
Joint Local and Global Hardware Adaptations for Energy*

Ruchira Sasanka Christopher J. Hughes Sarita V. Adve

University of Illinois at Urbana-Champaign
Department of Computer Science

{sasanka,cjhughes,sadve} @ cs.uiuc.edu

ABSTRACT
This work concerns algorithms to control energy-driven ar-
chitecture adaptat ions for mult imedia applications, with-
out and with dynamic voltage scaling (DVS). We identify a
broad design space for adapta t ion control algorithms based
on two attr ibutes: (1) when to adap t or temporal granular-
i ty and (2) what structures to adap t or spatial granularity.
For each at t r ibute, adapta t ion may beglobal or local. Our
previous work developed a temporal ly and spatial ly global
algorithm. It invokes adapta t ion at the granularity of a full
frame of a mult imedia applicat ion (temporal ly global) and
considers the entire hardware configuration at a t ime (spa-
t ial ly global). It exploits inter-frame execution time vari-
ability, slowing computat ion just enough to eliminate idle
t ime before the real-time deadline.

This paper explores temporal ly and spatial ly local algorithms
and their integration with the previous global algorithm.
The local algorithms invoke architectural adapta t ion within
an application frame to exploit intra-frame execution vari-
ability, and a t tempt to save energy without affecting execu-
tion time. We consider local algori thms previously studied
for non-real-time applications as well as propose new algo-
ri thms. We find that , for systems without and with DVS,
the local algorithms are effective in saving energy for multi-
media applications, but the new integrated global and local
algori thm is best for the systems and applications studied.

1. INTRODUCTION
Multimedia applications have become an impor tant work-
load for a variety of systems employing general-purpose pro-
cessors [7, 8, 21]. A large number of these systems are
powered by batteries, making energy a first class resource
constraint. To save energy, researchers have proposed hard-

*This work is supported in par t by the National Science Foundation
under Grant No. CCR-0096126, EIA-0103645, CCR-0209198, a gift
from Motorola Inc., and the University of Illinois. Sarita V. Adve is
also supported by an Alfred P. Sloan Research Fellowship and Christo-
pher J. Hughes is supported by a Richard T. Cheng fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ASPLOS X 10/02 San Jose, CA, USA
(~)2002 ACM ISBN 1-58113-574-2/02/0010... $5.00

ware adapta t ion, including dynamic voltage and frequency
scaling, or DVS (e.g., [13, 14, 25, 27]), and architecture
adapta t ion (e.g., changing the instruction window size [6,
9, 11, 26], changing the number of functional units and /o r
issue width [3, 23], and others [2, 4, 12, 15, 16, 22]). This
work concerns control algorithms for such hardware adap-
ta t ions for mult imedia applications, and is par t of the Illi-
nois GRACE project which seeks to coordinate system-wide
hardware and software adaptat ions [1].

Two key questions must be addressed when designing adap-
ta t ion control a l g o r i t h m s - (1) when to adapt , or the tem-
poral granulari ty of adaptat ion, and (2) what structures to
adapt , or the spatial granulari ty of adapta t ion. Our pre-
vious work developed an integrated control algori thm for
DVS and architecture adapta t ion for mult imedia applica-
tions and used the following observations to address the
above questions [19]. Many mult imedia applications are
real-t ime and need to process discrete units of data , typ-
ically called a frame, within a deadline. If the processor
completes a frame's computat ion early, it remains idle until
the end of the deadline. This idle time, or slack, implies that
the processor can be slowed to reduce energy without affect-
ing user-perceived performance. Since the slack may vary
from frame to frame [17], the ideal hardware configuration
may also vary from frame to frame, motivat ing inter-frame
adapta t ion.

The previous algorithm, therefore, invokes adapta t ion at
the s ta r t of each frame [19]. I t predicts the lowest en-
ergy hardware configuration (voltage/frequency and archi-
tecture) tha t can meet the deadline for the next frame, and
uses tha t configuration to execute the frame. '1'he execution
t ime and energy prediction exploits special characteristics
of mult imedia applications. Thus, this algori thm operates
at the temporal granulari ty of a full frame and the spatial
granulari ty of the entire processor configuration (it adapts
all architecture components and the voltage/frequency to-
gether). We refer to this algorithm as having global tempo-
ral and spatial granularity, or as a global algorithm.

This paper explores local adapta t ion algorithms, both in
t ime and space, and their combination with the previous
global algorithm. The local algorithms seek to exploit intra-
frame variabili ty in resource utilization, invoking adapta-
tions periodically within a frame (local temporal granular-
ity). I t is difficult to precisely predict the performance im-
pact of individual adaptat ions and their mutual interactions

144

Application
starts

Profiling Phase

1. For each architectural configuration, A, and frame type:
(i) Measure IPC A and power, PA

(at one common base voltage/frequency for all architectures)

2. For each fmme type, PA
Choose the architectural configuration with the smallest - -

IPCA3

Profiling
complete

r ~

Adaptation Phase

3. Predict instructions for the next frame
of the same type using a predictor.

4. Use the architecture chosen in
step 2. Choose the frequency to b¢

Predicted Instructions
Deadline x IPC a

F i g u r e 1: The previous global algorithm for choosing hardware configurations for a sys tem with continuous DVS.

at the intra-frame granularity. The local algorithms there-
fore control individual hardware structures (i.e., local spatial
granularity) and a t t empt to adapt without affecting execu-
tion time (i.e., they do not exploit slack). To continue to
exploit slack, we propose an algorithm that integrates the
global and local approaches.

We also identify the possibili ty of other control algorithms to
fill the rest of the design space of temporal and spatial gran-
ularity; e.g., temporal ly local and spatial ly global, or tempo-
rally global and spatial ly local algorithms. These variations,
however, are outside the scope of this paper.

(i.e., the architecture and voltage/frequency) that will mini-
mize energy consumption for tha t frame without missing the
deadline. Two versions of the algorithm are proposed, de-
pending on whether the system supports voltage/frequency
scaling in discrete or (almost) continuous steps. Since this
distinction is not important for this paper, we chose to study
the more flexible continuous DVS system here (e.g., Intel 's
XScale processor approximates such a system [20]). Our
work would be equally applicable to a discrete DVS system.
The key aspects of the global algori thm based on continu-
ous DVS are summarized in Figure 1 (taken from [19]) and
described in more detail below.

This paper makes two sets of contributions. First , we s tudy
local architecture adapta t ion algorithms for mult imedia ap-
plications, both without and with DVS. The basic approach
- adapting individual components to save energy without
significant reduction .in performance - is similar to tha t
previously proposed for work on non-real-time applications.
Therefore, much of that work is applicable here as well [2,
3, 4, 6, 9, 11, 22, 23, 26]. The focus of our work is on the
effectiveness of local adapta t ion control algorithms for mul-
t imedia applications and their interaction with global archi-
tecture adapta t ion and DVS. We focus on two architecture
adaptat ions - varying instruction window size and varying
the number of active functional units (and the associated
issue width of the processor). We study the best existing
local algorithms for these adapta t ions and also propose new
algorithms that are more intuitive. We find that , for our
system and suite of mult imedia applications, all algorithms
show modest to significant energy savings without much in-
crease in execution time, both without and with DVS. The
new algorithms are slightly bet ter than the older ones.

For the second set of contributions, we develop an algo-
r i thm to combine local and global architecture adapta t ion
and global DVS. We do not consider local DVS because of
its impact on performance. We report results without and
with DVS for (1) purely global architecture adapta t ion (as
in [19]), (2) purely local architecture adaptat ion, and (3)
the new integrated, algorithm. We find that for our system
and mult imedia application suite, the new integrated algo-
r i thm performs the best in all cases because it can exploit
both computat ion slack at the frame granularity and vari-
ability in resource util ization within a frame. The amount
of computat ion slack with the base architecture generally
determines whether the global or local adapta t ion provides
the majori ty of the benefit in the integrated approach.

2. PREVIOUS GLOBAL ALGORITHM
The previous global adapta t ion control algorithm [19] in-
vokes adaptat ions at the granulari ty of a frame. At the be-
ginning of each frame, it predicts the hardware configuration

The algorithm consists of two phases: a profiling phase at
the s tar t of the application and an adapta t ion phase. The
profiling phase uses a fixed frequency and profiles one frame
of each type 1 for each architecture configuration: For each
architecture A, the algorithm collects the instructions per
cycle (IPCA) and average power (PA) for the frame.

