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In this article, we introduce a new placement problem motivated by the Dynamically Reconfig-
urable FPGA (DRFPGA) architectures. Unlike traditional placement, the problem for DRFPGAs
must consider the precedence constraints among logic components. For the placement, we develop
an effective metric that can consider wirelength, register requirement, and power consumption
simultaneously. With the considerations of the new metric and the precedence constraints, we then
present a three-stage scheme of partitioning, initial placement generation, and placement refine-
ment to solve the new placement problem. Experimental results show that our placement scheme
with the new metric achieves respective improvements of 17.2, 27.0, and 35.9% in wirelength,
the number of registers, and power consumption requirements, compared with the list scheduling
method.
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1. INTRODUCTION

Improving logic efficiency by time-sharing, Dynamically Reconfigurable FPGAs
(DRFPGAs) have gained much attention recently. In a DRFPGA, a virtual large
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Fig. 1. Xilinx dynamically deconfigurable FPGA configuration model.

design is partitioned into multiple stages (or partitions) to share the same
smaller physical device as that occupied by a traditional FPGA. Various ar-
chitectures have been proposed, such as the Xilinx model [Trimberger 1997],
the Dynamically Programmable Gate Array [Brown et al. 1995], and the Virtual
Element Gate Array [Jones and Lewis 1995]. In these models, on-chip SRAM
bits are programmed to record the configuration of each stage. Dynamic recon-
figuration of logic blocks and wire segments can be performed by reading the
on-chip SRAM bits of each configuration in order.

Figure 1 shows the Xilinx DRFPGA configuration model [Trimberger 1997].
The Xilinx DRFPGA emulates a single large design in multiple configurations.
Each configuration can be stored in a configuration memory plane (CMP) which
consists of a two-dimensional array of configuration memory cells (CMCs). In
each microcycle, the SRAM bits of the corresponding configuration are loaded
into the DRFPGA, and the configurable logic blocks (CLBs) are reused to eval-
uate combinational logic. One pass through all microcycles is called a user cy-
cle. The target architecture consists of an array of augmented XC4000E-style
CLBs [Trimberger 1997]. Each CLB includes a set of microregisters (MRs) to
hold the CLB results between configurations. Every CMC of the original FPGA
is packed by eight inactive memory cells. MRs not only store the intermediate
values of combinational logic for use in later microcycles, but also hold latch
values for use in the next user cycle. A microcycle starts with saving all the
CLB results of the previous microcycle in MRs, and then a new configuration is
loaded into the active configuration memory. The loading process is called flash
reconfiguration.

Because the logic and interconnect needed for a circuit are time-multiplexed
on a DRFPGA, the partitioning and placement problems are different from tra-
ditional ones. The major difference is that the execution order of circuit elements
must follow the precedence constraints in the DRFPGAs. The DRFPGA parti-
tioning problem has been studied in the recent literature [Chang and Marek-
Sadowska 1997, 1998; Chao et al. 1999; Liu and Wong 1998; Wu et al. 2001].
In these partitioning algorithms, the major objective is minimizing the cut size
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(MRs) between microcycles or user cycles; nevertheless, the exact number of
MRs needed will be known at the placement stage. (It is possible to refine the
partitioning results in the placement stage.) Moreover, there are some objec-
tives that must be considered in placement, such as wirelength, which cannot
be considered in partitioning. Therefore the placement for DRFPGAs is an im-
portant and valuable problem.

