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Abstract 

In many recent applications, data may take the form of 
continuous data soeams, rather than finite stored data 
sets. Several aspects of data management need to be re- 
considered in the presence of data streams, offering a new 
research direction for the database community. In this pa- 
per we focus primarily on the problem of query process- 
ing, specifically on how to define and evaluate continuous 
queries over data streams. We address semantic issues 
as well as efficiency concerns. Our main contributions are 
threefold. First, we specify a general and flexible architec- 
ture for query processing in the presence of data streams. 
Second, we use our basic architecture as a tool to clar- 
ify alternative semantics and processing techniques for 
continuous queries. The architecture also captures most 
previous work on continuous queries and data streams, as 
well as related concepts such as triggers and materialized 
views. Finally, we map out research topics in the area of 
query processing over data streams, showing where pre- 
vious work is relevant and describing problems yet to be 
addressed. 

1 Introduction 

Traditional database management systems (DBMSs) ex- 
pect all data to be managed within some form of persistent 
data sets. For many recent applications, the concept of 
a continuous data stream is more appropriate than a data 
set. By nature, a stored data set is appropriate when signif- 
icant portions of the data are queried again and again, and 
updates are small and/or relatively infrequent. In contrast, 
a data stream is appropriate when the data is changing 
constantly (often exclusively through insertions of new 
elements), and it is either unnecessary or impractical to 
operate on large portions of the data multiple times. 

Several applications naturally generate data streams as 
opposed to data sets: financial tickers, performance mea- 
surements in network monitoring and traffic management, 
log records or click-streams in web tracking and personal- 
ization, manufacturing processes, data feeds from sensor 
applications, call detail records in telecommunications, 
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and others. Because today's database systems are ill- 
equipped to perform any kind of special storage manage- 
ment or query processing for data streams, heavily stream- 
oriented applications tend to use a DBMS largely as an 
offline storage system, or not at all. Like other relatively 
recent new demands on data management (e.g., triggers, 
objects), it would be beneficial to provide stream-oriented 
processing as an integral part of a DBMS. Several aspects 
of data management need to be reconsidered in the pres- 
ence of data streams. The STREAM (STanford stREam 
datA Management) project at Stanford is addressing the 
new demands imposed by data streams on data manage- 
ment and processing techniques. 

In this paper we focus on defining a solid frame- 
work for query processing in the presence of continu- 
ous data streams. We consider in particular continuous 
queries [TGNO92], which are queries that are issued once 
and then logically run continuously over the database (in 
contrast to traditional one-time queries which are run once 
to completion over the current data sets). In network traf- 
fic management, for example, continuous queries may be 
used to monitor network behavior online in order to de- 
tect anomalies (e.g., link congestion) and their cause (e.g., 
hardware failure, denial-of-service attack). Continuous 
queries may also be used to support load balancing or 
other network performance adjustments [DG00]. In finan- 
cial applications, continuous queries may be used to mon- 
itor trends and detect fleeting opportunities [Tra]. Both of 
these applications are characterized by a need for continu- 
ous queries that go well beyond simple element-at-a-time 
processing, by rapid data streams, and by a need for timely 
online answers. 

The organization of the rest of  the paper is as follows: 

In Section 2 we provide a broad survey of previous 
work relevant to data stream processing and continu- 
ous queries. Although there has been only a handful 
of papers addressing the topic directly, a number of 
papers in related areas contain useful techniques and 
results. 

In Section 3 we introduce a concrete example to mo- 
tivate our discussion of continuous queries over data 
streams. 

• In Section 4 we define a general and flexible archi- 
tecture for query processing in the presence of data 
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streams. Also in Section 4 we use our basic architec- 
ture to specify alternative semantics for continuous 
queries, and to classify previous related work. We 
also use the architecture to clarify how continuous 
queries over data streams relate to triggers and mate- 
rialized views. 

• In Section 5 we map out, in some detail, a number of 
open research topics that must be addressed in order 
to realize flexible and efficient processing of contin- 
uous queries over data streams. 

• Sections 6 and 7 discuss our vision of and plans for 
a general-purpose Data Stream Management System 
(DSMS). 

2 Related Work 

In this section we provide a general discussion of past 
work that relates in some way to continuous queries 
and/or data streams. A more technical analysis of some of 
the work will be provided in Section 4.3, after we present 
our basic architecture. 

Continuous queries were an important component 
of  the Tapestry system [TGNO92], which performed 
content-based filtering over an append-only database of 
email and bulletin board messages. The system supported 
continuous queries expressed using a quite restricted sub- 
set of SQL, in order to make guarantees about efficient 
(incremental) evaluation and append-only query results. 
The notion of continuous queries for a much wider spec- 
trum of environments is formalized in [Bar99]. The XFil- 
ter content-based filtering system [AF00] performs ef- 
ficient filtering of XML documents based on user pro- 
files. The profiles are expressed as continuous queries 
in the XPath language [XPA99]. Xyleme [NACP01] is a 
similar content-based filtering system that enables very 
high throughput with a restricted query language. The 
Tribeca stream database manager [Su196] provides re- 
stricted querying capability over network packet streams. 
We will revisit much of this work in Section 4.3. 

