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ABSTRACT

The Jasmin database machine is being implemented as part of a 
research project in distributed processing and database management. 
A primary goal of the work is to demonstrate the feasibility of a 
practical multiprocessor database machine suitable for large database, 
high transaction-rate applications. Key features of Jasmin are its 
configurable performance, its use of off-the-shelf parts, and its ability 
to handle distributed databases. A uniprocessor prototype of Jasmin 
has already been completed and the multiprocessor version is planned 
for later this year. In this paper we describe Jasmin’s architecture and 
discuss the performance observed in the uniprocessor prototype.

1. INTRODUCTION

The Jasmin database machine is being implemented as part of a 
research project in distributed processing and database management. 
The project is an outgrowth of earlier work in this area [BUR83]. A 
primary goal of the work is to demonstrate the feasibility of a practical 
multiprocessor database machine that is suitable for large database, 
high-volume applications. A uniprocessor prototype of Jasmin has 
already been completed and the multiprocessor version is planned for 
later this year.

The implementation of Jasmin uses both conventional processors and 
disks. While some database machines use content-addressable disks 
[OZK75, SU75, BAN78, LIN76], we decided against their use 
because of their need for special hardware. This requirement limits 
one’s ability to use the latest disks to emerge from this rapidly 
changing technology. It is also presently unclear how to make effective 
use of such disks in general purpose applications [HAW81]. For 
similar reasons, we also decided against the use of special-purpose 
processors. While a variety of such processors are used in some 
database machines [KUN80, SON80, BEN79, MAL79, DEW81, 
IDM81], we will not use them in our prototype because they are not 
generally available. However, our architecture is flexible enough to 
incorporate special hardware devices when they are available, provided 
they meet whatever standard interface we adopt, e.g., multibus, Q-bus, 
etc. In some ways, Jasmin resembles the IDM-500 [IDM81]. Both 
use conventional processors and disks in a bus-based architecture. 
(The IDM-500 also uses a special-purpose hardware device called a 
"database accelerator.") Whereas the IDM-500 is essentially a 
uniprocessor machine, Jasmin is composed of software modules 
specifically designed to run in various combinations on multiple 
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processors, much in the spirit of SABRE [GAR83]. In fact, Jasmin 
can accommodate multiple copies of any component in configurations 
that satisfy a wide range of throughput requirements.

Our design goals for Jasmin are that it be: implemented in a machine 
independent manner using off-the-shelf parts; configurable for a range 
of application sizes, small to very large; able to process distributed 
databases efficiently; and suitable as a testbed for research in 
distributed concurrency control and query processing, reliability and 
recovery in multiprocessor database machines, and performance 
evaluation.

To satisfy these goals, we have devised a software architecture (Figure 
1) with three layers of database services. Each successive layer 
represents a higher level of abstraction. The layers are implemented as 
processing modules (servers) that communicate with each other with 
messages. Because intermodule communication is restricted to 
messages, the module-to-processor assignments can be changed with no 
effect on the software. Further, the modules are written in a fashion 
that allows each to coexist with clones of itself. Thus, Jasmin can be 
configured with many modules and processors, as processing 
requirements dictate. Our initial prototype will consist of eight 
processors on which we will experiment with a variety of module 
assignments.

F i g u r e  1.  S o f t w a r e  A r c h i t e c t u r e  o f  J a s m i n

The database software consists of three modules. The Intelligent Store 
(IS) [R 0082] performs page and physical block management, 
transaction management, concurrency control, and crash recovery. 
The Record Manager (RM) performs record and index management, 
and single relation query processing. The Data Manager (DM) 
performs relational query processing and schema management using
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the RM for single relation subqueries. Since each module is 
implemented as a server, it offers a flexible and well-defined interface. 
It is possible to implement new database servers using existing 
modules, e.g., we plan to implement a robust file server that uses the 
IS. User applications on host machines can also use these servers. 
Applications are not constrained to use higher level services when they 
are not needed. Furthermore, since concurrency control is managed by 
the IS, the RM and DM can be used simultaneously on the same 
database with no danger of corruption.

