
Daniel H. Fishman Ming-Yee Lai W. Kevin Wilkinson

Bell Communications Research

ABSTRACT

The Jasmin database machine is being implemented as part of a
research project in distributed processing and database management.
A primary goal of the work is to demonstrate the feasibility of a
practical multiprocessor database machine suitable for large database,
high transaction-rate applications. Key features of Jasmin are its
configurable performance, its use of off-the-shelf parts, and its ability
to handle distributed databases. A uniprocessor prototype of Jasmin
has already been completed and the multiprocessor version is planned
for later this year. In this paper we describe Jasmin’s architecture and
discuss the performance observed in the uniprocessor prototype.

1. INTRODUCTION

The Jasmin database machine is being implemented as part of a
research project in distributed processing and database management.
The project is an outgrowth of earlier work in this area [BUR83]. A
primary goal of the work is to demonstrate the feasibility of a practical
multiprocessor database machine that is suitable for large database,
high-volume applications. A uniprocessor prototype of Jasmin has
already been completed and the multiprocessor version is planned for
later this year.

The implementation of Jasmin uses both conventional processors and
disks. While some database machines use content-addressable disks
[OZK75, SU75, BAN78, LIN76], we decided against their use
because of their need for special hardware. This requirement limits
one’s ability to use the latest disks to emerge from this rapidly
changing technology. It is also presently unclear how to make effective
use of such disks in general purpose applications [HAW81]. For
similar reasons, we also decided against the use of special-purpose
processors. While a variety of such processors are used in some
database machines [KUN80, SON80, BEN79, MAL79, DEW81,
IDM81], we will not use them in our prototype because they are not
generally available. However, our architecture is flexible enough to
incorporate special hardware devices when they are available, provided
they meet whatever standard interface we adopt, e.g., multibus, Q-bus,
etc. In some ways, Jasmin resembles the IDM-500 [IDM81]. Both
use conventional processors and disks in a bus-based architecture.
(The IDM-500 also uses a special-purpose hardware device called a
"database accelerator.") Whereas the IDM-500 is essentially a
uniprocessor machine, Jasmin is composed of software modules
specifically designed to run in various combinations on multiple

Permission to copy witnout fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-128-8/84/006/0234 $00.75

processors, much in the spirit of SABRE [GAR83]. In fact, Jasmin
can accommodate multiple copies of any component in configurations
that satisfy a wide range of throughput requirements.

Our design goals for Jasmin are that it be: implemented in a machine
independent manner using off-the-shelf parts; configurable for a range
of application sizes, small to very large; able to process distributed
databases efficiently; and suitable as a testbed for research in
distributed concurrency control and query processing, reliability and
recovery in multiprocessor database machines, and performance
evaluation.

To satisfy these goals, we have devised a software architecture (Figure
1) with three layers of database services. Each successive layer
represents a higher level of abstraction. The layers are implemented as
processing modules (servers) that communicate with each other with
messages. Because intermodule communication is restricted to
messages, the module-to-processor assignments can be changed with no
effect on the software. Further, the modules are written in a fashion
that allows each to coexist with clones of itself. Thus, Jasmin can be
configured with many modules and processors, as processing
requirements dictate. Our initial prototype will consist of eight
processors on which we will experiment with a variety of module
assignments.

F i g u r e 1. S o f t w a r e A r c h i t e c t u r e o f J a s m i n

The database software consists of three modules. The Intelligent Store
(IS) [R 0082] performs page and physical block management,
transaction management, concurrency control, and crash recovery.
The Record Manager (RM) performs record and index management,
and single relation query processing. The Data Manager (DM)
performs relational query processing and schema management using

http://crossmark.crossref.org/dialog/?doi=10.1145%2F971697.602291&domain=pdf&date_stamp=1984-06-01

the RM for single relation subqueries. Since each module is
implemented as a server, it offers a flexible and well-defined interface.
It is possible to implement new database servers using existing
modules, e.g., we plan to implement a robust file server that uses the
IS. User applications on host machines can also use these servers.
Applications are not constrained to use higher level services when they
are not needed. Furthermore, since concurrency control is managed by
the IS, the RM and DM can be used simultaneously on the same
database with no danger of corruption.