The Chronicle data model [JMS95] introduced append- 
only ordered sequences of tuples (chronicles), a form of 
data stream. They defined a restricted view definition lan- 
guage and algebra that operates over chronicles together 
with traditional relations. The view definition restrictions, 
along with restrictions on the sequence order within and 
across chronicles, guarantees that the views can be main- 
tained incrementally without storing any of the chronicles. 

Two recent systems, OpenCQ [LPT99] and NiagaraCQ 
[CDTW00], support continuous queries for monitoring 
persistent data sets spread over a wide-area network, 
e.g., web sites over the internet. OpenCQ uses a query 

processing algorithm based on incremental view main- 
tenance, while NiagaraCQ addresses scalability in num- 
ber of queries by proposing techniques for grouping 
continuous queries for efficient evaluation. Within the 
same project as NiagaraCQ, reference [STD+00] dis- 
cusses the problem of providing partial results to long- 
running queries on the internet, where it is acceptable to 
provide an answer over some portion of the input data. 
The main technical challenge is handling blocking opera- 
tors in query plans. As will be seen, our architecture pro- 
vides a framework that captures and classifies all of these 
issues. 

The Alert system [SPAM91] provides a mechanism for 
implementing event-condition-action style triggers in a 
conventional SQL database, by using continuous queries 
defined over special append-only active tables. In Sec- 
tion 4.3.3 we will discuss how Alert and trigger systems 
in general relate to continuous queries over data streams. 

Clearly there is a relationship between continu- 
ous queries and the well-known area of materialized 
views [GM95], since materialized views are effectively 
queries that need to be reevaluated or incrementally up- 
dated whenever the base data changes. There are sev- 
eral differences between materialized views and con- 
tinuous queries: continuous queries may stream rather 
than store their results, they may deal with append- 
only input relations, they may provide approximate rather 
than exact answers, and their processing strategy may 
adapt as characteristics of the data stream change. Nev- 
ertheless, much work on materialized views is cap- 
tured by our architecture and is relevant to our pro- 
posed approach; see Section 4.3.4. Of particularly im- 
portance is work on self-maintenance [BCL89, GJM96, 
QGMW96]--ensuring that enough data has been saved to 
maintain a view even when the base data is unavailable-- 
and the related problem of data expiration [GMLY98]-- 
determining when certain base data can be discarded with- 
out compromising the ability to maintain a view. 

The Telegraph project [AH00, HF+00, UF01] shares 
some target applications and basic technical ideas with 
our problem, although the general approach is differ- 
ent. Telegraph uses an adaptive query engine to process 
conventional (one-time) queries efficiently under volatile 
and unpredictable environments (e.g., autonomous data 
sources over the intemet, or sensor networks). The Tuk- 
wila system [IFF+99] also supports adaptive query pro- 
cessing, in order to perform dynamic data integration 
over autonomous data sources. Adaptive query process- 
ing is likely to be useful for continuous queries over data 
streams, as discussed in Section 5. 

Some work considers traditional data sets but treats 
them like (finite) data streams, processing the data in a 
single pass and possibly providing intermediate or "early" 
query results. For example, online aggregation [HHW97, 
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HH99] is a technique for handling long-running aggre- 
gation queries, continually providing a running aggregate 
with improving probabilistic error bounds. In more theo- 
retical work, [HRR98] studies basic tradeoffs in process- 
ing finite data streams, specifically among storage require- 
ments, number of passes required, and result approxima- 
tions. The problem of computing approximate quantiles 
(equi-height histograms) over numeric data streams of un- 
known length is addressed in [MRL99] and [GK01]. 

Recently there has been increasing interest in data re- 
duction techniques, where the general goal is to trade ac- 
curacy for performance in massive disk-resident data sets, 
with some obvious possible applications to data streams. 
A good survey appears in [B +97]. In related work, syn- 
opsis data structures [GM99] provide a summary of a 
data set within acceptable levels of accuracy while be- 
ing much smaller in size, and a framework for extract- 
ing synopses (signatures) from data streams is proposed 
in [CFPR00]. A variety of approximate query answer- 
ing answering techniques have been developed based on 
data reduction and synopsis techniques including samples 
[AGPR99, AGP00, CMN99], histograms [IP99, PG99], 
and wavelets [CGRS00, VW99]. Reference [GKS01] 
develops histogram-based techniques to provide approx- 
imate answers for correlated aggregate queries over data 
streams. Reference [GKMS01] presents a general ap- 
proach for building small-space summaries over data 
streams to provide approximate answers for many classes 
of aggregate queries. 

There has been some initial work addressing data 
streams in the data mining community. In terms of build- 
ing classical data mining models over a single data stream, 
reference [Hid99] considers frequent itemsets and asso- 
ciation rules, reference [GMMO00] considers cluster- 
ing, and references [DH00, HSD01] consider decision 
trees. The only work we know of addressing multiple data 
streams appears in [YSJ+00], which develops algorithms 
to analyze co-evolving time sequences to forecast future 
values and detect correlations and outliers. 

Finally, stream data management and query process- 
ing techniques are likely to draw on work in sequence 
databases (e.g., [SLR94]), time-series databases (e.g., 
[FRM94]), main-memory databases (e.g., [Tea99]), and 
real-time databases (e.g., [KGM95]). 

