
STATISTICAL AGGREGATION BY CATEGORIZATION IN THE SM3 SYSTEM

C . K . Baru 

S. Y. W. Su

Database Systems Research and Development Center 

University of Florida, Gainesville, FL. 32611

Abstract

To perform a statistical aggregation operation 

over a large file often requires that the records 

of the file be divided into categories based on the 

values of the attribute(s) over which some statis­

tical computation is to be performed. It is rather 

inefficient to perform the necessary data transfer, 

categorization and statistical computation using a 

single processor. Parallel algorithms designed for 

multiprocessor systems have been proposed and their 

performance improvement over the conventional sys­

tems has been demonstrated. It is shown in this 

paper that three to four times performance improve­

ment can be further gained by using a dynamically 

partitionable multicomputer system with switchable 

main memory modules (SM3).

1. INTRODUCTION

In the past decade, we have witnessed a tremen­

dous progress in database management technology. 

Many commercial database management systems (DBMSs) 

have been made available for large corporations and 

enterprises. However, these DBMSs are mainly de­

signed for business-oriented applications in which 

data are assumed to be formatted and can be repre­

sented by a few primitive data types such as inte­

ger, real, character, string, and bit. They are 

not particularly suited for statistical applications 

which have many characteristics that are different 

from business applications. These differences are 

well-documented in [HAM78, CHA81, SH082, B0R82]. 

Most notably, statistical applications regularly 

deal with complex data types such as matrices, time 

series, set, vector, variable length text strings, 

data, etc., which are generally not recognized and 

supported by the existing DBMSs. The operations 

required in statistical applications are also quite 

different from those of business data processing.

For example, statistical aggregations (e.g., aggre- 

Permission to copy without fee all or part of this material is granted 

provided that the copies are not made or distributed for direct 

commercial advantage, the A C M  copyright notice and the title of the 

publication and its date appear, and notice is given that copying is by 

permission of the Association for Computing Machinery. To copy 

otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-128-8/84/006/0077 $00.75

gation of petroleum products by countries, states/ 

provinces, and petroleum types) and disaggregations, 

modification of data to produce the needed period­

icity for statistical analysis of time series, and 

conversion of data to suit statistical packages 

are a few needed operations, in addition to the 

regular database management operations such as 

retrieval, update, insertion and deletion. Due to 

the differences in both data representation and 

operations, the need for new techniques for the 

modeling, design and implementation of statistical 

databases and statistical database management sys­

tems have been recognized by the research community 

[STW81, STW83]. Works in data modeling [CHA81, 

J0H81, SU83a] , physical design [BAT82, TUR79,

EGG81] , systems for statistical processing [SAS79, 

LEM80, BEC78, HID81], security in statistical data­

bases [CHI81, DEN80, YU77] and language interfaces 

[BR082, WON82] are but a few examples of the cur­

rent efforts.

This paper addresses the problem of statistical 

aggregations and their implementation. Two types 

of statistical aggregations are commonly used in 

statistical applications. The first type is called 

scalar aggregation which takes a set of values as 

input and computes a single value such as the com­

putation of Sum, Count, Average, Maximum, Minimum, 

or Median. The second type shall be called "sta­

tistical aggregation by categorization" which ag­

gregates records of a file into subsets based on 

the various value combinations of some attributes 

and applies scalar aggregation functions over 

these subsets to obtain summary data for the sub­

sets. For example, the aggregation of petroleum 

data records by countries, states/provinces and 

petroleum types followed by the computation of to­

tal production for each category is an example of 

statistical aggregation by categorization. Both 

aggregation types require that every record of a 

file be processed to obtain the result. They are 

very time-consuming operations, especially when 

the involved data files are large. Efficiency in 

statistical aggregations is definitely a problem 

in systems used for statistical applications.

A possible approach to this problem is to design 

better algorithms and hardware architectures for 

the efficient processing of statistical aggregations. 

Several architectures and algorithms have been stud­

ied. They include the multiprocessor cache system 

[DEW81], the multiprocessor hashing system [J0H82]

http://crossmark.crossref.org/dialog/?doi=10.1145%2F971697.602270&domain=pdf&date_stamp=1984-06-01


and the common-bus network system [SU82], Based on 

the analyses of algorithms presented in these works, 

the operation of moving data among the processors 

accounts for a large portion of the total execution 

time required for statistical aggregations. Consid­

erable performance improvement can be obtained if 

data transfer time (typically through a communica­

tion bus) can be drastically reduced. This idea mo­

tivates our present work in seeking a novel archi­

tecture to perform statistical aggregation efficient­

ly-

This paper presents an architecture of a multi­

computer system called SM3 which contains a number 

of main memory modules that are shared by the pro­

cessors. In this system, the usual data transmis­

sion through a communication bus is replaced by 

switching of main memory modules between processors, 

thus reducing the usual network transmission time to 

memory switching time. The algorithms described in 

[DEW81] and [J0H82] are adapted to this system. The 

adapted algorithms are evaluated analytically and 

compared with the results of the original algorithms 

and architectures. It is shown that 1 ) it is possi­

ble to achieve a time reduction 3-4 times less than 

the original algorithms for statistical aggregations 

by categorization and 2 ) the two adapted algorithms 

represent two extremes, each with some advantages 

over the other and there is a crossover point at 

which one becomes less appealing than the other.

Section 2 of this paper defines the problem of 

aggregation by categorization and reviews the algor­

ithms and architectures proposed in [DEW81, JOH82]. 

Section 3 describes the architecture of the Switch- 

able Main Memory Module System (SM3) and two algor­

ithms which are the adaptations of DeWitt's and 

Johnson's algorithms. Section 4 presents an analysis 

of the adapted algorithms and a comparison of their 

execution times with the results obtained by DeWitt, 

et al., and Johnson.

2. THE AGGREGATION PROBLEM AND PROPOSED SOLUTIONS

In this section, we define the statistical aggre­

gation problem addressed in this paper and review 

two existing architectures and their associated al­

gorithms.

2.1 Statistical Aggregation by Categorization

Given a set of record occurrences of a record type 

defined by a set of attributes, a statistical aggre­

gation by categorization is an operation which parti­

tions the set of record occurrences into subsets, 

each of which contains record occurrences having the 

same value over a single or multiple attribute(s).

