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Abstract 
Agent oriented programming (AOP). which is a special kind of object-oriented programming, has recently been discussed from several 

viewpoints. It can be worked out best for open systems and has the potential to become a very attractive technique in the future. In this paper, 
we describe a specification and programming language - -  SPLAW, for BDI agent. The syntax and operational semantics of SPLAW are 
presented, and by means of labeled transition system; the proof theory is also provided. SPLAW has two advantages. First, it is based on 
KQML, the standard inter-agent communication language, which makes it possible for agents written in SPLAW to interoperate with other 
agents obeying KQML. And second, it has the correspondent relationship between its operational semantics and proof theory. Owing to 
these, we hope that SPLAW will provide a feasible solution to bridge the gap between theory and practice. 

Keywords Agent-oriented programming, KQML, inheritance, Agent-based computing 

1 Introduction 

Yoav Shoham has proposed a new programming paradigm [sl (AOP) based on a societal view of computation. The key idea 
is to build computer systems as societies of agents and the central features include (i)agents are reactive, autonomous, 
concurrently executing computer processes; (ii)agents are cognitive systems, programmed in terms of beliefs, goals, and so on; 
(iii)agents are reasoning (internally-motivated) entities, specified in terms of logic; (iv)agents communicate via speech acts. 

Since the presentation of AOP, agent based computing has been hailed as "the new revolution in software ''[6] because 
agent-based systems have advantages in dealing with openness, where components of the system arc not known in advance, can 
change over time, and are highly heterogeneous (in that they are implemented by different people, at different times, using 
different problem solving paradigms). In addition, agent based systems have natural metaphor, can deal with problems such as 
distribution of data, control, expertise or resources and integrate legacy system by adding an agent wrapper, etc.. 

However, the construction of large-scale embedded software systems demands the use of design methodologies and 
modeling techniques that support abstraction, inheritance, modularity, and other mechanisms for reducing complexity and 
preventing error. Unfortunately, so far there has been few such researches in agent-oriented methodologies. If multi-agent 
systems are to become widely accepted as a basis for large-scale applications, adequate agent-oriented methodologies (AOM) 
will be essential tgl. 

Perhaps foremost amongst the methodologies that have been developed for the design, specification, and programming of 
conventional software systems are various Object-oriented approaches. They have achieved a considerable degree of maturity, 
and a large community of software developers familiar with their use now exists. At the same time, the OO design and 
development environment is well supported by diagram editors and visualization tools. 

But OO methodologies are not directly applicable to agent systems--agents are usually significantly more complex than 
typical objects, both in their internal structures and in the behaviors they exhibit. 

In order to construct a complete methodology for AOP, one of the essential things is to develop a programming language 
because agent-oriented language and the implemented architectures of agents decide about the usefulness of AOP in the 
applications. In this paper, we try to center upon the language problem, by providing a computable programming 

language--SPLAW, for BDI agent. 
BDI agents are systems that are situated in a changing environment, receive continuous perceptual input, and take actions 

to affect their environment, all based on their internal mental state. Beliefs, desires, and intentions are the three primary 
attitudes and they capture the informational, motivational, and decision components of an agent, respectively ll't°l. 

SPLAW is a programming language based on a restricted first-order logic. The behavior of an agent is dictated by the 
programs written in SPLAW; the beliefs, desires, and intentions of agents are not explicitly represented as modal formulas, but 
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written in SPLAW. The current state of an agent, which is a model of itself, its environment, and other agents, can be viewed as 
its current belief state; states that an agent wants to bring about based on its external or internal stimuli can be viewed as 
desires; and the adoption of plans to satisfy such stimuli can be viewed as intentions. We just take a simple specification 
language as the execution model of an agent and then ascribe the mental attitudes of beliefs, desires, and intentions from an 
external viewpoint. In our opinion, this method is likely to have a better chance of unifying theory and practice. 