The software is implemented on a sparse operating system kernel that
provides message-based intermodule communication, multitasking, and
scheduling. The kernel is an excellent runtime environment, providing
for efficient execution with no extraneous function.

The hardware and software architecture of Jasmin are described in
Section 2. Section 3 follows with a discussion of preliminary
uniprocessor performance results and our performance goals for the
multiprocessor. Section 4 concludes the paper with a summary of the
project and our plans for the future.

2. JASMIN ARCHITECTURE

In this section, we outline the software and hardware architecture of
Jasmin. We first discuss the software components. Then we discuss
the hardware architecture. Our design is not tied to any particular
hardware, however we list some hardware features that will improve
performance. We also describe the hardware we intend to use for our
multiprocessor prototype. Finally, we describe alternative
configurations of software modules on our proposed hardware and
discuss how those configurations affect performance.

2.1 Software Components

Jasmin is designed as a collection of cooperating software modules,
each with a well-defined interface. To support our design goals of
incremental growth and transparent distribution, we imposed the
constraint on the implementation of modules that they be able to
coexist with clones of themselves in arbitrary configurations. The
Jasmin kernel provides a simple but powerful environment on which to
implement such software.

2.1.1 The Kernel. The kernel provides a minimal set of facilities for
building distributed software. It offers three types of services: tasking,
scheduling, and message passing. It includes no database-specific
features and even device drivers are not included. Thus, the kernel is a
sparse environment with little of the overhead found in general purpose
operating systems [ST081], It gives the database system implementor
complete control over how memory is scheduled, swapped, and paged.
The kernel is accessed via subroutine calls.

The kernel supports multitasking within modules. A module consists of
one or more associated tasks, on the same processor, that share an
address space. In addition, each task of a module has its own stack
and may have a private data segment. Tasks represent parallel
computations that are created and destroyed dynamically by explicit
user control. A module facilitates parallel activity within a shared
data area (for example, a buffer cache in a file manager).

Many modules may run simultaneously on the same cpu. A single
message mechanism is used for communication between and
synchronization of tasks (both intra- and inter-module). However,
tasks within the same module may also communicate via their shared
data area. Because the kernel provides non-preemptive scheduling,
synchronization of tasks within a module is simple and inexpensive.
That is, since tasks running at the same priority level cannot preempt
each other, they can’t interfere with each other within critical sections.

Messages are small (16 byte) fixed-length objects. They are sent
along one-way communication channels, called paths. Our paths are
similar to the links used in Roscoe [SOL79] and DEMOS [BAS77],
Messages are copied and queued in kernel space on the machine of
their intended receiver. They remain queued until the receiver asks for
them. Large amounts of data are passed by associating a buffer with a
path. The kernel moves data in path buffers from one address space to
another, whether on the same machine or on separate machines.

Additional supporting software includes device drivers, and Name and
File Manager modules. The Name Manager provides a locator service
by dispensing paths to other modules. The File Manager implements a
file system similar to the one in the UNIX* operating system. These
modules, and the database modules described below, are implemented
directly on the kernel.

2.1.2 Intelligent Store. The Intelligent Store (IS) is a sophisticated
page manager that maps pages into secondary storage. The IS
underlies the Jasmin database management facilities, providing data
consistency, concurrency control, and crash recovery. The IS is
transaction oriented. It permits multiple transactions to access and
update pages stored on one or more disk subsystems. It implements an
optimistic concurrency control method, similar to [KUN81J,
maintaining a consistent version of the database for each active
transaction. There are no hard locks on pages. If two update
transactions access the same page, and this page is declared to be
"important" (see [R0082]) to both transactions, then the first
transaction to commit its updates succeeds, and the other transaction is
rolled back. Page requests are based on (logical) page identifiers. The
IS translates between logical page id’s and physical block addresses.
Since the concurrency control scheme involves page shadowing, e.g.,
updates are not done in place, the IS user need not be concerned with
the precise physical location of pages. The IS also implements rollback
(transaction abort) and recovery from system crashes (committed
updates are preserved, and uncommitted updates are discarded). In
addition, the IS provides a priority caching scheme to enable some
classes of pages to remain in cache longer than others. This is used to
give priority to index pages over data pages. Though not yet
implemented, algorithms have been devised to accommodate
transactions that span multiple IS’s. data managed by several IS’s. A
detailed discussion of the IS appears in [R0082].