3 A Concrete Example 

Let us consider a representative application to illustrate 
the need for continuous queries over data streams and why 
conventional DBMS technology is inadequate. Consider 
the domain of network traffic management for a large net- 
work, e.g., the backbone network of an Internet Service 
Provider (ISP) [DGO0]. Network-traffic-management ap- 

plications typically process rapid, unpredictable, and con- 
tinuous data streams, including packet traces and network 
performance measurements. Due to the inadequacy of 
conventional DBMSs to provide the kind of online con- 
tinuous query processing that would be most beneficial in 
this domain, current traffic-management tools are either 
restricted to offline query processing or to online process- 
ing of simple hard-coded continuous queries, often avoid- 
ing the use of a DBMS altogether. A traffic-management 
system that could provide online processing of ad-hoc 
continuous queries over data streams would allow net- 
work operators to install, remove, and modify appropri- 
ate monitoring queries to support effective management 
of the ISP's network. 

As a concrete example, consider an ISP that collects 
packet traces from two links (among others) in its net- 
work. The first link, called the customer link, connects 
the network of a customer to the ISP's network. The sec- 
ond link, called the backbone link, connects two routers 
within the ISP's network. Each packet trace is a continu- 
ous stream of packet headers observed on the correspond- 
ing link. For simplicity, we assume that a packet header 
comprises the five fields listed in Figure 1. We use PTc 
and PTb to denote the packet traces collected from the 
customer and backbone links respectively. 

Field name i Description 

saddr IP address of packet sender 
daddr IP address of packet destination 

..... id Identification number given by sender so that 
destination can uniquely identify each packet 

length Length of packet 
timestamp Time when packet header was recorded 

Figure 1: Record structure of a packet header. 

A first simple continuous query (Q1) computes the 
load on the backbone link averaged over one minute peri- 
ods and notifies the network operator if the load exceeds 
a threshold T. A SQL version of Q1 using two self- 
explanatory functions is: 

QI: Select n o t  i f y o p e  r a t  or(sum(length)) 
From PTb 
Group By ge tminute( t imes tamp)  
Having sum(length) > T 

Although Ql'S functionality might be achievable using 
triggers in a conventional DBMS, performance concerns 
may dictate special techniques. For instance, if the PTb 
stream is coming very fast (e.g., packets in an optical 
link), the only feasible approach might be to compute an 
approximate answer to Q1 by sampling the data, some- 
thing conventional triggers are certainly not designed for. 
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A more complex continuous query (Q 2) finds the frac- 
tion of traffic on the backbone link coming from the cus- 
tomer network. Q 2 is an example of an ad-hoc continuous 
query that a network operator might register to check in 
response to congestion, whether the customer is a likely 
cause. 

.... <A,B> <B.C> <A.D> ....  ~ ~ ~ A? 
Data Stream Answer 

Continuous Query 

Figure 2: A continuous query Q over a single data stream. 

Q2:(Select count (*) 
From PTc As C, PTb As B 
Where C.saddr = B.saddr and C.daddr = B.daddr 

and CAd = BAd) / 
(Select count (*) From PTb) 

Q2 joins streams PTc and PTb on their keys to count 
the number of common packets on the links. Since un- 
bounded intermediate storage could potentially be re- 
quired for joining two continuous data streams, the net- 
work operator might want the system to compute an ap- 
proximate answer. Possible approximation methods are to 
allocate a fixed amount of storage and maintain synopses 
of the two streams (recall Section 2), and/or exploit appli- 
cation semantics--such as a high probability that joining 
tuples occur within a certain time window--to bound the 
required storage. 

A final example continuous query (Q3) monitors the 
top 5% source-to-destination pairs in terms of traffic on 
the backbone link. (We use the SQL3 W i t h  construct 
[IJW97] for ease of expressing the query.) 

Q3: With Load As 
(Select saddr, daddr, sum(length) as traffic 
From PTb 
Group By saddr, daddr) 

Select saddr, daddr, traffic 
From Load As L1 
Where (Select count(*) 

From Load as L2 
Where L2.traffic < Ll.traffic) > 

(Select 0.95xcount(*)FromLoad) 
Order By traffic 

Processing Qa over the continuous data stream PTb is es- 
pecially challenging due its overall complexity and the 
presence of G r o u p  By and O r d e r  By clauses, which 
are normally "blocking" operators in a query execution 
plan. 

Note that in addition to the issues discussed in each 
example, all three example queries are likely to benefit 
from adaptive query processing [AH00], given the unpre- 
dictable nature of network packet streams. 

4 Architecture for Continuous 
Queries 

Now that we have seen a concrete example motivating 
data streams and continuous queries, the remainder of 
the paper addresses the general problem. We begin in 
Section 4.1 by motivating, through an extremely simple 
scenario, some of  the most basic issues that arise when 
processing continuous queries over data streams. Then 
in Section 4.2 we present our architecture, which allows 
us in Section 4.3 to classify previous work in continuous 
queries, and to relate continuous queries to triggers and 
materialized views. We consider data streams that adhere 
to the relational model (i.e., streams of tuples), although 
many of the ideas and techniques are independent of the 
data model being considered. 