2 T h e  S y n t a x  o f  S P L A W  

An SPLAW agent program is composed of some agent class definitions and a main procedure which creates agent 
instances. The class framework of agent is something like the syntax of Eiffel. The teature part of agent class includes a set of 
base beliefs, a set of static plans, a set of predicate symbols, a set of function symbols, a set of primitive actions and their 
implementations(belief revision E3J, services, etc.). The main difference lies in the representation of plan. 

Definition 2.1 The connectives of SPLAW includes !(for achievement), ?(for test), @(for communication), &(for ^), 
- ( for  --1) and <-(for ~--). Variables are expressed by strings started by capital letter, and constants by strings started by 
lowercase. 'v' is a global quantifier, $ is a blocking mark, and null is used to represent a void return value. Standard first-order 
definitions of terms, formulas, closed formulas, free and bound occurrences of variables are used. 

Definition 2.2 If  b is a predicate symbol, and t=tl . . . . .  tn is a vector of  terms, then b(t) is a belief atom. If  b(t) and c(s) are 
belief atoms, b(t) ^ c(s) and -,b(t) are beliefs. A belief atom or its negation will be referred to as a belief literal. A ground belief 
atom will be called a base belief. The base belief set of an agent is composed of all its base beliefs. 

Definition 2.3 I f g  is a predicate symbol, and t=tl . . . . .  tn is a vector of terms, then !g(t) and ?g(t) are goals, where !g(t) is 
an achievement goal, which states that the agent wants to achieve a state where g(t) is a true belief, and ?g(t) is a test goal, 
which states that the agent wants to test whether the formula g(t) is a true belief or not. 

Definition 2.4 If a is an action symbol and t=tl . . . . .  tn is a vector of terms, then a(t) is an action. 
Definition 2.5 There are three forms of communicative actions in SPLAW: @q(Send, Rec, Self, Eve: cond(t), Retn), which 

expects a reply, @q(Send, Rec, SelfEve:cond(t), true), which expects no reply, and @m(Rec, Id, Retn) for reply messages, where 
Send denotes the message sender, Rec denotes the message receiver, Id denotes the intention identifier of the request, Eve 
denotes the cooperative request, cond(t) is the request constraints and Retn is a return parameter. 

Definition 2.6 If b(t) if a belief atom, !g(t) and ?g(t) are goals, then +b(t), -b(t), +!g(t), -!g(t), +?g(t) and -?g(t) are called 
general triggering events, where +/- denote the addition and deletion of beliefs or goals respectively. 
@q(Send, ld, Eve:cond(t),Retn), @q(Send, Id, Eve:cond(O, true), and @m(Rec, Id, Retn) are called communicative triggering 
events. Triggering events includes general triggering events and communicative triggering events. 

Definition 2.7 Planning statements include simple statements, sequential statements, non-deterministic statements, 
condition statements, and loop statements. Where, beliefs, goals, actions, communicative actions and true (empty) are called 
simple statements; A sequence of simple statements separated by ";" are called sequential statements; non-deterministic 
statements have the form #<cond>:<statements>#...#<cond>:<statements>#other:$; condition statements have the form IF 
<cond>: <statements> FI; and loop statements have the form II<cond>:<statements>ll. 

Definition 2.8 If  e is a triggering event, bl . . . . .  bm are belief literals, and hi . . . . .  hn are planning statements, then e:b~A ... 
A bm ¢-- hi; ... ; hn is a static plan. The expression to the left of  the arrow is referred to as the head of the plan and the 
expression to the right of the arrow is referred as the body of the plan. The expression to the right of  the colon in the head of the 
plan is referred to as the context. For convenience, we shall rewrite an empty body with the expression true. 

Only when the context of a plan is a logical result of the base belief set, can this plan be adopted. 
When an agent receives a request from user, if there is no static plan matching the request, the agent will create a dynamic 

plan to deal with it according to user 's constraints. A dynamic plan has the form: .ttrue : <context> <-<plan body>. 