2.1.3 Record Manager. The Record Manager (RM) [LIN82]
provides access to data stored in the form of records. The RM maps
records into IS pages. Variable size records with missing and repeated
fields are supported. Records are grouped into sets (record types,
relations), each of which must have an associated primary index.
Record types may also have an arbitrary number of secondary indexes.
Although all indexes are currently implemented as B-trees, provision
has been made to accommodate other access methods as well.
Retrieval requests are associative: they specify only the record type and
a boolean search expression that selects the desired records. Search
expressions may include exact, prefix, and range matches. The
physical aspects of storing and retrieving index and data pages are
handled by the IS. The RM accommodates multiple concurrent users
(transactions), both updates and retrievals, and relies on the
concurrency control provided by the IS. Note that the RM operations
are limited to those that can be computed in one pass over one record
type, thus including select and project, but excluding sort and join.
The RM interface is accessible to applications that only need to
process single relations. More complicated query processing will
require use of the Data Manager.

2.1.4 Data Manager. The Data Manager (DM) provides a relational
view of data, mapping relations into RM records. It offers a QUEL
[STO76] interface and read/write protection of data down to fields
within records. Planned features include parameterized stored
commands, views, automatic transaction restart, and a heavy dose of
query optimization. The DM uses the RM to process one or more
single relation queries. Query processing is accomplished in a pipeline.
One or more streams of output from the RM are sorted, joined,
aggregated, and projected by an optimized network of tasks set up to
handle the specific query. The pipe between two tasks is implemented
in shared memory and is very efficient. Use of the pipeline eliminates
the need to create temporary relations during query processing. We
expect the set orientation to be helpful in distributed query processing.
We also believe the pipeline orientation will accommodate special

* UNIX is a Trademark of Bell Laboratories

purpose processors for selected operations. Like the RM, the DM is
supported by the concurrency control and recovery mechanisms
provided by the IS.

2.2 Hardware Components

Jasmin will run on any hardware that supports the kernel. In the past,
this has included a DEC PDP 11/45 and an AT&T 3B20S (roughly
equivalent to a DEC VAX 11/780). However, these implementations
made incremental growth rather expensive. Further, lacking a readily
available inter-connect scheme for these machines, we never
experimented with distributed processing. Henceforth, a guiding
principle for choosing a hardware base for Jasmin will be to select
inexpensive, readily available, off-the-shelf components.

The Jasmin kernel is designed to make effective use of a multilevel
system architecture, as depicted in Figure 2. At the lowest level of the
architecture, processors are grouped together on a high speed
memory-addressed bus in a configuration called a node. At the next
higher level, nodes of machines are interconnected by a message
communication fabric to form a local area network (LAN). At the top
level, LANs are connected together by gateways to form a wide area
network (WAN) . The WAN level will not be further discussed here.
Given a fast enough message medium, two levels of hardware
interconnect (Figure 2) form a suitable hardware base for a Jasmin
database machine.

2.2.1 Processors. The first "requirement" on Jasmin processors is that
they support a large address space, at least 24 bits. Our experience
with 16-bit processors convinced us that it is a bad idea to build large
software systems in small address spaces. A second requirement is
that the processor support a shared memory bus that makes each
processor’s memory accessible to other processors on the bus. This
allows several processors to be grouped together into a node.

2.2.2 Message Network. The message network is the transport
medium for messages between nodes. Many existing LANs are
suitable, but they must preserve the order of messages and they must
be fast. Further, it should be possible to add or remove nodes without
disturbing active nodes.