The software is implemented on a sparse operating system kernel that 
provides message-based intermodule communication, multitasking, and 
scheduling. The kernel is an excellent runtime environment, providing 
for efficient execution with no extraneous function.

The hardware and software architecture of Jasmin are described in 
Section 2. Section 3 follows with a discussion of preliminary 
uniprocessor performance results and our performance goals for the 
multiprocessor. Section 4 concludes the paper with a summary of the 
project and our plans for the future.

2. JASMIN ARCHITECTURE

In this section, we outline the software and hardware architecture of 
Jasmin. We first discuss the software components. Then we discuss 
the hardware architecture. Our design is not tied to any particular 
hardware, however we list some hardware features that will improve 
performance. We also describe the hardware we intend to use for our 
multiprocessor prototype. Finally, we describe alternative 
configurations of software modules on our proposed hardware and 
discuss how those configurations affect performance.

2.1 Software Components

Jasmin is designed as a collection of cooperating software modules, 
each with a well-defined interface. To support our design goals of 
incremental growth and transparent distribution, we imposed the 
constraint on the implementation of modules that they be able to 
coexist with clones of themselves in arbitrary configurations. The 
Jasmin kernel provides a simple but powerful environment on which to 
implement such software.

2.1.1 The Kernel. The kernel provides a minimal set of facilities for 
building distributed software. It offers three types of services: tasking, 
scheduling, and message passing. It includes no database-specific 
features and even device drivers are not included. Thus, the kernel is a 
sparse environment with little of the overhead found in general purpose 
operating systems [ST081], It gives the database system implementor 
complete control over how memory is scheduled, swapped, and paged. 
The kernel is accessed via subroutine calls.

The kernel supports multitasking within modules. A module consists of 
one or more associated tasks, on the same processor, that share an 
address space. In addition, each task of a module has its own stack 
and may have a private data segment. Tasks represent parallel 
computations that are created and destroyed dynamically by explicit 
user control. A module facilitates parallel activity within a shared 
data area (for example, a buffer cache in a file manager).

Many modules may run simultaneously on the same cpu. A single 
message mechanism is used for communication between and 
synchronization of tasks (both intra- and inter-module). However, 
tasks within the same module may also communicate via their shared 
data area. Because the kernel provides non-preemptive scheduling, 
synchronization of tasks within a module is simple and inexpensive. 
That is, since tasks running at the same priority level cannot preempt 
each other, they can’t interfere with each other within critical sections.

Messages are small (16 byte) fixed-length objects. They are sent 
along one-way communication channels, called paths. Our paths are 
similar to the links used in Roscoe [SOL79] and DEMOS [BAS77], 
Messages are copied and queued in kernel space on the machine of 
their intended receiver. They remain queued until the receiver asks for 
them. Large amounts of data are passed by associating a buffer with a 
path. The kernel moves data in path buffers from one address space to 
another, whether on the same machine or on separate machines.

Additional supporting software includes device drivers, and Name and 
File Manager modules. The Name Manager provides a locator service 
by dispensing paths to other modules. The File Manager implements a 
file system similar to the one in the UNIX* operating system. These 
modules, and the database modules described below, are implemented 
directly on the kernel.

2.1.2 Intelligent Store. The Intelligent Store (IS) is a sophisticated 
page manager that maps pages into secondary storage. The IS 
underlies the Jasmin database management facilities, providing data 
consistency, concurrency control, and crash recovery. The IS is 
transaction oriented. It permits multiple transactions to access and 
update pages stored on one or more disk subsystems. It implements an 
optimistic concurrency control method, similar to [KUN81J, 
maintaining a consistent version of the database for each active 
transaction. There are no hard locks on pages. If two update 
transactions access the same page, and this page is declared to be 
"important" (see [R0082]) to both transactions, then the first 
transaction to commit its updates succeeds, and the other transaction is 
rolled back. Page requests are based on (logical) page identifiers. The 
IS translates between logical page id’s and physical block addresses. 
Since the concurrency control scheme involves page shadowing, e.g., 
updates are not done in place, the IS user need not be concerned with 
the precise physical location of pages. The IS also implements rollback 
(transaction abort) and recovery from system crashes (committed 
updates are preserved, and uncommitted updates are discarded). In 
addition, the IS provides a priority caching scheme to enable some 
classes of pages to remain in cache longer than others. This is used to 
give priority to index pages over data pages. Though not yet 
implemented, algorithms have been devised to accommodate 
transactions that span multiple IS’s. data managed by several IS’s. A 
detailed discussion of the IS appears in [R0082].

