
Continuous Queries over Data Streams*

Shivnath Babu and Jennifer Widom
Stanford University

{shivnath,widom} @cs.stanford.edu
http://www-db.stanford.edu/stream

Abstract

In many recent applications, data may take the form of
continuous data soeams, rather than finite stored data
sets. Several aspects of data management need to be re-
considered in the presence of data streams, offering a new
research direction for the database community. In this pa-
per we focus primarily on the problem of query process-
ing, specifically on how to define and evaluate continuous
queries over data streams. We address semantic issues
as well as efficiency concerns. Our main contributions are
threefold. First, we specify a general and flexible architec-
ture for query processing in the presence of data streams.
Second, we use our basic architecture as a tool to clar-
ify alternative semantics and processing techniques for
continuous queries. The architecture also captures most
previous work on continuous queries and data streams, as
well as related concepts such as triggers and materialized
views. Finally, we map out research topics in the area of
query processing over data streams, showing where pre-
vious work is relevant and describing problems yet to be
addressed.

1 Introduction

Traditional database management systems (DBMSs) ex-
pect all data to be managed within some form of persistent
data sets. For many recent applications, the concept of
a continuous data stream is more appropriate than a data
set. By nature, a stored data set is appropriate when signif-
icant portions of the data are queried again and again, and
updates are small and/or relatively infrequent. In contrast,
a data stream is appropriate when the data is changing
constantly (often exclusively through insertions of new
elements), and it is either unnecessary or impractical to
operate on large portions of the data multiple times.

Several applications naturally generate data streams as
opposed to data sets: financial tickers, performance mea-
surements in network monitoring and traffic management,
log records or click-streams in web tracking and personal-
ization, manufacturing processes, data feeds from sensor
applications, call detail records in telecommunications,

"This work was supported by the National Science Foundation under
grant i1S-9811947, by NASA Ames under grant NCC2-5278, and by a
Microsoft graduate fellowship.

and others. Because today's database systems are ill-
equipped to perform any kind of special storage manage-
ment or query processing for data streams, heavily stream-
oriented applications tend to use a DBMS largely as an
offline storage system, or not at all. Like other relatively
recent new demands on data management (e.g., triggers,
objects), it would be beneficial to provide stream-oriented
processing as an integral part of a DBMS. Several aspects
of data management need to be reconsidered in the pres-
ence of data streams. The STREAM (STanford stREam
datA Management) project at Stanford is addressing the
new demands imposed by data streams on data manage-
ment and processing techniques.

In this paper we focus on defining a solid frame-
work for query processing in the presence of continu-
ous data streams. We consider in particular continuous
queries [TGNO92], which are queries that are issued once
and then logically run continuously over the database (in
contrast to traditional one-time queries which are run once
to completion over the current data sets). In network traf-
fic management, for example, continuous queries may be
used to monitor network behavior online in order to de-
tect anomalies (e.g., link congestion) and their cause (e.g.,
hardware failure, denial-of-service attack). Continuous
queries may also be used to support load balancing or
other network performance adjustments [DG00]. In finan-
cial applications, continuous queries may be used to mon-
itor trends and detect fleeting opportunities [Tra]. Both of
these applications are characterized by a need for continu-
ous queries that go well beyond simple element-at-a-time
processing, by rapid data streams, and by a need for timely
online answers.

The organization of the rest of the paper is as follows:

In Section 2 we provide a broad survey of previous
work relevant to data stream processing and continu-
ous queries. Although there has been only a handful
of papers addressing the topic directly, a number of
papers in related areas contain useful techniques and
results.

In Section 3 we introduce a concrete example to mo-
tivate our discussion of continuous queries over data
streams.

• In Section 4 we define a general and flexible archi-
tecture for query processing in the presence of data

SIGMOD Record, Vol. 30, No. 3, September 2001 109

streams. Also in Section 4 we use our basic architec-
ture to specify alternative semantics for continuous
queries, and to classify previous related work. We
also use the architecture to clarify how continuous
queries over data streams relate to triggers and mate-
rialized views.

• In Section 5 we map out, in some detail, a number of
open research topics that must be addressed in order
to realize flexible and efficient processing of contin-
uous queries over data streams.

• Sections 6 and 7 discuss our vision of and plans for
a general-purpose Data Stream Management System
(DSMS).

2 Related Work

In this section we provide a general discussion of past
work that relates in some way to continuous queries
and/or data streams. A more technical analysis of some of
the work will be provided in Section 4.3, after we present
our basic architecture.

Continuous queries were an important component
of the Tapestry system [TGNO92], which performed
content-based filtering over an append-only database of
email and bulletin board messages. The system supported
continuous queries expressed using a quite restricted sub-
set of SQL, in order to make guarantees about efficient
(incremental) evaluation and append-only query results.
The notion of continuous queries for a much wider spec-
trum of environments is formalized in [Bar99]. The XFil-
ter content-based filtering system [AF00] performs ef-
ficient filtering of XML documents based on user pro-
files. The profiles are expressed as continuous queries
in the XPath language [XPA99]. Xyleme [NACP01] is a
similar content-based filtering system that enables very
high throughput with a restricted query language. The
Tribeca stream database manager [Su196] provides re-
stricted querying capability over network packet streams.
We will revisit much of this work in Section 4.3.

The Chronicle data model [JMS95] introduced append-
only ordered sequences of tuples (chronicles), a form of
data stream. They defined a restricted view definition lan-
guage and algebra that operates over chronicles together
with traditional relations. The view definition restrictions,
along with restrictions on the sequence order within and
across chronicles, guarantees that the views can be main-
tained incrementally without storing any of the chronicles.

Two recent systems, OpenCQ [LPT99] and NiagaraCQ
[CDTW00], support continuous queries for monitoring
persistent data sets spread over a wide-area network,
e.g., web sites over the internet. OpenCQ uses a query

processing algorithm based on incremental view main-
tenance, while NiagaraCQ addresses scalability in num-
ber of queries by proposing techniques for grouping
continuous queries for efficient evaluation. Within the
same project as NiagaraCQ, reference [STD+00] dis-
cusses the problem of providing partial results to long-
running queries on the internet, where it is acceptable to
provide an answer over some portion of the input data.
The main technical challenge is handling blocking opera-
tors in query plans. As will be seen, our architecture pro-
vides a framework that captures and classifies all of these
issues.

The Alert system [SPAM91] provides a mechanism for
implementing event-condition-action style triggers in a
conventional SQL database, by using continuous queries
defined over special append-only active tables. In Sec-
tion 4.3.3 we will discuss how Alert and trigger systems
in general relate to continuous queries over data streams.