2.2.3 S/NET. We plan to build the Jasmin prototype on S/NET
[AHU82], a high-speed message bus running at 80 Mbps. The
S/NET, as originally configured, consists of 8 nodes connected to the
network. Each node is contained in a 5 slot multibus cage; one slot is
used for the processor (a Motorola MC68000), one for expansion
memory and one for the S/NET interface. We plan to use one
additional slot for a high-speed message interface processor. It will
implement some of the kernel message passing primitives in hardware.
The remaining slot may be used for an additional processor, additional
memory, disk and tape controller, or possibly for special-purpose
database hardware. S/NET configurations with more nodes and more
slots per node are entirely possible. The S/NET matches our
hardware needs very closely. The multibus provides a shared-memory
bus for several processors to form a node. The S/NET itself provides
a high-speed message network. In addition, the processors are
inexpensive and the multibus is a standard interface that should make
it easy to experiment with new hardware.

2.3 Jasmin Configurations

Since Jasmin is so easily configured, we have the problem of deciding
how best to assign software modules to processors. There are actually
two problems: we must decide how many modules to run on each
processor, and we need to decide which types of modules (i.e. IS, RM,
DM) to run on a given processor. There are two extremes: run all
modules on each processor or run each module on a separate processor.
The first extreme, using a single processor, was the configuration of
our initial prototype. While it simplified development and
benchmarking, it is the least interesting configuration and it pays the
overhead of distribution and message passing without taking advantage
of it. The other extreme may obtain the best performance if message
passing between processors is very fast.

We expect the IS to be primarily I/O bound and the RM and DM to
be CPU bound. This suggests that RM and IS modules might reside

LAN

G : G a t e wa y
P: P r o c e s s o r
M: Memor y

F i g u r e 2 . T w o - L e v e l S y s t e m w i t h Two N o d e s

-L

RM I DM

RM I DM

-c RM I DM

IS

F i g u r e 3 . C o n f i g u r a t i o n f o r S h o r t T r a n s a c t i o n

LAN

F i g u r e 4 . C o n f i g u r a t i o n f o r L o n g e r T r a n s a c t !

on the same processor with little or no loss in performance. Another
reason these modules may live well together is that the traffic between
the IS and RM is likely to be heavier than between the RM and DM.
However, the most cost-effective configuration for an application will
depend on the processing requirements of that application. For
example, consider an application where transactions are short and most
references are to a common part of the database. In this case, we
might want the database to reside on a single IS, as in Figure 3, to
take advantage of caching in the IS, and to avoid distributed
transactions. Further, it makes sense to run the DM and RM on the
same processor, since the DM does relatively little work.

Another example might be an application where transactions make
references to records that are uniformly distributed across the
database. In this case, we might want to distribute the data and place
an RM and IS on the same processor, as in Figure 4. Such a
configuration is likely to result in concurrent processing of transactions.

Given an application and a fixed number of processors we plan to
experiment with various module-processor configurations to determine
the performance trade-offs.

3. PERFORMANCE ANALYSIS

In this Section, we describe the performance of our initial Jasmin
prototype implemented on a single AT&T 3B20S computer. To
determine the viability of the Jasmin architecture, we compared its
performance with that of a Britton-Lee IDM-500. Performance
measurement of the IDM-500, internal software version 20, was
conducted by Lidor [LID83]. Britton-Lee introduced numerous
performance enhancements in their version 21 software. At the
conclusion of this Section we discuss the performance gains we expect
from a multiprocessor Jasmin.

3.1 Observed Performance

Both Jasmin and the IDM-500 were configured with 2 megabytes of
memory. Both were run as a backend database machine connected to
a 3B20S host, running UNIX 5.0, by a 9600 baud serial link.

The experimental database consists of three relations, R l, R2 and R3,
each containing 1000 records. Each relation has fifteen attributes, A1
through A15. A2 is the primary key and it has an integer domain
with distinct values ranging from 1 to 1000. The domain of A4 also
contains integers, in random order, ranging from 1 to 1000, but A4 is
unindexed. There is a secondary index on A7, and A7 also has an
integer domain with distinct integer values, in random order, between
1 and 1000. There is no correlation between the values in R l, R2, and
R3. The size of each record is 80 bytes, and the total database size is
240K bytes.