4.1 Motivation 

Let us consider the simplest possible scenario to illustrate 
the differences between querying data streams and tradi- 
tional stored data sets. Suppose we have a single, continu- 
ous stream of tuples and a single query Q we are interested 
in answering over the stream, as illustrated in Figure 2. 
Q is a continuous query--we issue it once and it oper- 
ates continuously as new tuples appear in the stream-- 
and suppose we are interested in the exact answer to Q 
(as opposed to an approximation). Let us further suppose 
that the data stream is append-only--it has no updates or 
deletions--so we can think of the stream as an unbounded 
append-only database D. Even in this simplest of cases, 
there are different possible ways to handle Q, with differ- 
ent ramifications: 

(1) 

(2) 

Suppose we want to always store and make available 
the current answer A to Q. Since the "database" D 
may be of  unbounded size, the size of A also may be 
unbounded (e.g., if Q is a selection query). 

Suppose instead we choose not to store answer A, 
but rather to make new tuples in A available when 
they occur, e.g., as another continuous data stream. 
Although we no longer need unbounded storage for 
A, we still may need unbounded storage for keeping 
track of tuples in the data stream in order to deter- 
mine new tuples in A (e.g., if Q is a self-join). 
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Let us further complicate the problem by considering 
deletions and updates: 

(3) Even if the stream is append-only, there may be up- 
dates or deletions to tuples in answer A (e.g., if Q is a 
group-by query with aggregation). Now, in case (2) 
above we may need to somehow update and delete 
tuples in our output data stream, in addition to gen- 
erating new ones. 

(4) In the most general scenario, the input data stream 
also may contain updates or deletions. In this case, 
typically more--possibly much more- -of  the stream 
needs to be stored in order to continuously determine 
the exact answer to Q. 

One way to address these issues is to restrict the ex- 
pressiveness of  Q and/or impose constraints on charac- 
teristics of the data stream so that we can guarantee that 
the size of Q's answer A is bounded, or that the amount 
of extra storage needed to continuously compute A is 
bounded. Previous work on continuous queries, e.g., 
[JMS95, TGNO92, Bar99], has tended to take this ap- 
proach. Another possibility is to relax the requirement 
that we always provide an exact answer to Q, which re- 
lates to the area of approximate query answering dis- 
cussed in Sections 2 and 3. 

In this paper we do not specifically advocate one of 
these approaches. Instead, we specify a general and flex- 
ible architecture that makes the choices above, and their 
ramifications, explicit. We further use our basic architec- 
ture to explain how continuous queries relate to triggers 
and materialized views, and to define a number of  open 
research problems in processing continuous queries over 
data streams. 

4.2 Architecture 

We now introduce our general architecture for processing 
continuous queries over data streams, illustrated in Fig- 
ure 3. For now let us consider a single continuous query 
Q with answer A, operating over any number of incoming 
data streams. Multiple continuous queries can be handled 
within our architecture (as implied in the figure), and we 
will discuss some of the interesting issues that arise in this 
context in Section 5.4. We also assume that the query is 
over data streams only, although mixing streams and con- 
ventional relations poses no particular problems. 

When query Q is notified of a new tuple t in a relevant 
data stream, it can perform a number of actions, which are 
not mutually exclusive: 

(i) It can determine that because of t there are new tu- 
pies in the answer A. If  it is known that a new tuple a 
in A will remain in A "forever," then Q may send tu- 
pie a to the Stream component illustrated in Figure 3. 

.¢. Slreatl l  
Stream 1 - . . .  - - .  ~ Q I ~ ~  ~ 

Stream 2 . . . . . . . .  ""~'~. -_ 

Stream II ~ ~ " " ~ 

/ 

U 

Figure 3: Architecture for processing continuous queries 
over data streams. 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

In other words, Stream is a data stream containing tu- 
pies appe/aded to A, similar to case (2) discussed in 
Section 4.1. 

If a new tuple a is determined to be in A, but may 
at some time no longer be in A, then a is added to 
the Store component illustrated in Figure 3. In other 
words, together Stream and Store define the current 
query answer A. If our goal is to minimize storage 
for the query result, then we want to make sure that 
tuples are sent to Stream rather than Store whenever 
possible. 

The new stream tuple t may cause the update or dele- 
tion of answer tuples in Store. Answer tuples might 
also be moved from Store to Stream. 

We may need to save t, or save data derived from t, 
so that in the future we are assured of being able to 
compute our query result. In this case, t (or the data 
derived from it), is sent to the Scratch component of 
Figure 3. Combined with action (iii), we might also 
move data from Store to Scratch. 

We may not need t now or later, in which case t is 
sent to the Throw component of Figure 3. Note that 
Throw does not require any actual storage (unless we 
are interested in archiving unneeded data). 

As a result of  the new stream tuple t, we may take 
data previously saved in Scratch (or Store) and send 
it to Throw instead. If  our goal is to minimize stor- 
age, we want to make sure that unneeded data is sent 
to Throw whenever possible, rather than Scratch. 