3 The Semant ics  o f  S P L A W  

3.1 Agent Class Organization and the Inheritance Semantics of SPLAW 
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SPLAW provides the following basic agent classes: BaseAgent, AloneAgent, CommuAgent, SocialAgent, WilIAgent, 
CoopAgent and ActiveAgent. The inheritance relations of these classes are shown in Figure 1. BaseAgent is the supe r class of all 
the other classes, which defines the basic behaviors an SPLAW agent should 
have, but the concrete definitions are deferred to the sub-classes. AloneAgent 
and CommuAgent are the direct sub-classes of BaseAgent. AloneAgent 
provides abstraction for the agents which can execute independently, while 
CommuAgent encapsulates the communicative behaviors and provides 
abstraction for the agents which can communicate with each other. 
SociaIAgent inherits the communicative behaviors of CommuAgent and 
augment with the mechanism for cooperation, which makes the agents of this 
class have the capability to commit to cooperative problem solving. Although 
WillAgent inherits the communicative behaviors of its super class, it cannot 
support teamwork and has no responsibility for commitment to the external 
request. CoopAgent, which can facilitate inter-agent communications, is the 
bridge and coordinator for the agents of ActiveAgent to cooperate. 

BaseAgent, CommuAgent and SocialAgent are all deferred classes and 
transparent to users. Users car/ define the sub-classes of AloneAgent, 
WillAgent, CoopAgent and ActiveAgent, override, or add new behaviors in 
order to implement systems of particular application domains. The frameworks 
of class definitions for BaseAgent and CommuAgent are shown as Figure 2. 

I BaseAgent I SPLAW's intemal 
j ,,.,,,,,,,,,~ Class organisafion 

i , or, ea en* I I  ommu  en* I 
,7 ",, 

I s° i ggent I I wi  gg nt [ 

I II ActiveA ent I 

: i ' i 
~ ' ~ c o n f i  hue generating ~ 1 ~ ' ~  

/¢ according to particular "~ 
application domain or 

di tly 

Figure 1 The class architecture of SPLAW 

deferred CLASS BaseAgent 
feature 

base_Beliefs_set={ ... }; 
Plans_set= { ... }; 
predicate_symbols={ ... /; 
function_symbols={ ... }; 
action_symbols={ ... }; 
Select_Event0 is deferred end; 
Select_Plan0 is deferred end; 
Select_IntentionO is deferred end; 
Belief_Revision0 is deferred end; 
Unifier() is deferred end; 
Exec_Intention0 is deferred end; 
Dynamic_planning0 is deferred end; 

end-CLASS BaseA~ent 

deferred CLASS CommuAgent 
export KQML_Pfimitives 
inherit BaseAgent redefine Dynamic_planning0 ... 
feature 

In_Queue; 
Out_Queue; 
KQML_Translate0 is body end; 
In_Processing0 is body end; 
Out_Processing0 is body end; 

end-Cl~tkSS CommuAgent 

Figure 2 Sample frameworks for the definition of agent class 

The operational semantics of inheritance is given by the plan searching algorithm of the SPLAW interpreter. After 
receiving a service request, the agent tries to match the plan in the interface of its own class, if not succeed, go up to its super 
class along the inheritance chain, and continue until success. 

3.2 Communication Mechanism Between Agents 
Agent communication languages (ACL) are concerned strictly with the communication between agents [51. An ACL (such 

as KQML) is more than a protocol for exchange of data, because an attitude about what is exchanged by the agents is also 
communicated. An ACL may be thought as a communication protocol that supports many message types. 

The coordination protocols such as CORBA ensure that applications can exchange data structures and methods across 
disparate platforms. Although the results of such standards will be useful in the development of software agents, they do not 
provide complete answers to the problems of agent communication. After all, software agents are more than collections of data 
structures and methods on them. For these reasons, in this paper we use KQML as the communication protocol of SPLAW 

agents. 
As mentioned above, the communicative behaviors are encapsulated in class CommuAgent. Two message queues are 

defined for the agents of CommuAgent, i.e., In_Queue and Out_Queue, where Out_Queue is associated with the local 
communicative action set CA, which provide cache for message processing. The message processor (Figure 3) includes threads 
Out_processing and In_processing, which deal with the messages in the queues of OutQueue  and In_Queue respectively. 

