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ABSTRACT 
This work concerns algorithms to control energy-driven ar- 
chitecture adaptat ions  for mult imedia applications, with- 
out and with dynamic voltage scaling (DVS). We identify a 
broad design space for adapta t ion  control algorithms based 
on two attr ibutes:  (1) when to adap t  or temporal granular- 
i ty and (2) what structures to adap t  or spatial granularity. 
For each at t r ibute,  adapta t ion  may beglobal or local. Our 
previous work developed a temporal ly  and spatial ly global 
algorithm. It invokes adapta t ion  at  the granularity of a full 
frame of a mult imedia applicat ion ( temporal ly global) and 
considers the entire hardware configuration at a t ime (spa- 
t ial ly global). It exploits inter-frame execution time vari- 
ability, slowing computat ion just  enough to eliminate idle 
t ime before the real-time deadline. 

This paper explores temporal ly and spatial ly local algorithms 
and their integration with the previous global algorithm. 
The local algorithms invoke architectural  adapta t ion within 
an application frame to exploit intra-frame execution vari- 
ability, and a t tempt  to save energy without  affecting execu- 
tion time. We consider local algori thms previously studied 
for non-real-time applications as well as propose new algo- 
ri thms. We find that ,  for systems without and with DVS, 
the local algorithms are effective in saving energy for multi- 
media applications, but  the new integrated global and local 
algori thm is best for the systems and applications studied. 

1. INTRODUCTION 
Multimedia applications have become an impor tant  work- 
load for a variety of systems employing general-purpose pro- 
cessors [7, 8, 21]. A large number of these systems are 
powered by batteries,  making energy a first class resource 
constraint.  To save energy, researchers have proposed hard- 
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ware adapta t ion,  including dynamic voltage and frequency 
scaling, or DVS (e.g., [13, 14, 25, 27]), and architecture 
adapta t ion  (e.g., changing the instruction window size [6, 
9, 11, 26], changing the number of functional units and /o r  
issue width [3, 23], and others [2, 4, 12, 15, 16, 22]). This 
work concerns control algorithms for such hardware adap- 
ta t ions for mult imedia applications, and is par t  of the Illi- 
nois GRACE project  which seeks to coordinate system-wide 
hardware and software adaptat ions  [1]. 

Two key questions must be addressed when designing adap- 
ta t ion control a l g o r i t h m s -  (1) when to adapt ,  or the tem- 
poral granulari ty of adaptat ion,  and (2) what  structures to 
adapt ,  or the spatial granulari ty of adapta t ion.  Our pre- 
vious work developed an integrated control algori thm for 
DVS and architecture adapta t ion  for mult imedia  applica- 
tions and used the following observations to address the 
above questions [19]. Many mult imedia  applications are 
real-t ime and need to process discrete units of data ,  typ- 
ically called a frame, within a deadline. If the processor 
completes a frame's computat ion early, it remains idle until 
the end of the deadline. This idle time, or slack, implies that  
the processor can be slowed to reduce energy without affect- 
ing user-perceived performance. Since the slack may vary 
from frame to frame [17], the ideal hardware configuration 
may also vary from frame to frame, motivat ing inter-frame 
adapta t ion.  

The previous algorithm, therefore, invokes adapta t ion  at  
the s ta r t  of each frame [19]. I t  predicts the lowest en- 
ergy hardware configuration (voltage/frequency and archi- 
tecture) tha t  can meet the deadline for the next frame, and 
uses tha t  configuration to execute the frame. '1'he execution 
t ime and energy prediction exploits special characteristics 
of mult imedia applications. Thus, this algori thm operates 
at the temporal  granulari ty of a full frame and the spatial  
granulari ty of the entire processor configuration (it adapts  
all architecture components and the voltage/frequency to- 
gether). We refer to this algorithm as having global tempo- 
ral and spatial  granularity, or as a global algorithm. 

This paper  explores local adapta t ion  algorithms, both in 
t ime and space, and their combination with the previous 
global algorithm. The local algorithms seek to exploit intra- 
frame variabili ty in resource utilization, invoking adapta-  
tions periodically within a frame (local temporal  granular- 
ity). I t  is difficult to precisely predict  the performance im- 
pact  of individual adaptat ions  and their mutual  interactions 
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F i g u r e  1: The previous global algorithm for choosing hardware configurations for a sys tem with continuous DVS. 

at the intra-frame granularity. The local algorithms there- 
fore control individual hardware structures (i.e., local spatial  
granularity) and a t t empt  to adapt  without affecting execu- 
tion time (i.e., they do not exploit slack). To continue to 
exploit slack, we propose an algorithm that  integrates the 
global and local approaches. 

We also identify the possibili ty of other control algorithms to 
fill the rest of the design space of temporal  and spatial  gran- 
ularity; e.g., temporal ly local and spatial ly global, or tempo- 
rally global and spatial ly local algorithms. These variations, 
however, are outside the scope of this paper. 

(i.e., the architecture and voltage/frequency) that  will mini- 
mize energy consumption for tha t  frame without missing the 
deadline. Two versions of the algorithm are proposed, de- 
pending on whether the system supports  voltage/frequency 
scaling in discrete or (almost) continuous steps. Since this 
distinction is not important  for this paper,  we chose to study 
the more flexible continuous DVS system here (e.g., Intel 's 
XScale processor approximates such a system [20]). Our 
work would be equally applicable to a discrete DVS system. 
The key aspects of the global algori thm based on continu- 
ous DVS are summarized in Figure 1 (taken from [19]) and 
described in more detail  below. 

This paper makes two sets of contributions. First ,  we s tudy 
local architecture adapta t ion  algorithms for mult imedia ap- 
plications, both without and with DVS. The basic approach 
- adapting individual components to save energy without 
significant reduction .in performance - is similar to tha t  
previously proposed for work on non-real-time applications. 
Therefore, much of that  work is applicable here as well [2, 
3, 4, 6, 9, 11, 22, 23, 26]. The focus of our work is on the 
effectiveness of local adapta t ion  control algorithms for mul- 
t imedia applications and their interaction with global archi- 
tecture adapta t ion and DVS. We focus on two architecture 
adaptat ions - varying instruction window size and varying 
the number of active functional units (and the associated 
issue width of the processor). We study the best  existing 
local algorithms for these adapta t ions  and also propose new 
algorithms that  are more intuitive. We find that ,  for our 
system and suite of mult imedia applications, all algorithms 
show modest to significant energy savings without much in- 
crease in execution time, both  without and with DVS. The 
new algorithms are slightly bet ter  than the older ones. 

For the second set of contributions, we develop an algo- 
r i thm to combine local and global  architecture adapta t ion  
and global DVS. We do not consider local DVS because of 
its impact on performance. We report  results without and 
with DVS for (1) purely global architecture adapta t ion  (as 
in [19]), (2) purely local architecture adaptat ion,  and (3) 
the new integrated, algorithm. We find that  for our system 
and mult imedia application suite, the new integrated algo- 
r i thm performs the best in all cases because it can exploit 
both computat ion slack at  the frame granularity and vari- 
ability in resource util ization within a frame. The amount 
of computat ion slack with the base architecture generally 
determines whether the global or local adapta t ion provides 
the majori ty  of the benefit in the integrated approach. 

2. PREVIOUS GLOBAL ALGORITHM 
The previous global adapta t ion  control algorithm [19] in- 
vokes adaptat ions at the granulari ty of a frame. At the be- 
ginning of each frame, it predicts the hardware configuration 

The algorithm consists of two phases: a profiling phase at 
the s tar t  of the application and an adapta t ion  phase. The 
profiling phase uses a fixed frequency and profiles one frame 
of each type 1 for each architecture configuration: For each 
architecture A, the algorithm collects the instructions per 
cycle (IPCA) and average power (PA) for the frame. 