The attribute(s) by which the subsets are formed is/ 

are called category attribute(s). The subsets are 

henceforth called categories. The data of the rec­

ord occurrences in each category are subject to 

some statistical summarizations to produce summary 

values for some summary attributes that describe or 

characterize the category. For example, the set of 

record occurrences of the following record type can 

be partitioned into categories by the values of the 

category attributes, STATE, COUNTY, RACE, and SEX.

POPULATION

STATE COUNTY RACE SEX NAME INCOME AGE

Each category contains a subset of the original 

set of records whose values over the attributes 

STATE, COUNTY, RACE, and SEX are identical. A 

category is therefore an aggregation of records 

having the same values over some designated cate­

gory attributes. One can apply some scalar aggre­

gation functions such as AVERAGE and SUM over the 

attributes AGE and INCOME, respectively, to obtain 

values for the summary attributes AVG_AGE and 

TOTAL_INCOME for each category. The new set of 

record occurrences of the following record type is 

called the summary set [J0H81].

POPULATION CATEGORY

STATE COUNTY RACE SEX AVG AGE TOTAL INCOME

A statistical aggregation by categorization can be 

further applied on a summary set. For example, if 

the average ages and total incomes of populations 

categorized by state and county are of interest, 

further aggregation applied on POPULATION_CATEGORY 

would result in the following record type and its 

summary set:

POPULATION BY STATE COUNTY

STATE COUNTY AVG AGE TOTAL INCOME

The values of the summary attributes AVG_AGE and 

TOTAL_INCOME in the above record type are re-com­

puted over the new categories. From the above dis­

cussion, it is clear that an aggregation operation 

can accept either a regular set of records or a 

summary set as input to carry out the summarization 

operations.

Having defined the aggregation operation, let us 

consider some problems involved in performing this 

operation in a conventional computer. First, we 

note that the size of a summary set (i.e., the num­

ber of record occurrences) depends on the number of 

distinct categories formed which can be rather 

large in some statistical applications. Second, all 

record occurrences have to be accessed and processed 

sequentially to compute the summary values. When 

the size of a file is large, this can be a very 

time-consuming operation. Third, as pointed out by 

Johnson [J0H81], some aggregations may involve a 

"one-pass" scan of the input set while others may 

involve a "multi-pass" scan. A one-pass aggregation 

allows the summary values to be computed as the data 

values in the records are scanned and processed.

The input values can be discarded once they are 

used in the computation. The computation of AVG_AGE 

and TOTAL_INCOME is an example. The AGE and INCOME 

values are scanned and processed once only. A multi­

pass aggregation, on the other hand, requires the 

set of data values to be stored and made accessible 

for computing the summary values. An example of 

this aggregation type is one involving the computa­

tion of a median as the summary data. It can be ex­

pected that the processing strategies and time re­

quired for these two types of aggregations can be 

quite different. Both aggregation types require an 

excessive amount of computation time, and the second 

one requires.also a considerable amount of storage 

space.



The above observations and problems have motivated 

a couple of recent research efforts to investigate 

better architectures for supporting aggregation oper­

ations. The first architecture represents a general 

class of database machines called multi-processor- 

cache (MPC) [DEW81]. The second architecture called 

MPH uses hashing techniques in a multiprocessor sys­

tem and is specifically designed for supporting aggre­

gations [JOH82]. Since both architectures support 

the relational data model, we shall in the following 

review use the standard relational terminology. Thus, 

the record type mentioned above is henceforth called 

a relation and record occurrences are called tuples.

2.2 The MPC System

The MPC system represents a class of database 

machines which includes systems like DIRECT [DEW79], 

INFOPLEX [MAD79], and RDBM [HEL81]. The general con­

figuration, shown in Figure 1, consists of a common 

secondary storage connected to a set of disk caches. 

These disk caches are connected via an inter-connec­

tion device to a set of processors. The inter-con­

nection device allows one-to-one and one-to-all 

communication between the disk caches and the pro­

cessors. The processors are small, general-purpose 

computers which carry out data management commands 

given by a host computer. For the purpose of de­

scribing the aggregation algorithm proposed for the 

architecture, a simple model used in [JOH82] and 

shown in Figure 2, should suffice.

In the first phase of the MPC algorithm, each of 

the N processors is loaded with a block of data 

from the disk. The data are assumed unsorted and, 

in the worst case, each processor can receive tuples 

from each of C distinct categories of the database.

All processors perform aggregation in parallel by 

selecting the proper category, based on the cate­

gory attribute values, and updating the proper sum­

mary attributes of the category. At the end of this 

phase each processor creates, at worst, a relation 

with C tuples. The primary memory is assumed to be 

large enough to hold this relation. For example, 

suppose a query stating, "What is the average in­

come of females and males in each state?", was 

issued on the relation POPULATION_CATEGORY of sec­

tion 2.1. This query requires an aggregation over 

category attribute values STATE and SEX in order to 

compute the summary values for AVG_AGE and TOTAL_ 

INCOME. The attribute sex has two values, male and 

female, and the attribute STATE has 50 values.

Hence, the number of categories is 100 and each 

processor needs to maintain a memory-resident table 

of size 100. As the tuples are read in, the values 

of AVG_AGE and T0TAL__INC0ME are updated in this ta­

ble, based on the values of STATE and SEX.

For the purpose of I/O time computation, it is 

important to compute the size of each relation in 

terms of the number of disk blocks that it occupies.

We shall assume that C categories translate to G 

disk blocks, where G = (C x output tuple size in 

bytes)/ Disk block size in bytes. If there are N 

processors in the system then, at the end of the 

first phase the system contains N * G blocks of data. 

In the second phase, each processor writes back the 

data to disk and performs a merge/sort. This phase 

merges and aggregates the individual results, thus 

reducing the N runs of G blocks each into a single 

run of G blocks.

The MPC algorithm assumes that (i) each proces­

sor receives tuples from all the C categories of the 

data and, as a result, (ii) the local memory of each 

processor is large enough to hold all categories.

If the number,of categories is very large, G will 

also be very large. It has been observed that for 

a given hardware configuration, there exists a value 

X such that if G > X * R (where R is the size of the 

input relation in number of disk blocks), the per­

formance of MPC is worse than a conventional system 

[J0H82]. The factor X is purely hardware dependent 

and in the particular configuration employed in 

[DEW81], X has the value 0.1. A major reason for 

this degradation is, of course, the worst case as­

sumption employed above which states that each pro­

cessor receives tuples from all the C categories. 

