WFSww (T^ and Tj

in WFSww(Tj) then Tt —  >pw

T . 
1

is not in — >pw.

If T^ is using CERT-CT-ww then:

(a) if
Ti >ww Ti t*1611 T̂j' Ti>

is an edge in SG.

(b) if Ti -->pw Tj then <Ti' Tj>
is an edge in SG.



6•3 Showing ICCAs Correct

Definition &: An ICCA = (S , s ,-------------  rw' ww
F) is correct, if for every mapping 

of F the following conditions hold:

(1) Serializable synchronization 

logs are attained, and

(2) No deadlock results

To illustrate the proof method 

introduced in Section 5 consider 

ICCA2 below. Since ICCAj consists 

of all four techniques, showing it 

correct will mean that other ICCAs 

that use subsets of the techniques 

are also correct.

ICCA2 = (f 2PL-ET-rw, CERT-ET-rw}, 

[2PL-ET-WW, CERT-CT-ww],

F 2
)

Lemma 4: Let Ls be the synchroni

zation log for an execution using 

ICCA2. if Tj — > Tj then (Tj, Tj) 

is an edge in SG.

Proof: First we show that if Tj

—  >rwr Ti then (Tj, Tj > is an edge 
in SG (*)

F, may map T. and T. to 2PL-ET-rw 
1 3

and CERT-ET-rw in 4 ways: 1

(1) Let F 2: Tj — > 2PL-ET-rw, Tj

— > 2PL-ET-rw

By Lemma 3.1.a if T. — > t .
3 wr i

then (Tj, Tj) is an edge in SG.

By Lemma 3.1.b if Tj — >rp Tj 

then (Tj, Tj) is an edge in SG.

By Lemma 3.1, substituting Tj 

for Tj and Tj for Tj we have:

If Tj in WFSrw(Tj) then by 

Lemma 3.1.c Tj — > Tj is not

possible, hence we can write if 

Tj --> Tj then (Tj, Tj) is an 

edge in SG. If Tj not in

WFSrw(Tj) then by Lemma 3.1.d

if Tj — >pr Tj then (Tj, Tj) is 

an edge in SG.

(2) Let F2; Tj — > 2PL-ET-rw, Tj 

— > CERT-ET-rw

By Lemma 3.1.a if T. — > t .
3 wr i

then (Tj, Tj) is an edge in

SG.By Lemma 3.1.b if T. — >
3 rp

Tj then (Tj, Tj) is an edge in 

SG.

By Lemma 3.2.a substituting Tj 

for T^ and Tj for Tj we get if

Tj — >pr Tj then (Tj, Tj) is an

edge in SG.

(3) Let F2: Tj — > CERT-ET-rw, Tj 

— > 2PL-ET-rw

By Lemma 3.2.c if T. — > t -
1 3 wr l
then (Tj, Tj) is an edge in SG. 

By Lemma 3.2.b if Tj — > Tj

then (Tj, Tj) is an edge in SG. 

By Lemma 3.1, substituting Tj 

for Tj and Tj for Tj we have:

If Tj in WFS^iTj) then by 

Lemma 3.1.c Tj — >pr Tj is not 

possible, hence we can write if 

Tj ” >pr Tj then (Tj, T j) is an 

edge in SG.

If Tj not in WFSrw(Tj) then by 

Lemma 3.1.d if Tj — >pr Tj then 

(Tj, Tj) is an edge in SG.

(4) Let F2: Tj — > CERT-ET-rw, Tj

— > CERT-ET-rw

By Lemma 3.2.c if T. — > t -
3 3 wr l
then (Tj, Tj) is an edge in SG.

By Lemma 3.2.b if T. — > t -
1 3 rp l
then (Tj, Tj) is an edge in SG. 

By Lemma 3.2.a substituting Tj 

for Tj and Tj for Tj get

that if Tj — > Tj then (Tj, 

Tj) is an edge in SG.

In all possible mappings of Tj and 

Tj by F2 we have that if Tj — >rpr 

Tj or Tj —  >wr Tj then (Tj, T j) is



an edge in SG. By Corollary 1 we 

conclude (*).

In the second part of the proof we

have to show that if T- — T j2 ww i
then (Tjf T^) is an edge in SG. The 

proof is similar to that of the 

first part and is left out.

Theorem 3: ICCA2 is correct.

Proof: Let E be Execution using

ICCA2 modeled by Ls. Let - -> be

derived from L .s

(1) By Lemma 4 if Tj — > then 

(Tj, T^) is an edge in SG. 

Since SG is maintained acyclic 

at all time it follows that — > 

is acyclic and by Theorem 1 we 

conclude that E is serializ

able .

(2) Whenever T^ waits for Tj upon 

rw or ww conflict on edge (Tj# 

Ti) is added to SG. Since SG 

is maintained acyclic at all 

time deadlock is prevented. 

Furthermore, since we know that

will follow Tj in any execu

tion schedule (1 ) guarantees 

overall consistency.

7. CONCLUSIONS

7.1 SUMMARY OF CONTRIBUTIONS

In this paper we proposed a new 

approach to centralized concurrency 

control. Our intention is that a 

concurrency control mechanism would 

be a versatile piece of software 

that is both knowledgeable about 

different approaches to the problem 

and capable of selecting the right 

approach at a given time instance. 

We have shown that such mechanisms

that rely on 2PL and certification 

methods can operate correctly.