Clearly there is a relationship between continu-
ous queries and the well-known area of materialized
views [GM95], since materialized views are effectively
queries that need to be reevaluated or incrementally up-
dated whenever the base data changes. There are sev-
eral differences between materialized views and con-
tinuous queries: continuous queries may stream rather
than store their results, they may deal with append-
only input relations, they may provide approximate rather
than exact answers, and their processing strategy may
adapt as characteristics of the data stream change. Nev-
ertheless, much work on materialized views is cap-
tured by our architecture and is relevant to our pro-
posed approach; see Section 4.3.4. Of particularly im-
portance is work on self-maintenance [BCL89, GJM96,
QGMW96]--ensuring that enough data has been saved to
maintain a view even when the base data is unavailable--
and the related problem of data expiration [GMLY98]--
determining when certain base data can be discarded with-
out compromising the ability to maintain a view.

The Telegraph project [AH00, HF+00, UF01] shares
some target applications and basic technical ideas with
our problem, although the general approach is differ-
ent. Telegraph uses an adaptive query engine to process
conventional (one-time) queries efficiently under volatile
and unpredictable environments (e.g., autonomous data
sources over the intemet, or sensor networks). The Tuk-
wila system [IFF+99] also supports adaptive query pro-
cessing, in order to perform dynamic data integration
over autonomous data sources. Adaptive query process-
ing is likely to be useful for continuous queries over data
streams, as discussed in Section 5.

Some work considers traditional data sets but treats
them like (finite) data streams, processing the data in a
single pass and possibly providing intermediate or "early"
query results. For example, online aggregation [HHW97,

110 S I G M O D R e c o r d , Vol . 30, N o . 3, S e p t e m b e r 2001

HH99] is a technique for handling long-running aggre-
gation queries, continually providing a running aggregate
with improving probabilistic error bounds. In more theo-
retical work, [HRR98] studies basic tradeoffs in process-
ing finite data streams, specifically among storage require-
ments, number of passes required, and result approxima-
tions. The problem of computing approximate quantiles
(equi-height histograms) over numeric data streams of un-
known length is addressed in [MRL99] and [GK01].

Recently there has been increasing interest in data re-
duction techniques, where the general goal is to trade ac-
curacy for performance in massive disk-resident data sets,
with some obvious possible applications to data streams.
A good survey appears in [B +97]. In related work, syn-
opsis data structures [GM99] provide a summary of a
data set within acceptable levels of accuracy while be-
ing much smaller in size, and a framework for extract-
ing synopses (signatures) from data streams is proposed
in [CFPR00]. A variety of approximate query answer-
ing answering techniques have been developed based on
data reduction and synopsis techniques including samples
[AGPR99, AGP00, CMN99], histograms [IP99, PG99],
and wavelets [CGRS00, VW99]. Reference [GKS01]
develops histogram-based techniques to provide approx-
imate answers for correlated aggregate queries over data
streams. Reference [GKMS01] presents a general ap-
proach for building small-space summaries over data
streams to provide approximate answers for many classes
of aggregate queries.

There has been some initial work addressing data
streams in the data mining community. In terms of build-
ing classical data mining models over a single data stream,
reference [Hid99] considers frequent itemsets and asso-
ciation rules, reference [GMMO00] considers cluster-
ing, and references [DH00, HSD01] consider decision
trees. The only work we know of addressing multiple data
streams appears in [YSJ+00], which develops algorithms
to analyze co-evolving time sequences to forecast future
values and detect correlations and outliers.

Finally, stream data management and query process-
ing techniques are likely to draw on work in sequence
databases (e.g., [SLR94]), time-series databases (e.g.,
[FRM94]), main-memory databases (e.g., [Tea99]), and
real-time databases (e.g., [KGM95]).

3 A Concrete Example

Let us consider a representative application to illustrate
the need for continuous queries over data streams and why
conventional DBMS technology is inadequate. Consider
the domain of network traffic management for a large net-
work, e.g., the backbone network of an Internet Service
Provider (ISP) [DGO0]. Network-traffic-management ap-

plications typically process rapid, unpredictable, and con-
tinuous data streams, including packet traces and network
performance measurements. Due to the inadequacy of
conventional DBMSs to provide the kind of online con-
tinuous query processing that would be most beneficial in
this domain, current traffic-management tools are either
restricted to offline query processing or to online process-
ing of simple hard-coded continuous queries, often avoid-
ing the use of a DBMS altogether. A traffic-management
system that could provide online processing of ad-hoc
continuous queries over data streams would allow net-
work operators to install, remove, and modify appropri-
ate monitoring queries to support effective management
of the ISP's network.

As a concrete example, consider an ISP that collects
packet traces from two links (among others) in its net-
work. The first link, called the customer link, connects
the network of a customer to the ISP's network. The sec-
ond link, called the backbone link, connects two routers
within the ISP's network. Each packet trace is a continu-
ous stream of packet headers observed on the correspond-
ing link. For simplicity, we assume that a packet header
comprises the five fields listed in Figure 1. We use PTc
and PTb to denote the packet traces collected from the
customer and backbone links respectively.

Field name i Description

saddr IP address of packet sender
daddr IP address of packet destination

..... id Identification number given by sender so that
destination can uniquely identify each packet

length Length of packet
timestamp Time when packet header was recorded

Figure 1: Record structure of a packet header.

A first simple continuous query (Q1) computes the
load on the backbone link averaged over one minute peri-
ods and notifies the network operator if the load exceeds
a threshold T. A SQL version of Q1 using two self-
explanatory functions is:

QI: Select n o t i f y o p e r a t or(sum(length))
From PTb
Group By ge tminute(t imes tamp)
Having sum(length) > T

Although Ql'S functionality might be achievable using
triggers in a conventional DBMS, performance concerns
may dictate special techniques. For instance, if the PTb
stream is coming very fast (e.g., packets in an optical
link), the only feasible approach might be to compute an
approximate answer to Q1 by sampling the data, some-
thing conventional triggers are certainly not designed for.

S I G M O D R e c o r d , Vol. 30, No . 3, S e p t e m b e r 2001 111

A more complex continuous query (Q 2) finds the frac-
tion of traffic on the backbone link coming from the cus-
tomer network. Q 2 is an example of an ad-hoc continuous
query that a network operator might register to check in
response to congestion, whether the customer is a likely
cause.

.... <A,B> <B.C> <A.D> ~ ~ ~ A?
Data Stream Answer

Continuous Query

Figure 2: A continuous query Q over a single data stream.

Q2:(Select count (*)
From PTc As C, PTb As B
Where C.saddr = B.saddr and C.daddr = B.daddr

and CAd = BAd) /
(Select count (*) From PTb)

Q2 joins streams PTc and PTb on their keys to count
the number of common packets on the links. Since un-
bounded intermediate storage could potentially be re-
quired for joining two continuous data streams, the net-
work operator might want the system to compute an ap-
proximate answer. Possible approximation methods are to
allocate a fixed amount of storage and maintain synopses
of the two streams (recall Section 2), and/or exploit appli-
cation semantics--such as a high probability that joining
tuples occur within a certain time window--to bound the
required storage.