Previous work showed that  for several mult imedia applica- 
tions and systems, for a given application frame type and a 
given voltage/frequency, the average IPC and average power 
for an architecture are roughly constant for all frames of that  
type [17, 19]. Further,  this IPC is roughly independent of 
the frequency/voltage. Thus, the values of IPCA and PA 
from the profile phase can be used to predict the IPC and 
average power of all other frames and hardware configura- 
tions. Using these results, it can be derived tha t  for most 
cases in a continuous DVS system, a frame with a certain 
number of instructions I will execute within the deadline 
D and with approximately the lowest energy if it uses (1) 
an architecture A with the least value of 1PICA and (2) a 

frequency of I Two exceptions to the above occur 
DxlPCA • 

when the frequency calculated is the lowest or the highest 
frequency supported by the system, and are discussed fur- 
ther in [19]. 

Based on the above, after profiling is complete, the algo- 
r i thm computes ~ for each architecture configuration 
and frame type. I t  chooses the architecture with the small- 
est such value to execute all frames of that  type. Choos- 
ing the execution frequency for a frame requires knowing 
the number of instructions in the frame. This is deter- 
mined during the adapta t ion  phase, using simple history- 
based predictor [19] before the s tar t  of a frame. The expres- 
sion 1 D×iPCA can then be used to determine the frequency. 
Since frame IPCs are only roughly constant,  instead of the 
profiled IPC~, the algori thm uses the actual  IPC of the 
previous frame of the same type and adds a small leeway. 

1Some appl ica t ions  have  mul t ip le  f r ame  types  (e.g., I, P, and B f rames  
for M P E G - 2  codecs).  In such cases, the  a lgor i thm profiles and adap t s  
for each f r ame  type  separate ly .  
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The global control algorithm can be implemented in software 
or hardware. A hardware implementation requires commu- 
nication from the software to indicate when a new frame 
starts, the type of the frame, and the deadline. 

3. LOCAL ALGORITHMS 
The global algorithm exploits the fact that a real-time ap- 
plication can be slowed as long as it meets its deadline. Pre- 
diction of the performance impact of adaptations is straight- 
forward at the global (inter-frame) level, but is difficult at 
the local (intra-frame) level. Therefore, local algorithms ex- 
plored here consider adaptations that, ideally, do not affect 
execution time. In particular, not all resources always con- 
tr ibute significantly to performance. Thus, we can deacti- 
vate under-utilized resources with little or no performance 
impact, but  significant energy savings. Since resource uti- 
lizations can change quickly, we consider local adaptations 
with small switching times and assume hardware implemen- 
tations of the local algorithms. As an indicator of intra- 
frame variability of the execution profile, we measured the 
standard deviation of the IPC over 200 cycle intervals for a 
sample frame on each application and the base architecture 
in Section 5. The standard deviation ranged from 20% to 
35% as a percentage of the mean IPC of the full frame. 

In this paper, we examine two local architecture adapta- 
tions: (1) changing the active instruction window size (Sec- 
tion 3.1), and (2) changing the number of active functional 
units, which also changes the issue width (Section 3.2). Al- 
though we study systems with DVS, we do not consider local 
DVS control because DVS necessarily affects performance. 

All the local algorithms discussed here take a common ap- 
proach of monitoring certain statistics over a pre-determined 
period (e.g., every 200 cycles), and using them to determine 
whether to increase or decrease the adapted structure (e.g., 
instruction window size, number of functional units, issue 
width) for the next period. The decisions for decreasing and 
increasing the structure are made independently. In princi- 
ple, any pair of algorithms for increasing and decreasing a 
structure can be used together. 

3.1 Adapting Instruction Window Size 
We assume the instruction window is divided into several 
equal segments, and a contiguous set of segments can be de- 
activated at any cycle [6, 11]. Several local algorithms have 
been proposed to control the active size of such a window 
and have been evaluated for non-real-time applications [6, 9, 
11, 26]. Section 3.1.1 discusses the state-of-the-art and Sec- 
tion 3.1.2 discuss a new algorithm for increasing the~size. 

3.1.1 State-of-the-art 
We evaluate an algorithm by Folegnani et al. as represent- 
ing the state-of-the-art [11]. This algorithm decreases the 
instruction window size by one segment if the number of 
committed instructions that issued from the youngest seg- 
ment during the previous period is smaller than a thresh- 
old [11]. Thus, segments of the window that clearly did 
not contribute to the overall IPC are deactivated, with rela- 
tively low overhead (primarily 1 bit per instruction window 
entry). A disadvantage is that the youngest segment stays 
activated even if the instructions issued from it are not on 

the program's critical path. Issuing such instructions early 
may not contribute to IPC, but  this is not detected. 

The algorithm for increasing the size of the instruction win- 
dow uses a simple, periodic strategy - the window is in- 
creased by a segment every fixed number of cycles. This 
algorithm is somewhat ad hoc since no at tempt is made to 
determine if IPC will benefit from the additional instruc- 
tions that  fit into a larger window, potentially wasting en- 
ergy. Conversely, in some cases, this may potentially de- 
grade IPC, if the increase does not occur early enough to 
meet the increased demands of the application.. 

Other algorithms proposed are based on window occupancy [6, 
9, 26], which we found to be less effective for the applications 
and architecture studied here (Section 5). The algorithm by 
Ponomarev et al. decreases the window size based on the av- 
erage occupancy during the previous period [26]. Dropsho 
et al. propose an extension that  decreases the size based on 
an approximation of the distribution of window occupancy 
rather than the average [9] (this algorithm supercedes the 
one in [6]). Both algorithms are fundamentally more conser- 
vative than the one by Folegnani et al. - they can consume 
more energy without benefitting IPC when instructions are 
present in the youngest segment of the window but  are not 
able to issue. ~ The occupancy-based algorithms increase 
the window size if there are enough dispatch stalls due to 
the instruction window being full (window overflows). How- 
ever, for several of the applications and the architecture we 
evaluate (e.g., with unified reorder buffer and issue queue, 
discussed in Section 5), we find that  the instruction win- 
dow is full for much of the execution without necessarily 
contributing to IPC, making such a scheme less effective. 

3.1.2 New Algorithm for Increasing Window Size 
We propose a new algorithm (Figure 2) for increasing the 
size of the instruction window, based on a prediction of the 
resulting benefit in IPC. To obtain this prediction, we esti- 
mate the number of (retirement) stall cycles that could have 
been avoided with a larger instruction window'. We say an 
instruction 1 is stalled if it is incomplete and at the head 
of the instruction window [24]. A larger instruction window 
can potentially avoid such a stall by providing more instruc- 
tions ahead of I to overlap with I ' s  latency, as illustrated in 
Figure 3. The key to our algorithm, therefore, is a technique 
to estimate this extra overlap that  an instruction would have 
if the instruction window were fully activated. Several as- 
pects of the design required making a tradeoff between ac- 
curacy and hardware and energy overhead. We describe the 
design we chose next; other variations that  improve accuracy 
or reduce overhead further are possible. 

The algorithm computes the IPC over a fixed period. When 
an instruction is fetched into the youngest segment of the 
window, it checks to see if its operands are already avail- 
able. If so, a larger window could potentially have allowed 
for more overlap for that  instruction (Figure 3). We opti- 
mistically estimate that  the additional overlap could have 
been H..umber o/ d e a c t i v a t e d  entries cycles, and set a tag for 

IPC f r o m  last period 

2The  o c c u p a n c y - b a s e d  a l g o r i t h m s  [9, 26] c a n  r educe  ' the i n s t r u c t i o n  
w i n d o w  size b y  mu l t i p l e  s e g m e n t s  a t  a t ime.  T h e  o t h e r  a l g o r i t h m s  
([11] a n d  ou r  new a l g o r i t h m  in Sec t ion  3 .1 .2)  c a n  b e  s imi l a r ly  ex- 
t e n d e d ,  b u t  we do  n o t  e v a l u a t e  t h a t  ex t ens ion  here.  
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On entry of instruction I if (the operands of I are ready) 
to instruction window: l-~IWtag = MaxOverlap 

On completion of 
instruction I: 

for each instruction J consuming l's result 
if (1 produced the last operand of J) 

if (I did not stall) 
J'-->IWtag = 1-->IWtag 

else if (I stalled for S cycles) 
J--~IWtag = max(O, l->IWtag - S) 