Previous work showed that for several mult imedia applica-
tions and systems, for a given application frame type and a
given voltage/frequency, the average IPC and average power
for an architecture are roughly constant for all frames of that
type [17, 19]. Further, this IPC is roughly independent of
the frequency/voltage. Thus, the values of IPCA and PA
from the profile phase can be used to predict the IPC and
average power of all other frames and hardware configura-
tions. Using these results, it can be derived tha t for most
cases in a continuous DVS system, a frame with a certain
number of instructions I will execute within the deadline
D and with approximately the lowest energy if it uses (1)
an architecture A with the least value of 1PICA and (2) a

frequency of I Two exceptions to the above occur
DxlPCA •

when the frequency calculated is the lowest or the highest
frequency supported by the system, and are discussed fur-
ther in [19].

Based on the above, after profiling is complete, the algo-
r i thm computes ~ for each architecture configuration
and frame type. I t chooses the architecture with the small-
est such value to execute all frames of that type. Choos-
ing the execution frequency for a frame requires knowing
the number of instructions in the frame. This is deter-
mined during the adapta t ion phase, using simple history-
based predictor [19] before the s tar t of a frame. The expres-
sion 1 D×iPCA can then be used to determine the frequency.
Since frame IPCs are only roughly constant, instead of the
profiled IPC~, the algori thm uses the actual IPC of the
previous frame of the same type and adds a small leeway.

1Some appl ica t ions have mul t ip le f r ame types (e.g., I, P, and B f rames
for M P E G - 2 codecs). In such cases, the a lgor i thm profiles and adap t s
for each f r ame type separate ly .

145

The global control algorithm can be implemented in software
or hardware. A hardware implementation requires commu-
nication from the software to indicate when a new frame
starts, the type of the frame, and the deadline.

3. LOCAL ALGORITHMS
The global algorithm exploits the fact that a real-time ap-
plication can be slowed as long as it meets its deadline. Pre-
diction of the performance impact of adaptations is straight-
forward at the global (inter-frame) level, but is difficult at
the local (intra-frame) level. Therefore, local algorithms ex-
plored here consider adaptations that, ideally, do not affect
execution time. In particular, not all resources always con-
tr ibute significantly to performance. Thus, we can deacti-
vate under-utilized resources with little or no performance
impact, but significant energy savings. Since resource uti-
lizations can change quickly, we consider local adaptations
with small switching times and assume hardware implemen-
tations of the local algorithms. As an indicator of intra-
frame variability of the execution profile, we measured the
standard deviation of the IPC over 200 cycle intervals for a
sample frame on each application and the base architecture
in Section 5. The standard deviation ranged from 20% to
35% as a percentage of the mean IPC of the full frame.

In this paper, we examine two local architecture adapta-
tions: (1) changing the active instruction window size (Sec-
tion 3.1), and (2) changing the number of active functional
units, which also changes the issue width (Section 3.2). Al-
though we study systems with DVS, we do not consider local
DVS control because DVS necessarily affects performance.

All the local algorithms discussed here take a common ap-
proach of monitoring certain statistics over a pre-determined
period (e.g., every 200 cycles), and using them to determine
whether to increase or decrease the adapted structure (e.g.,
instruction window size, number of functional units, issue
width) for the next period. The decisions for decreasing and
increasing the structure are made independently. In princi-
ple, any pair of algorithms for increasing and decreasing a
structure can be used together.

3.1 Adapting Instruction Window Size
We assume the instruction window is divided into several
equal segments, and a contiguous set of segments can be de-
activated at any cycle [6, 11]. Several local algorithms have
been proposed to control the active size of such a window
and have been evaluated for non-real-time applications [6, 9,
11, 26]. Section 3.1.1 discusses the state-of-the-art and Sec-
tion 3.1.2 discuss a new algorithm for increasing the~size.

3.1.1 State-of-the-art
We evaluate an algorithm by Folegnani et al. as represent-
ing the state-of-the-art [11]. This algorithm decreases the
instruction window size by one segment if the number of
committed instructions that issued from the youngest seg-
ment during the previous period is smaller than a thresh-
old [11]. Thus, segments of the window that clearly did
not contribute to the overall IPC are deactivated, with rela-
tively low overhead (primarily 1 bit per instruction window
entry). A disadvantage is that the youngest segment stays
activated even if the instructions issued from it are not on

the program's critical path. Issuing such instructions early
may not contribute to IPC, but this is not detected.

The algorithm for increasing the size of the instruction win-
dow uses a simple, periodic strategy - the window is in-
creased by a segment every fixed number of cycles. This
algorithm is somewhat ad hoc since no at tempt is made to
determine if IPC will benefit from the additional instruc-
tions that fit into a larger window, potentially wasting en-
ergy. Conversely, in some cases, this may potentially de-
grade IPC, if the increase does not occur early enough to
meet the increased demands of the application..

Other algorithms proposed are based on window occupancy [6,
9, 26], which we found to be less effective for the applications
and architecture studied here (Section 5). The algorithm by
Ponomarev et al. decreases the window size based on the av-
erage occupancy during the previous period [26]. Dropsho
et al. propose an extension that decreases the size based on
an approximation of the distribution of window occupancy
rather than the average [9] (this algorithm supercedes the
one in [6]). Both algorithms are fundamentally more conser-
vative than the one by Folegnani et al. - they can consume
more energy without benefitting IPC when instructions are
present in the youngest segment of the window but are not
able to issue. ~ The occupancy-based algorithms increase
the window size if there are enough dispatch stalls due to
the instruction window being full (window overflows). How-
ever, for several of the applications and the architecture we
evaluate (e.g., with unified reorder buffer and issue queue,
discussed in Section 5), we find that the instruction win-
dow is full for much of the execution without necessarily
contributing to IPC, making such a scheme less effective.

3.1.2 New Algorithm for Increasing Window Size
We propose a new algorithm (Figure 2) for increasing the
size of the instruction window, based on a prediction of the
resulting benefit in IPC. To obtain this prediction, we esti-
mate the number of (retirement) stall cycles that could have
been avoided with a larger instruction window'. We say an
instruction 1 is stalled if it is incomplete and at the head
of the instruction window [24]. A larger instruction window
can potentially avoid such a stall by providing more instruc-
tions ahead of I to overlap with I ' s latency, as illustrated in
Figure 3. The key to our algorithm, therefore, is a technique
to estimate this extra overlap that an instruction would have
if the instruction window were fully activated. Several as-
pects of the design required making a tradeoff between ac-
curacy and hardware and energy overhead. We describe the
design we chose next; other variations that improve accuracy
or reduce overhead further are possible.

The algorithm computes the IPC over a fixed period. When
an instruction is fetched into the youngest segment of the
window, it checks to see if its operands are already avail-
able. If so, a larger window could potentially have allowed
for more overlap for that instruction (Figure 3). We opti-
mistically estimate that the additional overlap could have
been H..umber o/ d e a c t i v a t e d entries cycles, and set a tag for

IPC f r o m last period

2The o c c u p a n c y - b a s e d a l g o r i t h m s [9, 26] c a n r educe ' the i n s t r u c t i o n
w i n d o w size b y mu l t i p l e s e g m e n t s a t a t ime. T h e o t h e r a l g o r i t h m s
([11] a n d ou r new a l g o r i t h m in Sec t ion 3 .1 .2) c a n b e s imi l a r ly ex-
t e n d e d , b u t we do n o t e v a l u a t e t h a t ex t ens ion here.