A final example continuous query (Q3) monitors the
top 5% source-to-destination pairs in terms of traffic on
the backbone link. (We use the SQL3 W i t h construct
[IJW97] for ease of expressing the query.)

Q3: With Load As
(Select saddr, daddr, sum(length) as traffic
From PTb
Group By saddr, daddr)

Select saddr, daddr, traffic
From Load As L1
Where (Select count(*)

From Load as L2
Where L2.traffic < Ll.traffic) >

(Select 0.95xcount(*)FromLoad)
Order By traffic

Processing Qa over the continuous data stream PTb is es-
pecially challenging due its overall complexity and the
presence of G r o u p By and O r d e r By clauses, which
are normally "blocking" operators in a query execution
plan.

Note that in addition to the issues discussed in each
example, all three example queries are likely to benefit
from adaptive query processing [AH00], given the unpre-
dictable nature of network packet streams.

4 Architecture for Continuous
Queries

Now that we have seen a concrete example motivating
data streams and continuous queries, the remainder of
the paper addresses the general problem. We begin in
Section 4.1 by motivating, through an extremely simple
scenario, some of the most basic issues that arise when
processing continuous queries over data streams. Then
in Section 4.2 we present our architecture, which allows
us in Section 4.3 to classify previous work in continuous
queries, and to relate continuous queries to triggers and
materialized views. We consider data streams that adhere
to the relational model (i.e., streams of tuples), although
many of the ideas and techniques are independent of the
data model being considered.

4.1 Motivation

Let us consider the simplest possible scenario to illustrate
the differences between querying data streams and tradi-
tional stored data sets. Suppose we have a single, continu-
ous stream of tuples and a single query Q we are interested
in answering over the stream, as illustrated in Figure 2.
Q is a continuous query--we issue it once and it oper-
ates continuously as new tuples appear in the stream--
and suppose we are interested in the exact answer to Q
(as opposed to an approximation). Let us further suppose
that the data stream is append-only--it has no updates or
deletions--so we can think of the stream as an unbounded
append-only database D. Even in this simplest of cases,
there are different possible ways to handle Q, with differ-
ent ramifications:

(1)

(2)

Suppose we want to always store and make available
the current answer A to Q. Since the "database" D
may be of unbounded size, the size of A also may be
unbounded (e.g., if Q is a selection query).

Suppose instead we choose not to store answer A,
but rather to make new tuples in A available when
they occur, e.g., as another continuous data stream.
Although we no longer need unbounded storage for
A, we still may need unbounded storage for keeping
track of tuples in the data stream in order to deter-
mine new tuples in A (e.g., if Q is a self-join).

112 SIGMOD Record, Vol. 30, No. 3, September 2001

Let us further complicate the problem by considering
deletions and updates:

(3) Even if the stream is append-only, there may be up-
dates or deletions to tuples in answer A (e.g., if Q is a
group-by query with aggregation). Now, in case (2)
above we may need to somehow update and delete
tuples in our output data stream, in addition to gen-
erating new ones.

(4) In the most general scenario, the input data stream
also may contain updates or deletions. In this case,
typically more--possibly much more- -of the stream
needs to be stored in order to continuously determine
the exact answer to Q.

One way to address these issues is to restrict the ex-
pressiveness of Q and/or impose constraints on charac-
teristics of the data stream so that we can guarantee that
the size of Q's answer A is bounded, or that the amount
of extra storage needed to continuously compute A is
bounded. Previous work on continuous queries, e.g.,
[JMS95, TGNO92, Bar99], has tended to take this ap-
proach. Another possibility is to relax the requirement
that we always provide an exact answer to Q, which re-
lates to the area of approximate query answering dis-
cussed in Sections 2 and 3.

In this paper we do not specifically advocate one of
these approaches. Instead, we specify a general and flex-
ible architecture that makes the choices above, and their
ramifications, explicit. We further use our basic architec-
ture to explain how continuous queries relate to triggers
and materialized views, and to define a number of open
research problems in processing continuous queries over
data streams.

4.2 Architecture

We now introduce our general architecture for processing
continuous queries over data streams, illustrated in Fig-
ure 3. For now let us consider a single continuous query
Q with answer A, operating over any number of incoming
data streams. Multiple continuous queries can be handled
within our architecture (as implied in the figure), and we
will discuss some of the interesting issues that arise in this
context in Section 5.4. We also assume that the query is
over data streams only, although mixing streams and con-
ventional relations poses no particular problems.

When query Q is notified of a new tuple t in a relevant
data stream, it can perform a number of actions, which are
not mutually exclusive:

(i) It can determine that because of t there are new tu-
pies in the answer A. If it is known that a new tuple a
in A will remain in A "forever," then Q may send tu-
pie a to the Stream component illustrated in Figure 3.

.¢. Slreatl l
Stream 1 - . . . - - . ~ Q I ~ ~ ~

Stream 2 ""~'~. -_

Stream II ~ ~ " " ~

/

U

Figure 3: Architecture for processing continuous queries
over data streams.

(ii)

(iii)

(iv)

(v)

(vi)

In other words, Stream is a data stream containing tu-
pies appe/aded to A, similar to case (2) discussed in
Section 4.1.

If a new tuple a is determined to be in A, but may
at some time no longer be in A, then a is added to
the Store component illustrated in Figure 3. In other
words, together Stream and Store define the current
query answer A. If our goal is to minimize storage
for the query result, then we want to make sure that
tuples are sent to Stream rather than Store whenever
possible.

The new stream tuple t may cause the update or dele-
tion of answer tuples in Store. Answer tuples might
also be moved from Store to Stream.

We may need to save t, or save data derived from t,
so that in the future we are assured of being able to
compute our query result. In this case, t (or the data
derived from it), is sent to the Scratch component of
Figure 3. Combined with action (iii), we might also
move data from Store to Scratch.

We may not need t now or later, in which case t is
sent to the Throw component of Figure 3. Note that
Throw does not require any actual storage (unless we
are interested in archiving unneeded data).

As a result of the new stream tuple t, we may take
data previously saved in Scratch (or Store) and send
it to Throw instead. If our goal is to minimize stor-
age, we want to make sure that unneeded data is sent
to Throw whenever possible, rather than Scratch.

4.3 The Architecture and Related Work

In this section we revisit the issues and scenarios dis-
cussed in Section 4.1, revisit the related work discussed
in Section 2, and consider triggers and materialized views.
In all cases we use our basic architecture as a tool for de-
tailed understanding and comparisons.