In traditional FPGAs, if we want to implement a circuit, the circuit must be
loaded into a FPGA at the same time. Therefore the major concern in the place-
ment for traditional FPGAs is the total wirelength that will have a great effect
on routing. Due to the reuse of logic and interconnect, the placement problem
for DRFPGAs is quite different from the traditional one. Unlike traditional FP-
GAs, the order of the execution of nodes must satisfy the precedence constraints
in a DRFPGA. As in the statement described in previous paragraphs, we need
some MRs to store the values between microcycles (or user cycles) during a
circuit executed in a DRFPGA. Consequently, the number of MRs used in the
placement is an important consideration for DRFPGAs. We refer to the lifetime
of a node in a DRFPGA as the duration from the stage where the node is as-
signed to the stage when it is last used. The intermediate value of a node must
be stored in an MR during its lifetime. The values of several nodes can be stored
in the same MR if the lifetimes of the nodes do not overlap. In contrast, if there
are two combinational or latch nodes placed in the same position on different
memory planes and their lifetimes overlap, then their results cannot be stored
in the same memory space of an MR. Also, the number of nodes whose lifetimes
overlap in the same position cannot exceed the MR capacity—the MR-capacity
constraint. The traditional FPGA placement problem has been studied to some
degree in the literature [Alexander et al. 1995; Chang et al. 1994; Chen et al.
1995; Lee and Wu 1995; McMurchie and Ebeling 1995; Togawa et al. 1994]. The
previous work applies some metrics to estimate wiring cost (wirelength, delay,
etc.) of a net; the metrics are usually incorporated in popular wiring estimation
schemes such as semiperimeter, Steiner tree, minimum spanning tree, and the
like. Due to the precedence and MR-capacity constraints, however, those met-
rics cannot apply to DRFPGA placement.

In this article we introduce a new placement problem motivated by the
DRFPGA architectures. For the DRFPGA placement, we develop a new met-
ric that can simultaneously consider wirelength, MR usage, and power con-
sumption under the precedence constraints. (The previous works only deal with
wiring cost but not MR usage, power consumption, and precedence constraints.)
With the considerations of the new metric and the precedence constraints, we
then present a three-stage scheme of partitioning, initial placement genera-
tion, and placement refinement to solve the new placement problem for DRF-
PGAs. The first stage partitions a circuit into k subcircuits without violating
the precedence constraint, where k is the number of CMPs in a DRFPGA. The
k-way DRFPGA partitioning method is an extension of the FM [Fidducia and
Mattheyses 1982] balanced bipartitioning. In the partitioning, we reduce the
length of lifetime for each node as much as possible, as the length of lifetime
is closely related to the number of MRs required. The second stage employs
a constructive method to obtain an initial placement; nodes are placed in the
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decreasing order of the percentages of their already placed neighbors. The last
stage applies a simulated annealing approach to improve the initial placement.
Experiments with the benchmark circuits used in Chang and Marek-Sadowska
[1998] show that our placement scheme with the new metric achieves respective
improvements of 17.2, 27.0, and 35.9% in wirelength, the number of registers,
and power consumption requirements, compared to the list scheduling method.

The remainder of this article is organized as follows. Section 2 formulates
the new placement problem. Section 3 presents the new metric for the DRFPGA
placement. Section 4 proposes the three-stage placement algorithm. Section 5
shows the experimental results, and conclusions are given in Section 6.

2. PROBLEM FORMULATION

In this article, all circuits are preprocessed by a lookup table-based (LUTs)
technology mapper [Sentovich and Singh 1992] and thus the circuit components
are composed of lookup tables, latches, and netlists. We represent a circuit by
a directed hypergraph G = (V , E), where V is the set of LUTs and latches and
E is the set of nets. We denote a net e by e = (v1 → 〈v2, v3, . . . , vn〉), where v1 is
the fanout node whose output signal is the input signal to vj (2 ≤ j ≤ n), and
vj (2 ≤ j ≤ n) is the fanin node whose input signal is the output signal from
v1. The set E can be divided into two subsets Ec and E f according to the type
of fanout node. A net e ∈ Ec (E f ) if the fanout node of e is an LUT (latch) node.

For a DRFPGA, a circuit is placed into several CMPs such that the logic in
different CMPs temporally shares the same physical CLBs by setting the CMPs
active in order. To ensure the correct results of a circuit in a user cycle, the nodes
must be evaluated in the proper order. According to the Xilinx architecture, the
following precedence constraints must be satisfied.