4.3 The Architecture and Related Work 

In this section we revisit the issues and scenarios dis- 
cussed in Section 4.1, revisit the related work discussed 
in Section 2, and consider triggers and materialized views. 
In all cases we use our basic architecture as a tool for de- 
tailed understanding and comparisons. 
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4.3.1 Query  Processing Scenarios 

Let us consider query processing scenarios (1)-(4) from 
Section 4.1 in light of the architecture specified in Sec- 
tion 4.2. In scenario (1), we want to always store Q 's  
entire current answer A. In terms of our architecture, (1) 
says that Stream is empty, Store always contains A, and 
Scratch contains any data that may be required to keep 
the answer in Store up-to-date. In the example case where 
Q is a selection query, Sto~ may be of unbounded size, 
while Scratch is empty. Conversely in scenario (2) we 
want to make A available exclusively as a data stream, 
i.e., Stream streams the entire answer to A while Store is 
empty. In the example case where Q is a self-join, we can 
send all answer tuples to Stream since they will remain in 
the result forever, but Scratch may need to grow without 
bound. 

Scenario (3) covers the case where answer A can have 
updates and deletions even when the input streams are 
append-only, e.g., a query that performs grouping and ag- 
gregation. Scenario (4) further extends to the case where 
the input streams may have updates and deletions. As 
an example, suppose Q is a group-by query over a single 
data stream with a rain aggregation function. Since rain is 
monotonic for insertions, in scenario (3) A is maintained 
in Store, and Scratch can remain empty. However, in sce- 
nario (4) unbounded storage is required for Scratch to en- 
sure that the rain values over the entire stream can always 
be computed. In both cases, the only time answer tuples 
can be sent to Stream, or moved from Store to Stream, is 
when it is known that for some group there will be no fur- 
ther insertions, updates, or deletions of tuples falling into 
that group, t 

4.3.2 Previous Related Work 

We now revisit some of the related work discussed in Sec- 
tion 2, characterizing it in terms of our basic architecture. 
Note that citations are not repeated in this section except 
when needed to identify the work being discussed. Also 
note that some of the related work from Section 2 is revis- 
ited instead in Section 4.3.3 on triggers or Section 4.3.4 
on views. 

Recall that the Tapestry system supports restricted con- 
tinuous queries over append-only data sets. In Tapestry, a 
continuous query Q is rewritten into its minimum bound- 
ing monotone query QM, which is then rewritten into an 
hwremental query QZ. As a monotone continuous query, 
QM has the property that its answer changes only by ad- 

i Note that we are assuming Stream is constrained to be append-only, 
even though in scenario (4) we discuss input streams with updates and 
deletions. If we allow updates and deletions to Stream tuples, then we 
are always free to send answer tuples to Stream instead of Store, since 
we can update or delete them later. 

dition of new tuples, so in terms of our architecture all an- 
swer tuples can be sent to Stream and Store is empty. The 
incremental version Q i  of the query is meant to improve 
the efficiency of computing new answer tuples when new 
input tuples are appended, but there is no mechanism for 
guaranteeing that Scratch will not grow without bound. 

The work in [STD+00] on maintaining partial results 
for long-running queries is similar to Scenario (3) in Sec- 
tion 4.1. It maintains the current partial result in Store 
and any extra needed information in Scratch. Our discus- 
sion of new query processing techniques in Section 5.3 
is relevant to the problem addressed in [STD+00], and 
we believe that based on these techniques it is possible to 
exploit monotonicity more aggressively to improve upon 
the algorithm in [STD+00], reducing the data saved in 
Scratch. OpenCQ and NiagaraCQ consider Scenario (4) 
in Section 4.1, but they are geared towards data sets that 
change primarily through in-place updates. Thus, they do 
not address the problem of Store or Scratch growing with- 
out bound. 

A number of systems perform tuple-at-a-time process- 
ing over their input data streams: each time a new stream 
element arrives, the element is moved directly to either 
Stream or Throw, without consulting any other data in the 
stream. Packet routing and simple network algorithms 
have this characteristic [Tan96], although for network 
traffic management more sophisticated stream processing 
is needed, as seen in Section 3. The XFilter and Xyleme 
systems discussed in Section 2 also perform element-at- 
a-time processing although the elements are XML docu- 
ments. 

Basic online aggregation [HHW97] maintains the cur- 
rent aggregate in Store along with an estimate of  the error, 
and an empty Scratch. Follow-on work that extends on- 
line aggregation to joins [HH99] does need to maintain 
previously seen tuples in Scratch. Finally, the body of 
work in approximate query answering focuses primarily 
on making the best possible use of a limited size Scratch 
by storing only small synopses (summaries) of the data. 
References [GMP97, MRL99, MVW00, Vit85] address 
the problem of updating the synopses (i.e., Scratch) ef- 
ficiently when the underlying data changes. 

4.3.3 Triggers 

Triggers, also called event-condition-action rules, are 
used to monitor events and conditions in databases, and 
to execute actions automatically when specific situations 
are detected [WC96]. In the Alert system introduced in 
Section 2, triggers are implemented by means of contin- 
uous queries over active tables. Each tuple in an active 
table represents an event, which is an update on a conven- 
tional stored table. When a new tuple is added to one of 
the active tables, each continuous query involving the ta- 
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ble is evaluated, and the trigger action is invoked on each 
new tuple in the query result. 

Our mapping from triggers to the architecture of Fig- 
ure 3 is based on (and slightly generalizes) the Alert ap- 
proach. We assume that events to be monitored are gen- 
erated as data streams, and we allow continuous queries 
over any number of data streams together with conven- 
tional stored tables. As in Alert, these queries perform 
event and condition monitoring. For launching trigger 
actions, like Alert we assume that the desired actions 
are performed by SQL data manipulation commands and 
user-defined stored procedures specified as part of  the 
continuous queries (e.g., query Q1 in Section 3). In 
terms of our architecture, since there is no query "answer" 
in triggers, Stream and Store may remain empty, while 
Scratch is used for any data required to monitor complex 
events or evaluate conditions. Alternatively, depending on 
the desired trigger behavior and application interaction, 
actions could send results to Stream. 