2.1.3 Record Manager. The Record Manager (RM) [LIN82] 
provides access to data stored in the form of records. The RM maps 
records into IS pages. Variable size records with missing and repeated 
fields are supported. Records are grouped into sets (record types, 
relations), each of which must have an associated primary index. 
Record types may also have an arbitrary number of secondary indexes. 
Although all indexes are currently implemented as B-trees, provision 
has been made to accommodate other access methods as well. 
Retrieval requests are associative: they specify only the record type and 
a boolean search expression that selects the desired records. Search 
expressions may include exact, prefix, and range matches. The 
physical aspects of storing and retrieving index and data pages are 
handled by the IS. The RM accommodates multiple concurrent users 
(transactions), both updates and retrievals, and relies on the 
concurrency control provided by the IS. Note that the RM operations 
are limited to those that can be computed in one pass over one record 
type, thus including select and project, but excluding sort and join. 
The RM interface is accessible to applications that only need to 
process single relations. More complicated query processing will 
require use of the Data Manager.

2.1.4 Data Manager. The Data Manager (DM) provides a relational 
view of data, mapping relations into RM records. It offers a QUEL 
[STO76] interface and read/write protection of data down to fields 
within records. Planned features include parameterized stored 
commands, views, automatic transaction restart, and a heavy dose of 
query optimization. The DM uses the RM to process one or more 
single relation queries. Query processing is accomplished in a pipeline. 
One or more streams of output from the RM are sorted, joined, 
aggregated, and projected by an optimized network of tasks set up to 
handle the specific query. The pipe between two tasks is implemented 
in shared memory and is very efficient. Use of the pipeline eliminates 
the need to create temporary relations during query processing. We 
expect the set orientation to be helpful in distributed query processing. 
We also believe the pipeline orientation will accommodate special
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purpose processors for selected operations. Like the RM, the DM is 
supported by the concurrency control and recovery mechanisms 
provided by the IS.

2.2 Hardware Components

Jasmin will run on any hardware that supports the kernel. In the past, 
this has included a DEC PDP 11/45 and an AT&T 3B20S (roughly 
equivalent to a DEC VAX 11/780). However, these implementations 
made incremental growth rather expensive. Further, lacking a readily 
available inter-connect scheme for these machines, we never 
experimented with distributed processing. Henceforth, a guiding 
principle for choosing a hardware base for Jasmin will be to select 
inexpensive, readily available, off-the-shelf components.

The Jasmin kernel is designed to make effective use of a multilevel 
system architecture, as depicted in Figure 2. At the lowest level of the 
architecture, processors are grouped together on a high speed 
memory-addressed bus in a configuration called a node. At the next 
higher level, nodes of machines are interconnected by a message 
communication fabric to form a local area network (LAN). At the top 
level, LANs are connected together by gateways to form a wide area 
network (WAN) . The WAN level will not be further discussed here. 
Given a fast enough message medium, two levels of hardware 
interconnect (Figure 2) form a suitable hardware base for a Jasmin 
database machine.

2.2.1 Processors. The first "requirement" on Jasmin processors is that 
they support a large address space, at least 24 bits. Our experience 
with 16-bit processors convinced us that it is a bad idea to build large 
software systems in small address spaces. A second requirement is 
that the processor support a shared memory bus that makes each 
processor’s memory accessible to other processors on the bus. This 
allows several processors to be grouped together into a node.