Since there are N processors, the global relation 

created at the end of phase 1 is of size N * G 

blocks, which may be larger than the source rela­

tion itself. On the other hand, the advantage of 

having N processors in the MPC system is that it en­

sures a high degree of parallelism and good proces­

sor utilization, since all N processors work togeth­

er on the data during both the aggregation phase 

and the merge-sort phase.

2.3 The MPH System

The MPH database machine [JOH82] combines the 

multiple processor structure of MPC and the hard­

ware hashing techniques of the Relational Database 

Machine (RDM) [SHA79]. The system can be represen­

ted as in Figure 3. The processors Pi, P2  • ... Pjj 

are special-purpose, low-cost, medium performance 

machines with limited local, high-speed RAM. H is 

a high-speed device capable of performing selections 

and computing hash functions on tuples, as they come 

off the common secondary storage.

All tuples belonging to the same category are 

always mapped to the same processor. A processor 

can receive tuples belonging to more than one cate­

gory if there are more categories than processors. 

Each of the N processors is assigned C/N categories 

and loaded with the appropriate aggregation opera­

tion. Using our previous query as an example, if 

there are 2 0  processors in the system, each proces­

sor would receive tuples from 100/20 = 5 categories. 

Tuples from the source relation (assumed unsorted) 

arrive at H which in turn directs them to the ap­

propriate processor based on the category attribute 

values. At the end of this phase, each processor 

contains the final aggregated results for C/N cate­

gories. No merging of results is necessary since 

all the tuples belonging to a particular category 

are always mapped to the same processor. The final 

result is obtained by merely collecting the individ­

ual results from each processor.

The advantages of the MPH system are (i) since 

the MPH algorithm assumes that each processor has 

enough local memory to hold C/N categories if equi­

valent processors are used, the MPH system can toler­

ate N times more categories than MPC, and (ii) no 

final merging of results is required. On the other 

hand, if the distribution of tuples in the source 

relation is uneven or if one category contains an 

unusually large number of tuples, then the MPH sys­

tem would suffer due to low processor utilization.

A single processor may become the bottleneck due to 

overloading.



A performance analysis of MPH was carried out by 

Johnson and Thompson [JOH82]. The analysis used disk 

rotation times and processing rates to determine the 

buffer sizes required at the processors in order to 

keep the idle-time low. Also, an effort was made to 

study the effect of uneven loading of processors by 

assuming a Gaussian distribution for the number of 

tuples per processor. Detailed analysis using timing 

equations was not carried out for the MPH system. 

Hence, our analysis of the MPH-like algorithm in the 

SM3 system will also help to provide a rough bench­

mark for the MPH algorithm itself.

In the next section, we give a brief description 

of the SM3 system and show how algorithms which are 

naturally applicable to the system are indeed varia­

tions of the MPC and MPH algorithms. Since both al­

gorithms are equally easy to implement in the SM3 

system, it is possible to select the "better" of the 

two algorithms for any given query.

3. THE SM3 SYSTEM AND ITS ALGORITHMS

3.1 The SM3 System

The Switchable Main Memory Modules (SM3) System 

(Figure 4) is a partitionable multicomputer system 

primarily designed for non-numeric processing. Each 

node of the system is a general-purpose computer 

with its own local, primary memory, secondary stor­

age and CPU. The computers also possess some main 

memory modules which can be switched between each 

other, mainly for the purpose of data transfer.

Data can be loaded by one processor, Pi, into a 

main memory module which can be switched to another 

processor, Pn , for data access. The network is con­

nected together by two different buses - the 

Switchable Memory Bus (SMB) and the Cluster Control 

Bus (CCB). The Switchable Memory Bus allows com­

munication with the Control Computer, CC, which 

can transfer data to and from the Switchable Mem­

ories (SM's) via this bus. The Cluster Control 

Bus is connected via switches SI, S2, ... Si, which 

are controlled directly by C C . The CC is primarily 

responsible for compiling global queries, forming 

clusters by setting/resetting the Si switches, and 

collecting the results of global queries whenever 

they are required at CC.

The construction of CCB is identical to that of 

the bus used in the MICRONET system [SU78, NIC80, 

SU83b]. It contains address lines, data lines, 

and "global control lines" which are used for syn­

chronization and establishment of a high-level 

protocol in the network. The control lines are 

wire-ANDed at each node and are, hence, called 

global-AND lines. They are used extensively for 

synchronizing the various phases of a given algor­

ithm and contribute greatly towards reduction of 

interrupt and message transfer times.

As mentioned above, the CC can dynamically par­

tition the system into independent clusters. One of 

the cluster processors is designated by the CC as 

the Cluster Control Processor (CCP). The CCP can 

manipulate all the switches inside a cluster except 

the Si's. It also has the capability of assigning 

any other processor of the cluster as a CCP, there­

by losing its own privileged position. Note that in 

the extreme case when the whole network forms a sin­

gle cluster, the CC takes on the responsibilities of 
a CCP.

The Switchable Memory Switch (SMS), controllable 

both by CCP and CC, allows the Switchable Main Mem­

ory module of a processor to be in one of three 

states - local to the processor (local mode), local 

to the cluster (cluster mode) or global to CC (glob­

al mode). The Cluster Control Processor Switch 

(CCPS), also controllable by CCP and CC, is used to 

assign CCP status to a processor. If processor Pi 

is to be the CCP, then CCPSi (normally open) is 

closed; thereby allowing Pi to perform one-to-one 

read/write and one-to-all write through the CCB.

Access to the switchable memories is regulated 

and synchronized in order to avoid problems like 

illegal accesses, loss of data and deadlock. The 

synchronization of accesses to the switchable mem­

ories, the setting of the Switchable Memory Switch, 

the specification of the access mode (read or write) 

for accessing the switchable memory and other re­

lated operations are all performed via Status Words 

assigned to each processor. A detailed description 

of the operation of these status words is given in 

[FEI84], At this point, we stress again that the 

SM3 system allows sharing of memory modules, parti­

tioning of the multicomputer system and one-to-one 

and one-to-all communication within a cluster and 

with CC.

The data (source relations) in the SM3 system 

are spread over many processors and stored in their 

local secondary stores. For a given query, all 

processors that contain the required source rela­

tion are grouped into a cluster by CC. All these 

processors are loaded with the same command and 

process the relation in parallel. The global con­

trol lines are used to synchronize the processors 

at the end of each phase. If data needs to be 

moved around inside the cluster during processing, 

the switchable memories are used. The final re­

sults are transferred via the switchable memories 

to either a node processor or to the C C . For our 

calculation purposes, we shall assume that the re­

sults are always transferred to the C C . This as­

sumption gives results compatible with those of 

[DEW81].