146

On entry of instruction I if (the operands of I are ready)
to instruction window: l-~IWtag = MaxOverlap

On completion of
instruction I:

for each instruction J consuming l's result
if (1 produced the last operand of J)

if (I did not stall)
J'-->IWtag = 1-->IWtag

else if (I stalled for S cycles)
J--~IWtag = max(O, l->IWtag - S)

On retirement of
instruction I:

if (l~lWtag > O)
if (I stal!ed for S cycles)

Counter += min(l ~lWtag, S)

if (Counter > Threshold) {
Increase the window size
Counter=O

At the end of each MaxOverlap = Deactivated Entries
period: IPC from last period

Counter=O

F i g u r e 2: A n e w a l g o r i t h m for i n c r e a s i n g t h e i n s t r u c t i o n
w i n d o w s i z e . A n i n s t r u c t i o n is s a i d t o s t a l l i f i t r e a c h e s
t h e h e a d o f t h e i n s t r u c t i o n w i n d o w b e f o r e c o m p l e t i o n .

m
instructions

n
instructions

instruction I m+n
instructions

instruction I

F i g u r e 3: A d d i t i o n a l o v e r l a p f r o m a l a r g e r w i n d o w . T h e
l e f t p a r t s h o w s a n i n s t r u c t i o n w i n d o w w i t h n e n t r i e s a c -
t i v a t e d a n d m e n t r i e s d e a c t i v a t e d . I n s t r u c t i o n I a r r i v e s
a t t h e t o p o f t h e a c t i v a t e d p o r t i o n o f t h e w i n d o w a n d
f i n d s a l l i t s o p e r a n d s a v a i l a b l e . T h u s , I is o v e r l a p p e d
w i t h n - 1 i n s t r u c t i o n s . I f t h e i n s t r u c t i o n w i n d o w w e r e
f u l l y a c t i v a t e d (t h e r i g h t p a r t) a n d 1 a r r i v e d a t t h e t o p ,
i t c o u l d h a v e a n a d d i t i o n a l m i n s t r u c t i o n s f o r o v e r l a p .

this instruction, called IWtag, with this value. This compu-
tation is optimistic because it assumes that even for the case
of the larger instruction window, this instruction's operands
would be available on fetch and the instruction would enter
the youngest window segment. This estimate also ignores
structural hazards on functional units.

A larger window could also provide increased overlap to an
instruction that does not have its operands available on en-
try, if the larger window enabled its operands to be gen-
erated early. The increased overlap would be the same as
that for the producer of the last pending operand of the
consumer, but reduced by the producer's stall cycles (i.e.,
by the cycles that the producer will use up for overlapping
its own latency). Thus, when an instruction completes, we
pass its IWtag to all instructions for which this instruction
produced the last operand3; if this instruction stalled be-
fore completion for S cycles, then we reduce its IWtag by
min(IWtag, S) before passing it to the consumers. Again,
this is possibly an over-estimate of the possible overlap for
the consumer because the producers of the other operands of
the consumer may not be able to provide that much overlap
with a larger instruction window.

3The idea of pass ing tags was inspired by the token pass ing a long
" las t a r r i v ing edges" of Fields e t al. [10]

The value of IWtag gives the additional overlap that an
instruction could get with a larger window. If a tagged in-
struction stalls the processor for S cycles, then we estimate
min(IWtag, S) as the number of stall cycles that could
be avoided by the additional overlap. We accumulate the
avoidable stall cycles in a counter, and reset the counter at
the end of the period. If the counter exceeds a threshold, we
increase the instruction window size by one segment, reset
the counter, and start a new period.

Our new algorithm potentially alleviates the limitations of
the previous algorithm by Folegnani et al. because (1) it
increases the instruction window size only when it estimates
that the IPC will benefit, making it less wasteful of energy,
and (2) it increases the window size as soon as it is possible
for the IPC to benefit, limiting any IPC degradation from
the adaptive hardware.

A potential disadvantage of the new algorithm is in the
higher hardware overhead. The primary overhead is in the
bits for holding IWtag; however, we found that a small tag
size (4 bits for our case) suffices. Other overheads include
the logic for calculating the tags, logic for calculating the
maximum possible overlap at the end of a period (Max-
Overlap in Figure 2), a shifter to compute IPC, and some
counters. The energy consumed by the tag computation,
shifter, and counters is likely to be negligible. Computing
MaxOverlap may require a more expensive energy-hungry
divide; however, this value can be calculated less frequently
and in an approximate way to reduce the overhead. In our
experiments, we calculated it once every two periods or when
the instruction window is resized.

Finally, it is also possible to design an algorithm for decreas-
ing the instruction window size based on the new technique
to increase the size. For example, we could decrease the size
if the number of "avoidable stalls" in a period is below some
threshold. We experimented with this algorithm, but found
that it did not perform as well as that by Folegnani et al.
for decreasing the window size. A smarter algorithm would
need to more precisely determine when instructions issued
from the youngest segment of the instruction wind,~w are
not critical instructions.

3.1.3 Algorithms Evaluated and Parameters Used
As discussed earlier, we evaluate the algorithm by Folegnani
et al. (for both increasing and decreasing the window size) as
representing the state-of-the-art, and call this PeriodicIW.
We also report results for the new algorithm for increasing
the window size combined with the algorithm by Folegnani
et al. for decreasing the window size, and call this S tallIW.

A key issue for local adaptation algorithms is that they use
a number of different parameters that affect both energy
savings and IPC degradation. A design space search must
be performed to find the best overall parameters for an al-
gorithm. In many cases (all algorithms that we examined),
the time required for an exhaustive search is prohibitive.
For each algorithm, we evaluated several sets of parameters
and found that energy savings are not as sensitive to the pa-
rameters as the IPC degradation (likely due to the energy
savings being relatively small in most cases). Therefore, in
our experiments we use parameters that were near the knee

147

of the energy savings curve with the limitation that IPC
degradation 'not be too large. For all the applications and
systems, IPC degradation is less than 8%, and the average
degradations for any single system are below 5%. The spe-
cific parameters are as follows.

PeriodiclW considers reducing the window size every 200
cycles (the period), and reduces the size by one segment if
no instructions were issued from the youngest segment in the
last period (i.e., this is the minimum value of the threshold).
Larger threshold values give similar energy savings, but sig-
nificantly increase IPC degradation. PeriodiclW increases
the instruction window size by one segment every five peri-
ods (starting from the last time it changed the size).

For comparison, Folegnani et al. chose 1000 cycles as the
period for decreasing the window size and also chose five
periods for increasing it. We chose a smaller period because
the overhead is small, and a smaller period allowed a faster
response to changing requirements of the application.

StalUW also considers reducing the instruction window size
with a period of 200 cycles. It reduces the window size by a
segment if the processor issued less than 40 instructions from
the youngest segment in the last period. This threshold is
much more aggressive than the one for PeriodicIW because
StallIW can more rapidly increase the instruction window
size when needed. StallIW increases the window size only
when the number of stall cycles avoidable by the largest
instruction window reaches 20 in a period (and at least 40
instructions have been issued from the youngest segment, to
give priority to the decreasing algorithm).

3.2 Adapting Functional Units and Issue Width
Several algorithms have been recently proposed to change
the number of activated functional units and the consequent
instruction issue width, and have been evaluated for non-
real-time applications [3, 23]. Section 3.2.1 discusses the
state-of-the-art and Section 3.2.2 discusses new algorithms
and combinations explored for this work.

3.2.1 State-of-the-art
The algorithms below were proposed for an architecture with
two clusters (e.g., Alpha 21264), where the activation and
deactivation of functional units is performed at the granu-
larity of a half or full cluster. Extensions for finer control of
the functional units in a non-clustered architecture such as
modeled in this paper (Section 5) are straightforward.

Maro et al. considered several algorithms to control whether
to have functional units in one or two clusters activated [23].
The best algorithm (LP1 in [23]) reported uses mean func-
tional unit utilization over a period to determine whether to
increase or decrease the number of active units (i.e., increase
if utilization is high and vice versa). The algorithm is simple
to implement but has some disadvantages: (1) it activates
and deactivates a functional unit without consideration of
whether the instructions using it are on the critical path,
and (2) it may activate a unit that will not be used.

Maro et al. consider two other strategies for deactivating
functional units: deactivate on low committed IPC, and de-
activate when there are too many instructions waiting on

data dependences in the instruction window. They found
that neither of these performs as well as the utilization-based
algorithm, so we do not explore them further.

Maro et al. discuss, but do not evaluate, another strategy for
activating functional units. This scheme tracks the number
of structural hazards for each instruction. If the total num-
ber of hazards for the instructions currently in the instruc-
tion window is over some threshold, the algorithm activates
a cluster. This algorithm can quickly increase the number
of active units in the event of a burst of hazards.

Bahar and Manne developed an algorithm to deactivate a
full cluster or half the ALUs and all of the FPUs in one clus-
ter [3]. Their algorithm is based on the number of instruc-
tions issued per cycle (issue IPC) to each type of unit (ALU
or FPU) [3]. After a certain period, the issue IPC is com-
pared to both an upper and a lower threshold (the thresholds
used depend on the current number of active units). If the
upper threshold is exceeded, the number of active units is
increased. If the issue IPC is below the lower threshold, the
number of active units is decreased. Issue IPC, as a criterion
for controlling functional unit adaptation, is very similar to
utilization, having the same advantages and disadvantages.
However, using issue IPC has one additional disadvantage:
since the thresholds depend on the current number of units,
a set of thresholds is required for each possible number of
active units (a total of 8 thresholds in [3]). Choosing the
right combination of thresholds to give this scheme the best
showing would have required an inordinately large number
of simulations. We therefore choose the utilization-based
scheme (which is close to the above) as the state-of-the-art
(for both increasing and decreasing the number of active
units), and call it UtilFU.