The queries of interest are listed in Table 1. Queries Q1 and Q2
retrieve records in R l using the primary key, A2. Q1 retrieves 10
records while Q2 retrieves 500 records. Q3 retrieves records in R l via
sequential search since A4 is not indexed. Q4 and Q5 retrieve records
via the secondary index Q7. Q4 retrieves 10 records while Q5 retrieves
500 records. Q6 retrieves all records in R l via sequential search, and
does a projection on A2, A3, and A4. Q7 gets the count of all
qualified records for Q2. Q8, Q9, and Q10 were repeatedly executed
while Jasmin was monitored to obtain an execution profile of each run.
The profiling data provides a statistical indication of where, at the
subroutine level, the CPU cycles are being spent. Q8 is used to profile
keyed retrieval. Q9 is used to profile a join. Q10 is used to profile an
aggregate calculation.

In Table 2, we list the performance figures in terms of response times
for the above queries in a single-user environment. The measurements
were obtained by use of the UNIX "time" utility.

Although Jasmin is mainly designed as a multiprocessor database
machine and uses messages as the interprocess communication
mechanism, the figures show the response times of a single 3B20S-
based Jasmin to be comparable to an IDM-500. From a hardware
point of view, one could argue that the 3B20S is much more powerful
than the CPU used in the IDM-500. However, the response time
figures for Jasmin are taken from an early prototype which, we

Q l: retrieve (R1.A2) where R1.A2 < — 10

Q2: retrieve (R1.A2) where R1.A2 < “ 500

Q3: retrieve (R1.A4) where R1.A4 < — 500

Q4: retrieve (R1.A7) where R1.A7 < — 10

Q5: retrieve (R1.A7) where R1.A7 < “ 500

Q6: retrieve (R1.A2, R1.A3, R1.A4)

Q7: retrieve (mcnt “ count(Rl.A2 where R1.A2 < — 500))

Q8: 100 commands, key in random order
retrieve (R1.A1, ..., R1.A15) where R1.A2 — key

Q9: 5 commands, join by primary key
retrieve (R1.A2, R2.A2) where R1.A2 “ R2.A2

Q10: 20 commands, average on primary key
retrieve (mavg — avg(Rl.A2))

TABLE 1. Test Queries

Query Jasmin IDM-500

Ql 2.4 3.2
Q2 9.2 10.2
Q3 9.7 6.6
Q4 2.5 5.3
Q5 20.9 15.6
Q6 31.0 39.7
Q7 5.6 3.9
Q8 1.4* N.A.
Q9 22.7* N.A.
Q10 7.8* N.A.

* (average)

TABLE 2. Observed Response Time (seconds)

assume, was not as well tuned as the IDM-500. For example, the
buffer size used in Jasmin was less than 128K bytes, as compared to
the 466K byte buffer used in the IDM-500. Furthermore, the Jasmin
prototype suffered from poor host-backend communications. (The
communication line driver was written with several tasks that
communicate internally with messages!) Elimination of the use of
messages in the communication driver would provide a significant
performance improvement.

From Table 2, we observe that Jasmin performs better than the IDM-
500 in primary key retrieval (much faster for Ql and faster for Q2).
For sequential search, Jasmin is faster than the IDM-500 for
unqualified retrieval (Q6), but is considerably slower for qualified
retrieval (Q3). We attribute this slower performance largely to the
use of an inefficient expression evaluator in the RM. The evaluator is
invoked for queries involving qualifications on non-primary-key fields.
E.g., it is invoked for Q3-Q6, but not for Q l and Q2. The fact that, in
the execution of Q3, the evaluator must be applied to each tuple in R l
distorts that result. For queries on a secondary indexed attribute,
Jasmin is twice as fast as the IDM-500 for retrieving a small amount
of data (Q4), but is much slower retrieving a large amount‘of data
(Q5). Jasmin always uses secondary indexes when they apply, it does
not employ the optimization of sequentially scanning a relation on
large retrievals. Jasmin is considerably slower than the IDM-500 on

Q7. We believe the slower speed may be attributable to extra data
copying between the RM, where selection and projection are done, and
the DM, where the aggregation is done.