Preliminary analysis of the SM3 system was car­

ried out for operations like SELECT and JOIN [SU84]. 

To enhance performance, two SM modules mapped to 

the same address space (not shown in Figure 4) are 

actually provided. They are independently control­

lable but operate in exactly the same manner. In 

the analysis to follow, it will be assumed that 

data between disk and main memory is transferred 

via dual, independently accessible I/O buffers.

3.2 Algorithm I

This algorithm is the adaptation of the one 

used in MPC. As in MPC, it is assumed that the num­

ber of categories C is small enough to be held (in 

a sorted sequence) in the primary memory of each 

processor. The algorithm starts with each of the 

N processors of the cluster reading a block of data 

into one of its two I/O buffers. When one buffer 

is full, it is switched to the CPU while the disk 

controller continues to fill the other buffer with 

the next data block.

Meanwhile, the processors scan the first block 

of data and, based on the category attribute values, 

update the summary value in a table which resides



in the switchable memory. This processing time is 

overlapped with the disk read-out time. This se­

quence of operations is carried out until the last 

block of data has been read. In determining the 

operation time, only the maximum of the CPU and I/O 

operations is considered except for the last block 

for which processing and I/O operations cannot be 

overlapped. The results of the entire operation are 

stored in the switchable memory module, unless an 

overflow occurs into the regular main memory. At 

the end of this phase, the CCP switches all switch- 

able memory modules to itself (i.e., to cluster 

mode) and reads the data from each SM in turn, at 

the speed of regular main memory access. It forms 

the final result by merging and aggregating the 

individual results from each processor into its own 

memory-resident table. This second phase is re­

peated more than once if the switchable memory has 

overflowed. Finally, assuming that the results are 

required at CC, they are moved from CCP to CC via 

the dual shared memories. If the SM3 system oper­

ates as a single cluster then, since the CC is it­

self the CCP, this last step of moving data would 

not be necessary.

Unlike in MPC and MPH, the source relation in 

SM3 is distributed across many processors. Hence, 

along with CPU operations, the I/O operations are 

also performed in parallel. The second phase of 

MPC requires N separate runs of G blocks each to be 

written back to the disk in order to merge/sort them 

to form the final result. In SM3, since the switch- 

able memory modules can be accessed in the cluster 

mode by the CCP, the partial results are read direct­

ly from the memory to form the final result without 

having to write data back to the disk.

3.3 Algorithm II

Algorithm II is akin to the MPH algorithm where 

each processor is assigned a fixed sub-set of the C 

categories. At query compilation time, CC can as­

sign categories to each processor such that the C 

categories are divided among the N processors. The 

algorithm starts with each processor transferring 

its first block of data from disk to the I/O buffer. 

At this point, only CCP enters into the broadcast 

(one-to-all) mode of communication and copies the 

data from its I/O buffer to the shared memories of 

all processors, including itself. The processors 

then proceed to form aggregates as before, in 

their local memories. During this time, the next 

data block is being read from the CCP's disk into 

its I/O buffer. The CPU and I/O operations are 

overlapped at the CCP and the I/O operation stops 

when the last block of data is read. At this 

point, the next processor is given CCP status (by 

the current CCP) and the above sequence repeats 

itself. In effect, the whole relation is scanned 

block-by-block and presented to each of the N pro­

cessors which form aggregates by picking tuples 

relevant to them. Finally, each processor contains 

a non-intersecting subset from the set of all C 

categories, which need to be combined at the node 

where the output is required in order to form the 

final result.

The major advantage of this algorithm is that 

each processor needs to accommodate only C/N cate­

gories. Two major concerns in MPH were (i) the 

overloading of a processor due to an unusually large 

number of tuples mapping to a single category, and

(ii) improper utilization of processors due to un­

even distribution of tuples in the source relation. 

These problems could be solved in the SM3 system by 

minor alterations in the algorithm and better plan­

ning at query compilation time. For example, if a 

particular category has too many tuples, then it 

can be assigned to more than one processor. In 

this case, the final phase requires some aggrega­

tion to be performed along with merging as in 

Algorithm I.

From the above discussion, it is clear that the 

SM3 system lends itself to both types of algorithms. 

It is an easy matter to switch from one algorithm 

to the other. Algorithm I would be used in in­

stances where the number of categories is not very 

large and the source relation is fairly equally 

distributed among the network nodes. Under such 

conditions, Algorithm I offers a great amount of 

parallelism and always performs much better than 

Algorithm II. A special case arises when the num­

ber of categories is large but the relation is 

naturally distributed across processors into non­

intersecting subsets. For example, consider a 

case where an enterprise maintains information on 

its employees in the form of a distributed rela­

tion. Let us assume that the company has 20 loca­

tions where the data is locally maintained. As­

suming that there are <4000 employees in the com­

pany, each location has 200 employees. If an ag­

gregation is performed over the "Employee-Number" 

attribute, the total number of categories will be 

4000 with each node containing 200 categories.

Since the number of categories formed at each node 

is small, we can still use Algorithm I in this case.

Algorithm II is used when the number of categor­

ies is large. The loss of parallelism in this al­

gorithm is compensated for by the last phase where, 

unlike in Algorithm I, no further aggregation is 

required since the categories in the different pro­

cessors are non-intersecting. Instances may arise 

when one category is much larger in size than 

others. In such a case, as mentioned before, a 

category can be assigned to more than one processor 

and some aggregation can be performed in the last 

phase of the algorithm.

Hence, the criteria for deciding between the 

two algorithms can be specified quite clearly and 

one can switch from one algorithm to the other, 

thereby gaining the advantages of both without 

their disadvantages.

4. ANALYSIS AND EVALUATION

An analytical evaluation of the system, using 

timing equations, has been carried out in order to 

identify bottlenecks and to compare with other al­

gorithms. A list of all parameters employed in 

this analysis is provided in Table I. The values 

chosen attempt to reflect a typical environment of 

operation for the SM3 system and they are also as 

close as possible to the values used in [DEW81], 

so that one may carry out a reasonable comparison. 

The absolute values would change depending on im­

plementation.