There are a number of benefits to using continuous 
queries over data streams to provide trigger functional- 
ity. Continuous queries specified on event streams to- 
gether with conventional tables enable complex multi- 
table events and conditions to be monitored, equivalent 
to the most powerful trigger language proposals we know 
of [WC96]. More importantly, trigger processing would 
benefit automatically from efficient data management and 
processing techniques for continuous queries over data 
streams, such as specialized query optimization tech- 
niques (Section 5.3). 

4.3.4 Materialized Views 

Materialized views, whether in a conventional DBMS or 
in a data warehousing environment [GM95], fall natu- 
rally into our architecture. The base data over which the 
views are defined, if not available in conventional stored 
tables, is stored in Scratch. The view itself is maintained 
in Story. Updates to the base data can be represented as 
one or more data streams, as discussed in Section 4.3.3 for 
triggers. In terms of this mapping, work on materialized 
view self-maintenance and expiration, discussed in Sec- 
tion 2, is geared specifically towards minimizing the size 
of Scratch. Pure self-maintenance guarantees that Scp~tch 
is empty [BCL89, GJM96], although for many views 
pure self-maintainability is impossible, so auxiliary views 
must be stored and maintained in Scratch [QGMW96]. 
Data expiration exploits constraints to determine precisely 
when data can be removed from Scratch, although no 
bounds on the size of Scratch are guaranteed. The Chron- 
icle data model discussed in Section 2 for materialized 
views is designed to ensure bounded storage for Scratch, 
but like pure self-maintainability it restricts the allowable 
view definitions significantly. To the best of  our knowl- 

edge, no work on materialized views has addressed the 
problem of bounding the size of the materialized view it- 
self, so that the size of  Store also can be bounded. 

5 Research Problems 

In this section we outline a number of  research problems 
associated with processing continuous queries over data 
streams. We begin at a relatively global level, becoming 
more detailed as the section progresses. In several cases 
the architecture of Section 4.2 is used to make the prob- 
lems and issues more concrete. 

5.1 Basic Problems  and Techniques  

At the most global level, what sets continuous queries 
over data streams apart from previous work is a unique 
combination of: 

• Online processing. The applications discussed in 
Section I require that continuous queries are pro- 
cessed, well, continuously. Specifically, when new 
tuples arrive in a data stream they generally must be 
"consumed" immediately, usually performing one or 
more of  actions (i)-(vi) from Section 4.2. In some 
applications the tuples may arrive so fast that some 
of them need to be ignored entirely. 

• Storage constraints. In the general case for con- 
tinuous data streams, the amount of storage required 
for the answer to a continuous query, or to ensure 
that the answer always can be computed, may be un- 
bounded (recall Section 4.1). Furthermore, even if 
there is "nearly" unbounded storage available on disk 
or other tertiary devices, performance requirements 
may be such that Store and/or Scratch from Figure 3 
need to reside in a limited amount of  main memory. 

While neither of these problems in isolation is entirely 
new, dealing with them together, while at the same time 
offering the full functionality and efficiency of a database 
query processor, is a new challenge. 

Next we mention three basic techniques that have been 
explored primarily in other contexts within the database 
or broader Computer Science research community. All of 
them appear directly relevant to our problem. 

• Summarization. S~mzmaries (or data synopses) pro- 
vide a concise representation of a data set at the ex- 
pense of some accuracy. As discussed in Section 2, 
many techniques for summarization have been devel- 
oped, including sampling, histograms, and wavelets. 
(See Section 2 for citations.) We expect summa- 
rization to play an important role in query process- 
ing over data streams due to the storage constraints 
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discussed above. New issues to resolve in the data 
stream environment include: (i) how to make guar- 
antees about accuracy of continuous query results 
based on summaries; (ii) how to maintain summaries 
efficiently in the presence of very rapid data streams; 
(iii) what summarization techniques are best for un- 
predictable data streams. We revisit some of these 
issues in Section 5.3. 

Online data structures. A data structure designed 
specifically to handle continuous data-flow is typi- 
cally referred to as an online data structure [FW98]. 
Continuous queries by nature suggest the use of  on- 
line data structures for query processing. 

• Adaptivity. We expect continuous queries and the 
data streams on which they operate to be long- 
running. Unlike during the processing of  a simple 
one-time query, during the lifetime of  a continuous 
query parameters such as the amount of available 
memory, stream data characteristics, and stream flow 
rates may vary considerably. While adaptive query 
processing techniques for more traditional queries 
have attracted interest recently (see Section 2 for a 
discussion), the work so far that we are aware of has 
not considered all of the parameters or kinds of adap- 
tivity (e.g., changing approximations) that arise in a 
data stream context. 

Distilling the basic problems and techniques above, we 
see that processing continuous queries over data streams 
entails making fundamental tradeoffs among efficiency, 
accuracy, and storage. References [AMS96, HRR98] 
provide some initial contributions from the theory com- 
munity along these lines, but it is an open problem to un- 
derstand the implications of these tradeoffs in a real sys- 
tem processing continuous queries for one or more real 
applications. 