S I G M O D R e c o r d , Vol . 30, N o . 3, S e p t e m b e r 2001 113

4.3.1 Query Processing Scenarios

Let us consider query processing scenarios (1)-(4) from
Section 4.1 in light of the architecture specified in Sec-
tion 4.2. In scenario (1), we want to always store Q 's
entire current answer A. In terms of our architecture, (1)
says that Stream is empty, Store always contains A, and
Scratch contains any data that may be required to keep
the answer in Store up-to-date. In the example case where
Q is a selection query, Sto~ may be of unbounded size,
while Scratch is empty. Conversely in scenario (2) we
want to make A available exclusively as a data stream,
i.e., Stream streams the entire answer to A while Store is
empty. In the example case where Q is a self-join, we can
send all answer tuples to Stream since they will remain in
the result forever, but Scratch may need to grow without
bound.

Scenario (3) covers the case where answer A can have
updates and deletions even when the input streams are
append-only, e.g., a query that performs grouping and ag-
gregation. Scenario (4) further extends to the case where
the input streams may have updates and deletions. As
an example, suppose Q is a group-by query over a single
data stream with a rain aggregation function. Since rain is
monotonic for insertions, in scenario (3) A is maintained
in Store, and Scratch can remain empty. However, in sce-
nario (4) unbounded storage is required for Scratch to en-
sure that the rain values over the entire stream can always
be computed. In both cases, the only time answer tuples
can be sent to Stream, or moved from Store to Stream, is
when it is known that for some group there will be no fur-
ther insertions, updates, or deletions of tuples falling into
that group, t

4.3.2 Previous Related Work

We now revisit some of the related work discussed in Sec-
tion 2, characterizing it in terms of our basic architecture.
Note that citations are not repeated in this section except
when needed to identify the work being discussed. Also
note that some of the related work from Section 2 is revis-
ited instead in Section 4.3.3 on triggers or Section 4.3.4
on views.

Recall that the Tapestry system supports restricted con-
tinuous queries over append-only data sets. In Tapestry, a
continuous query Q is rewritten into its minimum bound-
ing monotone query QM, which is then rewritten into an
hwremental query QZ. As a monotone continuous query,
QM has the property that its answer changes only by ad-

i Note that we are assuming Stream is constrained to be append-only,
even though in scenario (4) we discuss input streams with updates and
deletions. If we allow updates and deletions to Stream tuples, then we
are always free to send answer tuples to Stream instead of Store, since
we can update or delete them later.

dition of new tuples, so in terms of our architecture all an-
swer tuples can be sent to Stream and Store is empty. The
incremental version Q i of the query is meant to improve
the efficiency of computing new answer tuples when new
input tuples are appended, but there is no mechanism for
guaranteeing that Scratch will not grow without bound.

The work in [STD+00] on maintaining partial results
for long-running queries is similar to Scenario (3) in Sec-
tion 4.1. It maintains the current partial result in Store
and any extra needed information in Scratch. Our discus-
sion of new query processing techniques in Section 5.3
is relevant to the problem addressed in [STD+00], and
we believe that based on these techniques it is possible to
exploit monotonicity more aggressively to improve upon
the algorithm in [STD+00], reducing the data saved in
Scratch. OpenCQ and NiagaraCQ consider Scenario (4)
in Section 4.1, but they are geared towards data sets that
change primarily through in-place updates. Thus, they do
not address the problem of Store or Scratch growing with-
out bound.

A number of systems perform tuple-at-a-time process-
ing over their input data streams: each time a new stream
element arrives, the element is moved directly to either
Stream or Throw, without consulting any other data in the
stream. Packet routing and simple network algorithms
have this characteristic [Tan96], although for network
traffic management more sophisticated stream processing
is needed, as seen in Section 3. The XFilter and Xyleme
systems discussed in Section 2 also perform element-at-
a-time processing although the elements are XML docu-
ments.

Basic online aggregation [HHW97] maintains the cur-
rent aggregate in Store along with an estimate of the error,
and an empty Scratch. Follow-on work that extends on-
line aggregation to joins [HH99] does need to maintain
previously seen tuples in Scratch. Finally, the body of
work in approximate query answering focuses primarily
on making the best possible use of a limited size Scratch
by storing only small synopses (summaries) of the data.
References [GMP97, MRL99, MVW00, Vit85] address
the problem of updating the synopses (i.e., Scratch) ef-
ficiently when the underlying data changes.

4.3.3 Triggers

Triggers, also called event-condition-action rules, are
used to monitor events and conditions in databases, and
to execute actions automatically when specific situations
are detected [WC96]. In the Alert system introduced in
Section 2, triggers are implemented by means of contin-
uous queries over active tables. Each tuple in an active
table represents an event, which is an update on a conven-
tional stored table. When a new tuple is added to one of
the active tables, each continuous query involving the ta-

114 SIGMOD Record, Vol. 30, No. 3, September 2001

ble is evaluated, and the trigger action is invoked on each
new tuple in the query result.

Our mapping from triggers to the architecture of Fig-
ure 3 is based on (and slightly generalizes) the Alert ap-
proach. We assume that events to be monitored are gen-
erated as data streams, and we allow continuous queries
over any number of data streams together with conven-
tional stored tables. As in Alert, these queries perform
event and condition monitoring. For launching trigger
actions, like Alert we assume that the desired actions
are performed by SQL data manipulation commands and
user-defined stored procedures specified as part of the
continuous queries (e.g., query Q1 in Section 3). In
terms of our architecture, since there is no query "answer"
in triggers, Stream and Store may remain empty, while
Scratch is used for any data required to monitor complex
events or evaluate conditions. Alternatively, depending on
the desired trigger behavior and application interaction,
actions could send results to Stream.

There are a number of benefits to using continuous
queries over data streams to provide trigger functional-
ity. Continuous queries specified on event streams to-
gether with conventional tables enable complex multi-
table events and conditions to be monitored, equivalent
to the most powerful trigger language proposals we know
of [WC96]. More importantly, trigger processing would
benefit automatically from efficient data management and
processing techniques for continuous queries over data
streams, such as specialized query optimization tech-
niques (Section 5.3).

4.3.4 Materialized Views

Materialized views, whether in a conventional DBMS or
in a data warehousing environment [GM95], fall natu-
rally into our architecture. The base data over which the
views are defined, if not available in conventional stored
tables, is stored in Scratch. The view itself is maintained
in Story. Updates to the base data can be represented as
one or more data streams, as discussed in Section 4.3.3 for
triggers. In terms of this mapping, work on materialized
view self-maintenance and expiration, discussed in Sec-
tion 2, is geared specifically towards minimizing the size
of Scratch. Pure self-maintenance guarantees that Scp~tch
is empty [BCL89, GJM96], although for many views
pure self-maintainability is impossible, so auxiliary views
must be stored and maintained in Scratch [QGMW96].
Data expiration exploits constraints to determine precisely
when data can be removed from Scratch, although no
bounds on the size of Scratch are guaranteed. The Chron-
icle data model discussed in Section 2 for materialized
views is designed to ensure bounded storage for Scratch,
but like pure self-maintainability it restricts the allowable
view definitions significantly. To the best of our knowl-

edge, no work on materialized views has addressed the
problem of bounding the size of the materialized view it-
self, so that the size of Store also can be bounded.