3.2.2 New Algorithms and Combinations
A new algorithm for increasing the number of active func-
tional units could be based on an estimate of the resulting
benefit in IPC, analogous to the new algorithm for increas-
ing the size of the instruction window in Section 3.1.2. We
explored this option and found that its larger relative over-
head made it perform worse than most others.

We propose, and report results for, an algorithm that com-
bines a utilization-based scheme and a structural hazard
based scheme for respectively decreasing and increasing the
number of active units. We call this scheme HazardFU. The
algorithm for increasing the number of active units is sim-
ilar to the structural hazard based scheme proposed (but
not evaluated) by Maro et al. Rather than tracking the
number of hazards seen by each instruction in the instruc-
tion window, we track the total number of hazards (for each
type of unit) seen by all instructions within a period. If the
total exceeds a threshold before the end of the period, we
increase the number of active units by one. Such a scheme is
likely to better anticipate functional unit usage than a mean
utilization-based scheme. The overhead for this scheme is
simply some counters to track hazards and unit utilization.
The energy consumed by these is likely negligible.

3.2.3 Parameters for the Algorithms
In our experiments, one integer ALU is always active for
both UtiIFU and HazardFU. Also for both, when all FP

148

P r o p e r t i e s Globa l a d a p t a t i o n L o c a l a d a p t a t i o n
Source of benefits Per-frame execution time slack Variability in resource usage within a frame
Temporal granularity of adaptation Entire frame Small intervals within a frame
Hardware features controlled Global configuration Individual (or small groups of) hardware features
Impact on execution time May increase No impact (ideally)
Basis of adaptation Profiles mostly collected at start of application Information from continuous monitoring
Implementation Hardware or software Mostly hardware
Inapplicable adaptations Adaptations that cannot be invoked on the entire frame Adaptations with high overhead or that impact execution

(e.g., shutting off all floating point units) time (e.g., DVS)

Table 1: Comparison between global

units are deactivated, if an FP instruction is fetched, an
FP unit is activated. Note that instructions get issued to
functional units in a prioritized manner; therefore, "the last
unit" of each type will only be used when all other units are
busy. This affects the unit utilizations.

For UtilFU, due to the large number of parameters, we could
not perform a full design space search, and use some from
the LP1 scheme of [23]. Using our previously described crite-
ria for choosing parameters (Section 3.1.3), UtiIFU reduces
the number of ac t ive units by one if the last unit is not
used more than 4 cycles in the last period. However, UtiIFU
uses the LP1 criteria for deactivating the last FP unit; it
does so when that unit is not used for three cycles in a row.
Also as for LP1, if the last active unit of a given type has a
utilization of at least 86% for the previous period, the algo-
ri thm increases the number of active units of that type by
one. While [23] proposes using a small period - 16 cycles
- we found that for our applications and system, this per-
formed significantly worse than a larger period, regardless
of thresholds. Therefore, we use a 200 cycle period.

We chose all parameters for HazardFU in the same manner
as described in Section 3.1.3. HazardFU increases the num-
ber of active units for a given type by one if, during the
last period, instructions faced at least 80 structural hazards
from that type of unit. HazardFU reduces the number of ac-
tive units by one when a unit of that type is not used more
than 4 cycles within the last period (the same criteria as
for UtilFU). An exception is for-the last available FP unit,
which is deactivated only if it is not used at all within the
last period. We also use a 200 cycle period for HazardFU.

4. JOINT GLOBAL/LOCAL ADAPTATION
We combine the global and local adaptation control algo-
rithms in a simple way, resulting in two parallel but inte-
grated control loops in the system.

The global part of the integrated algorithm performs the
profiling and adaptation phases as before, but with the fol-
lowing change. During profiling, the local algorithms are
also invoked. Ideally, the global algorithm will now see
lower average power for each candidate architecture with lit-
tle change in IPC (vs. without local adaptations). As before,
the algorithm estimates the lowest energy architecture to be

P o w e r the one with the lowest profiled / P ~ C During the adap-
t a t ion phase, again, the local algorithms are invoked on all
frames. The global algorithm picks the voltage/frequency
for executing the next frame as before, as a function of the
deadline, the predicted instruction count for the frame, and
the measured IPC of the last frame of the same type. Thus,
the global algorithm automatically compensates for any IPC

and local adaptation algorithms.

degradation caused by the local algorithms. This avoids
missed deadlines but at the cost of reduced energy savings
from the local algorithms.

The local part of the integrated algorithm is always invoked
and is mostly oblivious to the global part, except for the
following. The global algorithm establishes the maximum
configuration for each resource for the local algorithms. A
local algorithm must respect this maximum since its goal is
to minimize energy without changing the IPC obtained by
the globally chosen configuration. Thus, if the global algo-
rithm chooses aggressive architectural configurations, then
the local algorithm has substant ia l potential for exercising
adaptations. However, less aggressive global choices may
leave little potential for local adaptation.

The global and local algorithms play different roles. The
global algorithm exploits per-frame execution time slack,
and adapts at the granularity of a full frame and the full
hardware configuration. The local algorithms exploit vari-
ability in resource usage within a frame, and adapt at the
granularity of small intervals within a frame and control
individual (or small groups of) hardware features. In par-
ticular, the larger temporal granularity of adaptation for the
global algorithm makes it better able to predict future exe-
cution behavior than the local algorithm. These distinctions
lead to significant differences in the design and effectiveness
of the algorithms, as summarized in Table 1. These differ-
ences include impact on execution time (slowdown vs. ide-
ally no impact), techniques to determine the right adapta-
tion (use of profile information vs. continuous monitoring),
whether the algorithm can be implemented i n software (as
for global) or must be in hardware (as for local), and the ap-
plicability of different adaptations (adaptations that cannot
be invoked on a full frame are inapplicable to the global algo-
ri thm while adaptations with high overhead and impacting
execution time are inapplicable to local algorithms).

5. EXPERIMENTAL METHODOLOGY
5.1 Systems Modeled
We use the RSIM simulator [18] for performance evaluation
and the Wattch tool [5] integrated with RSIM for energy
measurement.

The base processor studied is similar to the MIPS R10000
and is summarized in Table 2. We assume a centralized
instruction window with a unified reorder buffer and issue
queue but a separate physical register file. Experiments with
DVS assume a continuous frequency range from 100MHz to
1GHz and corresponding voltage levels derived from infor-
mation available for Intel 's XScale processor [20] as further
discussed in [19].

149

B a s e P r o c e s s o r P a r a m e t e r s
Processor speed
Fetch/retire rate
Functional units
Integer FU latencies
FP FU latencies
Instruction window
(reorder buffer) size
Register file size
Memory queue size
Branch prediction

IGHz
8 per cycle
6 lnt, 4 FP, 2 Add. gen.
1/7/12 add/multiply/divide (pipelined)
4 default, 12 div. (all but div. pipelined)
128 entries

192 integer and 192 FP
32 entries
2KB bimodal agree, 32 entry RAS

B a s e M e m o r y H i e r a r c h y P a r a m e t e r s
LI (Data)

L1 (Instr)
L2 (Unified)

Main Memory

64KB, 2-way associative,
64B line, 2 ports, 12 MSHRs
32KB, 2-way associative
1MB, 4-way associative,
64B line, 1 port, 12 MSHRs
16B/cycle, 4-way interleaved

B a s e C o n t e n t i o n l e s s M e m o r y L a t e n c i e s
L1 (Data) hit time (on-chip) 2 cycles
L2 hit time (off-chip) 20 cycles
Main memory (off-chip) 102 cycles

T a b l e 2: B a s e (d e f a u l t) s y s t e m p a r a m e t e r s .

App. Type Input Size Default Base
T ime l Frames deadl ine IPC

GSMdec Speech 20s 1000 50ps 4.0
GSMenc codec 20s 1000 140ps 4.8
G728dec : Speech 0.63s 1000 60#s 2.4
G728enc codec 0.63s 1000 70ps 2.2

i

H263dec' Video 4s 100 2.9rns 3.5
H263enc codec 4s 100 40ms 2.5
MPGdec Video 3.33s 100 6.3ms 3.8
MPGenc codec 3.33s 100 66.6ms 2.7
MP3dec Audio 13.05s 500 1.4ms 3.1

T a b l e 3: W o r k l o a d d e s c r i p t i o n .