The execution profiles for Q8, Q9, and Q10 were obtained by
recording "hit counts," for subroutines of interest, using profiling
utilities. A high hit count indicates frequent execution. CPU
utilization was also determined. For Q8, Q9, and Q10, the CPU was
busy 24%, 72%, and 64% of the time, respectively.

In Q8, 55% of the CPU activity was in the kernel for message send
and receive. We attribute much of this to the overhead of host-
backend communication.

In Q9, 90% of the CPU activity was distributed among the RM
(33%), DM (30%), and kernel (27%). Record manipulation,
especially projection, and moving bytes were the greatest consumers of
time in the RM. Join processing and data formatting dominated the
time in the DM. Message send and receive consumed about 30% of
the kernel time.

In Q10, 92% of the CPU activity was distributed among the RM
(46%), DM (22%), and kernel (24%). Once again, record
manipulation, especially projection, and moving bytes dominated the
time in the RM. Disk access and message handling dominated the
kernel usage. Computing the sum dominated the DM usage. In all
cases, CPU cycles attributable to the IS were in the noise level.

3.2 Projected Performance

When Jasmin is implemented on multiprocessor hardware we expect to
obtain significant performance improvements. We will explore the
performance of a simple configuration consisting of three single
processor nodes connected by a LAN. The performance improvement
of other configurations can be extrapolated from this example.

In this simple configuration, one node runs the DM, another runs the
RM, and the third runs the IS. The database is stored on disks
managed by the IS, and the host interacts with the processor running
the DM. Note that if there were more than one DM, RM or IS in the
system, we would expect system throughput to increase.

Because query processing is spread over three machines, the response
time for queries that touch only a few records should increase
somewhat. However, queries that require processing lots of data
should show improved response times because of the pipeline
processing, using double buffering between the DM, RM and IS.
Because of this pipelining we will obtain intra-query concurrency. For
example, in Q7, the RM can perform projection and selection while
the DM computes the aggregate, and the IS does disk access.
Pipelining also occurs in a multiplexed fashion, resulting in inter-query
concurrency, when more than one query is in process. That is, when
running several keyed retrieval queries, the DM can process the third
query while the RM does projection for the first and the IS does disk
access for the second. The message latency is at least an order of
magnitude less than the execution time needed by the DM, RM, and
IS to do their functions. Thus the gain from concurrent processing
should be much greater than the overhead of inter-node
communication.

4. SUMMARY AND FUTURE WORK

In this paper we described the Jasmin database machine architecture
and discussed the performance observed in a uniprocessor prototype.
Key features of Jasmin are its configurable performance, its use of
off-the-shelf parts, and its ability to handle distributed databases. An
important goal for Jasmin is that it be useful as a testbed for ongoing
research in database machines and database management, in general.
Our future work with Jasmin will include:

• Construction of a file system on the IS and its integration with the
DM. This will permit additional data types such as text, graphics,
and voice in the database. •

• Study the reliability of Jasmin configurations and design of
enhanced reliability features.

• Study the advantages and disadvantages of optimistic concurrency
control for centralized and distributed databases, and comparison of
its performance relative to locking. An important advantage of
optimistic locking is its non-blocking behavior relative to read-only
transactions. This makes it quite useful for interactive and low-
conflict applications. It also appears to simplify coordination of
distributed transactions.

• Study the performance implications of various configurations of
DM, RM, and IS modules.

5. ACKNOWLEDGMENTS

Work through the initial prototype was conducted at AT&T Bell
Laboratories. Quite a number of people have made significant
contributions to this project. These include, in addition to the authors,
Micah Beck, Bill Burnette, Rudd Canaday, Susan Fontaine, Mary
Hesselgrave, Phil Karn, Hikyu Lee, John Linderman, U. V.
Premkumar, Bill Roome, Edith Schonberg, and Chung Wang. We
particularly appreciate the efforts of Mary Hesselgrave in obtaining
the performance results described in this paper.