4.1 Parameter Specifications

4.1.1 I/O Device Parameters

The secondary storage is assumed to be a stand­



ard, moving-head disk device. Specifically, 

parameter values of the IBM 3330 disk drive 

have been used. This device has 404 cylinders with 

19 recording surfaces per cylinder. Each track on 

a surface holds 13,030 bytes. The size of a single 

track will be assumed as the unit of data transfer 

between secondary storage and primary memory and, 

also, between switchable memories. The time for a 

single rotation of this disk is 16.7 msec. The aver­

age direct-access time is 38.6 msec, and the track- 

to-track seek time is 1 0 . 1  msec.

4.1.2 CPU Parameters

The processing unit is modeled as a 1 MIP pro­

cessor. Operation times are specified at a block 

level. The size of a block is equal to that of a 

track on a disk, i.e., 13,030 bytes. Assuming that 

the length of tuples in the relation is 1 0 0  bytes, 

we can accommodate approximately 130 tuples per 

block. Based on the fact that the CPU is a 1 MIP 

processor and using some results from [DEW81], we 

can calculate the times required for performing some 

general operations on a block of data. Scanning a 

block of data in order to perform simple operations 

like selection requires about 12 msec. This value 

represented by TSCAN, allows more than 90 instruc­

tions to be performed per tuple. More complex oper­

ations like those required for sorting or joining 

require a time of TPROC per block where TPROC has 

been approximated to 95 msec. The time required for 

moving a block of data within the primary memory is 

represented by TMOVE, for which a conservative es­

timate of 2 0  msec, is used.

4.1.3 SM3 System - Specific Parameters

Some basic operations which need to be accounted 

for in the SM3 system are query compilation and code 

generation, processor clustering, switching of shared 

memories and buffers, message transfer times, etc. 

Query compilation and code generation involve steps 

of parsing, optimization, and the generation of code. 

A detailed study of such operations was done in 

[CHAM81]. Based on the results of [CHAM81] and 

[DEW81], we can assign the time for code generation 

as TCODE = 200 msec. This figure would be higher 

if more extensive query optimization is carried out 

as suggested in section 3.3. Once the code has been 

generated, there is an overhead on the control com­

puter CC to cluster the required processors. This 

step involves at least two table look-ups, one to 

determine which processors are involved in the oper­

ation and another to check if they are all free. 

Having determined that all the required processors 

are free for clustering, the proper switches need 

to be set/reset. The time allotted for clustering 

TCLUS is 50 msec.

It is assumed that all the switches in the net­

work - Si's, SMSi's, CCPSi's, etc. - can be set/re­

set by reading a status register and issuing a hard­

ware interrupt. The time required for this switch­

ing is TSWITCH = 2 msec. Also, the time required 

for switching the I/O buffer between the disk and 

CPU is TSWBUFF = 2 msec. A one-to-all broadcast 

from one switchable memory to the others requires 

that the sending processor ensure that all receiving 

switchable main memory (SM) modules are free. If so, 

the SM modules can be switched to the one-to-all 

broadcast mode. The time for this operation is rep­

resented by TBRDCST = 4 msec. The time taken to 

send simple interrupt messages between processors 

via the CCB is TMSG = 5 msec.

The track size of 13,030 bytes will be called a 

block and will be considered to be the unit of data 

transfer. The I/O buffers and the switchable main 

memory modules altogether comprise at least 52 

Kbytes of special-purpose primary memory in each 

processor. In our calculations, the size of the 

global relation is taken to be r = 50,000 tuples 

(100 bytes each) and the size of a cluster is N =

19 processors ( = number of heads per disk).

It is more meaningful to express the relation 

size in terms of blocks rather than tuples. The 

source relation of 50,000 tuples can be accommo­

dated in R blocks, where R = 384.6. Since there 

are 19 processors per cluster, the number of blocks 

occupied by the relation in each processor is 

R/N » 384.6/19 = 20.24. This quantity is rounded 

up to RRn = 21. Similarly, since each category 

gives rise to a single tuple in the output relation, 

the number of categories C is an indication of the 

size of the output relation in tuples. The output 

relation can be expressed in number of blocks as 

follows: G = C/130. This value of G is again

rounded off to GG. In the case of Algorithm I, 

each processor creates an output relation of size 

GG, whereas in Algorithm II each processor creates 

an output relation of size GG/N.

We shall now present the timing equations for 

each of the two algorithms discussed in sections

3.2 and 3.3.

4.2 Algorithm I

Initially, the CC needs to compile the query and 

generate code for it. This is followed by the 

clustering operation where CC forms a cluster of 

the relevant processors. This overhead time is

TOVHD = TCODE + TCLUS.

Next, each processor in the cluster accesses its 

first block and reads the block into the I/O buffer. 

The dual buffers are then switched, one to the pro­

cessor and the other to the disk controller. The 

initial data access time is

TINIT = TACCESS + TREAD + TSWBUFF.

The reading of the remaining (RRn-1) blocks in­

volves a track read time for each block plus a cy­

linder -to-cylinder seek time, i.e., a total of

(RRn-1) * TREAD + CEIL ((RRn/T)-l) * TSEEK

(where CEIL(X) is the smallest, non-negative inte­

ger greater than X.)

The time per block required to compute the aggre­

gates is TPROC. Hence, the total processing time 

for (RRn-1) blocks is

(RRn-1) * TPROC.

The reading of the last (RRn-1) blocks is overlapped 

with the processing of the first (RRn-1) blocks, so 

we need to consider only the maximum of these two



times, i.e.:

MAX{((RRn-1)*TREAD + CEIL((RRn/T)-1) * TSEEK),

((RRn-1) * TPROC)}, RRn > 1.

Finally, we have to account for the time required for 

switching the buffers from the CPU to the disk con­

troller (and vice-versa) at the end of the process- 

ing/reading of each block. The time here is

(RRn-1) * TSWBUFF.

Therefore, the total elapsed time in this stage 

is

TEXEC = MAX {((RRn-1) * TREAD + CEIL((RRn/T)-1) * 

TSEEK), ((RRn-1) * TPROC)} + (RRn-1) * TSWBUFF.

For the very last block the buffer switching time 

and the processing time are non-overlapped opera­

tions. Hence, they contribute to the overall time:

TFIN = TSWBUFF + TPROC.

The final phase requires the CCP to switch all 

switchable memories to itself and then perform a 

global aggregation. (Note that the synchronization 

of the final state is achieved via the global con­

trol lines. Each processor sets its local control 

line when it reaches the end of its operation.