Exper iments wi th ins t ruc t ion window adap ta t ion assume
eight ent ry ins t ruct ion window segments and tha t at least
two segments must always be active. A smaller ins t ruct ion
window requires fewer physical registers. Since w e model
a physical register file separa te from the ins t ruct ion win-
dow, reducing the register file size dur ing execut ion requires
"garbage collecting" regis ter contents [9]. This is s t ra ight-
forward with global adap ta t i on (since resizing occurs infre-
quent ly at the s ta r t of a f rame which is typically a new
context wi th no prior regis ter s ta te) . We therefore deacti-
vate one integer and one f loat ing point physical register wi th
each deact iva ted ins t ruc t ion window entry wi th global adap-
ta t ion. W i t h local adapta t ion , however, we do not change
the register file size since it would be too much overhead.

Exper iments wi th funct ional uni t adap ta t ion assume tha t
the issue width is equal to the sum of all act ive funct ional
units and hence changes wi th the number of act ive func-
t ional units. Consequently, when a funct ional unit is deac-
t ivated, the corresponding ins t ruc t ion selection logic is also
deact ivated. Similarly, the corresponding par ts of the result
bus, the wake-up por ts of the ins t ruc t ion window, and por ts
of the register file are also deact ivated.

We assume clock ga t ing for all the components of all the

processor configurat ions (adapt ive and non-adapt ive) . If a
component is clock gated (i.e., not accessed) in a given cy-
cle, we charge 10% of its m a x i m u m power. To fairly rep-
resent the s tate-of- the-ar t , we also ga te the wake-up logic
for emp ty and ready entries in the ins t ruc t ion window as
proposed in [11]. We assume tha t the resources tha t are
deac t iva ted by our adapt ive a lgor i thms do not consume any
power. Thus, deact iva t ing an unused componen t saves 10%
of the m a x i m u m power of the componen t (i.e., the remaining
power after clock gating).

We use t he local adap ta t ion control a lgor i thms as described
in Sect ion 3. For global adapta t ion , we use the a lgor i thm
in [19] except tha t we increase the I P C leeway from 1% to 4%
to make all appl icat ions have fewer than 5% missed deadlines
on the base processor. The global a lgor i thm is used to con-
t rol DVS in all cases, even when no global a rchi tec ture adap-
t a t ion is performed. Further , for global adap ta t ion , we pro-
file all possible combinat ions of the following configurat ions
(54 total) : ins t ruct ion window size E {128,96,64,48,32,16},
number of ALUs E {6,4,2}, and number of F P U s E {4,2,1}.
I t may seem tha t profiling 54 configurat ions is inordinate
overhead for a real system. However, it is feasible since only
one f rame of each type need be profiled for each configura-
t ion, a typical mul t imed ia appl ica t ion executes many more
frames (e.g., 30 frames a second for video), and profiling can
be done as par t of the appl ica t ion ' s execut ion. Nevertheless,
we also per formed exper iments where we profiled a smaller
(representat ive) subset of the possible configurations, and
found similar results.

Regard ing adap ta t ion overheads, as in [19], we ignore t ime
and energy overheads for invoking global adap ta t ion since
they are incurred only once per frame. A more detai led
jus t i f ica t ion for this assumpt ion appears in [:19]. For local
adapta t ion , we model the ex t r a bi ts required in the instruc-
t ion window for ins t ruct ion window size adap ta t ion (one bit
for PeriodicIW and four bits for StallIW). As ment ioned in
Sections 3.1.2 and 3.2.2, o ther overheads, such as for con-
t rol logic and counters, are likely to be small. We model a
delay of 5 cycles to ac t iva te all deac t iva ted components (we
observed tha t the results are not very sensit ive to this).

5.2 Workload Description
Table 3 summar izes the nine appl ica t ions and inputs used
in this paper. These were also used in [17, 19] and are
described in more detai l in [17] (for some applicat ions, we
use fewer frames). We do not use mu l t imed ia ins t ruct ions
in this s tudy because many of our appl icat ions see l i t t le
benefi t f rom t h e m and we lack a power model for mul t imedia
enhanced functional units.

For the appl icat ion deadlines, by default , we use the dead-
lines referred to as " t ight" deadlines in [19]. 4 For all but
the video encoders, this deadl ine is three t imes the maxi-
m u m processing t ime for a f rame on the base processor. For
the v ideo encoders, we use longer deadl ines (the full f rame
per iod) since even the base processor is not able to meet
this deadl ine in some cases - for M P G e n c , we addi t ional ly
double the frame period.

4The deadlines are affected by interactions with the real-time sched-
uler which must consider all the applications in the system. This
interaction is beyond the scope of this study.

150

7 s % - - :~ ~ l smuw

50%-- : ~ =~

- - IW

GSMdec GSMenc G728de¢

lmoo99
100%- ~

75%-

50%

~- 25%-

GSMdee

_~ l_007~100

I _ 1 / _
GSMenc G728dec

G728enc

04
93

I1__
G728enc

H263dec H263enc MPGdec MPGenc
(a)

100 100 100 1 0 0

I _

H263dec H263enc MPGdec MPGenc
(b)

MP3dec

~ PeriodidW
StalllW

MP3dec

F i g u r e 4: Energy c o n s u m p t i o n (n o r m a l i z e d to Base) w i t h ins truc t ion w i n d o w size a d a p t a t i o n . (a) W i t h o u t DVS. (b)
W i t h D V S . Each set o f three bars represents Base, PeriodiclW, and StaUIW respec t ive ly . T h e dark part in each bar
shows t h e e n e r g y spent in t h e ins truc t ion w i n d o w (IW) .

• The benefits of global adaptatio n are highly dependent on A p p .
the original computation slack in a frame (i.e., remaining
time from the end of the frame processing until the dead- GSMdec
line). The default deadlines leave significant slack in all cases GSMenc
in the base (non-adaptive) processor without DVS (average G728dec
slack for each application is >49% of the deadline)• There- G728enc
fore, when considering systems without DVS with global H263dec
adaptation, we consider a set of tighter deadlines as well. H263enc
These are set to be the longest time taken by a frame with MPGdec
local adaptation (on the base architecture without DVS). MPGenc
With these deadlines, significantly less slack remains on the MP3dec
base architecture without DVS (_< 23% except for G728 and
MPG). 5 Since DVS removes most slack from the system even
with the default deadlines, we use only these deadlines with
DVS (average slack is 8% to 16% for 8 of the 9 applications),

6. RESULTS
Sections 6.1 and 6.2 respectively evaluate the local algo-
rithms for adapting the instruction window size and func-
tional units in isolation. Section 6.3 compares the global,
local, and integrated global and local algorithms.

6.1 Local Instruction Window Adaptation
We evaluate three architectures for instruction window size
adaptation: the default, non-adaptive Base, and Base en-
hanced with an adaptive window size controlled by Period-
i c l W and by StalllW. Figures 4(a) and 4(b) show the total
energy normalized to Base for each application, without and
with DVS, respectively. Each bar also shows the part of the
energy dissipated by the instruction window.

Overall, we find that both instruction window adaptation
algorithms are effective for some multimedia applications,
saving a significant amount of energy in some cases. As
expected, the savings come primarily from the energy dissi-

5The average slack for G728 and MPG is still high since these appli-
cations have multiple frame types and some frame types require much
less execution time than the selected deadlines.

No D V S DVS
PemodiclW StalllW PemodiclW StalllW

123 ll7 123 117
89 82 89 82
113 99 110 98
94 86 92 84
76 55 76 54
50 50 50 50
67 60 67 61
48 41 48 41
99 92 98 91

T a b l e 4: M e a n i n s t r u c t i o n w i n d o w s ize se l ec ted by Pe-
riodiclW and StallIW.

pated by the instruction window. Stal l lW saves more energy
than PeriodicIW, but the difference is small.

Without DVS, PeriodicIW saves an average of 9% energy
over Base (maximum 18%), while Stal l lW saves an average
of 11% (maximum 20%). With DVS, PeriodicIW saves 6%
on average (maximum 13%) over Base, and Stal l lW saves
7% on average (maximum 14%). The processor with DVS
increases the frequency to compensate for IPC degradations
in order to meet the deadline, eroding some of the energy
savings from adaptation.