On retirement of 
instruction I: 

if (l~lWtag > O) 
if (I stal!ed for S cycles) 

Counter += min(l ~lWtag, S) 

if (Counter > Threshold) { 
Increase the window size 
Counter=O 

At the end of each MaxOverlap = Deactivated Entries 
period: IPC from last period 

Counter=O 

F i g u r e  2:  A n e w  a l g o r i t h m  for  i n c r e a s i n g  t h e  i n s t r u c t i o n  
w i n d o w  s i z e .  A n  i n s t r u c t i o n  is  s a i d  t o  s t a l l  i f  i t  r e a c h e s  
t h e  h e a d  o f  t h e  i n s t r u c t i o n  w i n d o w  b e f o r e  c o m p l e t i o n .  

m 
instructions 

n 
instructions 

instruction I m+n 
instructions 

instruction I 

F i g u r e  3:  A d d i t i o n a l  o v e r l a p  f r o m  a l a r g e r  w i n d o w .  T h e  
l e f t  p a r t  s h o w s  a n  i n s t r u c t i o n  w i n d o w  w i t h  n e n t r i e s  a c -  
t i v a t e d  a n d  m e n t r i e s  d e a c t i v a t e d .  I n s t r u c t i o n  I a r r i v e s  
a t  t h e  t o p  o f  t h e  a c t i v a t e d  p o r t i o n  o f  t h e  w i n d o w  a n d  
f i n d s  a l l  i t s  o p e r a n d s  a v a i l a b l e .  T h u s ,  I is  o v e r l a p p e d  
w i t h  n - 1 i n s t r u c t i o n s .  I f  t h e  i n s t r u c t i o n  w i n d o w  w e r e  
f u l l y  a c t i v a t e d  ( t h e  r i g h t  p a r t )  a n d  1 a r r i v e d  a t  t h e  t o p ,  
i t  c o u l d  h a v e  a n  a d d i t i o n a l  m i n s t r u c t i o n s  f o r  o v e r l a p .  

this instruction, called IWtag, with this value. This compu- 
tation is optimistic because it assumes that  even for the case 
of the larger instruction window, this instruction's operands 
would be available on fetch and the instruction would enter 
the youngest window segment. This estimate also ignores 
structural hazards on functional units. 

A larger window could also provide increased overlap to an 
instruction that  does not have its operands available on en- 
try, if the larger window enabled its operands to be gen- 
erated early. The increased overlap would be the same as 
that  for the producer of the last pending operand of the 
consumer, but reduced by the producer's stall cycles (i.e., 
by the cycles that  the producer will use up for overlapping 
its own latency). Thus, when an instruction completes, we 
pass its IWtag to all instructions for which this instruction 
produced the last operand3; if this instruction stalled be- 
fore completion for S cycles, then we reduce its IWtag by 
min(IWtag, S) before passing it to the consumers. Again, 
this is possibly an over-estimate of the possible overlap for 
the consumer because the producers of the other operands of 
the consumer may not be able to provide that  much overlap 
with a larger instruction window. 

3The idea  of pass ing  tags  was inspired by the  token  pass ing  a long 
" las t  a r r i v ing  edges" of Fields  e t  al. [10] 

The value of IWtag gives the additional overlap that  an 
instruction could get with a larger window. If a tagged in- 
struction stalls the processor for S cycles, then we estimate 
min(IWtag, S) as the number of stall cycles that  could 
be avoided by the additional overlap. We accumulate the 
avoidable stall cycles in a counter, and reset the counter at 
the end of the period. If the counter exceeds a threshold, we 
increase the instruction window size by one segment, reset 
the counter, and start  a new period. 

Our new algorithm potentially alleviates the limitations of 
the previous algorithm by Folegnani et al. because (1) it 
increases the instruction window size only when it estimates 
that  the IPC will benefit, making it less wasteful of energy, 
and (2) it increases the window size as soon as it is possible 
for the IPC to benefit, limiting any IPC degradation from 
the adaptive hardware. 

A potential disadvantage of the new algorithm is in the 
higher hardware overhead. The primary overhead is in the 
bits for holding IWtag; however, we found that  a small tag 
size (4 bits for our case) suffices. Other overheads include 
the logic for calculating the tags, logic for calculating the 
maximum possible overlap at the end of a period (Max- 
Overlap in Figure 2), a shifter to compute IPC, and some 
counters. The energy consumed by the tag computation, 
shifter, and counters is likely to be negligible. Computing 
MaxOverlap may require a more expensive energy-hungry 
divide; however, this value can be calculated less frequently 
and in an approximate way to reduce the overhead. In our 
experiments, we calculated it once every two periods or when 
the instruction window is resized. 

Finally, it is also possible to design an algorithm for decreas- 
ing the instruction window size based on the new technique 
to increase the size. For example, we could decrease the size 
if the number of "avoidable stalls" in a period is below some 
threshold. We experimented with this algorithm, but found 
that it did not perform as well as that  by Folegnani et al. 
for decreasing the window size. A smarter algorithm would 
need to more precisely determine when instructions issued 
from the youngest segment of the instruction wind,~w are 
not critical instructions. 

3.1.3 Algorithms Evaluated and Parameters Used 
As discussed earlier, we evaluate the algorithm by Folegnani 
et al. (for both increasing and decreasing the window size) as 
representing the state-of-the-art, and call this PeriodicIW. 
We also report results for the new algorithm for increasing 
the window size combined with the algorithm by Folegnani 
et al. for decreasing the window size, and call this S tallIW. 

A key issue for local adaptation algorithms is that  they use 
a number of different parameters that affect both energy 
savings and IPC degradation. A design space search must 
be performed to find the best overall parameters for an al- 
gorithm. In many cases (all algorithms that  we examined), 
the time required for an exhaustive search is prohibitive. 
For each algorithm, we evaluated several sets of parameters 
and found that  energy savings are not as sensitive to the pa- 
rameters as the IPC degradation (likely due to the energy 
savings being relatively small in most cases). Therefore, in 
our experiments we use parameters that  were near the knee 
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of the energy savings curve with the limitation that IPC 
degradation 'not be too large. For all the applications and 
systems, IPC degradation is less than 8%, and the average 
degradations for any single system are below 5%. The spe- 
cific parameters are as follows. 

PeriodiclW considers reducing the window size every 200 
cycles (the period), and reduces the size by one segment if 
no instructions were issued from the youngest segment in the 
last period (i.e., this is the minimum value of the threshold). 
Larger threshold values give similar energy savings, but  sig- 
nificantly increase IPC degradation. PeriodiclW increases 
the instruction window size by one segment every five peri- 
ods (starting from the last time it changed the size). 

For comparison, Folegnani et al. chose 1000 cycles as the 
period for decreasing the window size and also chose five 
periods for increasing it. We chose a smaller period because 
the overhead is small, and a smaller period allowed a faster 
response to changing requirements of the application. 

StalUW also considers reducing the instruction window size 
with a period of 200 cycles. It reduces the window size by a 
segment if the processor issued less than 40 instructions from 
the youngest segment in the last period. This threshold is 
much more aggressive than the one for PeriodicIW because 
StallIW can more rapidly increase the instruction window 
size when needed. StallIW increases the window size only 
when the number of stall cycles avoidable by the largest 
instruction window reaches 20 in a period (and at least 40 
instructions have been issued from the youngest segment, to 
give priority to the decreasing algorithm). 

3.2 Adapting Functional Units and Issue Width 
Several algorithms have been recently proposed to change 
the number of activated functional units and the consequent 
instruction issue width, and have been evaluated for non- 
real-time applications [3, 23]. Section 3.2.1 discusses the 
state-of-the-art and Section 3.2.2 discusses new algorithms 
and combinations explored for this work. 

3.2.1 State-of-the-art 
The algorithms below were proposed for an architecture with 
two clusters (e.g., Alpha 21264), where the activation and 
deactivation of functional units is performed at the granu- 
larity of a half or full cluster. Extensions for finer control of 
the functional units in a non-clustered architecture such as 
modeled in this paper (Section 5) are straightforward. 