6. REFERENCES

[AHU821 Ahuja, S. R. "A High Speed Interconnect for Multiple
Computers,” Internal Memorandum, Bell Laboratories,
Holmdel, NJ, Dec. 1982.

[BAN78] Banerjee, J., and Hsiao, D. K. "Performance Study of a
Database Machine in Support of Relational Databases," Proc.
VLDB, 1978.

(BAS77]Baskett, F., Howard, J. H., and Montague, J. T. Task
Communication in DEMOS," Proceedings o f the 6th ACM
Symposium on Operating Systems Principles, November
1977, 23-31.

[BEN79]Bentley, J. L., and Kung, H. T. "A Tree Machine for
Searching Problems,” Proc. IEEE Int. Conf. on Parallel
Processing, 1979.

[BUR83] Burnette, W. A., Canaday, R. H., and Fishman, D. H.
"MAX: A Distributed System," Internal Memorandum, Bell
Laboratories, Murray Hill, NJ, 1983.

[DEW811 DeWitt, D. J. "DIRECT - A Multiprocessor Organization
for Supporting Relational Database Management Systems,”
IEEE Trans. Computers C-28, June 1979, 395-406.

[GAR83] Gardarin, G., Bernadat, P., Temmerman, N„ Valduriez, P.,
and Viemont, Y. "Design of a Multiprocessor Relational
Database System," INRIA Technical Report TR-224, July
1983.

[IDM81] Britton-Lee Inc., 1DM-500 Reference Manual, Los Gatos,
CA., 1981.

[HAW81] Hawthorn, P. B., and DeWitt, D. J. "Performance Analysis
of Alternative Database Machine Architectures," IEEE
Trans. Software Engr. SE-8, January 1982, 61-75.

[KUN80] Kung, H. T., and Lehman, P. L. "Systolic Arrays for
Relational Data Base Operations," SIGMOD Proc., May
1980, 105-116.

[KUN81] Kung, H. T., and Robinson, J. T. "On Optimistic Methods
for Concurrency Control," ACM TODS 6, 2 (June 1981),
213-226.

[LID83] Lidor, G. Personal Communication.

[LIN76] Lin, S. C., Smith, D. C. P., and Smith, J. M. T h e Design of
a Rotating Associative Memory for Relational Database
Applications," ACM TODS 1, 1 (March 1976), 53-75.

[LIN82] Linderman, J: P. "Issues in the Design of a Distributed
Record Management System," Bell System Technical
Journal 61, 9 (Nov. 1982), Part 2, 2555-2566.

[MAL79] Mailer, V. A. J. "The Content Addressable File Store —
CAFS," ICL Technical Journal, November 1979, 265-279.

[OZK75] Ozkarahan, E. A., Shuster, S. A., and Smith, K. C. "RAP -
Associative Processor for Database Management," AFIP
Proc., Vol 44, 1975, 379-388.

[R 0082] Roome, W. D. "A Content-Addressable Intelligent Store,"
Bell System Technical Journal 61, 9 (Nov. 1982), Part 2,
2567-2596.

[SOL79] Solomon, M. H., and Finkel, R. A. T h e Roscoe Distributed
Operating System," Proceedings o f the 7th Symposium on
Operating Systems Principles, December 1979, 108-114.

(SON80] Song, S. W. "A Highly Concurrent Tree Machine for Data
Base Applications," Proc. IEEE Int. Conf. on Parallel
Processing, 1980, 259-260.

[ST076J Stonebraker, M., Wong, E., Kreps, P., and Held, G. T he
Design and Implementation of INGRES," ACM TODS 1, 3
(Sept. 1976), 189-222.

[ST081] Stonebraker, M. "Operating System Support for Database
Management," CACM 24, 7 (July 1981), 412-418.

[SU75] Su, S. Y. W„ and Lipovski, G. J. "CASSM: A Cellular
System for Very Large Data Bases," Proc. VLDB, 1975,
456-472.