Comparing Stal lIW and PeriodiclW, both without and with
DVS, for all applications, Stal l IW saves about as much or
more energy than PeriodicIW. However, the difference is
small (1% on average, 4% maximum). The mean IPC degra-
dation for PeriodicIW and Stal l IW without and with DVS
is also similar - 3% and 4% respectively.

Table 4 shows .the mean instruction window size chosen by
each algorithm. Stal l IW is able to reduce the size of the in-
struction window by as much or more than PeriodicIW for
all applications. This difference is due to the more aggres-
sive deactivation of StalIIW. Also, the periodic activation

151

100%-- !00 100 10o 100

~ 5o%-

~- 25%-

GSMdec GSMenc G728dec G728enc

100 100 100 100
100% ~

75%-

50%-

~" 25%-

GSMdec GSMenc G728dec G728enc

100 100 100

H263dec
(a)

100

H263dec
(b)

100 10o ~ Base
UfilFU
HazaxdFU

ALU
IW

MP3dec H263enc MPGdec MPGenc

'00~ '00 '00 '00 [~ Base
u 93ss s6ss ~ UfilFU

~ HazardFU

ALU
- - - - I W

H263enc MPGdec MPGenc MV3dec

F i g u r e 5: E n e r g y c o n s u m p t i o n (n o r m a l i z e d to Base) w i t h f u n c t i o n a l un i t and i ssue w i d t h a d a p t a t i o n . (a) W i t h o u t
D V S . (b) W i t h DVS. Each set o f three bars represents Base, UtilFU, and HazardFU respect ive ly . T h e d a r k p a r t s in each
b a r s h o w the energy spent in t h e i n s t r u c t i o n window, A L U s , and F P U s .

A p p . N o
UtilFU

A F
GSMdec 4.5 0.0
GSMenc 4.9 0.0
G728dec 3.9 2.4
G728enc 3.5 2.7
H263dec 5. i 0.0
H263enc 4.4 0.6
MPGdec 5.4 0.0
MPGenc 3.5 0.2
MP3dec 4.3 1.7

T a b l e 5:
by UtilFU

D V S
Haza~FU UtilFU
A F A F
4.5 0.0 4.5 0.0
5.0 0.0 4.9 0.0
3.0 1.5 4.1 2.4
2.5 2.0 3.4 2.7
4.8 0.0 5.1 0.0
4.1 0.5 4.4 0.6
5.3 0.0 5.4 0.0
3.8 0.1 3.5 0.2
4.0 1.2 4.3 1.7

D V S
HazardFU
A F
4.5 0.0
5.0 0.0
3.2 1.4
2.5 2.0
4.8 0.0
4~1 0.5
5.3 0.0
3.8 0.1
4.0 1.2

N u m b e r o f A L U s (A) a n d F P U s (F) se lec ted
and HazardFU.

s t ra tegy of PeriodicIW may h a m p e r its abi l i ty to reduce the
window size for as long as possible. Consequently, StalIIW
saves slightly more energy than PeriodicIW.

6.2 Local Functional Unit Adaptation
We evaluate three archi tectures for funct ional unit adapta-
tion: the default , non-adapt ive Base, and Base enhanced
with adapt ive functional units control led by UtilFU and by
HazardFU. Figures 5(a) and 5(b) show the to ta l energy for
each appl icat ion, normalized to Base, without and with DVS
respectively. Each bar also shows the par t of the energy due
to the ins t ruct ion window, ALUs, and FPUs . Energy sav-
ings for this type of adap ta t ion come from many par ts of
the processor, as explained in Sect ion 5, because adapt ing
the issue width allows deact iva t ion of par ts of a number of
s t ructures .

T h e results show tha t bo th a lgor i thms are very effective for
mul t imed ia applications. There is negligible difference be-
tween the two a lgor i thms in most cases.

More specifically, wi thout DVS, UtiIFU saves an average

of 18% energy over Base, while HazardFU saves 20%. W i t h
DVS, UtilFUsaves 15% on average over Base, and HazardFU
saves 18%. In most cases, the difference be tween the two
a lgor i thms is negligible - on average, HazardFU saves 3%
over UtilFU bo th wi thou t and wi th DVS. In some cases,
however, the difference is significant wi th HazardFU being
super ior (m a x i m u m benefit over UtiIFU of 9%). The I P C
degrada t ion for the two a lgor i thms wi thou t or wi th DVS is
2% to 3% averaged across all applicat ions.

Table 5 shows the average number of ac t ive funct ional units
chosen by each algor i thm. The number of act ive ALUs and
F P U s is very similar for UtilFU and HazardFU for all ap-
pl icat ions except G728dec and G728enc, where HazardFU
saves m o r e energy than UtilFU. HazardFU is able to de-
ac t iva te more uni ts because UtilFU act ivates an ex t ra unit
when the last uni t is highly utilized, bu t the processor does
not issue ins t ruct ions to it. For M P G e n c , wi th DVS, Haz-
ardFU saves 9% energy over UtilFU, but Table 5 shows tha t
the savings are not from deact iva t ing more units. Instead,
UtilFU degrades the I P C more for this appl icat ion, and DVS
exposes this difference.

6.3 Global, Local, and Joint Adaptation
This section compares the global, local, and in tegra ted global
and local approaches for archi tec ture adap ta t ion , wi thou t
and wi th DVS. For the exper iments wi th local adapta t ion ,
we adap ted bo th ins t ruct ion window size and the number of
act ive funct ional units. Based on the resul ts in Sect ions 6.1
and 6.2, we used the Stal l lW and the HazardFU algor i thms
respect ively for these adapta t ions .

We repor t resul ts for four archi tectures: (1) the default ,
non-adap t ive Base; (2) Global, which is Base enhanced wi th
global adap ta t i on as described in Sections 2 and 5; (3) Lo-
cal, which is Base enhanced wi th local adap ta t ions as de-
scribed in Sections 3 and 5; and (4) Global+Local, which
is Base enhanced wi th the in tegrated global and local algo-

152

100%-

75%-

50%-

25%"

100%"

75%"

50 % -

25%"

100%-

75%-

50%-

25%-

IOO 104) I 0 0 100 100 Ira)

78 75 74 " - -

GSMdec GSMenc G728dec G728enc H263dec H263enc
(a)

GSMdec

100 I o o 1¢~

84 89 86

i i

GSMd~

1oo 1oo 1oo F]

82] Global+Local

Reg File
FPU
ALU
lW

MPGdec MPGenc MP3dec

GSMenc

)fg) It~b I~h9 100 10093 ~] Base

i Global Local
[~ Global+Local

Reg File
FPU
ALU
IW

GSMenc

G728dec G728enc H263dec

(b)
100 100 I l l) I ~)

$ 74 71 71

- - - - i

G728dec G728enc H263dec H263enc
(c)

H263enc MPGdec MPGenc MP3dec

n~ 100 100 ['7
Base t::::l

s~ s181 ~ Global
~ ~ Local

Global+Local

Reg File
FPU
ALU
IW

MPGdec MPGenc MP3dec

F i g u r e 6: E n e r g y c o n s u m p t i o n (normal ized t o Base) of processors capable of bo th global a n d loca l a d a p t a t i o n . (a)
W i t h o u t DVS, defau l t d e a d l i n e s (h igh slack). (b) W i t h o u t DVS, t i g h t e r d e a d l i n e s (low slack). (c) W i t h DVS, defau l t
d e a d l i n e s (low slack). E a c h se t o f four bars r e p r e s e n t s Base, Global, Local, and Global+Local r e s p e c t i v e l y . T h e dark par t s
in e a c h bar show t h e e n e r g y s p e n t in t h e i n s t r u c t i o n window, ALUs, F P U s , a n d t h e r e g i s t e r file.

r i thm described in Section 4. For each, we evaluate three
combinations of slack and DVS as discussed in Section 5
- no-DVS/default-deadlines (high slack), no-DVS/tighter-
deadlines (low slack), and DVS/default-deadlines (low slack).

Figures 6(a), 6(b), and 6(c) show the total energy normal-
ized to Base for each application and architecture for the
different slack and DVS combinations. Each bar also shows
the part of the total energy consumed by the instruction
window, ALUs, FPUs, and the register file. Table 6 shows
the mean relative savings in energy between different ar-
chitecture pairs. For detailed analysis, Table 7 also shows
the mean number of active functional units and the instruc-
tion window size selected by Global, Local, and Global+Local
for the high slack case and one low slack case (DVS/default-
deadlines). Each application missed less than 5% of its dead-
lines on all systems. The average IPC degradation for Local
(i.e., when both local adapta t ions are combined) without
DVS is 7% (maximum 11%).