Maro et al. considered several algorithms to control whether 
to have functional units in one or two clusters activated [23]. 
The best algorithm (LP1 in [23]) reported uses mean func- 
tional unit  utilization over a period to determine whether to 
increase or decrease the number of active units (i.e., increase 
if utilization is high and vice versa). The algorithm is simple 
to implement but has some disadvantages: (1) it activates 
and deactivates a functional unit  without consideration of 
whether the instructions using it are on the critical path, 
and (2) it may activate a unit  that will not be used. 

Maro et al. consider two other strategies for deactivating 
functional units: deactivate on low committed IPC, and de- 
activate when there are too many instructions waiting on 

data dependences in the instruction window. They found 
that  neither of these performs as well as the utilization-based 
algorithm, so we do not explore them further. 

Maro et al. discuss, but do not evaluate, another strategy for 
activating functional units. This scheme tracks the number 
of structural hazards for each instruction. If the total num- 
ber of hazards for the instructions currently in the instruc- 
tion window is over some threshold, the algorithm activates 
a cluster. This algorithm can quickly increase the number 
of active units in the event of a burst of hazards. 

Bahar and Manne developed an algorithm to deactivate a 
full cluster or half the ALUs and all of the FPUs in one clus- 
ter [3]. Their algorithm is based on the number of instruc- 
tions issued per cycle (issue IPC) to each type of unit  (ALU 
or FPU) [3]. After a certain period, the issue IPC is com- 
pared to both an upper and a lower threshold (the thresholds 
used depend on the current number of active units). If the 
upper threshold is exceeded, the number of active units is 
increased. If the issue IPC is below the lower threshold, the 
number of active units is decreased. Issue IPC, as a criterion 
for controlling functional unit  adaptation,  is very similar to 
utilization, having the same advantages and disadvantages. 
However, using issue IPC has one additional disadvantage: 
since the thresholds depend on the current number of units, 
a set of thresholds is required for each possible number of 
active units (a total of 8 thresholds in [3]). Choosing the 
right combination of thresholds to give this scheme the best 
showing would have required an inordinately large number 
of simulations. We therefore choose the utilization-based 
scheme (which is close to the above) as the state-of-the-art 
(for both increasing and decreasing the number of active 
units), and call it UtilFU. 

3.2.2 New Algorithms and Combinations 
A new algorithm for increasing the number of active func- 
tional units could be based on an estimate of the resulting 
benefit in IPC, analogous to the new algorithm for increas- 
ing the size of the instruction window in Section 3.1.2. We 
explored this option and found that  its larger relative over- 
head made it perform worse than most others. 

We propose, and report results for, an algorithm that  com- 
bines a utilization-based scheme and a structural hazard 
based scheme for respectively decreasing and increasing the 
number of active units. We call this scheme HazardFU. The 
algorithm for increasing the number of active units is sim- 
ilar to the structural hazard based scheme proposed (but 
not evaluated) by Maro et al. Rather than tracking the 
number of hazards seen by each instruction in the instruc- 
tion window, we track the total number of hazards (for each 
type of unit) seen by all instructions within a period. If the 
total exceeds a threshold before the end of the period, we 
increase the number of active units by one. Such a scheme is 
likely to better anticipate functional unit  usage than a mean 
utilization-based scheme. The overhead for this scheme is 
simply some counters to track hazards and unit  utilization. 
The energy consumed by these is likely negligible. 

3.2.3 Parameters for  the Algorithms 
In our experiments, one integer ALU is always active for 
both UtiIFU and HazardFU. Also for both, when all FP 
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P r o p e r t i e s  Globa l  a d a p t a t i o n  L o c a l  a d a p t a t i o n  
Source of benefits Per-frame execution time slack Variability in resource usage within a frame 
Temporal granularity of adaptation Entire frame Small intervals within a frame 
Hardware features controlled Global configuration Individual (or small groups of) hardware features 
Impact on execution time May increase No impact (ideally) 
Basis of adaptation Profiles mostly collected at start of application Information from continuous monitoring 
Implementation Hardware or software Mostly hardware 
Inapplicable adaptations Adaptations that cannot be invoked on the entire frame Adaptations with high overhead or that impact execution 

(e.g., shutting off all floating point units) time (e.g., DVS) 

Table  1: Comparison between global 

units are deactivated, if an FP instruction is fetched, an 
FP unit is activated. Note that instructions get issued to 
functional units in a prioritized manner; therefore, "the last 
unit" of each type will only be used when all other units are 
busy. This affects the unit utilizations. 

For UtilFU, due to the large number of parameters, we could 
not perform a full design space search, and use some from 
the LP1 scheme of [23]. Using our previously described crite- 
ria for choosing parameters (Section 3.1.3), UtiIFU reduces 
the number of ac t ive  units by one if the last unit  is not 
used more than 4 cycles in the last period. However, UtiIFU 
uses the LP1 criteria for deactivating the last FP  unit; it 
does so when that  unit is not used for three cycles in a row. 
Also as for LP1, if the last active unit of a given type has a 
utilization of at least 86% for the previous period, the algo- 
ri thm increases the number of active units of that  type by 
one. While [23] proposes using a small period - 16 cycles 
- we found that for our applications and system, this per- 
formed significantly worse than a larger period, regardless 
of thresholds. Therefore, we use a 200 cycle period. 

We chose all parameters for HazardFU in the same manner 
as described in Section 3.1.3. HazardFU increases the num- 
ber of active units for a given type by one if, during the 
last period, instructions faced at least 80 structural hazards 
from that type of unit. HazardFU reduces the number of ac- 
tive units by one when a unit of that type is not used more 
than 4 cycles within the last period (the same criteria as 
for UtilFU). An exception is for-the last available FP unit, 
which is deactivated only if it is not used at all within the 
last period. We also use a 200 cycle period for HazardFU. 

4. JOINT GLOBAL/LOCAL ADAPTATION 
We combine the global and local adaptation control algo- 
rithms in a simple way, resulting in two parallel but  inte- 
grated control loops in the system. 

The global part of the integrated algorithm performs the 
profiling and adaptation phases as before, but  with the fol- 
lowing change. During profiling, the local algorithms are 
also invoked. Ideally, the global algorithm will now see 
lower average power for each candidate architecture with lit- 
tle change in IPC (vs. without local adaptations). As before, 
the algorithm estimates the lowest energy architecture to be 

P o w e r  the one with the lowest profiled / P ~ C  During the adap- 
t a t ion  phase, again, the local algorithms are invoked on all 
frames. The global algorithm picks the voltage/frequency 
for executing the next frame as before, as a function of the 
deadline, the predicted instruction count for the frame, and 
the measured IPC of the last frame of the same type. Thus, 
the global algorithm automatically compensates for any IPC 

and local adaptation algorithms.  

degradation caused by the local algorithms. This avoids 
missed deadlines but  at the cost of reduced energy savings 
from the local algorithms. 

The local part of the integrated algorithm is always invoked 
and is mostly oblivious to the global part, except for the 
following. The global algorithm establishes the maximum 
configuration for each resource for the local algorithms. A 
local algorithm must respect this maximum since its goal is 
to minimize energy without changing the IPC obtained by 
the globally chosen configuration. Thus, if the global algo- 
rithm chooses aggressive architectural configurations, then 
the local algorithm has substant ia l  potential for exercising 
adaptations. However, less aggressive global choices may 
leave little potential for local adaptation. 

The global and local algorithms play different roles. The 
global algorithm exploits per-frame execution time slack, 
and adapts at the granularity of a full frame and the full 
hardware configuration. The local algorithms exploit vari- 
ability in resource usage within a frame, and adapt at the 
granularity of small intervals within a frame and control 
individual (or small groups of) hardware features. In par- 
ticular, the larger temporal granularity of adaptation for the 
global algorithm makes it better able to predict future exe- 
cution behavior than the local algorithm. These distinctions 
lead to significant differences in the design and effectiveness 
of the algorithms, as summarized in Table 1. These differ- 
ences include impact on execution time (slowdown vs. ide- 
ally no impact), techniques to determine the right adapta- 
tion (use of profile information vs. continuous monitoring), 
whether the algorithm can be implemented i n  software (as 
for global) or must be in hardware (as for local), and the ap- 
plicability of different adaptations (adaptations that  cannot 
be invoked on a full frame are inapplicable to the global algo- 
ri thm while adaptations with high overhead and impacting 
execution time are inapplicable to local algorithms). 