Since the global line is a logical AND of each local 

line, the setting of the global line implies that 

all processors have completed their respective oper­

ations. Almost no time is lost in this synchroniza­

tion stage.) The CCP performs global aggregation 

essentially by polling each SM in turn. The time 

required is TSWBUFF + (N-l) * TPROC. If the re­

sult relation cannot be accommodated in a single 

switchable memory module, the CCP may have to poll 

each processor more than once. After processing 

data from a particular processor, the CCP has to 

step through (N-2) processors before returning to 

the original processor. During this time, each 

processor can fill its SM with the next block of 

output. Hence, the total time required for forming 

global aggregates is

GG * TSWBUFF + G * (N-l) * TPROC.

Once the global aggregates have been computed at 

CCP, they need to be moved to CC for final output.

The global results are again moved block by block 

via the switchable memories. The time for this 

operation is

GG * TSWBUFF + G * TMOVE.

Hence, the total time for performing global aggre­

gation and collecting results at CC is

TTRAN = (GG * TSWBUFF + G * (N-l) * TPROC) +

(GG * TSWBUFF + G * TMOVE).

Therefore, the total time involved in Algorithm I is 

the sum of its individual components:

TAGGCASE1 = TOVHD + U N I T  + TEXEC + TFIN + TTRAN.

4.3 Algorithm II

As in Algorithm I, there is an overhead involved

for compiling the query and forming a cluster of 

processors.

TOVHD = TCODE + TCLUS.

Each processor reads its first block of data from 

disk to I/O buffer and switches the two I/O buffers 

around.

TINIT = TACCESS + TREAD + TSWBUFF.

The reading and processing of the remaining 

(RRn-1) blocks of data are again overlapped opera­

tions. At this point, only the CCP goes ahead with 

reading and processing of its local relation. The 

time to read (RRn-1) blocks is

(RRn-1) * TREAD + CEIL((RRn/T)-1) * TSEEK.

Processing each block involves reading the block 

from the I/O buffer and broadcasting it to all pro­

cessors, and performing aggregation on the block.

The processing time required for the (RRn-1) blocks 

is

(RRn-1) * (TMOVE + TBRDCST + TPROC).

Only the maximum of processing and I/O times will 

eventually effect the operation time. The time re­

quired for switching buffers for each block of data 

is (RRn-1) * TSWBUFF. Finally, the last block of 

data needs to be processed and this processing can­

not be overlapped with any other operation. The 

time required for processing the last block is

TMOVE + TBRDCST + TPROC.

After the CCP completes processing its local re­

lation, it has to switch the next processor to CCP 

status so that the same sequence of steps may be 

repeated by it. The time required for switching a 

processor to CCP status is modeled as a buffer 

switching time plus an interrupt processing time, 

i.e., TSWBUFF + TMSG.

Since all the operations stated above have to be 

repeated for each of the N processors in the clus­

ter, the total time contributed in this stage by 

all the processors is

TEXEC = N * < MAX [{(RRn-1) * TREAD + CEIL( (RRN/T)-1) 

* TSEEK}, {(RRn-1) * (TMOVE + TBRDCST + 

TPROC)}] + {(RRn-1) * TSWBUFF}

+ {TMOVE + TBRDCST + TRPOC} + {TSWBUFF + 

TMSG}>.

In the final phase, all the results have to be 

transferred from each processor to the CCP, via the 

switchable memories. They may then be routed from 

there to the CC. The operations involved in this 

stage are similar to those in the final phase of 

Algorithm I, except that in this case each processor 

has G/N blocks of output rather than G blocks. 

Therefore, the final transfer time is

TTRAN = CEIL (G/N) * TSWBUFF + (G/N) * (N-l) * 

TPROC + GG * TSWBUFF + G * TMOVE.

The total time involved in Algorithm II is then

TAGGCASE2 = TOVHD + TINIT + TEXEC + TTRAN.



The individual results from each processor may 

have to be merged in order to maintain the global 

order; hence, a time of TPROC per block has been 

assumed. In all the above calculations, the time 

required for performing aggregation on one block 

(i.e., scan tuple, maintain memory-resident table 

in sorted order and update its values) is also 

equal to TPROC (95 msec.). If the aggregation 

operation to be performed is more complex, a higher 

value for TPROC may be chosen.

4.3 Evaluation

Results from the evaluation of Algorithms I and 

II are shown in Table II. They have been shown 

alongside the results from [DEW81] for the purpose 

of comparison. Similar analytical results were not 

available for the MPH System since no detailed for­

mulas were provided in [JOH82]. Algorithm II 

should be a good representation of the MPH algorithm. 

Algorithm II should provide lower times than the 

MPH algorithm because of the advantages of the 

switchable memory and other architectural features 

of SM3. The equations in [DEW81] use the time in­

volved in a particular operation as an indication 

of the amount of work done by the system. No assump­

tions regarding overlapping operations were made.

In order to present an equivalent comparison, we 

re-calculated the timing for the MPC system as­

suming that I/O and CPU operations can be overlapped. 

The results obtained are listed under the column en­

titled 'Modified MPC." Figure 5 gives a graphical 

representation of the performance of these algorithms.

Algorithm I performs much better than II for 

smaller values of C as expected since Algorithm II 

always scans the entire relation sequentially, there­

by increasing the total time of the operation. As 

the number of categories increases, the parallel 

scan feature of Algorithm I is overshadowed by the 

time required to merge/aggregate results in the 

last phase. In essence, Algorithm I is sensitive 

to the output relation size, whereas Algorithm II is 

more sensitive to the input relation size. Hence, as 

the number of categories increases, the time required 

for Algorithm I exceeds that required for Algorithm 

II. Given the parameter values, it is feasible in 

the SM3 system to decide in advance which algorithm 

should be adopted for a given query.

The analysis carried out in [JOH82] approximated 

the distribution of the number of tuples/processor 

to a Gaussian distribution. Based on this, the 

authors have shown that in a large number of cases 

the degradation in performance due to uneven dis­

tribution is held to under 5%. The implementation 

of Algorithm II in the SM3 system has not violated 

any of the basic MPH assumptions. Hence, this anal­

ysis should hold true in the SM3 system also.

4.4 Further Enhancements

By illustrating the feasibility of the MPC and 

MPH type of algorithms for data aggregation, we have 

shown the flexibility of the SM3 system in adopting 

the most optimal algorithms in a given situation.

The timing equations help us to identify further 

areas of improvement and possible optimization.

By estimating the number of possible tuples that 

will map to each category, a decision could be made

whether to select Algorithm I, Algorithm II, or a 
combination of both. For example, suppose we ex­

pect the number of categories for a given query to 

be very large and at the same time we know that a 

large number of tuples will be mapped to one of 

the categories. In such a case, Algorithm II could 

be used to handle the large number of categories. 