We divide the results into the case with high slack (Sec-
tion 6.3.1) and the cases with low slack (Section 6.3.2) fol-
lowed by a summary and discussion (Section 6.3.3).

6.3.1 Results with High Slack
Our discussion of the high slack case below follows the ar-
chitecture pairs listed in Table 6.

G l o b a l vs. B a s e : Global shows high energy savings over

S a v i n g s f r o m R e l a t i v e H i g h Slack
No-DVS t o

L o w Slack
No-DVS DVS

21%
24%

8% 3%
28%
8%
5%

Global Base 44% 21%
Local Base 29% 29%
Local Global -26%
Global+Local Base 46% 34%
Global+Local Global 4% 13%
Global+Local Local 24% 5%

T a b l e 6: M e a n r e l a t i v e e n e r g y s a v i n g s for di f ferent ar-
c h i t e c t u r e pa irs an d D V S / s l a c k c o m b i n a t i o n s .

Base, as already known from previous work [19].

L o c a l v s . B a s e : Local also shows significant savings (29%
average). Comparing with the results from Sections 6.1
and 6.2, the benefits from the two local adaptat ions are al-
most additive.

L o c a l vs. G l o b a l : Wi th high slack, Global shows signifi-
cant energy savings over Local for all applications (average of
21%). This is because Global has the abili ty to exploit slack,
sacrificing performance to save energy. Given the large slack,
Global selects the simpler (lower power and IPC) architec-
ture configurations for all applications, as seen in Table 7.
Local, on the other hand, a t tempts to maintain performance
despite the existence of so much slack. One could poten-
tially design local algorithms that t rade off performance for
energy savings, but that is beyond the scope of this paper.

153

W i t h o u t D V S

App.

GSMdec
GSMenc
G728dec
G728enc
H263dec
H263enc
MPGdec
MPGenc
MP3dec

Global Local Global+Local
I A F I A F I A F

16 2.0 1.0 117 4.4 0.0 31 2.0 0.0
32 2.0 1.0 83 4.7 0.0 16 1.8 0.0
16 2.0 1.0 99 2.8 1.4 16 1.7 1.0
16 2.0 1.0 83 2.3 1.8 16 1.5 1.0
16 2.0 .1.0 56 4.4 0.0 16 2.0 0.0
16 2.0 1.0 50 3.6 0.4 16 2.4 0.3
16 2.0 1.0 62 4.9 0.0 16 2.0 0.0
16 2.0 1.0 43 3.5 0.1 16 1.9 0.1
16 2.0 1.0 92 3.7 1.1' 16 1.9 0.8

App.

GSMdec
GSMenc
G728dec
G728cnc
H263dec
H263enc
MPGdec
MPGenc
MP3dec

T a b l e 7:

W i t h D V S

Global Local Global+Local
I A F I A F I A F

128 6.0 1.0 117 4.4 0.0 121 4.5 0.1
128 6.0 1.0 83 4.7 0.0 86 4.8 0.0
88 3.8 1.6 100 3.1 1.3 66 2.5 1.1
80 2.5 2.5 81 2.2 1.8 58 2.0 1.7
48 4.0 1.0 56 4.4 0.0 40 4.2 0.0 i
96 4.0 2.0 51 3.6 0.5 47 3.4 0.4!
64 6.0 1.0 63 4.9 0.0 50 4.9 0.0
48 4.1 1.1 43 3.5 0.1 31 3.3 0.1
128 4.0 2.0 92 3.7 1.1 93 3.7 1.1

M e a n i n s t r u c t i o n w i n d o w s i z e (I) , a c t i v e A L U s

(A), a n d a c t i v e F P U s (F) s e l e c t e d by Global, Local, a n d

Global+Local with t h e d e f a u l t d e a d l i n e s .

G l o b a l + L o c a l vs . o t h e r s : Global +Local provides the same
or better energy savings than the individual global or local
approaches, although most of the benefit comes from global
adaptation. The additional benefit of Global+Local over Lo-
cal is a significant 24% on average, for the same reason that
Global alone is superior to Local alone. The additional ben-
efit over Global is a modest 4% on average (maximum of
7%). Global+Local sees some benefit over Global because it
is able to shut down resources that Global cannot, as seen
in Table 7. These include the last FP unit and the second
to last ALU (all configurations available for global adapta-
tion had at least 2 ALUs). The absolute gains are modest,
however, because the simple architectures picked by Global
offer limited opportunities for further adaptation by Local.
These gains might be further reduced if Global was given an
even larger set of configurations from which to choose.

6.3.2 Results with Low Slack
With low slack, again, both the pure global and pure local
adaptations show high energy savings versus Base (>20%
average without and with DVS). As is expected, the savings
of Global are considerably lower than for the high slack case,
since there is less slack for it to exploit. Local is not sensitive
to slack.

L o c a l v s . G l o b a l : With low slack, Local shows higher en-
ergy savings than Global in most cases. While the max-
imum savings is high (20%), the average benefit of Local
over Global is a modest 8% without DVS and a small 3%
with DVS. Compared to the high slack case, the lower slack
reduces Global's advantage over Local. With low slack and
no DVS, Global must, in many cases, choose a fairly aggres-
sive architecture in order to make the deadline. With DVS,
Global also frequently picks fairly aggressive architectures

(as shown in Table 7). As explained in more detail in [19],
aggressive architectures give high enough IPCs for many ap-
plications so that it is most energy efficient to choose them
and exploit most of the slack through DVS. Since Local can
exploit intra-frame variability, it is able to deactivate more
resources than Global for parts of the execution, without
losing much performance. As a result, with low slack, Local
does better than Global for all but one application without
DVS and for six of the nine applications with DVS.

Global saves more energy than Local in some cases for two
reasons. First, unlike Local, Global shuts down part of the
register file corresponding to instruction window adapta-
tion. Second, Global still exploits slack in some cases. For
MPGdec without DVS, sufficient slack remains for Global
to choose a simpler architecture. For H263dec with DVS,
Global finds that an architecture less aggressiw~ than Local's
average choice is most energy efficient, and exploits some
slack through architecture adaptation rather than DVS.

G l o b a l + L o c a l vs. o t h e r s : Global+Local again saves al-
most the same or more energy than either Global or Local
alone because it enjoys the benefits of both types of adap-
tation. It saves 13% and 8% on average over Global without
and with DVS respectively (vs. 4% with high slack). As
explained earlier, the global algorithm picks fairly aggres-
sive architectures, leaving more room for local adaptation.
Global+Local saves 5% on average over Local for both sys-
tems (maximum 16% with no DVS and 14% with DVS).
Thus, with low slack, local adaptations provide (modestly)
higher benefit over global adaptations in the combined al-
gorithm in all but a few cases.

6.3.3 Summary and Discussion
Overall, our proposed combination of global and local ar-
chitecture adaptation works best across all configurations
studied. The relative benefits of global adaptation are higher
when the base architecture exhibits higher slack.

With DVS, for our systems and applications, the base ar-
chitecture exhibited low slack and the integrated algorithm
showed (modestly) higher benefits from local adaptations
than from global adaptations on average. Nevertheless, for
some applications, global adaptation showed higher bene-
fit even with DVS, by deactivating the register file and ex-
ploiting some slack through architecture adaptation. For a
system that already implements global DVS ~.nd local archi-
tecture adaptation, adding a global architecture adaptat ion
algorithm (in software) does not introduce much additional
hardware complexity. Therefore, with DVS, the integrated
global and local algorithm appears a good design choice.

Without DVS, with high slack, for our applications and sys-
tems, global architecture adaptation clearly provides most
of the benefits. However, when there is little slack in the
system, local architecture adaptat ion becomes more benefi-
cial, outperforming global adaptat ion (sometimes quite sig-
nificantly) in all but one case. Given that t:he amount of
slack available is most likely a dynamic quantity (depen-
dent on the total load on the system) and not]predictable at
design time, again, the integrated global and local architec-
ture adaptation algorithm would be the best implementation
choice for systems without DVS.