Next we will consider in more detail several specific re- 
search challenges. We will start in Section 5.2 by briefly 
discussing the issue of languages for specifying contin- 
uous queries. Then in Section 5.3 we focus on query 
evaluation and optimization, including execution plans 
and operators for continuous queries. We briefly address 
research problems associated with multiple continuous 
queries in Section 5.4. 

5.2 Languages for Continuous Queries 

Although we certainly do not advocate inventing a new 
query language for the purpose of specifying continuous 
queries over data streams--particularly over streams of 
relational tuples--there are some issues that must be con- 
sidered. Let us take SQL as an example. Most previous 
work on continuous queries has restricted the language 

being considered in order to guarantee certain properties 
such as bounding the size of Scratch (or eliminating it en- 
tirely), or ensuring that all query results can be sent to 
Stream and none to Store. It appears to be an open prob- 
lem to determine for arbitrary SQL queries whether these 
kinds of properties are satisfied, particularly if we accept 
the use of Scratch and Store but want to make sure they 
are bounded in some way. We also believe that for certain 
applications continuous queries will need to refer to the 
sequencing aspect of streams. Here SQL with extensions 
for ordered relations [SLR94], or with built-in time-series 
support [FRM94], might be a reasonable choice. 

5.3 Query Evaluation and Optimization 

In any database system it is the job of the query opti- 
mizer to choose in advance the "best" query plan for exe- 
cuting each query, based on a variety of statistics main- 
tained for this purpose. A continuous query processor 
also should select a "best" execution plan, although we 
expect that fewer of the decisions will be made in advance 
due to the long-running nature of continuous queries dis- 
cussed in Section 5.1. Techniques such as eddies [AH00], 
which construct and adapt query plans on-the-fly, come 
the closest that we know of to the query execution style 
we envision. However, that work is still designed for one- 
time rather than continuous queries, the query execution 
strategies do not adapt to all relevant parameters in the 
data stream context, and the notion of adaptivity is geared 
solely towards online processing. 

Let us assume a standard pipelined (or iterator-based) 
approach to query processing [Gra93]. One of the funda- 
mental differences between traditional query plans oper- 
ating over stored relations and plans operating over data 
streams can be characterized as "push" versus "pull." 
Specifically, a traditional query plan usually has a tree 
shape and is executed top-down in a "pull" style: each 
query operator polls its children for the required input, ul- 
timately accessing stored indexes or relations at the leaves 
of  the query tree. Parallel query plans relax this paradigm 
to some extent [Gra90], but usually do not use the fully 
"push-based" model that data streams may demand. In an 
execution plan for a continuous query over data streams, 
we expect that it will be the appearance of  a new tuple in 
a relevant stream that sets the plan into action. Of course 
this idea is not new, but rather a query processing vari- 
ant on triggers, alerts, and other "active" constructs in 
databases [WC96]. 

"Push" versus "pull" aside, let us consider other 
changes that may be required to adapt traditional query 
plan operators to the data stream context. We will first 
consider true pipelined operators (such as selections and 
joins), then we will consider blocking operators (such 
as aggregation and sorting). Finally we will consider a 
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new class of operators that may be useful for continuous 
queries over data streams. 

5.3.1 Pipelined operators 

The simplest standard pipelined operators, such as selec- 
tions, can be translated to the data stream context with lit- 
tle modification. However, as soon as we introduce joins 
we are faced with a choice. We can either: (i) evaluate 
portions of the query multiple times as in a nested-loop 
style join, which we assume is undesirable or even im- 
possible in the data stream context; or (ii) use Scratch to 
hold temporary results during query processing, as in a 
pipelined hash join [WA91]. 

The case of joins points out that when processing con- 
tinuous queries over data streams, we not only want our 
query operators to be pipelined, we also want them to 
operate with bounded intermediate storage (even in the 
presence of unbounded streams). For example, we might 
modify a pipelined join operator to degrade gracefully to 
an approximate join when the required storage begins to 
reach limits. Semantic constraints in the spirit of data ex- 
piration [GMLY98], or online feedback across operators 
in the spirit of ripple joins [HH99], could be applied to 
compute approximations with minimal loss of informa- 
tion. 

As it turns out, the architecture we introduced in Sec- 
tion 4.2 for continuous queries as a whole also applies 
nicely to individual query plan operators: Store and 
Scratch represent the intermediate storage required by an 
operator, while Stream represents the pipelined operator 
results. Thus, techniques developed at the query level for 
summarization, approximation, or for moving data from 
Scratch or Store to Stream or Throw, might be applicable 
recursively to query plan operators. It is important to bear 
in mind, however, that Scratch and Store will generally be 
bounded globally, not on a per-operator basis. 