Also, the category that has a large number of com­

ponent tuples could be split across more than one 

processor. Let c be the category that is shared 

by p processors. The number of tuples that map to 

c is represented by |c|. Each processor that 

shares category c should receive |c|/p tuples for 

this category. This can be easily accomplished by 

allowing each of the p processors to count the num­

ber of tuples of c that have already gone by, and 

by making use of the implicit ordering of the pro­

cessors in a cluster. As soon as a processor re­

ceives |c|/p tuples for the category, it stops col­

lecting further tuples and the next processor in 

line starts collecting from tuple number |c|/p + 1  

onwards. In this case, the total number of cate­

gories (for calculation purposes) will be (C-l) + p. 

This method is a combination of Algorithms I and II 

since up to the last phase the steps followed are 

as in Algorithm II. In the final phase, the global 

sorting has to be combined with some aggregation 

in order to arrive at the final result for cate­

gory c. Hence, the extent of aggregation is not 

as much as in Algorithm I but is more than in II.

Further efficiency can be attained if the CC 

can maintain a comprehensive directory of all the 

files in the system, including information on num­

ber of tuples and boundary attribute values for 

each local segment of a global relation. Using 

this information, the CC can judiciously assign 

categories to processors so that the time involved 

in the final stage for merging/aggregating local 

results can be reduced considerably. Hence, it is 

possible to issue a highly optimized query to the 

system. Since the code generation time is a very 

small component of the overall operation time, the 

increased overhead required for optimizing the 

query has very little impact.

Since Algorithm II broadcasts all the blocks of 

the source relation, any processor can listen in 

and form aggregates for a given set of categories. 

This broadcast feature of the algorithm allows CC 

to assign an arbitrary number of processors to the 

cluster, thereby speeding up the operation.

The last phase of operation in both algorithms 

can be modified to use the broadcasting key sorting 

algorithm suggested in [SU82]. In Algorithm I, 

since a given category can be present in more than 

one processor, a global merge/sort is required in 

order to form the final result. In Algorithm II, 

the categories in each processor are distinct but 

they may not arrive in a global sequence at the 

CCP. Hence, a final global sort may be required 

in order to arrange all categories in their sorted 

sequence. The algorithm presented in [SU82] per­

forms a global sort by using the Cluster Control 

Bus (CCB) rather than the switchable memories. The 

sort keys and tuples are transferred via this bus 

while the local memories are used to maintain "sort 

arrays." These arrays contain the top-most key 

from each processor. The processor with the lowest 

key (or set of keys), in the case of an ascending 

sort, is called the Successful Computer (SC). While



the SC transfers its key(s) and related tuple(s) to 

the Control Computer, the remaining processors per­

form computations to determine which of them will be 

the next SC. Hence, both the CCB and the memories 

are used simultaneously and, also, there is a high 

degree of parallelism in the algorithm. At the end 

of this stage, the globally sorted relation is avail­

able at the processor that has been designated as the 

Control Computer (CC). In the SM3 system, this cor­

responds to the CCP. It has been shown that this 

sorting algorithm compares favorably with several 

other sorting algorithms [SU83b]. The algorithm can 

be used to speed up the sorting operation required 

in Algorithms I and II.

REFERENCES

[BAT82]

[BEC78]

[B0R82]

[BR082]

[CHA81]

[CHAM81]

[CHI81]

[DEN80]

[DEW79]

[DEW81]

[EGG81]

Batory, D.S., "Index Encoding: A Compres­

sion Technique for Large Statistical Data­

bases," CIS Tech. Rep. 8182-9, Dept, of CIS, 

Univ. of Florida, 1982.

Becker, R.A. and Chambers, J.M., "Design 

and Implementation of the S System for In­

teractive Data Analysis," Proc. of IEEE 

COMPSAC 78. (1978), pp. 626-629.

Boral, H., DeWitt, D . , and Bates, D., "A 

Framework for Research in Database Manage­

ment for Statistical Analysis," Proc. of 

ACM/SIGMOD 1982 Conference. June 1982.

Brown, V.A., Navathe, S.B., and Su, S.Y.W., 

"Computer Data Types and a Data Manipula­

tion Language for Scientific and Statis­

tical Databases," CIS Tech. Report, Data­

base Systems Research and Developemnt Cen­

ter, Univ. of Florida, June 1982.

Chan, P. and Shoshani, A., "SUBJECT: A

Directory Driven System for Organizing and 

Accessing Large Statistical Databases,"

Proc. of the 7th VLDB, 1981, pp. 553-563.

Chamberlain, D.D., et al., "Support for 

Repetitive Transactions and ad hoc Queries 

in System R," ACM TODS. Vol. 6 , No. 7,

March 1981, pp. 70-94.

Chin, F.Y. and Ozsoyoglu, G., "Auditing and 

Inference Control in Statistical Databases," 

IEEE Trans, on Software Eng., SE-8 , 3, May 

1982, pp. 223-234.

Denning, D.E., "Secure Statistical Databases 

with Random Sample Queries," ACM TODS, Vol. 

5,.No. 3, Sept. 1980, pp. 291-315. /

DeWitt, D.J., "DIRECT - A Multiprocessor 

Organization for Supporting Relational 

Database Management Systems," IEEE Trans, 

on Computers, C-28(6), June 1979, pp. 395- 

406.

DeWitt, D.J. and Hawthorn, P.B., "A Perfor­

mance Evaluation of Database Machine Archi­

tectures, " Proc_;_of_7th_J/LDB, Sept. 1981.

Eggers, S., Olkin, F., and Shoshani, A.,

"A Compression Technique for Large Statis­

tical Databases," Proc. of 7th VLDB, Sept. 
1981, pp. 424-434. "

[FEI84]

[HAM78]

[HEL81]

[HID81]

(JOH81] 

[JOH82]

[LEM80]

[MAD79]

[NIC80]

[SAS79]

[SHA79]

[SH082]

[STW81] 

[STW83] 

[SU7 8 ]

Fei, T.H., Baru, C.K., and Su, S.Y.W.,

"SM3: A Dynamically Partitionable Multi­

computer System with Switchable Main Mem­

ory Modules." IEEE International Confer­

ence on Data Engineering (COMPDEC). April 

24-27, 1984, Los Angeles, CA.