5 Research Problems

In this section we outline a number of research problems
associated with processing continuous queries over data
streams. We begin at a relatively global level, becoming
more detailed as the section progresses. In several cases
the architecture of Section 4.2 is used to make the prob-
lems and issues more concrete.

5.1 Basic Problems and Techniques

At the most global level, what sets continuous queries
over data streams apart from previous work is a unique
combination of:

• Online processing. The applications discussed in
Section I require that continuous queries are pro-
cessed, well, continuously. Specifically, when new
tuples arrive in a data stream they generally must be
"consumed" immediately, usually performing one or
more of actions (i)-(vi) from Section 4.2. In some
applications the tuples may arrive so fast that some
of them need to be ignored entirely.

• Storage constraints. In the general case for con-
tinuous data streams, the amount of storage required
for the answer to a continuous query, or to ensure
that the answer always can be computed, may be un-
bounded (recall Section 4.1). Furthermore, even if
there is "nearly" unbounded storage available on disk
or other tertiary devices, performance requirements
may be such that Store and/or Scratch from Figure 3
need to reside in a limited amount of main memory.

While neither of these problems in isolation is entirely
new, dealing with them together, while at the same time
offering the full functionality and efficiency of a database
query processor, is a new challenge.

Next we mention three basic techniques that have been
explored primarily in other contexts within the database
or broader Computer Science research community. All of
them appear directly relevant to our problem.

• Summarization. S~mzmaries (or data synopses) pro-
vide a concise representation of a data set at the ex-
pense of some accuracy. As discussed in Section 2,
many techniques for summarization have been devel-
oped, including sampling, histograms, and wavelets.
(See Section 2 for citations.) We expect summa-
rization to play an important role in query process-
ing over data streams due to the storage constraints

S I G M O D R e c o r d , Vol . 30, N o . 3, S e p t e m b e r 2001 115

discussed above. New issues to resolve in the data
stream environment include: (i) how to make guar-
antees about accuracy of continuous query results
based on summaries; (ii) how to maintain summaries
efficiently in the presence of very rapid data streams;
(iii) what summarization techniques are best for un-
predictable data streams. We revisit some of these
issues in Section 5.3.

Online data structures. A data structure designed
specifically to handle continuous data-flow is typi-
cally referred to as an online data structure [FW98].
Continuous queries by nature suggest the use of on-
line data structures for query processing.

• Adaptivity. We expect continuous queries and the
data streams on which they operate to be long-
running. Unlike during the processing of a simple
one-time query, during the lifetime of a continuous
query parameters such as the amount of available
memory, stream data characteristics, and stream flow
rates may vary considerably. While adaptive query
processing techniques for more traditional queries
have attracted interest recently (see Section 2 for a
discussion), the work so far that we are aware of has
not considered all of the parameters or kinds of adap-
tivity (e.g., changing approximations) that arise in a
data stream context.

Distilling the basic problems and techniques above, we
see that processing continuous queries over data streams
entails making fundamental tradeoffs among efficiency,
accuracy, and storage. References [AMS96, HRR98]
provide some initial contributions from the theory com-
munity along these lines, but it is an open problem to un-
derstand the implications of these tradeoffs in a real sys-
tem processing continuous queries for one or more real
applications.

Next we will consider in more detail several specific re-
search challenges. We will start in Section 5.2 by briefly
discussing the issue of languages for specifying contin-
uous queries. Then in Section 5.3 we focus on query
evaluation and optimization, including execution plans
and operators for continuous queries. We briefly address
research problems associated with multiple continuous
queries in Section 5.4.

5.2 Languages for Continuous Queries

Although we certainly do not advocate inventing a new
query language for the purpose of specifying continuous
queries over data streams--particularly over streams of
relational tuples--there are some issues that must be con-
sidered. Let us take SQL as an example. Most previous
work on continuous queries has restricted the language

being considered in order to guarantee certain properties
such as bounding the size of Scratch (or eliminating it en-
tirely), or ensuring that all query results can be sent to
Stream and none to Store. It appears to be an open prob-
lem to determine for arbitrary SQL queries whether these
kinds of properties are satisfied, particularly if we accept
the use of Scratch and Store but want to make sure they
are bounded in some way. We also believe that for certain
applications continuous queries will need to refer to the
sequencing aspect of streams. Here SQL with extensions
for ordered relations [SLR94], or with built-in time-series
support [FRM94], might be a reasonable choice.

5.3 Query Evaluation and Optimization

In any database system it is the job of the query opti-
mizer to choose in advance the "best" query plan for exe-
cuting each query, based on a variety of statistics main-
tained for this purpose. A continuous query processor
also should select a "best" execution plan, although we
expect that fewer of the decisions will be made in advance
due to the long-running nature of continuous queries dis-
cussed in Section 5.1. Techniques such as eddies [AH00],
which construct and adapt query plans on-the-fly, come
the closest that we know of to the query execution style
we envision. However, that work is still designed for one-
time rather than continuous queries, the query execution
strategies do not adapt to all relevant parameters in the
data stream context, and the notion of adaptivity is geared
solely towards online processing.

Let us assume a standard pipelined (or iterator-based)
approach to query processing [Gra93]. One of the funda-
mental differences between traditional query plans oper-
ating over stored relations and plans operating over data
streams can be characterized as "push" versus "pull."
Specifically, a traditional query plan usually has a tree
shape and is executed top-down in a "pull" style: each
query operator polls its children for the required input, ul-
timately accessing stored indexes or relations at the leaves
of the query tree. Parallel query plans relax this paradigm
to some extent [Gra90], but usually do not use the fully
"push-based" model that data streams may demand. In an
execution plan for a continuous query over data streams,
we expect that it will be the appearance of a new tuple in
a relevant stream that sets the plan into action. Of course
this idea is not new, but rather a query processing vari-
ant on triggers, alerts, and other "active" constructs in
databases [WC96].

"Push" versus "pull" aside, let us consider other
changes that may be required to adapt traditional query
plan operators to the data stream context. We will first
consider true pipelined operators (such as selections and
joins), then we will consider blocking operators (such
as aggregation and sorting). Finally we will consider a

116 S I G M O D R e c o r d , Vot . 30 , No . 3, S e p t e m b e r 2001

new class of operators that may be useful for continuous
queries over data streams.