— Each LUT node must be placed in a CMP no later than all its output nodes.
— Each latch node must be placed in a CMP no earlier than all its input nodes.

(This ensures that latch input values are calculated before they are stored.)
— Each latch node must be placed in a CMP no earlier than all its output nodes.

(This ensures that all of the nodes use the same value of the latch—the value
of the latch from the previous user cycle.)

The above constraints define a partial temporal ordering on the nodes in the
circuit. Let Pre(v) be the precedence of a node v. For two nodes v and u, we
define Pre(v) ¹ Per(u) if v must be placed no later than u. Let s(v) = i if node v
is assigned to the CMP i. s(v) ≤ s(u) if Pre(v) ¹ P (u). The placement with the
precedence constraint is called precedence-constrained placement (PCP).

Two nodes are said to be related if they are placed in the same CLB of two
different CMPs. The lifetime of a node is the duration from the CMP where it is
assigned to the CMP where it is last used. A node in its lifetime is called a live
node; that is, the data of the node must be stored in an MR for later use. For
the fanout node v1 of a net e = (v1 → 〈v2, v3, . . . , vn〉), and if e ∈ Ec, the lifetime
of v1 is from the CMP s(v1) to the CMP max{s(vj )|2 ≤ j ≤ n}, and if e ∈ E f ,
the lifetime of v1 is from the CMP s(v1) to the last CMP and from the CMP 1
to the CMP max{s(vj )|2 ≤ j ≤ n}, because the output of a latch node is used
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Fig. 2. (a) Because the lifetimes of related nodes v1 and v2 do not overlap, their results can be
stored in the same MR; (b) the lifetimes of related nodes v3 and v4 overlap, so their results must
be stored in different MRs.

in the next user cycle. If there does not exist any net whose fanout node is the
node v1, v1 has no lifetime. It implies that the data of v1 do not have to be stored
for later use. The result of a node must be stored in an MR during its lifetime;
several related nodes can share the same MR if their lifetimes do not overlap,
as shown in Figure 2(a). In other words, the results of two related nodes must
be stored in different MRs if their lifetimes overlap, as shown in Figure 2(b).
Therefore, the lifetimes of nodes affect the number of MRs required.

In Xilinx DRFPGAs, during the reconfiguration stage, first the logic and
interconnect array are updated simultaneously from a configuration mem-
ory plane. Second, it must settle the signals from the microregisters. The
power consumption during reconfiguration and settle signals can be very high
[Trimberger 1997]. Therefore we try to consider power consumption in the PCP.
For two nodes u and v, if Pre(u) ¹ Pre(v) and u and v are placed in the same
CLB of different CMPs, node v can get the result of u immediately from the MR
in its own CLB after flash reconfiguration, for example, the case of nodes v1
and v2 in Figure 3. If Pre(u) ¹ Pre(v) and u and v are placed in different CLBs
of different CMPs, the result of the node u must be passed to the node v by
an extra connection during flash reconfiguration (e.g., the case of nodes v′3 and
v′4 in Figure 3), that is to say, this needs an interconnect and a signal during
reconfiguration and will increase the power consumption of the system. The
nodes v′3 and v′4 are called a power-consumption pair. Considering the power
consumption in the DRFPGA placement, we prefer to place nodes in the same
CLB of CMPs if they have data dependency.

We use the following notation throughout this article.

— c(u, v): A power-consumption pair for nodes u and v.
— C: The set of all power-consumption pairs in the placement.
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Fig. 3. Placing net (v3 → 〈v4〉) in empty cells, with the other net (v1 → 〈v2〉) being preplaced.
Case 1: v3 and v4 are placed in the same CMP; only the wirelength must be considered in the
metric. Case 2: v′3 and v′4 have wirelength and power consumption penalties, but no wiring and
power-consumption penalties. Case 3: v′′3 and v′′4 have wirelength, memory, and power penalties.