Hampel, V.E. and Ries, D.R., "Requirements 

for the Design of a Scientific Data Base 

Management System," in a special report on 

Generalized Data Management Systems and 

Scientific Information, OECD Nuclear Ener­

gy Agency, Paris, 1978, p p . 111-131.

Hell, W . , "RDBM - A Relational Database 

Machine: Architecture and Hardware De­

sign," Proc. of 6 th Workshop on Comp. Arch, 

for Non-Numeric Processing, June 1981.

Hideto, I. and Kobayashi, Y., "Additional 

Facilities of a Conventional DBMS to Sup­

port Interactive Statistical Analysis," 

Proc. of 1st LBL Workshop on Statistical 

Database Management, Dec. 1981, pp. 25-36.

Johnson, R.R., "Modelling Summary Data," 

Proc. of ACM/SIGMOD Inti. Conf . on Manage­

ment of Data, 1981, pp. 93-97.

Johnson, R.R. and Thompson, W.C., "A Data­

base Machine Architecture for Performing 

Aggregations," Tech. Report UCRL - 87419, 

June 1982.

Lemon, J.S. and Knowles, J.S., "Data Man­

agement Facilities in Statistical Pack­

ages," COMPSTAT '80, pp. 108-114.

Madnick, S.E., "The INF0PLEX Database Com­

puter: Concepts and Directions," Proc.

IEEE Computer Conference, Feb. 1979.

Nickens, D.O., Genduso, T.B., and Su, S.Y. 

W., "The Architecture and Hardware Imple­

mentation of a Prototype MICRONET," Proc. 

of 5th Conf. on Local Computer Networks, 

Oct. 1980, pp. 56-64.

SAS Institute, Inc., SAS User's Guide,

1979 Edition, Raleigh, N.C., 1979.

Shaw, D.E., "A Relational Database Mach­

ine Architecture," Proc . of 5th Workshop 

on Comp. Arch, for Non-Numeric Processing, 

March 1980.

Shoshani, A., "Statistical Databases: 

Characteristics, Problems, and Some Solu­

tions," Proc. of 8 th VLDB, Mexico City, 

Sept. 1982, pp. 208-222.

Proceedings of the 1st LBL Workshop on 

Statistical Database Management. Dec.

2-4, 1981.

Proceedings of the 2nd Inti, Workshop on 

Statistical Database Management, Sept.

1983, Los Altos, CA.

Su, S.Y.W,, et al., "MICRONET - A Micro­

computer Network System for Managing Dis­
tributed Relational Databases," Proc. of



4th VLDB, Berlin, W. Germany, Sept. 1978, 

pp. 288-298.

[SU82]

[SU83a]

[SU83b]

[SU83c]

[SU84]

[TÜR79]

[W0N82]

[YU77]

Su, S.Y.W. and Mikkilineni, K.P. "Parallel 

Algorithms and their Implementation in 

MICRONET," Proc. of 8 th VLDB, Mexico City, 

Sept. 1982.

Su, S.Y.W., "SAM*: A Semantic Association

Model for Corporate and Scientific-Statis­

tical Databases," Information Sciences, 29, 

1983, pp. 151-199.

Su, S.Y.W., "A Microcomputer Network System 

for Distributed Relational Databases: De­

sign, Implementation, and Analysis,"

Journal of Telecommunication Networks, 1983.

Su, S.Y.W. and Mikkilineni, K.P., "An Eval­

uation of Sorting Algorithms for Common-Bus 

Local Networks," manuscript, 1983.

Su, S.Y.W. and Baru,\C.K., "Dynamically 

Partitionable Multicomputers with Switch- 

able Memories," to appear in the Journal 

of Parallel and Distributed Computing, 1984.

Turner, M.J., Hammond, R. and Cotton, P.,

"A DBMS for Large Statistical Databases," 

Proc. 5th VLDB. Oct. 1979, pp. 319-327.

Wong, H.K.T. and Kuo, I., "GUIDE: Graphi­

cal User Interface for Database Explora­

tion," Proc. of 8 th VLDB, Mexico City,

Sept. 1982, pp. 22-32.

Yu, C.T. and Chin, F.Y., "A Study on the 

Protection of Statistical Databases," 

ACM/SIGMOD Inti. Conf. on Management of 

Data. 1977, pp. 169-181.



Fig. 1 MPC System Architecture



PARAMETERS AND VARIABLES USED

DISK PARAMETERS

BLOCK_SIZE Size of a single track 13,030 bytes

T Number of tracks/cylinder 19

TACCESS Direct-access time 38.6 msec

TREAD Track (block) read time 16.7 msec

TSEEK Track seek time 1 0 . 1  msec

CPU PARAMETERS

TSCAN Time to perform simple operations on a 

block of data 1 2  msec

TMOVE Time to move a block of data within memory 2 0  msec

TPROC Time to perform complex operation on a 

block of data 95 msec

SM3 SYSTEM PARAMETERS

TCODE Code generation time 2 0 0  msec

TCLUS Cluster formation time 50 msec

TMSG Interrupt service time 5 msec

TBRDCST Time to do one-to-all broadcast via shared 

memories 4 msec

TSWBUFF I/O buffer switching time 2  msec

TSWITCH Time to set/reset SM system switches 2  msec

N Number of processors per cluster 19

M Size of buffers and switchable memories in 

number of blocks 1

TUPLE_SIZE Size of individual tuples in source/output 

relation 1 0 0  bytes

RECS Number of tuples in source relation 50,000

VARIABLES AND DERIVED VALUES

C Number of categories formed out of relation Variable

R, A, B Source relation in number of blocks RECS*TUPLE_SIZE

BLOCK_SIZE

RR Rounded value of R CEIL(R)

RRn Rounded value of number of blocks 

of the relation per processor CEIL(R/N)

G Number of categories expressed in blocks C*TUPLE_SIZE

BL0CK_SIZE

GG Rounded value of G CEIL(G)



N = 19 X = 0.0

R = 50,000 tuples of size 100 bytes

Number of 

Categories, C

The MPC System Modified 

MPC SYSTEM

SM3 System 

Algorithm I

SM3 System 

Algorithm II

5 1 0 . 2 7.9 2.4 48.7

50 1 0 . 2 8 . 1 3.0 48.7

250 10.3 9.7 5.7 49.0

500 19.3 14.6 9.0 49.1

2500 89.9 76.2 35.6 51.0

5000 193.2 171.7 69.0 53.0

Note: All times are in seconds.

Number of Categories

Fig. 5 Processing Time for Statistical Aggregation Operations