2.2.2 Message Network. The message network is the transport 
medium for messages between nodes. Many existing LANs are 
suitable, but they must preserve the order of messages and they must 
be fast. Further, it should be possible to add or remove nodes without 
disturbing active nodes.

2.2.3 S/NET. We plan to build the Jasmin prototype on S/NET 
[AHU82], a high-speed message bus running at 80 Mbps. The 
S/NET, as originally configured, consists of 8 nodes connected to the 
network. Each node is contained in a 5 slot multibus cage; one slot is 
used for the processor (a Motorola MC68000), one for expansion 
memory and one for the S/NET interface. We plan to use one 
additional slot for a high-speed message interface processor. It will 
implement some of the kernel message passing primitives in hardware. 
The remaining slot may be used for an additional processor, additional 
memory, disk and tape controller, or possibly for special-purpose 
database hardware. S/NET configurations with more nodes and more 
slots per node are entirely possible. The S/NET matches our 
hardware needs very closely. The multibus provides a shared-memory 
bus for several processors to form a node. The S/NET itself provides 
a high-speed message network. In addition, the processors are 
inexpensive and the multibus is a standard interface that should make 
it easy to experiment with new hardware.

2.3 Jasmin Configurations

Since Jasmin is so easily configured, we have the problem of deciding 
how best to assign software modules to processors. There are actually 
two problems: we must decide how many modules to run on each 
processor, and we need to decide which types of modules (i.e. IS, RM, 
DM) to run on a given processor. There are two extremes: run all 
modules on each processor or run each module on a separate processor. 
The first extreme, using a single processor, was the configuration of 
our initial prototype. While it simplified development and 
benchmarking, it is the least interesting configuration and it pays the 
overhead of distribution and message passing without taking advantage 
of it. The other extreme may obtain the best performance if message 
passing between processors is very fast.

We expect the IS to be primarily I/O bound and the RM and DM to 
be CPU bound. This suggests that RM and IS modules might reside
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on the same processor with little or no loss in performance. Another 
reason these modules may live well together is that the traffic between 
the IS and RM is likely to be heavier than between the RM and DM. 
However, the most cost-effective configuration for an application will 
depend on the processing requirements of that application. For 
example, consider an application where transactions are short and most 
references are to a common part of the database. In this case, we 
might want the database to reside on a single IS, as in Figure 3, to 
take advantage of caching in the IS, and to avoid distributed 
transactions. Further, it makes sense to run the DM and RM on the 
same processor, since the DM does relatively little work.

Another example might be an application where transactions make 
references to records that are uniformly distributed across the 
database. In this case, we might want to distribute the data and place 
an RM and IS on the same processor, as in Figure 4. Such a 
configuration is likely to result in concurrent processing of transactions.

Given an application and a fixed number of processors we plan to 
experiment with various module-processor configurations to determine 
the performance trade-offs.

3. PERFORMANCE ANALYSIS

In this Section, we describe the performance of our initial Jasmin 
prototype implemented on a single AT&T 3B20S computer. To 
determine the viability of the Jasmin architecture, we compared its 
performance with that of a Britton-Lee IDM-500. Performance 
measurement of the IDM-500, internal software version 20, was 
conducted by Lidor [LID83]. Britton-Lee introduced numerous 
performance enhancements in their version 21 software. At the 
conclusion of this Section we discuss the performance gains we expect 
from a multiprocessor Jasmin.

3.1 Observed Performance

Both Jasmin and the IDM-500 were configured with 2 megabytes of 
memory. Both were run as a backend database machine connected to 
a 3B20S host, running UNIX 5.0, by a 9600 baud serial link.

The experimental database consists of three relations, R l, R2 and R3, 
each containing 1000 records. Each relation has fifteen attributes, A1 
through A15. A2 is the primary key and it has an integer domain 
with distinct values ranging from 1 to 1000. The domain of A4 also 
contains integers, in random order, ranging from 1 to 1000, but A4 is 
unindexed. There is a secondary index on A7, and A7 also has an 
integer domain with distinct integer values, in random order, between 
1 and 1000. There is no correlation between the values in R l, R2, and 
R3. The size of each record is 80 bytes, and the total database size is 
240K bytes.