5.3.1 Pipelined operators

The simplest standard pipelined operators, such as selec-
tions, can be translated to the data stream context with lit-
tle modification. However, as soon as we introduce joins
we are faced with a choice. We can either: (i) evaluate
portions of the query multiple times as in a nested-loop
style join, which we assume is undesirable or even im-
possible in the data stream context; or (ii) use Scratch to
hold temporary results during query processing, as in a
pipelined hash join [WA91].

The case of joins points out that when processing con-
tinuous queries over data streams, we not only want our
query operators to be pipelined, we also want them to
operate with bounded intermediate storage (even in the
presence of unbounded streams). For example, we might
modify a pipelined join operator to degrade gracefully to
an approximate join when the required storage begins to
reach limits. Semantic constraints in the spirit of data ex-
piration [GMLY98], or online feedback across operators
in the spirit of ripple joins [HH99], could be applied to
compute approximations with minimal loss of informa-
tion.

As it turns out, the architecture we introduced in Sec-
tion 4.2 for continuous queries as a whole also applies
nicely to individual query plan operators: Store and
Scratch represent the intermediate storage required by an
operator, while Stream represents the pipelined operator
results. Thus, techniques developed at the query level for
summarization, approximation, or for moving data from
Scratch or Store to Stream or Throw, might be applicable
recursively to query plan operators. It is important to bear
in mind, however, that Scratch and Store will generally be
bounded globally, not on a per-operator basis.

5.3.2 Blocking Operators

A blocking operator is one that must obtain its entire input
set before it can produce any output--typical examples
are sorting and aggregation. In a conventional pipelined
query plan, all operators that follow a blocking operator
must wait until the operator obtains its entire input and
begins producing its results. Obviously blocking oper-
ators cannot behave in their conventional fashion in the
presence of continuous data streams, since the input is un-
bounded and the operator would block "forever." Part of
the solution to this problem must be based on semantic
considerations such as those discussed in Section 4 . 1 -
e.g., what is the result of an aggregation or a sort now
when more data may be coming later? In addition to tech-
niques such as online aggregation [HHW97, I-II--I99], there

has been some work addressing closely-related prob-
lems [LPT99, STD+00] that develops techniques based
on incremental view maintenance. Developing similar
teclmiques for continuous queries over data streams, and
even more fundamentally understanding the semantics
implied by the various techniques, remains an open prob-
lem.

5.3.3 Synopsis Operators

We discussed the requirement for summaries or synopses
in Section 5.1 and cited some of the most relevant work
in Section 2. One approach to incorporating synopsis data
structures into a database system is to encapsulate them
as basic operators that may appear in query plans. In sup-
port of this approach, reference [GM99] shows that differ-
ent classes of queries are supported efficiently by different
synopsis data structures. Thus, the query optimizer could
be charged with choosing the best synopsis operator for
each purpose under current conditions.

Taking this idea one step further, synopsis query opera-
tors could provide the capability to "tune" certain param-
eters within the operator, such as accuracy and confidence
of approximation (e.g., probabilistic confidence bounds
for aggregates [HHW97]), and maximum storage required
(e.g., a random sample of size N). Particularly relevant in
this context are the semantic synopsis structures proposed
in [BGRO1], which summarize a massive disk-resident re-
lation based on error tolerance parameters provided in-
dependently for each attribute. If we provide synopsis
operators with these types of parameters, then approxi-
mate query plans can be constructed carefully based on
the query structure and available storage. Of course this
power also poses significant challenges for the query op-
timizer.

5.4 Multiple Continuous Queries

In the paper so far we have assumed a single continuous
query over multiple data streams. Let us now consider the
more realistic scenario where an application registers mul-
tiple continuous queries simultaneously, probably over
shared data streams. Because continuous queries are long-
running, and some applications may involve a very large
number of continuous queries, we expect that some form
of multi-query optimization [Fin82, Sel88, CDTW00] will
be a relevant and perhaps essential technique. There has
been some recent work on optimizing multiple contin-
uous queries, focusing either on very large numbers of
queries where each query performs element-at-a-time pro-
cessing [AF00, NACP01], or on subquery merging in the
XML context [CDTW00]. In terms of our architecture,
the queries in these systems are limited enough that they

S I G M O D R e c o r d , Vol . 30, N o . 3, S e p t e m b e r 2001 117

always have empty or bounded Store and Scratch compo-
nents.

Research yet to be performed includes extending the
techniques from [AF00, NACP01, CDTW00] to handle
more complex queries, coupling multi-query optimization
techniques with approximate query answering, and opti-
mizing the use of bounded-size Scratch and Store when
they are shared among many continuous queries. More
generally, the overall problem of understanding and im-
plementing the tradeoffs among efficiency, accuracy, and
storage becomes at least one step more complex in the
presence of multiple continuous queries.

6 A Data Stream Management Sys-
tem

Our ultimate goal is to build a complete data stream man-
agement system (DSMS), with functionality and perfor-
mance similar to that of a traditional DBMS, but which al-
lows some or all of the data being managed to come in the
form of continuous, possibly very rapid, data streams. In
such a system, traditional one-time queries are replaced or
augmented with continuous queries, and techniques such
as synopsis and online data structures, approximate re-
sults, and adaptive query processing become fundamen-
tal features of the system. Other aspects of a complete
DBMS also need to be reconsidered, including storage
management, transaction management, user and applica-
tion interfaces, and authorization.

Obviously building a complete DSMS--even a re-
search prototype--entails a significant effort. One ap-
proach would be to modify or extend an existing DBMS to
include the functionality that we envision. However, our
approach will be to build a complete DSMS from scratch,
s o we can fully explore the issues under our own control.
We have described many novel and interesting research
problems that we expect to encounter along the way.

7 Conclusions and Research Plan

Many recent applications need to process continuous data
streams in addition to or instead of conventional stored
data sets. In this paper we have specified a general and
flexible architecture for processing continuous queries in
the presence of data streams. We have used our ba-
sic architecture as a tool to clarify alternative semantics
and processing techniques for continuous queries, as well
as to relate past and current work to the general Data
Stream Management System (DSMS) we envision. We
have mapped out a number of research topics in the area
of query processing over data streams, including new re-
quirements for online, approximate, and adaptive query

processing.
At Stanford we have begun to build a complete proto-

type DSMS called STREAM (STanford stREam datA Man-
ager). We are focusing initially on:

• A flexible interface for reading and storing data
streams---or stream synopses~as part of a hierarchi-
cal storage manager.

• A processor for continuous queries specified using
SQL or relational algebra including aggregation.

• A client Application Programming Interface (API)
for registering continuous queries and receiving
query results.

We expect that the development of our prototype sys-
tem, as well as continuous detailed evaluation of poten-
tial applications such as the network monitoring system
described in Section 3, will lead to further algorithmic
and system research issues. Please visit http : / / w w w -
db. stanford, edu/stream.

Acknowledgements

We are grateful to Jose Blakeley for excellent comments
on an initial draft, and to the entire STREAM group at
Stanford for many inspiring discussions.