5. EXPERIMENTAL METHODOLOGY 
5.1 Systems Modeled 
We use the RSIM simulator [18] for performance evaluation 
and the Wattch tool [5] integrated with RSIM for energy 
measurement. 

The base processor studied is similar to the MIPS R10000 
and is summarized in Table 2. We assume a centralized 
instruction window with a unified reorder buffer and issue 
queue but  a separate physical register file. Experiments with 
DVS assume a continuous frequency range from 100MHz to 
1GHz and corresponding voltage levels derived from infor- 
mation available for Intel 's XScale processor [20] as further 
discussed in [19]. 
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B a s e  P r o c e s s o r  P a r a m e t e r s  
Processor speed 
Fetch/retire rate 
Functional units 
Integer FU latencies 
FP FU latencies 
Instruction window 
(reorder buffer) size 
Register file size 
Memory queue size 
Branch prediction 

IGHz 
8 per cycle 
6 lnt, 4 FP, 2 Add. gen. 
1/7/12 add/multiply/divide (pipelined) 
4 default, 12 div. (all but div. pipelined) 
128 entries 

192 integer and 192 FP 
32 entries 
2KB bimodal agree, 32 entry RAS 

B a s e  M e m o r y  H i e r a r c h y  P a r a m e t e r s  
LI (Data) 

L1 (Instr) 
L2 (Unified) 

Main Memory 

64KB, 2-way associative, 
64B line, 2 ports, 12 MSHRs 
32KB, 2-way associative 
1MB, 4-way associative, 
64B line, 1 port, 12 MSHRs 
16B/cycle, 4-way interleaved 

B a s e  C o n t e n t i o n l e s s  M e m o r y  L a t e n c i e s  
L1 (Data) hit time (on-chip) 2 cycles 
L2 hit time (off-chip) 20 cycles 
Main memory (off-chip) 102 cycles 

T a b l e  2: B a s e  ( d e f a u l t )  s y s t e m  p a r a m e t e r s .  

App.  Type  Input  Size Default  Base  
T ime  l Frames deadl ine IPC 

GSMdec Speech 20s 1000 50ps 4.0 
GSMenc codec 20s 1000 140ps 4.8 
G728dec : Speech 0.63s 1000 60#s 2.4 
G728enc codec 0.63s 1000 70ps 2.2 

i 

H263dec' Video 4s 100 2.9rns 3.5 
H263enc codec 4s 100 40ms 2.5 
MPGdec Video 3.33s 100 6.3ms 3.8 
MPGenc codec 3.33s 100 66.6ms 2.7 
MP3dec Audio 13.05s 500 1.4ms 3.1 

T a b l e  3: W o r k l o a d  d e s c r i p t i o n .  

Exper iments  wi th  ins t ruc t ion  window adap ta t ion  assume 
eight ent ry  ins t ruct ion window segments  and tha t  at  least 
two segments  must  always be active.  A smaller  ins t ruct ion 
window requires fewer physical  registers. Since w e  model  
a physical  register  file separa te  from the  ins t ruct ion win- 
dow, reducing the  register  file size dur ing execut ion requires 
"garbage collecting" regis ter  contents  [9]. This  is s t ra ight-  
forward with  global adap ta t i on  (since resizing occurs infre- 
quent ly  at the s ta r t  of a f rame which is typically a new 
context  wi th  no prior regis ter  s ta te) .  We therefore deacti-  
vate  one integer and one f loat ing point  physical register  wi th  
each deact iva ted  ins t ruc t ion  window entry  wi th  global  adap- 
ta t ion.  W i t h  local adapta t ion ,  however,  we do not  change 
the  register file size since it would be  too  much overhead. 

Exper iments  wi th  funct ional  uni t  adap ta t ion  assume tha t  
the  issue width  is equal  to  the  sum of all act ive funct ional  
units and hence changes wi th  the  number  of act ive func-  
t ional  units. Consequently,  when a funct ional  unit  is deac- 
t ivated,  the  corresponding ins t ruc t ion  selection logic is also 
deact ivated.  Similarly, the  corresponding par ts  of the result  
bus, the  wake-up por ts  of the  ins t ruc t ion  window, and por ts  
of the  register file are also deact ivated.  

We assume clock ga t ing  for all the  components  of all the  

processor  configurat ions (adapt ive  and non-adapt ive) .  If  a 
component  is clock gated (i.e., not  accessed) in a given cy- 
cle, we charge 10% of its m a x i m u m  power. To fairly rep- 
resent the  s tate-of- the-ar t ,  we also ga te  the  wake-up logic 
for emp ty  and ready entries in the  ins t ruc t ion  window as 
proposed in [11]. We assume tha t  the  resources tha t  are 
deac t iva ted  by our adapt ive  a lgor i thms do not  consume any 
power. Thus,  deact iva t ing  an unused componen t  saves 10% 
of the  m a x i m u m  power of the  componen t  (i.e., the  remaining  
power after  clock gating).  

We use t he  local adap ta t ion  control  a lgor i thms  as described 
in Sect ion 3. For global  adapta t ion ,  we use the  a lgor i thm 
in [19] except  tha t  we increase the  I P C  leeway from 1% to 4% 
to make  all appl icat ions have fewer than  5% missed deadlines 
on the  base processor.  The  global  a lgor i thm is used to con- 
t rol  DVS in all cases, even when no global  a rchi tec ture  adap- 
t a t ion  is performed.  Further ,  for global  adap ta t ion ,  we pro- 
file all possible combinat ions  of the  following configurat ions 
(54 total) :  ins t ruct ion window size E {128,96,64,48,32,16}, 
number  of ALUs E {6,4,2}, and number  of F P U s  E {4,2,1}. 
I t  may  seem tha t  profiling 54 configurat ions is inordinate  
overhead for a real system. However,  it is feasible since only 
one f rame of each type  need be profiled for each configura- 
t ion,  a typical  mul t imed ia  appl ica t ion  executes  many  more 
frames (e.g., 30 frames a second for video),  and profiling can 
be done as par t  of the  appl ica t ion ' s  execut ion.  Nevertheless,  
we also per formed exper iments  where  we profiled a smaller  
( representat ive)  subset  of the  possible configurations,  and 
found similar  results. 

Regard ing  adap ta t ion  overheads,  as in [19], we ignore t ime  
and energy overheads for invoking global  adap ta t ion  since 
they  are incurred only once per  frame. A more detai led 
jus t i f ica t ion for this assumpt ion  appears  in [:19]. For local 
adapta t ion ,  we model  the ex t r a  bi ts  required in the instruc- 
t ion window for ins t ruct ion window size adap ta t ion  (one bit  
for PeriodicIW and four bits  for StallIW). As ment ioned  in 
Sections 3.1.2 and 3.2.2, o ther  overheads,  such as for con- 
t rol  logic and counters,  are  likely to be  small.  We model  a 
delay of  5 cycles to ac t iva te  all deac t iva ted  components  (we 
observed tha t  the  results  are not  very sensit ive to this). 

5.2 Workload Description 
Table  3 summar izes  the  nine appl ica t ions  and inputs  used 
in this paper.  These  were also used in [17, 19] and are 
described in more  detai l  in [17] (for some applicat ions,  we 
use fewer frames).  We do not  use mu l t imed ia  ins t ruct ions  
in this s tudy  because many  of our  appl icat ions  see l i t t le  
benefi t  f rom t h e m  and we lack a power  model  for mul t imedia  
enhanced functional  units. 