The thread In_processing selects a message from In_Queue, translates it from KQML format into internal pattern, gets rid 
of the Rec field, and sends it into the event set E. The thread Out_processing selects messages from Out_Queue one by one, 
replaces the field of Self by the identifier of sending intention's, translates the message into KQML standard format and sends it 
to the transport layer. The transport layer is supported by TCP/IP protocol and transparent to users. 
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3.3 The Operational Semantics of  S P L A W  Agent 

Definition 3.1 An agent is given by a tuple <E,A, CA, B,P, LS~,SpS~>, where E is a set of events, A is a set of  actions, CA 
is a set of  communicative actions, B is a set of  base beliefs, P is a set of  plans, I is a set of  intentions, and the selection function 
Se selects an event from E; Sp selects an option from a set of  applicable plans; S~ selects an intention from the set I. 

Definition 3.2 The set I is composed of all the intentions generated during the run-time of  an agent. Each intention is a 
stack of  partially instantiated plans (where some of  the variables have been instantiated), and denoted by [Pl\P2\...\P.], where Pl 
is the bottom and p, is the top o f  the stack, and the elements o f  the stack are delimited by \. For convenience, the intention 
[+!true:true<-true] is referred to as the true intention and denoted by T. Each intention has a unique identifier, the i ' th intention 

o f  agent Agl is denoted by Token(Agl, i). 
Definition 3.3 The set E is composed of  all the events generated during the run-time of an agent. An event is a tuple <e, 

i>, where e is a triggering event and i is an intention. If  i is T, the event is called an external event, if e has the form as @m or 
@q, the event is called a communicative event, otherwise it is an internal event. 

Definition 3.4 Let S~(E)=0=<d, i> and let p be e : blA ... Abm <- hi; ... ;h,. The plan p is a relevant plan with respect to an 
event 0 iff there exists a most general unifier ~ such that d~ = ecr, cy is called the relevant unifier for D. If  there also exists a 
substitution 0 such that 'v'(blA ... Abm)cr0 is a logical consequence o f  B, p is an applicable plan with respect to a . The 
composition G0 is referred to as the applicable unifier for 0 and 0 is referred to as the solving substitution. 

3.3.1 Intention Generation 
When an agent notices a change in the environment, a request from users, or an external cooperative request, an 

appropriate triggering event is generated and sent into E(shown in figure 3). The selection function S~ selects an event e from 
set E (remove e from E at the same time) to unify with the triggering events o f  the plans in set P, which generates a set of  
applicable plans. The function S o is used to choose one of  these plans. Applying the applicable unifier to the chosen plan yields 
an intention slice, which is used to generate intentions according to the following methods: 

IX[Applicable Unifier 
I-'L-----'I S~ ~ unify I----"-'--I So I lapplyT---------1 7--------] S~ 1"7"- 

[User request H...__.~vent ~_ . . . l l , (~ - . .~Appf icab le~  Chosen ~ Intention ~ Intention ~.~ Int, . 

I 'p'°' ' , l '  i s e t h  

I [Communication I 
I ' ]~Pr~essor? I ] Cornmu action set ~ 

1 ~ Figure 3 Diagram of the interpreter of SPLAW Agent 

Suppose S~(E)=0=<d, i>. 
If  O=<+!g(t), [P1\ ... \ f :  cl/~ ...ACy +-- !g(t);h2; ...;h,]>, let Sp(Oa) = p, where Oa is the set of  all the applicable plans of  0, p 