— |C|: The number of power-consumption pairs in C.
— B = (P, M ): P is the set of configuation memory cells (CMCs) and M is the

set of MRs.
— D(B): A DRFPGA, where B is the set of n× n CLBs in the DRFPGA.
— bi, j ∈ B (1 ≤ i, j ≤ n): The CLB at the grid location (i, j ) in D.
— pk,i, j : The CMC at the grid location (i, j ) in CMP k.
— Pk = {pk,i, j |1 ≤ i, j ≤ n}: The set of CMCs in CMP k.
— P = ⋃i∈{1,2,...,r} Pi, where r is the number of stages (CMPs) in the DRFPGA.
— mi, j ∈ M : The set of MRs needed in bi, j .
— |mi, j |: The size of mi, j (i.e., the number of MRs needed in bi, j ).
— pt

k,i, j : An LUT cell in pk,i, j .

— pl
k,i, j : A latch cell in pk,i, j . (Each CMC pk,i, j consists of an LUT cell and a

latch cell.)

The Precedence-Constrained Placement (PCP) problem is defined as follows.

— Instance: A DRFPGA D(B) and a circuit graph G(V , N ).
— Problem: Assign each LUT node (latch node) to a unique CMC pt

k,i, j (pl
k,i, j ),

where 1 ≤ k ≤ r and 1 ≤ i, j ≤ n so that

1. the total wirelength,
2. max{|mi, j ||1 ≤ i, j ≤ n}, and
3. |C|
are simultaneously minimized, and for any nodes v1 and v2, s(v1) ≤ s(v2) if
Pre(v1) ¹ Pre(v2).

The first objective considers wirelength. Unlike the traditional placement
problem, the estimation of the wirelengths in the PCP must consider two cases.
One is that all nodes of a net are assigned to the same CMP. In this case, the
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wirelength is estimated by the geometric (Manhattan) distance of the net, the
same as the traditional measurement. The other is that the nodes of a net
are assigned to different CMPs. For this case, we must project all nodes to the
same CMP and then estimate the wirelength as in the previous case. The second
objective tries to minimize max{|mi, j ||1 ≤ i, j ≤ n}, facilitating the design to fit
into a CLB with fewer MRs. Note that the MRs in the CLBs of a DRFPGA are
all identical. The third objective is intended to minimize power consumption.

3. THE EFFECTIVE METRIC FOR THE PCP

In this article, we are primarily concerned with the problem of finding an
effective metric to guide the low-power precedence-constrained placement. By
effective, we mean one that can simultaneously minimize wirelength, MR count,
and power consumption for the problem being considered.

In PCP, to achieve good performance, the metric must consider these issues:
(1) wirelength, (2) microregister requirement, and (3) power consumption. The
metric presented in this article is defined as follows. Let x(e) be the placement
of a net e that satisfies the precedence constraints. The cost for x(e), 8(x(e)), is
given by

8(x(e)) = αw(x(e))+ βh(x(e))+ γ o(x(e)), (1)

where w(x(e)), h(x(e)), and o(x(e)) represent the respective cost functions for
wirelength, MR count, and power consumption, and α, β, and γ are user-
specified parameters. Here, α+β+γ = 1 and α, β, γ ≥ 0. Example 1 illustrates
several cases of a placement of a two-terminal net and estimates their cost by
our metric.

Example 1. In the example shown in Figure 3, we assume that the net
(v1 → 〈v2〉) has been preplaced and |m3,2| is the largest among |mi, j | (1 ≤ i, j ≤
n) presently. Assuming α = β = γ = 1

3 , we consider the three cases of the
placement for net e = (v3 → 〈v4〉). In the first case, v3 is placed in p2,2,2 and
v4 is placed in p2,3,3; we get 8(x(e)) = 2

3 because it only spends two units (a
unit represents the distance between two adjacent cells) of wirelength. In the
second case, v3 is placed in p2,3,4 and v4 is placed in p3,2,4; we get 8(x(e)) = 2

3
because it generates a power-consumption pair (v′3, v′4) and wirelength= 1. In
the third case, v3 is placed in p2,3,2 and v4 is placed in p3,2,1; we get 8(x(e)) = 4

3
(wirelength = 2; it contributes one memory space to |m3,2| and generates a
power-consumption pair (v′′3, v′′4)).