References

[AF00] M. Altinel and M. J. Franklin. Efficient filtering of
XML documents for selective dissemination of information.
In Proc. of the 2000 Intl. Conf. on Very Large Data Bases,
pages 53.-..64, September 2000.

[AGP00] S. Acharya, P. B. Gibbons, and V. Poosala. Con-
gressional samples for approximate answering of group-by
queries. In Proc. of the 2000 ACM SIGMOD Intl. Cots on
Management of Data, pages 487.-..498, May 2000.

[AGPR99] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ra-
maswamy. Join synopses for approximate query answering.
In Proc. of the 1999 ACM SIGMOD Intl. Conf. on Manage-
ment of Data, pages 275-286, June 1999.

[AH00] R. Avnur and J. M. Hellerstein. Eddies: Continuously
adaptive query processing. In Proc. of the 2000 ACM SIG-
MOD Intl. Conf. on Management of Data, pages 261-272,
May 2000.

JAMS96] N. Alon, Y. Matias, and M. Szegedy. The space com-
plexity of approximating the frequency moments. In Proc. of
the 1996 Annual ACM Syrup. on Theory of Comp,ting, pages
20--29, May 1996.

[B+97] D. Barbara et al. The New Jersey data reduction report.
IEEE Data Engineering Bulletin. 20(4):3--45, 1997.

l t 8 SIGMOD Record, Vol. 30, No. 3, September 2001

[Bar99] D. Barbara. The characterization of continuous queries.
Intl. Journal of Cooperative Information Systems, 8(4):295-
323, December 1999.

[BCL89] J. A. Blakeley, N. Coburn, and P. A. Larson. Updat-
ing derived relations: Detecting irrelevant and autonomously
computable updates. ACM Trans. on Database Systems,
14(3):369---400, 1989.

[BGR01] S. Babu, M. N. Garofalakis, and R. Rastogi. SPAR-
TAN: A model-based semantic compression system for mas-
sive data tables. In Proc. of the 2001 ACM SIGMOD Intl.
Conf. on Management of Data, pages 283-294, May 2001.

[CDTW00] J. Chen, D. J. DeWitt, E Tian, and Y. Wang. Ni-
agaraCQ: A scalable continuous query system for internet
databases. In Proc. of the 2000 ACM SIGMOD Intl. Conf.
on Management of Data, pages 379-390, May 2000.

[CFPR00] C. Cortes, K. Fisher, D. Pregibon, and A. Rogers.
Hancock: a language for extracting signatures from data
streams. In Proc. of the 2000 ACM SIGKDD Intl. Conf. on
Knowledge Discovery and Data Mining, pages 9-17, August
2000.

[CGRS00] K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and
K. Shim. Approximate query processing using wavelets. In
Proc. of the 2000 hltl. Conf. on Very Large Data Bases, pages
I 11-122, September 2000.

[CMN99] S. Chaudhuri, R. Motwani, and V. R. Narasayya. On
random sampling over joins. In Proc. of the 1999 ACM SIG-
MOD Intl. Co1~ on Management of Data, pages 263-274,
June 1999.

[DG00] N. G. Duffield and M. Grossglauser. Trajectory sam-
pling for direct traffic observation. In Proc. of the 2000 ACM
SIGCOMM, pages 271-284, September 2000.

[DH00] P. Domingos and G. Hulten. Mining high-speed data
streams. In Proc. of the 2000 ACM SIGKDD Intl. Conf. on
Knowledge Discovery and Data Mining, pages 71-80, Au-
gust 2000.

[Fin82] S. J. Finkelstein. Common subexpression analysis in
database applications. In Proc. of the 1982 ACM SIGMOD
bltl. Conf. on Management of Data, pages 235-245, June
1982.

[FRM94] C. Faloutsos, M. Ranganathan, and Y. Manolopou-
los. Fast subsequence matching in time-series databases. In
Proc. of the 1994 ACM SIGMOD Intl. Conf. on Management
of Data, pages 419--429, May [994.

[FW98] A. Fiat and G. J. Woeginger. Online Algorithms, The
State of the Art. Springer-Verlag, Berlin, 1998.

[GJM96] A. Gupta, H. V. Jagadish, and I. S. Mumick. Data in-
tegration using self-maintainable views. In Proc. of the 1996
Intl. Conf. on Extending Database Technology, pages 140-
144, March 1996.

[GK01] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In Proc. of the 2001
ACM SIGMOD Intl. Conf. on Management of Data. pages
58-66, May 2001.

[GKMS01] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Surfing wavelets on streams: one-pass summaries
for approximate aggregate queries. In Proc. of the 2001 Intl.
Conf. on Very Large Data Bases, September 2001.

[GKS01] J. Gehrke, E Kom, and D. Srivastava. On computing
correlated aggregates over continual data streams, in Proc. of
the 2001 ACM SIGMOD Intl. Conf. on Management of Data,
pages 13-24, May 2001.

[GM95] A. Gupta and I. S. Mumick. Maintenance of materi-
alized views: Problems, techniques, and applications. IEEE
Data Engineering Bulletin, 18(2):3-18, June 1995.

[GM99] P. B. Gibbons and Y. Matias. Synopsis data structures
for massive data sets. In E~rternal Memory Algorithms, DI-
MACS Series in Discrete Mathematics and Theoretical Com-
puter Science, volume 50, 1999.

[GMLY98] H. Garcia-Molina, W. J. Labio, and J. Yang. Expir-
ing data in a warehouse. In Proc. of the 1998 hltl. Conf. on
Verb' Large Data Bases, pages 500-51 l, August 1998.

[GMMO00] S. Guha, N. Mishra, R. Motwani, and
L. O'Callaghan. Clustering data streams. In Proc. of
the 2000 Annual Syrup. on Foundations of Computer Science,
pages 359-366, November 2000.

[GMP97] E B. Gibbons, Y. Matias, and V. Poosala. Histogram-
based approximation of set-valued query-answers. In Proc.
of the 1997 hTtl. Conf. on Very Large Data Bases, pages 466-
475, August 1997.

[Gra90] Goetz Graefe. Encapsulation of parallelism in the vol-
cano query processing system. In Proc. of the 1990 ACM
SIGMOD Intl. Corn on Management of Data, pages 102-
111, May 1990.

[Gra93] G. Graefe. Query evaluation techniques for large
databases. ACM Computing Surveys, 25(2):73-170, 1993.

[HF+00] J.M. Hellerstein, M. J. Franklin, et al. Adaptive query
processing: Technology in evolution. IEEE Data Engineer-
ing Bulletin, 23(2):7-18, June 2000.

[HH99] E J. Haas and J. M. Hellerstein. Ripple joins for online
aggregation. In Proc. of the 1999 ACM SIGMOD Intl. Conf
on Management of Data, pages 287-298, June 1999.