For the  appl icat ion deadlines,  by default ,  we use the  dead- 
lines referred to as " t ight"  deadlines in [19]. 4 For all but  
the  video encoders,  this deadl ine is three  t imes  the  maxi-  
m u m  processing t ime  for a f rame on the  base processor.  For 
the  v ideo encoders,  we use longer deadl ines  ( the full f rame 
per iod)  since even the base processor  is not  able to meet  
this  deadl ine in some cases - for M P G e n c ,  we addi t ional ly  
double  the  frame period. 

4The deadlines are affected by interactions with the real-time sched- 
uler which must consider all the applications in the system. This 
interaction is beyond the scope of this study. 
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F i g u r e  4: Energy c o n s u m p t i o n  ( n o r m a l i z e d  to  Base) w i t h  ins truc t ion  w i n d o w  size  a d a p t a t i o n .  (a) W i t h o u t  DVS. (b) 
W i t h  D V S .  Each set  o f  three  bars represents  Base, PeriodiclW, and StaUIW respec t ive ly .  T h e  dark part  in each bar  
shows  t h e  e n e r g y  spent  in t h e  ins truc t ion  w i n d o w  ( IW) .  

• The benefits of global adaptatio n are highly dependent on A p p .  
the original computation slack in a frame (i.e., remaining 
time from the end of the frame processing until the dead- GSMdec 
line). The default deadlines leave significant slack in all cases GSMenc 
in the base (non-adaptive) processor without DVS (average G728dec 
slack for each application is >49% of the deadline)• There- G728enc 
fore, when considering systems without DVS with global H263dec 
adaptation, we consider a set of tighter deadlines as well. H263enc 
These are set to be the longest time taken by a frame with MPGdec 
local adaptation (on the base architecture without DVS). MPGenc 
With these deadlines, significantly less slack remains on the MP3dec 
base architecture without DVS (_< 23% except for G728 and 
MPG). 5 Since DVS removes most slack from the system even 
with the default deadlines, we use only these deadlines with 
DVS (average slack is 8% to 16% for 8 of the 9 applications), 

6. RESULTS 
Sections 6.1 and 6.2 respectively evaluate the local algo- 
rithms for adapting the instruction window size and func- 
tional units in isolation. Section 6.3 compares the global, 
local, and integrated global and local algorithms. 

6.1 Local Instruction Window Adaptation 
We evaluate three architectures for instruction window size 
adaptation: the default, non-adaptive Base, and Base en- 
hanced with an adaptive window size controlled by Period- 
i c l W  and by StalllW. Figures 4(a) and 4(b) show the total 
energy normalized to Base for each application, without and 
with DVS, respectively. Each bar also shows the part of the 
energy dissipated by the instruction window. 

Overall, we find that  both instruction window adaptation 
algorithms are effective for some multimedia applications, 
saving a significant amount of energy in some cases. As 
expected, the savings come primarily from the energy dissi- 

5The average slack for G728 and MPG is still high since these appli- 
cations have multiple frame types and some frame types require much 
less execution time than the selected deadlines. 

No  D V S  DVS 
PemodiclW StalllW PemodiclW StalllW 

123 ll7 123 117 
89 82 89 82 
113 99 110 98 
94 86 92 84 
76 55 76 54 
50 50 50 50 
67 60 67 61 
48 41 48 41 
99 92 98 91 

T a b l e  4: M e a n  i n s t r u c t i o n  w i n d o w  s ize  se l ec ted  by Pe- 
riodiclW and StallIW. 

pated by the instruction window. Stal l lW saves more energy 
than PeriodicIW, but  the difference is small. 

Without DVS, PeriodicIW saves an average of 9% energy 
over Base (maximum 18%), while Stal l lW saves an average 
of 11% (maximum 20%). With DVS, PeriodicIW saves 6% 
on average (maximum 13%) over Base, and Stal l lW saves 
7% on average (maximum 14%). The processor with DVS 
increases the frequency to compensate for IPC degradations 
in order to meet the deadline, eroding some of the energy 
savings from adaptation. 

Comparing Stal lIW and PeriodiclW, both without and with 
DVS, for all applications, Stal l IW saves about as much or 
more energy than PeriodicIW. However, the difference is 
small (1% on average, 4% maximum). The mean IPC degra- 
dation for PeriodicIW and Stal l IW without and with DVS 
is also similar - 3% and 4% respectively. 

Table 4 shows .the mean instruction window size chosen by 
each algorithm. Stal l IW is able to reduce the size of the in- 
struction window by as much or more than PeriodicIW for 
all applications. This difference is due to the more aggres- 
sive deactivation of StalIIW. Also, the periodic activation 
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F i g u r e  5: E n e r g y  c o n s u m p t i o n  ( n o r m a l i z e d  to  Base) w i t h  f u n c t i o n a l  un i t  and  i ssue  w i d t h  a d a p t a t i o n .  (a) W i t h o u t  
D V S .  (b) W i t h  DVS.  Each  set  o f  three  bars represents  Base, UtilFU, and  HazardFU respect ive ly .  T h e  d a r k  p a r t s  in each  
b a r  s h o w  the  energy  spent  in t h e  i n s t r u c t i o n  window,  A L U s ,  and  F P U s .  

A p p .  N o  
UtilFU 

A F 
GSMdec 4.5 0.0 
GSMenc 4.9 0.0 
G728dec 3.9 2.4 
G728enc 3.5 2.7 
H263dec 5. i 0.0 
H263enc 4.4 0.6 
MPGdec 5.4 0.0 
MPGenc 3.5 0.2 
MP3dec 4.3 1.7 

T a b l e  5: 
by UtilFU 

D V S  
Haza~FU UtilFU 
A F A F 
4.5 0.0 4.5 0.0 
5.0 0.0 4.9 0.0 
3.0 1.5 4.1 2.4 
2.5 2.0 3.4 2.7 
4.8 0.0 5.1 0.0 
4.1 0.5 4.4 0.6 
5.3 0.0 5.4 0.0 
3.8 0.1 3.5 0.2 
4.0 1.2 4.3 1.7 

D V S  
HazardFU 
A F 
4.5 0.0 
5.0 0.0 
3.2 1.4 
2.5 2.0 
4.8 0.0 
4~1 0.5 
5.3 0.0 
3.8 0.1 
4.0 1.2 

N u m b e r  o f  A L U s  (A)  a n d  F P U s  (F)  se lec ted  
and HazardFU. 

s t ra tegy of PeriodicIW may h a m p e r  its abi l i ty to reduce the 
window size for as long as possible. Consequently,  StalIIW 
saves slightly more energy than  PeriodicIW. 

6.2 Local Functional Unit Adaptation 
We evaluate  three archi tectures  for funct ional  unit  adapta-  
tion: the  default ,  non-adapt ive  Base, and Base enhanced 
with  adapt ive  functional  units  control led by UtilFU and by 
HazardFU. Figures 5(a) and 5(b) show the  to ta l  energy for 
each appl icat ion,  normalized to  Base, without  and with  DVS 
respectively. Each bar also shows the  par t  of the energy due 
to the  ins t ruct ion window, ALUs,  and FPUs .  Energy sav- 
ings for this type  of adap ta t ion  come from many  par ts  of 
the  processor,  as explained in Sect ion 5, because adapt ing  
the issue width  allows deact iva t ion  of par ts  of a number  of 
s t ructures .  

T h e  results  show tha t  bo th  a lgor i thms are very effective for 
mul t imed ia  applications.  There  is negligible difference be- 
tween the two a lgor i thms in most  cases. 

More specifically, wi thout  DVS, UtiIFU saves an average 

of 18% energy over Base, while HazardFU saves 20%. W i t h  
DVS, UtilFUsaves 15% on average over Base, and HazardFU 
saves 18%. In most  cases, the  difference be tween  the  two 
a lgor i thms is negligible - on average,  HazardFU saves 3% 
over UtilFU bo th  wi thou t  and wi th  DVS. In some cases, 
however,  the  difference is significant wi th  HazardFU being 
super ior  ( m a x i m u m  benefit  over UtiIFU of 9%). The  I P C  
degrada t ion  for the  two a lgor i thms wi thou t  or  wi th  DVS is 
2% to  3% averaged across all applicat ions.  