4. OUR APPROACH

In this section, we present the algorithm for PCP. We consider partitioning and
placement simultaneously in our method.

Figure 4 shows the framework for our placement algorithm. The first step
is a precedence-constrained partitioning that partitions a circuit into r stages
(associated with the CMPs) and minimizes the length of lifetimes of nodes,
as the lengths of lifetimes affect the number of MRs needed for a DRFPGA.
Moreover, a random initial solution may not satisfy the PCP because it may
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Fig. 4. High-level view of our placement algorithm.

violate precedence constraints. Our partitioning can handle the initialization
of the PCP correctly. Once the partitioning is done, placement is performed for
each CMP. We apply an iterative two-stage algorithm for each CMP i: an initial
constructive method for CMP i followed by a simulated annealing method for
CMPs 1 to i.

4.1 Precedence Constraint Partitioning

In the PCP, we first partition a circuit into r subcircuits and then apply the
precedence-constrained placement algorithm to map each subcircuit to the cor-
responding CMP. In order to reduce the number of the MRs required for a
circuit, we minimize the maximum density of live nodes. In this subsection, we
propose an effective partitioning algorithm to shorten the lifetimes of nodes,
which affect the number of MRs needed directly.

Our algorithm begins with an initial feasible partitioning which is usually
the result of the ASAP and/or ALAP [Hitchcock and Thomas 1983] scheduling
or is produced by using a constructive partitioning method. A node may be
assigned to any CMP if the precedence constraints are not violated.
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Fig. 5. Precedence-constrained partitioning algorithm for minimizing the lifetimes of nodes.

Given an initial partitioning, our algorithm improves the quality of the
partitioning iteratively by selecting a set of tuples with the maximum ac-
cumulative gain, where the tuple is used to record the movement of nodes
and is represented by tuple(node, CMP). tuple(v, i) is selected when the node
v is moved into CMP i. Specifically, in an iteration, we select the tuple(v, i)
which

1. has the maximum gain,
2. satisfies the precedence constraints, and
3. satisfies the balance criterion,

and a tentative move of the corresponding node is made. Then the gains as-
sociated with all neighbors of v are updated. A tuple(v, i) cannot be selected
twice in an iteration. We repeat the selection process described above until
all tuples are selected. In each iteration, all selected tuples and the resulting
gains are recorded in order. The partial sum of the ith tuple is the total gains
of the first i tuples. At the end of an iteration, the corresponding nodes of the
maximum partial sum are moved. We then repeat the above action of an iter-
ation until the maximum partial sum of an iteration is not greater than zero.
This scheme is similar to the algorithm proposed by Fidducia and Mattheyses
[1982]. The overall procedure of our partitioning method is described in
Figure 5.

The gain function in our precedence-constrained partitioning is described in
the following. The goal for the precedence-constrained partitioning is to mini-
mize the maximum size of cut(k), where cut(k) denotes the set of MRs needed
between CMP k and CMP k + 1. If a node vi is moved from CMP j to CMP k,
then only the cut(x), min{ j , k} ≤ x < max{ j , k} may be changed. Therefore, if
node v is moved from CMP j to CMP k, the gain function gv( j , k) is given as
follows.

gv( j , k) = max
min{ j ,k}≤z<max{ j ,k}

{cut(z) ·1v( j , k)}, (2)
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where 1v( j , k) denotes the change of the maximum cut(z), min{ j , k} ≤ z <

max{ j , k}; it is defined by

1v( j , k) = maxmin{ j ,k}≤z<max{ j ,k}{cutv(z)} −
maxmin{ j ,k}≤z<max{ j ,k}{cutv(z)},

where cutv(z) is the size of cut(z) on the condition that v is still in CMP j ,
and cutv̄ is the size of cut(z) on the condition that v is moved from CMP j to
CMP k.