The queries of interest are listed in Table 1. Queries Q1 and Q2 
retrieve records in R l using the primary key, A2. Q1 retrieves 10 
records while Q2 retrieves 500 records. Q3 retrieves records in R l via 
sequential search since A4 is not indexed. Q4 and Q5 retrieve records 
via the secondary index Q7. Q4 retrieves 10 records while Q5 retrieves 
500 records. Q6 retrieves all records in R l via sequential search, and 
does a projection on A2, A3, and A4. Q7 gets the count of all 
qualified records for Q2. Q8, Q9, and Q10 were repeatedly executed 
while Jasmin was monitored to obtain an execution profile of each run. 
The profiling data provides a statistical indication of where, at the 
subroutine level, the CPU cycles are being spent. Q8 is used to profile 
keyed retrieval. Q9 is used to profile a join. Q10 is used to profile an 
aggregate calculation.

In Table 2, we list the performance figures in terms of response times 
for the above queries in a single-user environment. The measurements 
were obtained by use of the UNIX "time" utility.

Although Jasmin is mainly designed as a multiprocessor database 
machine and uses messages as the interprocess communication 
mechanism, the figures show the response times of a single 3B20S- 
based Jasmin to be comparable to an IDM-500. From a hardware 
point of view, one could argue that the 3B20S is much more powerful 
than the CPU used in the IDM-500. However, the response time 
figures for Jasmin are taken from an early prototype which, we

Q l: retrieve (R1.A2) where R1.A2 < — 10

Q2: retrieve (R1.A2) where R1.A2 < “  500

Q3: retrieve (R1.A4) where R1.A4 < — 500

Q4: retrieve (R1.A7) where R1.A7 < — 10

Q5: retrieve (R1.A7) where R1.A7 < “  500

Q6: retrieve (R1.A2, R1.A3, R1.A4)

Q7: retrieve (mcnt “  count(Rl.A2 where R1.A2 < — 500))

Q8: 100 commands, key in random order
retrieve (R1.A1, ..., R1.A15) where R1.A2 — key

Q9: 5 commands, join by primary key
retrieve (R1.A2, R2.A2) where R1.A2 “  R2.A2

Q10: 20 commands, average on primary key 
retrieve (mavg — avg(Rl.A2))

TABLE 1. Test Queries

Query Jasmin IDM-500

Ql 2.4 3.2
Q2 9.2 10.2
Q3 9.7 6.6
Q4 2.5 5.3
Q5 20.9 15.6
Q6 31.0 39.7
Q7 5.6 3.9
Q8 1.4* N.A.
Q9 22.7* N.A.
Q10 7.8* N.A.

* (average)

TABLE 2. Observed Response Time (seconds)

assume, was not as well tuned as the IDM-500. For example, the 
buffer size used in Jasmin was less than 128K bytes, as compared to 
the 466K byte buffer used in the IDM-500. Furthermore, the Jasmin 
prototype suffered from poor host-backend communications. (The 
communication line driver was written with several tasks that 
communicate internally with messages!) Elimination of the use of 
messages in the communication driver would provide a significant 
performance improvement.

From Table 2, we observe that Jasmin performs better than the IDM- 
500 in primary key retrieval (much faster for Ql and faster for Q2). 
For sequential search, Jasmin is faster than the IDM-500 for 
unqualified retrieval (Q6), but is considerably slower for qualified 
retrieval (Q3). We attribute this slower performance largely to the 
use of an inefficient expression evaluator in the RM. The evaluator is 
invoked for queries involving qualifications on non-primary-key fields. 
E.g., it is invoked for Q3-Q6, but not for Q l and Q2. The fact that, in 
the execution of Q3, the evaluator must be applied to each tuple in R l 
distorts that result. For queries on a secondary indexed attribute, 
Jasmin is twice as fast as the IDM-500 for retrieving a small amount 
of data (Q4), but is much slower retrieving a large amount‘of data 
(Q5). Jasmin always uses secondary indexes when they apply, it does 
not employ the optimization of sequentially scanning a relation on 
large retrievals. Jasmin is considerably slower than the IDM-500 on



Q7. We believe the slower speed may be attributable to extra data 
copying between the RM, where selection and projection are done, and 
the DM, where the aggregation is done.