Table  5 shows the  average number  of ac t ive  funct ional  units  
chosen by each algor i thm.  The  number  of act ive  ALUs and 
F P U s  is very similar  for UtilFU and HazardFU for all ap- 
pl icat ions except  G728dec and G728enc, where HazardFU 
saves m o r e  energy than  UtilFU. HazardFU is able  to de- 
ac t iva te  more  uni ts  because UtilFU act ivates  an ex t ra  unit  
when the  last uni t  is highly utilized, bu t  the  processor  does 
not  issue ins t ruct ions  to it. For M P G e n c ,  wi th  DVS, Haz- 
ardFU saves 9% energy over UtilFU, but  Table  5 shows tha t  
the  savings are  not  from deact iva t ing  more  units.  Instead,  
UtilFU degrades  the  I P C  more for this appl icat ion,  and DVS 
exposes this difference. 

6.3 Global, Local, and Joint Adaptation 
This  section compares  the global, local, and in tegra ted  global  
and local approaches  for archi tec ture  adap ta t ion ,  wi thou t  
and wi th  DVS. For the  exper iments  wi th  local adapta t ion ,  
we adap ted  bo th  ins t ruct ion window size and the  number  of 
act ive funct ional  units. Based on the  resul ts  in Sect ions 6.1 
and 6.2, we used the Stal l lW and the  HazardFU algor i thms 
respect ively  for these adapta t ions .  

We repor t  resul ts  for four archi tectures:  (1) the  default ,  
non-adap t ive  Base; (2) Global, which is Base enhanced  wi th  
global  adap ta t i on  as described in Sections 2 and 5; (3) Lo- 
cal, which is Base enhanced wi th  local adap ta t ions  as de- 
scribed in Sections 3 and 5; and (4) Global+Local, which 
is Base enhanced wi th  the  in tegrated global  and local algo- 
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F i g u r e  6: E n e r g y  c o n s u m p t i o n  (normal ized t o  Base) of processors  capable  of bo th  global  a n d  loca l  a d a p t a t i o n .  (a) 
W i t h o u t  DVS, defau l t  d e a d l i n e s  (h igh  slack). (b) W i t h o u t  DVS, t i g h t e r  d e a d l i n e s  (low slack). (c) W i t h  DVS, defau l t  
d e a d l i n e s  (low slack). E a c h  se t  o f  four bars  r e p r e s e n t s  Base, Global, Local, and Global+Local r e s p e c t i v e l y .  T h e  dark  par t s  
in e a c h  bar  show t h e  e n e r g y  s p e n t  in t h e  i n s t r u c t i o n  window, ALUs,  F P U s ,  a n d  t h e  r e g i s t e r  file. 

r i thm described in Section 4. For each, we evaluate three 
combinations of slack and DVS as discussed in Section 5 
- no-DVS/default-deadlines (high slack), no-DVS/tighter-  
deadlines (low slack), and DVS/default-deadlines (low slack). 

Figures 6(a), 6(b), and 6(c) show the total  energy normal- 
ized to Base for each application and architecture for the 
different slack and DVS combinations. Each bar also shows 
the part  of the total  energy consumed by the instruction 
window, ALUs, FPUs,  and the register file. Table 6 shows 
the mean relative savings in energy between different ar- 
chitecture pairs. For detailed analysis, Table 7 also shows 
the mean number of active functional units and the instruc- 
tion window size selected by Global, Local, and Global+Local 
for the high slack case and one low slack case (DVS/default-  
deadlines). Each application missed less than 5% of its dead- 
lines on all systems. The average IPC degradation for Local 
(i.e., when both local adapta t ions  are combined) without 
DVS is 7% (maximum 11%). 

We divide the results into the case with high slack (Sec- 
tion 6.3.1) and the cases with low slack (Section 6.3.2) fol- 
lowed by a summary and discussion (Section 6.3.3). 

6.3.1 Results with High Slack 
Our discussion of the high slack case below follows the ar- 
chitecture pairs listed in Table 6. 

G l o b a l  vs.  B a s e :  Global shows high energy savings over 

S a v i n g s  f r o m  R e l a t i v e  H i g h  Slack 
No-DVS t o  

L o w  Slack 
No-DVS DVS 

21% 
24% 

8% 3% 
28% 
8% 
5% 

Global Base 44% 21% 
Local Base 29% 29% 
Local Global -26% 
Global+Local Base 46% 34% 
Global+Local Global 4% 13% 
Global+Local Local 24% 5% 

T a b l e  6: M e a n  r e l a t i v e  e n e r g y  s a v i n g s  for di f ferent  ar- 
c h i t e c t u r e  pa irs  an d  D V S / s l a c k  c o m b i n a t i o n s .  

Base, as already known from previous work [19]. 

L o c a l  v s .  B a s e :  Local also shows significant savings (29% 
average). Comparing with the results from Sections 6.1 
and 6.2, the benefits from the two local adaptat ions are al- 
most additive. 

L o c a l  vs.  G l o b a l :  Wi th  high slack, Global shows signifi- 
cant energy savings over Local for all applications (average of 
21%). This is because Global has the abili ty to exploit slack, 
sacrificing performance to save energy. Given the large slack, 
Global selects the simpler (lower power and IPC) architec- 
ture configurations for all applications, as seen in Table 7. 
Local, on the other hand, a t tempts  to maintain performance 
despite the existence of so much slack. One could poten- 
tially design local algorithms that  t rade off performance for 
energy savings, but  that  is beyond the scope of this paper. 
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W i t h o u t  D V S  

App. 

GSMdec 
GSMenc 
G728dec 
G728enc 
H263dec 
H263enc 
MPGdec 
MPGenc 
MP3dec 

Global Local Global+Local 
I A F I A F I A F 

16 2.0 1.0 117 4.4 0.0 31 2.0 0.0 
32 2.0 1.0 83 4.7 0.0 16 1.8 0.0 
16 2.0 1.0 99 2.8 1.4 16 1.7 1.0 
16 2.0 1.0 83 2.3 1.8 16 1.5 1.0 
16 2.0 .1.0 56 4.4 0.0 16 2.0 0.0 
16 2.0 1.0 50 3.6 0.4 16 2.4 0.3 
16 2.0 1.0 62 4.9 0.0 16 2.0 0.0 
16 2.0 1.0 43 3.5 0.1 16 1.9 0.1 
16 2.0 1.0 92 3.7 1.1'  16 1.9 0.8 

App. 

GSMdec 
GSMenc 
G728dec 
G728cnc 
H263dec 
H263enc 
MPGdec 
MPGenc 
MP3dec 

T a b l e  7: 

W i t h  D V S  

Global Local Global+Local 
I A F I A F I A F 

128 6.0 1.0 117 4.4 0.0 121 4.5 0.1 
128 6.0 1.0 83 4.7 0.0 86 4.8 0.0 
88 3.8 1.6 100 3.1 1.3 66 2.5 1.1 
80 2.5 2.5 81 2.2 1.8 58 2.0 1.7 
48 4.0 1.0 56 4.4 0.0 40 4.2 0.0 i 
96 4.0 2.0 51 3.6 0.5 47 3.4 0.4! 
64 6.0 1.0 63 4.9 0.0 50 4.9 0.0 
48 4.1 1.1 43 3.5 0.1 31 3.3 0.1 
128 4.0 2.0 92 3.7 1.1 93 3.7 1.1 

M e a n  i n s t r u c t i o n  w i n d o w  s i z e  ( I ) ,  a c t i v e  A L U s  

(A), a n d  a c t i v e  F P U s  (F) s e l e c t e d  by Global, Local, a n d  

Global+Local with t h e  d e f a u l t  d e a d l i n e s .  

G l o b a l + L o c a l  vs .  o t h e r s :  Global +Local provides the same 
or better  energy savings than the individual global or local 
approaches, although most of the benefit comes from global 
adaptation. The additional benefit of Global+Local over Lo- 
cal is a significant 24% on average, for the same reason that  
Global alone is superior to Local alone. The additional ben- 
efit over Global is a modest 4% on average (maximum of 
7%). Global+Local sees some benefit over Global because it 
is able to shut down resources that  Global cannot, as seen 
in Table  7. These include the last FP  unit and the second 
to last ALU (all configurations available for global adapta- 
tion had at least 2 ALUs). The absolute gains are modest, 
however, because the simple architectures picked by Global 
offer limited opportunities for further adaptation by Local. 
These gains might be further reduced if Global was given an 
even larger set of configurations from which to choose. 