= +!g(s) : bjA ... Abr, 4 -  kl; ... ;kj. The plan p is intended with respect to an event 0 iff there exists an applicable unifier c such 

that [Pl\ ... \ f : e lA ...A cy ~ !g(t);h2; ...; h, \ ( +.t g(s) : blA ... Abm)Cr ¢--- (kl; ... ;kj)cr ]> ~ L 
I f  i = T, a new intention !new is generated and sent into I: 
(i) In the case of  a test goal ?g(O, i, ew = [Tktrue : true <- ?g(t)]; 
(ii) In the case of  beliefs +b(t) or -b(t), i,~w = [Tktrue : true 4-  +b(t)] or [Tktrue : true 4-  -b(t)]; 
(iii) In the case of  an achievement goal +!g(t), let Sp(O0) = p, where Oa is the set of  all the applicable plans o f  0, p = e : 

blA ... Abm <- hl; ... ;h,. The plan p is intended with respect to 0 iff there exists an applicable unifier cy such that [ T \  (e : bl/x ... 

Abm <" hl; ... ;hn )t7] ~ L 
When d has the form @q(Send, Id, Eve:cond(t),Retn). If  there exists a plan p=e  : b,/x ... Abm <- hi; ... ;hn and an unifier cy 

such that (@q(Send, Id, Eve:cond(t),Retn))o'=(e)cr, the plan p is intended with respect to 0 iff there exists a solving substitution 0 

such that [Tktrue:true~---( @m(Send, Id, Retn))crOCe:blA...Abm<-hl;...;h,)crO] ~ I; otherwise [T~true:true 4-@m(Send, Id, null)] ~ L 
When d has the form @q(Send, Id, Eve: eond(t),true). Let So(Oo) = p, where Oa is all the applicable plans for 0 and p = e : 

blA ... zbm <- hl; ... ;h,. The plan p is intended with respect to 0 iff there exists an applicable unifier ~ such that [Tk (e : blA ... 

Abm <- hi; ... ;hn )cr] ~ L 
When d has the form @m(Id, Retn ), suppose the intention with identifier Id  is [PA . . . \ f ' c lA  ...Acy 4-(Para);h2; ...;h,], if 



retn~'null then Id is replaced by [p~\ ...~.'C1A ...ACy~ e--- (he; ...;h,){Para / retn}]; if retn=null then Id is blocked for ever. 

3 .32  The Execution of Intent ion 

The function Sx selects an intention from set I to execute. The first statement of  the body of the top plan of an intention 
may be a simple statement (i.e. a goal, a belief, etc.) or a complex statement such as conditional statement, etc.. 

Definition 3.5 (simple statement) Suppose Sx(I) = i. When i = [pl\..~.'cl/~...ACy+--/g(t);hz; ...;h, ], the intention i is said 
to have been executed iff <+/g(t), i> EE; When i = [p~k..~'c~A.../wy+--?g(t);hs; ...; h,], i is said to have been executed iff there 
exists a substitution O such that Vg(t)O is a logical consequence of  B and i is replaced by [Pi\ ... \ ( f :  clA ...A ey)O +-he O; ...; h,O 
];  When i = [Pl\..~" ClA ...A cy+-- a(t);hs; ...;h,], i is said to have been executed iff a(t) ~ A, and i is replaced by [pl\..~" 
CiA...ACy~--hz; ...;h,]. In addition, according to the results of  a(t), corresponding external events such as <*b(t),T> is generated 
to revise B, where * ~{+,-}; When i = [Pi\ . . .~z.Ng(t):clA .../~Cy+--true] and Pz-1 = e:blA.../~bx+--/g(s);hs; ...;h~, i is said to have 
been executed iff there exists a substitution 0 such that g(t)O = g(s)O, and i is replaced by [plk..~z-S\ 
(e:blA...Abx)OC--(hs;...;h,)O]; When i = [pl\..'vf' CIA ...Acy+--*b(t);hs; ...;h,], i is said to have been executed iff i is replaced by 
[pl\..~.'ClA ...Aey+-he;...; h,], and B is revised such that *b(t) holds. 