The execution profiles for Q8, Q9, and Q10 were obtained by 
recording "hit counts," for subroutines of interest, using profiling 
utilities. A high hit count indicates frequent execution. CPU 
utilization was also determined. For Q8, Q9, and Q10, the CPU was 
busy 24%, 72%, and 64% of the time, respectively.

In Q8, 55% of the CPU activity was in the kernel for message send 
and receive. We attribute much of this to the overhead of host- 
backend communication.

In Q9, 90% of the CPU activity was distributed among the RM 
(33%), DM (30%), and kernel (27%). Record manipulation, 
especially projection, and moving bytes were the greatest consumers of 
time in the RM. Join processing and data formatting dominated the 
time in the DM. Message send and receive consumed about 30% of 
the kernel time.

In Q10, 92% of the CPU activity was distributed among the RM 
(46%), DM (22%), and kernel (24%). Once again, record
manipulation, especially projection, and moving bytes dominated the 
time in the RM. Disk access and message handling dominated the 
kernel usage. Computing the sum dominated the DM usage. In all 
cases, CPU cycles attributable to the IS were in the noise level.

3.2 Projected Performance

When Jasmin is implemented on multiprocessor hardware we expect to 
obtain significant performance improvements. We will explore the 
performance of a simple configuration consisting of three single 
processor nodes connected by a LAN. The performance improvement 
of other configurations can be extrapolated from this example.

In this simple configuration, one node runs the DM, another runs the 
RM, and the third runs the IS. The database is stored on disks 
managed by the IS, and the host interacts with the processor running 
the DM. Note that if there were more than one DM, RM or IS in the 
system, we would expect system throughput to increase.

Because query processing is spread over three machines, the response 
time for queries that touch only a few records should increase 
somewhat. However, queries that require processing lots of data 
should show improved response times because of the pipeline 
processing, using double buffering between the DM, RM and IS. 
Because of this pipelining we will obtain intra-query concurrency. For 
example, in Q7, the RM can perform projection and selection while 
the DM computes the aggregate, and the IS does disk access. 
Pipelining also occurs in a multiplexed fashion, resulting in inter-query 
concurrency, when more than one query is in process. That is, when 
running several keyed retrieval queries, the DM can process the third 
query while the RM does projection for the first and the IS does disk 
access for the second. The message latency is at least an order of 
magnitude less than the execution time needed by the DM, RM, and 
IS to do their functions. Thus the gain from concurrent processing 
should be much greater than the overhead of inter-node 
communication.

4. SUMMARY AND FUTURE WORK

In this paper we described the Jasmin database machine architecture 
and discussed the performance observed in a uniprocessor prototype. 
Key features of Jasmin are its configurable performance, its use of 
off-the-shelf parts, and its ability to handle distributed databases. An 
important goal for Jasmin is that it be useful as a testbed for ongoing 
research in database machines and database management, in general. 
Our future work with Jasmin will include:

•  Construction of a file system on the IS and its integration with the 
DM. This will permit additional data types such as text, graphics, 
and voice in the database. •

•  Study the reliability of Jasmin configurations and design of 
enhanced reliability features.

•  Study the advantages and disadvantages of optimistic concurrency 
control for centralized and distributed databases, and comparison of 
its performance relative to locking. An important advantage of 
optimistic locking is its non-blocking behavior relative to read-only 
transactions. This makes it quite useful for interactive and low- 
conflict applications. It also appears to simplify coordination of 
distributed transactions.

•  Study the performance implications of various configurations of 
DM, RM, and IS modules.
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