5.3.2 Blocking Operators 

A blocking operator is one that must obtain its entire input 
set before it can produce any output--typical examples 
are sorting and aggregation. In a conventional pipelined 
query plan, all operators that follow a blocking operator 
must wait until the operator obtains its entire input and 
begins producing its results. Obviously blocking oper- 
ators cannot behave in their conventional fashion in the 
presence of continuous data streams, since the input is un- 
bounded and the operator would block "forever." Part of 
the solution to this problem must be based on semantic 
considerations such as those discussed in Section 4 . 1 -  
e.g., what is the result of an aggregation or a sort now 
when more data may be coming later? In addition to tech- 
niques such as online aggregation [HHW97, I-II--I99], there 

has been some work addressing closely-related prob- 
lems [LPT99, STD+00] that develops techniques based 
on incremental view maintenance. Developing similar 
teclmiques for continuous queries over data streams, and 
even more fundamentally understanding the semantics 
implied by the various techniques, remains an open prob- 
lem. 

5.3.3 Synopsis Operators 

We discussed the requirement for summaries or synopses 
in Section 5.1 and cited some of the most relevant work 
in Section 2. One approach to incorporating synopsis data 
structures into a database system is to encapsulate them 
as basic operators that may appear in query plans. In sup- 
port of  this approach, reference [GM99] shows that differ- 
ent classes of  queries are supported efficiently by different 
synopsis data structures. Thus, the query optimizer could 
be charged with choosing the best synopsis operator for 
each purpose under current conditions. 

Taking this idea one step further, synopsis query opera- 
tors could provide the capability to "tune" certain param- 
eters within the operator, such as accuracy and confidence 
of  approximation (e.g., probabilistic confidence bounds 
for aggregates [HHW97]), and maximum storage required 
(e.g., a random sample of size N). Particularly relevant in 
this context are the semantic synopsis structures proposed 
in [BGRO1], which summarize a massive disk-resident re- 
lation based on error tolerance parameters provided in- 
dependently for each attribute. If  we provide synopsis 
operators with these types of parameters, then approxi- 
mate query plans can be constructed carefully based on 
the query structure and available storage. Of course this 
power also poses significant challenges for the query op- 
timizer. 

5.4 Multiple Continuous Queries 

In the paper so far we have assumed a single continuous 
query over multiple data streams. Let us now consider the 
more realistic scenario where an application registers mul- 
tiple continuous queries simultaneously, probably over 
shared data streams. Because continuous queries are long- 
running, and some applications may involve a very large 
number of continuous queries, we expect that some form 
of multi-query optimization [Fin82, Sel88, CDTW00] will 
be a relevant and perhaps essential technique. There has 
been some recent work on optimizing multiple contin- 
uous queries, focusing either on very large numbers of 
queries where each query performs element-at-a-time pro- 
cessing [AF00, NACP01], or on subquery merging in the 
XML context [CDTW00]. In terms of our architecture, 
the queries in these systems are limited enough that they 
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always have empty or bounded Store and Scratch compo- 
nents. 

Research yet to be performed includes extending the 
techniques from [AF00, NACP01, CDTW00] to handle 
more complex queries, coupling multi-query optimization 
techniques with approximate query answering, and opti- 
mizing the use of bounded-size Scratch and Store when 
they are shared among many continuous queries. More 
generally, the overall problem of understanding and im- 
plementing the tradeoffs among efficiency, accuracy, and 
storage becomes at least one step more complex in the 
presence of multiple continuous queries. 

6 A Data Stream Management Sys- 
tem 

Our ultimate goal is to build a complete data stream man- 
agement system (DSMS), with functionality and perfor- 
mance similar to that of a traditional DBMS, but which al- 
lows some or all of the data being managed to come in the 
form of continuous, possibly very rapid, data streams. In 
such a system, traditional one-time queries are replaced or 
augmented with continuous queries, and techniques such 
as synopsis and online data structures, approximate re- 
sults, and adaptive query processing become fundamen- 
tal features of the system. Other aspects of a complete 
DBMS also need to be reconsidered, including storage 
management, transaction management, user and applica- 
tion interfaces, and authorization. 

Obviously building a complete DSMS--even a re- 
search prototype--entails a significant effort. One ap- 
proach would be to modify or extend an existing DBMS to 
include the functionality that we envision. However, our 
approach will be to build a complete DSMS from scratch, 
s o  we can fully explore the issues under our own control. 
We have described many novel and interesting research 
problems that we expect to encounter along the way. 

7 Conclusions and Research Plan 

Many recent applications need to process continuous data 
streams in addition to or instead of conventional stored 
data sets. In this paper we have specified a general and 
flexible architecture for processing continuous queries in 
the presence of data streams. We have used our ba- 
sic architecture as a tool to clarify alternative semantics 
and processing techniques for continuous queries, as well 
as to relate past and current work to the general Data 
Stream Management System (DSMS) we envision. We 
have mapped out a number of  research topics in the area 
of  query processing over data streams, including new re- 
quirements for online, approximate, and adaptive query 

processing. 
At Stanford we have begun to build a complete proto- 

type DSMS called STREAM (STanford stREam datA Man- 
ager). We are focusing initially on:  

• A flexible interface for reading and storing data 
streams---or stream synopses~as part of a hierarchi- 
cal storage manager. 

• A processor for continuous queries specified using 
SQL or relational algebra including aggregation. 

• A client Application Programming Interface (API) 
for registering continuous queries and receiving 
query results. 

We expect that the development of our prototype sys- 
tem, as well as continuous detailed evaluation of poten- 
tial applications such as the network monitoring system 
described in Section 3, will lead to further algorithmic 
and system research issues. Please visit http : / / w w w -  
db. stanford, edu/stream. 
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