Before computing the gain values, we must check whether the movement of
a node violates the precedence constraints. In each iteration, the gain value is
calculated for each unlocked tuple.

4.2 Placement of Each CMP

After we have partitioned a circuit into r CMPs, a placement algorithm is then
applied to the circuit. Our placement algorithm consists of two stages: the con-
structive method followed by the simulated annealing-based iterative improve-
ment method.

4.2.1 Constructive Placement. To obtain a better initial placement, we
use a constructive algorithm rather than a random one. Given a circuit
G(V , E), we first perform a random placement of all I/O nodes in the circuit,
providing anchor points for the other unplaced nodes. For each unplaced
node v, we define p degree(v) and np degree(v) as follows. p degree(v) is the
number of placed neighbors of v; in contrast, np degree(v) is the number of
unplaced neighbors of v. We set the priority of a node v depending on the ratio
p degree(v)/(p degree + np degree(v)) (called the p ratio). A node with higher
p ratio implies that most of its neighbors are placed; in other words, there is
more precise information while it is placed. The placement ordering of nodes is
done according to the priorities derived from their p ratios. (We call this place-
ment p ratio constructive placement.) For a node v, we place v at the position
associated with the arithmetic mean of all the placed neighbors of v. Due to the
use of the neighborhood information from the placed nodes, our constructive
method for PCPs leads to a superior initial placement for the simulated anneal-
ing method to that produced by a random method; as shown in Figure 6, the
improvement is more significant when the size of the DRFPGAs is increasing.

4.2.2 Simulated-Annealing-Based Iterative Improvement of Placement.
Following the constructive method for PCPs, a simulated annealing-based
method [Kirkpatrick et al. 1983; Sechen and Sangiovanni-Vincentelli 1985]
is applied to improve the initial placement. The simulated annealing method is
one of the most well-developed and widely used iterative techniques for solving
combinatorial optimization problems.

We perturb a feasible solution to another feasible solution by using the
following moves.

M1: Swap two nodes of the same type in a CMP.
M2: Re-place a node in an empty cell with no precedence constraints.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 4, October 2002.
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Fig. 6. Comparison of the wirelengths by using the p ratio constructive placement, LIST, and
randomly generated placement on DRFPGA of different sizes.

Table I. Characteristics of the ISCAS89
Benchmark Circuits in our Experiment

Circuit #LUT #DFF #Nets Depth

s5378 422 162 590 10
s9234 317 135 462 13
s13207 688 453 1121 14
s15850 1056 540 1570 23
s35932 2756 1728 4515 6
s38417 3458 1464 4894 18
s38584 3545 1294 4793 20

M3: Swap two nodes of the same type in the different CMPs with no prece-
dence constraints.

5. EXPERIMENTAL RESULTS

Our algorithm has been implemented in the C++ language on a PC with a
Pentium II 300 microprocessor and 512 MB RAM. We used the same test suite as
Chang and Marek-Sadowska [1998], in which only the larger sequential circuits
of the ISCAS’89 benchmarks were chosen. These circuits were translated by a
technology mapper [Sentovich and Singh 1992] into 4-LUTs. Table I shows
the characteristics of these benchmark circuits. Columns 2 through 4 list the
number of LUT nodes, latch nodes, and nets in the circuits, respectively. In
column 5, depth refers to the number of nodes on the critical path.

In our experiments, we estimated the wirelength by the minimum spanning
tree method, which is very close to the actual routing length. We implemented
the p ratio constructive placement and compared the wirelength with List
and random initialization on DRFPGAs of various sizes. The sizes of an array-
based FPGA range from 70× 70 to 200× 200. As shown in Figure 6, the aver-
age wirelength of the initial placements generated by the p ratio constructive

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 4, October 2002.