[HHW97] J. M. Hellerstein, E J. Haas, and H. Wang. Online
aggregation. In Proc. of the 1997 ACM SIGMOD hltl. Conf.
on Management of Data, pages 17 l-182, May 1997.

[Hid99] C. Hidber. Online association rule mining. In Proc. of
the 1999 ACM SIGMOD Intl. Conf. on Management of Data,
pages 145-156, June 1999.

[HRR98] M. R. Henzinger, E Ragbavan, and S. Rajagopalan.
Computing on data streams. Technical Report TR-1998-
011, Compaq Systems Research Center, Palo Alto, Califor-
nia, May 1998.

[HSD01] G. Hulten, L. Spencer, and E Domingos. Mining
time-changing data streams, in Proc. of the 2001 ACM
SIGKDD Intl. Conf. on Knowledge Discovery and Data Min-
ing, August 2001. (To appear).

[IFF+99] Z. G. Ives, D. Florescu, M. Friedman, A. Y. Levy,
and D. S. Weld. An adaptive query execution system for data

SIGMOD Record, Vol. 30, No. 3, September 2001 119

integration. In Proc. of the 1999 ACM SIGMOD hurl. Conf.
on Management of Data, pages 299-310, June 1999.

[IP99] Y. E. loannidis and V. Poosala. Histogram-based ap-
proximation of set-valued query-answers. In Proc. of the
1999 Intl. Conf. on Very Large Data Bases, pages 174-185,
September 1999.

[JMS95] H. V. Jagadish, I. S. Mumick, and A. Silberschatz.
View maintenance issues for the Chronicle data model. In
Proc. of the 1995 ACM Syrup. on Principles of Database Sys-
tems, pages 113-124, May 1995.

[KGM95] B. Kao and H. Garcia-Molina. An overview of real-
lime database systems. In S. H. Son, editor, Advances in
Real-Time Systems, pages 463---486. Prentice Hall, 1995.

[LPT99] L. Liu, C. Pu, and W. Tang. Continual queries for in-
ternet scale event-driven information delivery. IEEE Trans.
on Knowledge and Data Engineering, 11(4):583-590, Au-
gust 1999.

[MRL99] G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Random sampling techniques for space efficient online com-
putation of order statistics of large datasets. In Proc. of the
1999 ACM SIGMOD Intl. Conf. on Management of Data,
pages 251-262, June 1999.

[MVW00] Y. Matias, J. S. Vitter, and M. Wang. Dynamic
maintenance of wavelet-based histograms. In Proc. of the
2000 Intl. Conf. on Very Large Data Bases, pages 101-110,
September 2000.

[NACP01] B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda.
Monitoring XML data on the web. In Proc. of the 2001 ACM
SIGMOD Intl. Conf. on Management of Data, pages 437-
448, May 2001.

[PG99] V. Poosala and V. Ganti. Fast approximate answers to
aggregate queries on a data cube. In Proc. of the 1999 hztl.
Cole on Scientific and Statistical Database Management,
pages 24-33, July 1999.

[QGMW96] D. Quass, A. Gupta, I. S. Mumick, and J. Widom.
Making views self-maintainable for data warehousing. In
Proc. of the 1996 Intl. Conf. on ParaUel and Distributed In-
formation Systems, pages 158-169, December 1996.

[Se188] T. K. Sellis. Multiple-query optimization. ACM Trans.
on Database Systems, 13(1):23-52, 1988.

[SLR94] P. Seshadri, M. Livny, and R. Ramakrishnan. Se-
quence query processing. In Proc. of the 1994 ACM SIG-
MOD Intl. Conf. on Management of Data, pages 430--441,
May 1994.

[SPAM91] U. Schreier, H. Pirahesh, R. Agrawal, and C. Mo-
han. Alert: An architecture for transforming a passive DBMS
into an active DBMS. In Proc. of the 1991 Intl. Conf. on Very
Large Data Bases, pages 469--478, September 1991.

[STD+00] J. Shanmugasundaram, K. Tufte, D. J. DeWitt, J. E
Naughton, and D. Maier. Architecting a network query en-
gine for producing partial results. In Proc. of the 2000 Intl.
Workshop on the Web and Databases, pages 17-22, May
2000.

[Su196] M. Sullivan. Tribeca: A stream database manager for
network traffic analysis. In Proc. of the 1996 Intl. Cord on
Very Large Data Bases, page 594, September 1996.

[Tan96] A. S. Tanenbaum. Computer Networks. Prentice Hall,
Upper Saddle River, New Jersey, 1996.

[Tea99] Times-Ten Team. In-memory data management for
consumer transactions: The Times-Ten approach. In Proc. of
the 1999 ACM SIGMOD Intl. Conf. on Management of Dam,
pages 528-529, June 1999.

[TGNO92] D. B. Terry, D. Goldberg, D. Nichols, and B. M.
Oki. Continuous queries over append-only databases. In
Proc. of the 1992 ACM SIGMOD hltl. Conf. on Management
of Data, pages 321-330, June 1992.

[Tra] Traderbot home page. http://www.traderbot.com.

[UF01] T. Urhan and M. J. Franklin. Dynamic pipeline schedul-
ing for improving interactive performance of online queries.
In Proc. of the 2001 Intl. Conf. on Very Large Dam Bases,
September 2001. (To appear).

[UW97] J.D. Ullman and J. Widom. A First Coarse in Database
Systems. Prentice Hall, Upper Saddle River, New Jersey,
1997.

[Vit85] J. S. Vitter. Random sampling with a reservoir. ACM
Trans. on Mathematical Software, 11(1):37-57, March 1985.

[VW99] J. S. Vitter and M. Wang. Approximate computation
of multidimensional aggregates of sparse data using wavelets.
In Proc. of the 1999 ACM SIGMOD Intl. Conf. on Manage-
ment of Data, pages 193-204, June 1999.

[WA91] A.N. Wilschut and P. M. G. Apers. Dataflow query ex-
ecution in a parallel main-memory environment. In Proc. of
the 1991 Intl. Conf. on Parallel and Distributed Information
Systems, pages 68-77, December 199 l.

[WC96] J. Widom and S. Ceri. Active Database Systems: Trig-
gers and Rules for Advanced Database Processing. Morgan
Kaufmann, San Francisco, California, 1996.

[XPA99] XML path language (XPath) version 1.0,
November 1999. W3C Recommendation available at
http://www.w3.org/TR/xpath.

[YSJ+00] B. Yi, N. Sidiropoulos; T. Johnson, H. V. Jagadish,
C. Faloutsos, and A. Biliris. Online data mining for co-
evolving time sequences. In Proc. of the 2000 Intl. Conf.
on Data Engineering, pages 13-22, March 2000.

120 SIGMOD Record, Vol. 30, No. 3, September 2001