The main difference between our 

mechanism and other proposals is our 

use of several techniques concur

rently in a single algorithm. The 

key ideas proposed in this paper 

are:

(1) The use of several techniques 
concurrently in a single 
algorithm.

(2) Use of the PRE_WRITE operation
as a synchronization primitive 
in addition to the previously 
used DM_READ and DM_WRITE 
operations. Conflicts invol
ving a PRE_WRITE operation 
essentially foresee possible 
conflicts between DM_READs and 
DM_WRITEs. Different tech
niques interpret and use this 
information in a different 
manner.

(3) The two phases of request
processing (waiting and synch
ronization) enable a clean
transition from locking to 
non-locking based techniques.

(4) The notion of a transaction's 
waitfor set introduced in this 
paper. It is a means for con
trolling the concurrency level 
in the system.

7.2 Related Work

The primary influences on our work 

have been the concurrency control 

algorithm of Bayer et. al. [BAYE80] 

in which 2PL and a certification 

strategy were combined into a single 

algorithm; Bernstein and Goodman's 

work —  in particular their use of 

the decomposition theorem to derive 

several distributed algorithms that 

utilize 2PL and timestamps [BERN81]; 

Wilkinson's centralized algorithm 

for a local network in which certi

fication and locking were also 

combined [WILK81]; and, Robinson's 

notion of separating policy from



correctness in the design of concur

rency control algorithms [ROBI82].

To the best of our knowledge only 

Robinson [ROBI82] has proposed a 

mechanism that is similar to ours. 

In his proposal the concurrency 

control mechanism uses a single 

concurrency control algorithm at a 

time, and selects the proper algo

rithm from a set of algorithms 

available to it based on some 

parameter, e.g., system workload.

7.3 Present Work

Some additional theoretical work 

remains in characterizing the power 

of the model. However, at the 

moment we are engaged in the con

struction of a simulation model. In 

the short run we wish to arrive at a 

comparison of our algorithm with 

more conventional algorithms using 

an abstract measure such as level of 

concurrency. In the long run we are 

interested in deriving more useful 

measures such as effect of the 

algorithm on system throughput and 

transaction response time.

8 . References

[AGRA83] Agrawal R., "Concurrency 
Control and Recovery in Multi
processor Database Machines: 
Design and Performance Evalua
tion," PhD Dissertation, Uni
versity of Wisconsin, (1983).

[BAYE80] Bayer R., H. Heller, and A. 
Reiser, "Parallelism and Recovery 
in Database Systems,” ACM TODS, 
Voi. 5, No. 2, (1980).

[BERN80] Bernstein P.A., D.W. 
Shipman, and J.B. Rothni Jr., 
"Concurrency Control in a System 
for Distributed Databases," ACM 
TODS, Voi. 5, No. 1, (1980).

[BERN81] Bernstein P.A. and N. 
Goodman, "Concurrency Control in 
Distributed Database Systems," 
Computing Surveys, Voi. 13, No. 
2, (1981).

[CARE83] Carey M.J., "Modeling and 
Evaluation of Database Concur
rency Control Algorithms," PhD 
Dissertation, University of 
California Berkeley, (1983).

[ESWA76] Eswaran K.P., J.N. Gray, 
R.A. Lorie, and I.L. Traiger, 
"The Notions of Consistency and 
Predicate Locks in a Database 
System," Communications of the 
ACM, Voi. 19, No. 11, (1976).

[GALL82] Galler B., "Concurrency 
Control Performance Issues," PhD 
Dissertation, University of 
Toronto, (1982).

[KUNG81] Rung H.T. and J.T. 
Robinson, "On Optimistic Methods 
for Concurrency Control," ACM 
TODS, Voi. 6 , No 2, (1981).

[PAPA79] Papadimitriou C.H., "The 
Serializability of Concurrent 
Database Updates," Journal of the 
ACM, Voi. 26, No. 4, (1979).

[ROBI82] Robinson J.T., "Design of 
Concurrency Controls for Trans
action Processing Systems," PhD 
Dissertation, Carnegie Mellon 
University, (1982).

[WILK81] Wilkinson W.K., "Database 
Concurrency Control and Recovery 
in Local Broadcast Networks," PhD 
Dissertation, University of 
Wisconsin, (1981).



Srw Synchronization 
Technique

2PL-ET-rw
2PL-CT-rw
CERT-ET-rw
CERT-CT-rw

Sww Synchronization 
Technique

2PL-ET-WW
2PL-CT-WW
CERT-ET-ww
CERT-CT-ww

Figure 1: The Synchronization Techniques

2PL-ET-rw
Tj in Wï 

r

’S (T • ) rwu i'
P

r

Ti

p

+

Tj " >Ti

Tj-=>Ti
*

2PL-ET-WW Ti
in WFSww(Ti) 

P
Ti
c

- +
T. p T.=— >T. T-— >T,1 * J l 1 l

CERT-ET-rw r

T .
1

P c

r

Ti
p

+ H
1 
,

A
 
,

+
1

V i>Ti
* *

Tj using 2PL-ET-ww
TiCERT-CT-ww

P c

+ +
T. c Ti >T j T,->T;1 3 <•

LEGEND

+ request granted
request not granted on conflicts 
with active transactions 

* irrelevant

Figure 2: Compatibility-Action Matrices for the Synchronization Techniques