154

7. CONCLUSIONS
Hardware adap ta t ion , including DVS and arch i tec ture adap-
ta t ion , has been shown to be effective in saving energy for
rea l - t ime mul t imedia appl icat ions. Previously, DVS and ar-
ch i tec ture adap t a t i on have been combined for rea l - t ime mul-
t imed ia appl ica t ions wi th a control a lgor i thm opera t ing at a
global granular i ty in b o t h a spat ia l sense (i.e., all resources
a d a p t e d together) and a t e m p o r a l sense (i.e., adap t a t i on
occurs once per frame). T h a t a lgor i thm took advantage of
c o m p u t a t i o n slack at the end of an appl ica t ion f rame to slow
the processor down to save energy.

This paper considers spat ia l ly and t empora l ly local archi-
t ec tu re adap t a t i on and i ts in tegra t ion wi th global adap ta -
t ion. W i t h local adap ta t ion , a sepa ra te a lgor i thm controls
each resource (or small group of resources) . I t a t t e m p t s to
save energy while ma in ta in ing pe r fo rmance by deac t iva t ing
under-ut i l ized c o m p o n e n t s periodicial ly wi th in a frame. We
explore adap t ing the size of t he ins t ruc t ion window and the
num ber of act ive funct ional uni ts (and associa ted instruc-
t ion issue width) .

In our first set of cont r ibut ions , we evaluate previous local
adap t a t i on control a lgor i thms originally p roposed for non-
rea l - t ime appl icat ions, and also p ropose some new local al-
gor i thms. We find t h a t local a rch i tec ture a d a p t a t i o n is effec-
t ive for real - t ime mul t imedia appl ica t ions wi thou t and wi th
DVS. All a lgor i thms evaluated provide modes t to significant
energy benefi ts wi thou t much reduc t ion in per formance , and
the new a lgor i thms are margina l ly be t t e r t h a n the bes t pre-
viously proposed a lgor i thms.

In our second set of cont r ibut ions , we compare pure global,
pure local, and in tegra ted global and local a rch i tec ture adap-
t a t ion a lgor i thms, bo th wi thou t and wi th global DVS. The
combina t ion of global and local a d a p t a t i o n exploits b o t h
c o m p u t a t i o n slack at the f rame granular i ty and variabil i ty in
resource ut i l izat ion wi th in a frame. The combina t ion there-
fore works bes t across all configurat ions s tudied. The source
of the major i ty of the benef i ts in the combina t ion varies de-
pend ing on the c o m p u t a t i o n slack and DVS suppor t .

There are several avenues of fu ture work. We would like
to explore the remain ing par t of the design space identified
here for adap t a t i on control a lgor i thms. In par t icular , spa-
t ially global bu t t empora l ly local a rch i tec ture adap t a t i on is
promising. This would exploit b o t h in ter - f rame and intra-
f rame execut ion variability, p e r h a p s obvia t ing the need for
two types Of control a lgor i thms and in tegra t ing local DVS.
However, it requires a m e t h o d to predic t execut ion t ime and
energy impac t of adap t a t i ons and their mutua l in terac t ion
over shor t t ime intervals (hundreds of cycles). We would
also like to explore the in terac t ion among mult iple applica-
t ions running on the sys tem and the rea l - t ime scheduler as
well as adap t a t i ons in o ther pa r t s of the sys tem.

8. REFERENCES
[1] S. V. Adve et al. The Illinois GRACE Project: Global Resource

Adaptation through CoopEration. In the Workshop on
Self-Healing, Adaptive, and sel f-MANaged Systems
(SHA MAN) , 2002.

[2] D. H. Albonesi. Selective Cache Ways: On-Demand Cache
Resource Allocation. In Proc. of the 32nd Annual Intl. Syrup.
on Microarchitecture, 1999.

]3] R. I. Bahar and S. Manne. Power and Energy Reduction Via

Pipeline Balancing. In Proc. of the 28th Annual Intl. Syrup.
on Comp. Architecture, 2001.

[4] D. Brooks and M. Martonosi. Dynamically Exploiting Narrow
Width Operands to Improve Processor Power and Performance.
In Proc. of the 5th Intl. Syrup. on High-Performance Comp.
Architecture, 1999.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations. In Proc. of the 27th Annual Intl. Syrup. on
Comp. Architecture, 2000.

[6] A. Buyuktosunoglu et al. An Adaptive Issue Queue for
Reduced Power at High Performance. In Proc. of the
Workshop on Power-Aware Computer Systems, 2000.

[7] T. M. Conte et al. Challenges to Combining General-Purpose
and Multimedia Processors. I E E E Computer, December 1997.

[8] K. Diefendorff and P. K. Dubey. How Multimedia Workloads
Will Change Processor Design. I E E E Computer, September
1997.

[9] S. Dropsho et al. Integrating Adaptive On-Chip Storage
Structures for Reduced Dynamic Power. In Proe. of the Intl.
Conf. on Parallel Architectures and Compilat ion Techniques,
2002.

[10] B. Fields, S. Rubin, and R. Bodfk. Focusing Processor Policies
via Critical-Path Prediction. In Proc. of the 28th Annual Intl.
Syrup. on Comp. Architecture, 2001.

[11] D. Folegnani and A. Gonzhlez. Energy-Efficient Issue Logic. In
Proe. of the ~8th Annual Intl. Syrup. on Comp. Architecture,
2001.

[12] S. Ghiasi, J. Casmira, and D. Grunwald. Using IPC Variation
in Workloads with Externally Specified Rates to Reduce Power
Consumption. In Proc. of the Workshop on
Complexity-Effective Design, 2000.

[13] K. Govil, E. Chan, and H. Wasserman. Comparing Algorithms
for Dynamic Speed-Setting of a Low-Power CPU. In Proc. of
the 1st Intl. Conf. on Mobile Computing and Networking,
1995.

[14} T. R. Halfhill. Transmeta Breaks x86 Low-Power Barrier.
Microprocessor Report, February 2000.

[15] M. Huang, J. Renau, S.-M. Yoo, and J. Torrellas. A Framework
for Dynamic Energy Efficiency and Temperature Management.
In Proc. of the 33rd Annual Intl. Syrup. on Mieroarchitecture,
2000.

[16] M. C. Huang. Managing Processor Adaptat ion for Energy
Reduction and Temperature Control. PhD thesis, University of
Illinois at Urbana-Champaign, 2002.

[17] C. J. Hughes et al. Variability in the Execution of Multimedia
Applications and Implications for Architecture. In Proe. of the
P8th Annual Intl. Syrup. on Comp. Architecture, 2001.

[18] C. J. Hughes, V. S. Pal, P. Ranganathan, and S. V. Adve.
RSIM: Simulating Shared-Memory Multiprocessors with ILP
Processors. IEEE Computer, February 2002.

[19] C. J. Hughes, J. Srinivasan, and S. V. Adve. Saving Energy
with Architectural and Frequency Adaptations for Multimedia
Applications. In Proc. of the 34th Annual Intl. Syrup. on
Microarchitecture, 2001.

[20] Intel XScale Microarchitecture.
ht t p: //developer .int el.corn/design/intelxscale/b enchmarks.ht m

[21] C. E. Kozyrakis and D. Patterson. A New Direction for
Computer Architecture Research. I E E E Computer, November
1998.

[22] S. Manne, A. Klauser, and D. Grunwald. Pipeline Gating:
Speculation Control for Energy Reduction. In Proe. of the 25th
Annual Intl. Syrup. on Comp. Architecture, 1998.

[23] R. Maro, Y. Bai, and R. Bahar. Dynamically Reeonfiguring
Processor Resources to Reduce Power Consumption in
High-Performance Processors. In Proc. of the Workshop on
Power-Aware Computer Systems, 2000.

[24] V. S. Pai, P. Ranganathan, S. V. Adve, and T. Harton. An
Evaluation of Memory Consistency Models for SharedZMemory
Systems with ILP Processors. In Proc. of the 7th Intl. Conf.
on Architectural Support for Programming Languages and
Operating Systems, 1996.

[25] T. Pering, T. Burd, and R. Brodersen. Voltage Scheduling in
the IpARM Microprocessor System. In Proc. of the Intl. Syrup.
on Low Power Electronics and Design, 2000.

[26] D. Ponomarev, G. Kuck, and K. Chose. Reducing Power
Requirements of Instruction Scheduling Through Dynamic
Allocation of Multiple Datapath Resources. In Proc. of the
34th Annual Intl. Syrup. on Microarchitecture, 2001.

[27] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling
for Reduced CPU Energy. In Proc. of the 1st Syrup. on
Operating Systems Design and Implementat ion, 1994.

155