6.3.2 Results  with Low Slack 
With low slack, again, both the pure global and pure local 
adaptations show high energy savings versus Base (>20% 
average without and with DVS). As is expected, the savings 
of Global are considerably lower than for the high slack case, 
since there is less slack for it to exploit. Local is not sensitive 
to slack. 

L o c a l  v s .  G l o b a l :  With low slack, Local shows higher en- 
ergy savings than Global in most cases. While the max- 
imum savings is high (20%), the average benefit of Local 
over Global is a modest 8% without DVS and a small 3% 
with DVS. Compared to the high slack case, the lower slack 
reduces Global's advantage over Local. With low slack and 
no DVS, Global must, in many cases, choose a fairly aggres- 
sive architecture in order to make the deadline. With  DVS, 
Global also frequently picks fairly aggressive architectures 

(as shown in Table 7). As explained in more detail in [19], 
aggressive architectures give high enough IPCs for many ap- 
plications so that  it is most energy efficient to choose them 
and exploit most of the slack through DVS. Since Local can 
exploit intra-frame variability, it is able to deactivate more 
resources than Global for parts of the execution, without 
losing much performance. As a result, with low slack, Local 
does better than Global for all but one application without 
DVS and for six of the nine applications with DVS. 

Global saves more energy than Local in some cases for two 
reasons. First, unlike Local, Global shuts down part of the 
register file corresponding to instruction window adapta- 
tion. Second, Global still exploits slack in some cases. For 
MPGdec without DVS, sufficient slack remains for Global 
to choose a simpler architecture. For H263dec with DVS, 
Global finds that  an architecture less aggressiw~ than Local's 
average choice is most energy efficient, and exploits some 
slack through architecture adaptation rather than DVS. 

G l o b a l + L o c a l  vs.  o t h e r s :  Global+Local again saves al- 
most the same or more energy than either Global or Local 
alone because it enjoys the benefits of both types of adap- 
tation. It saves 13% and 8% on average over Global without 
and with DVS respectively (vs. 4% with high slack). As 
explained earlier, the global algorithm picks fairly aggres- 
sive architectures, leaving more room for local adaptation. 
Global+Local saves 5% on average over Local for both sys- 
tems (maximum 16% with no DVS and 14% with DVS). 
Thus, with low slack, local adaptations provide (modestly) 
higher benefit over global adaptations in the combined al- 
gorithm in all but a few cases. 

6.3.3 Summary  and Discussion 
Overall, our proposed combination of global and local ar- 
chitecture adaptation works best across all configurations 
studied. The relative benefits of global adaptation are higher 
when the base architecture exhibits higher slack. 

With DVS, for our systems and applications, the base ar- 
chitecture exhibited low slack and the integrated algorithm 
showed (modestly) higher benefits from local adaptations 
than from global adaptations on average. Nevertheless, for 
some applications, global adaptation showed higher bene- 
fit even with DVS, by deactivating the register file and ex- 
ploiting some slack through architecture adaptation. For a 
system that  already implements global DVS ~.nd local archi- 
tecture adaptation, adding a global architecture adaptat ion 
algorithm (in software) does not introduce much additional 
hardware complexity. Therefore, with DVS, the integrated 
global and local algorithm appears a good design choice. 

Without  DVS, with high slack, for our applications and sys- 
tems, global architecture adaptation clearly provides most 
of the benefits. However, when there is little slack in the 
system, local architecture adaptat ion becomes more benefi- 
cial, outperforming global adaptat ion (sometimes quite sig- 
nificantly) in all but one case. Given that  t:he amount of 
slack available is most likely a dynamic quantity (depen- 
dent on the total load on the system) and not ]predictable at 
design time, again, the integrated global and local architec- 
ture adaptation algorithm would be the best implementation 
choice for systems without DVS. 
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7. CONCLUSIONS 
Hardware  adap ta t ion ,  including DVS and  arch i tec ture  adap-  
ta t ion ,  has  been  shown to  be effective in saving energy for 
rea l - t ime mul t imedia  appl icat ions.  Previously,  DVS and ar- 
ch i tec ture  adap t a t i on  have been  combined  for rea l - t ime mul- 
t imed ia  appl ica t ions  wi th  a control  a lgor i thm opera t ing  at  a 
global granular i ty  in b o t h  a spat ia l  sense (i.e., all resources 
a d a p t e d  together)  and a t e m p o r a l  sense (i.e., adap t a t i on  
occurs once per  frame).  T h a t  a lgor i thm took advantage  of 
c o m p u t a t i o n  slack at  the  end of  an appl ica t ion  f rame to slow 
the  processor  down to save energy. 

This  paper  considers  spat ia l ly  and  t empora l ly  local archi- 
t ec tu re  adap t a t i on  and i ts  in tegra t ion  wi th  global adap ta -  
t ion. W i t h  local adap ta t ion ,  a sepa ra te  a lgor i thm controls  
each resource (or small  group of resources) .  I t  a t t e m p t s  to  
save energy while ma in ta in ing  pe r fo rmance  by deac t iva t ing  
under-ut i l ized c o m p o n e n t s  periodicial ly wi th in  a frame. We 
explore adap t ing  the  size of t he  ins t ruc t ion  window and the  
num ber  of act ive funct ional  uni ts  (and associa ted  instruc-  
t ion issue width) .  

In our first set  of cont r ibut ions ,  we evaluate  previous local 
adap t a t i on  control  a lgor i thms  originally p roposed  for non- 
rea l - t ime appl icat ions,  and also p ropose  some new local al- 
gor i thms.  We find t h a t  local a rch i tec ture  a d a p t a t i o n  is effec- 
t ive for real - t ime mul t imedia  appl ica t ions  wi thou t  and  wi th  
DVS. All a lgor i thms evaluated provide modes t  to significant 
energy benefi ts  wi thou t  much reduc t ion  in per formance ,  and 
the  new a lgor i thms are margina l ly  be t t e r  t h a n  the  bes t  pre- 
viously proposed  a lgor i thms.  

In our second set  of cont r ibut ions ,  we compare  pure  global, 
pure  local, and in tegra ted  global and  local a rch i tec ture  adap-  
t a t ion  a lgor i thms,  bo th  wi thou t  and  wi th  global DVS. The  
combina t ion  of global and  local a d a p t a t i o n  exploits  b o t h  
c o m p u t a t i o n  slack at  the  f rame granular i ty  and variabil i ty in 
resource ut i l izat ion wi th in  a frame. The  combina t ion  there-  
fore works bes t  across all configurat ions  s tudied.  The  source 
of the  major i ty  of the  benef i ts  in the  combina t ion  varies de- 
pend ing  on the  c o m p u t a t i o n  slack and  DVS suppor t .  

There  are several avenues of fu ture  work. We would like 
to  explore the remain ing  par t  of the  design space identified 
here for adap t a t i on  control  a lgor i thms.  In par t icular ,  spa- 
t ially global bu t  t empora l ly  local a rch i tec ture  adap t a t i on  is 
promising.  This  would exploit  b o t h  in ter - f rame and intra- 
f rame execut ion variability, p e r h a p s  obvia t ing  the  need for 
two types  Of control  a lgor i thms  and  in tegra t ing  local DVS. 
However,  it requires a m e t h o d  to  predic t  execut ion  t ime  and 
energy impac t  of adap t a t i ons  and  their  mutua l  in terac t ion  
over shor t  t ime intervals (hundreds  of cycles). We would 
also like to explore the  in terac t ion  among  mult iple  applica- 
t ions  running  on the  sys tem and  the  rea l - t ime scheduler  as 
well as adap t a t i ons  in o ther  pa r t s  of the  sys tem.  
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