Performance-Driven Placement • 639

T
ab

le
II

.
R

es
u

lt
s

fo
r

th
e

E
ig

h
t-

S
ta

ge
D

R
F

P
G

A
P

la
ce

m
en

t

C
ir

cu
it

R
an

do
m

L
is

t
O

u
rs

W
ir

el
en

gt
h

|C
|

M
ax
{|m

i,
j|}

W
ir

el
en

gt
h

|C
|

M
ax
{|m

i,
j|}

W
ir

el
en

gt
h

|C
|

M
ax
{|m

i,
j|}

R
u

n
-T

im
e

(s
)

s5
37

8
18

12
9

10
93

5
56

55
10

55
4

43
15

54
9

3
55

1
s9

23
4

15
54

3
78

8
4

79
53

76
3

4
58

73
53

1
3

84
7

s1
32

07
34

56
2

17
21

6
17

01
4

16
15

5
14

20
8

90
8

3
12

84
s1

58
50

47
94

8
22

15
7

13
36

0
20

60
6

98
73

13
28

4
20

48
s3

59
32

10
52

33
66

57
6

33
85

8
60

73
6

27
40

9
42

67
5

39
97

s3
84

17
12

19
54

86
13

7
58

04
8

80
59

6
49

02
6

53
82

4
38

71
s3

85
84

13
92

73
87

11
8

60
32

5
80

66
6

51
78

4
47

95
5

40
73

T
ot

al
48

26
42

29
79

8
43

19
62

13
27

69
1

37
16

24
88

17
76

0
27

16
67

1

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 4, October 2002.



640 • G. M. Wu et al.

Table III. Minimizing |C|
Circuit Minimal |C|

Wirelength |C| Max{|mi, j |} Run-Time (s)

s5378 4382 354 3 543
s9234 6023 319 3 901
s13207 15178 583 3 1136
s15850 10737 761 4 2109
s35932 29302 2173 5 3876
s38417 52004 3256 5 3836
s38584 53081 3628 5 4184
Total 170707 11074 28 16585

placement is substantially smaller than that generated by List and random
initializations. In addition, the difference is more significant as the sizes of
DRFPGAs increase. List scheduling labels each node with a priority and each
node is greedily placed into a cell in an order according to the priorities. A
placed node influences the priority of its neighbors. For the precedence con-
straints, most of the related research [Chang and Marek-Sadowska 1998, 1997;
Trimberger 1998] applies the list scheduling heuristic with different priority
models. But they only considered the partitioning problem. In our experiment,
we adapted the list scheduling for the PCP. We compared our method with the
list scheduling placement List and the randomly generated placement Random
on the Xilinx DRFPGA model, in which a circuit was placed into 8 CMPs. The
size of the DRFPGA was set to 25 × 25. The results are shown in Table II.
Columns 2 to 4 list the total wirelength of Random, List, and our results (Ours),
respectively. Columns 5 to 7 list the number of power-consumption pairs of
Random, List, and Ours, respectively. Columns 8 to 10 list the maximum size
of microregisters needed between two successive CMPs. The run-times of our
algorithm are shown in Column 11. The last row in Table II reports the av-
erage improvement. The improvement for the List(Random) is calculated by
(List(Random)−Ours)/List(Random) × 100%. Overall, our method reduces the
total wirelength, |C|, and max{|mi, j |} by 17.2 (66.3%), 35.9 (40.4%), and, 27%
(37.2%), respectively, compared with List (Random).

In our next experiment, we try to minimize power-consumption in the PCP.
We increase the rate of the penalty of power consumption. The results are shown
in Table III. The total wirelengths, |C|, max{|mi, j |}, and run-time are shown in
Columns 2 to 5, respectively. The results show that the |C| is reduced 37.6% if
the wirelength is allowed to increase by 4.8%.

6. CONCLUSIONS

In this article, we have formulated a new precedence-constrained placement
problem for Dynamically Reconfigurable FPGAs and presented an efficient al-
gorithm to solve it. We proposed a new metric that can simultaneously consider
wirelength, utilization of microregisters, and power consumption. We also pre-
sented a new constructive algorithm for initial placement. Experimental results
show that, with the new metric, our algorithm outperforms List by a large
margin.
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