Definition3.6 (communicative statement) Suppose Sz(I) = i. When i = [pi\..~'e~A...ACy+- @q(Send, Rec, Self, 
Eve:cond(t), Retn);hs; ... ;h,], i is said to have been executed iff @q(Send, Rec, Self, Eve:cond(t) ,Retn)ECAi, and i is replaced by 
[Pl\ ...'f.'cl~ ...~ey~--$(Rem);h~; ...;hn], where $ means the intention is blocked; When i = 
[p~\..~'cz~...Acr~-@q(Send, Rec, SelfEve:cond(t),true); h~; ...;h,], i is said to have been executed iff @q(Send, Rec, Self, 
Eve:cond(t),true) ~CAi, and i is replaced by [p~\ ...~'C~A ...ACy+- h~; ...;hn]; When i = [p~\ . .Y f ' c~  ...A%~-@m(Rec, id, retn);h~; 
...;h,], i is said to have been executed iff @m(Rec, id, retn )~CA~, and i is replaced by [p~\ . . . ' f ' c~ ...ACre-he; ...;h,]. 

Definition 3.7 (complex statement) Suppose Sx(I) = i. When i = [p~\..Xf'c~ ...~c~+-IF ?c(O: s~;...;s~ Fl;h~;...;h,], i is 
said to have been executed iff, if ~o  such that (c(t)cr)~B, then i is replaced by [p~\.Af'ct~ ...~Cy<--s~;... ;s~;hz;...;h,], otherwise i 
is replaced by [pz\..Xf'ciA ...ACy4-'-h~; ...;h,]; When i = [p~\..~'c~A ...Acy+--II ?c(t):sK ...;svll ;h2; ...;h,], i is said to have been 
executed iff, if ~cr such that (c(t)cr)eB, then i is replaced by [pz\ . .~. 'c~ ...~%~-s~; ... ;s~ ;I I c(t):Sl; ...; s~ll;h2; ...;h,], otherwise i 

is replaced by [PA ..?f'ct~ ...A cy <-- h2; ...;hn]; When i = [PA ...Xf'c~...Acr ~ - #  c~(t):s~ #...# c~(t):Sk# others:$;h2;...;hn],i said 
to have been executed iff, if ~ such that (Cw(t)cr)eB (l_<w_<k), then i is replaced by [p~\..Xf'c~...m%4--sw;h~; ...;h,], otherwise i 
is replaced by [p~\..~.'CiA ...Acr~-$;h2; ...;h,], i.e., i is blocked for ever. 

The algorithm of the interpreter of SPLAW can be written according to the above operational semantics. 

4 Prooftheory 

Now, based on labeled transition systems, we briefly give its proof theory. 
Definition 4.1 A BDI transition system is a pair <F, ~>, where /" is  a set of  BDI configurations and _~ ~ F x / - ' i s  a binary 

transition relation. 

Definition 4.2 A BDI configuration is a tuple <El, Ai, CAi, Bi, Ii, i>, where Ei ~ E, B i c B, Ai ~ A, CAiECA, Ii c I, and i 
is the label of  the transition. 

Since P is a constant and goals appear as intentions, they are not taken into account. 
Now we can write transition rules that take an agent from one configuration to its subsequent configuration. 

< { .... < +/g(t), T > .... }, Ai, CAi, Bi, I i , i  > 
Rule 4.1 , where p = +!g(s): blA ... Abm +'- hi; ... ;h, e P, St(E) = <+!g(t), 

< {... }, Ai ,CAi,  Bi , l iw{[pcrO ]},i + l > 
T>, g(t)cr = g(s)cr and V(bv~...Abm)0 is a logical consequence of Bi. 

< { .... < co, T > .... }, Ai ,CAi, Bi, I i , i  > 
Rule 4.2 , where S~(E) = <co, T> and co e {b(t), ?g(t)}. 

< {... }, Ai, CAi, Bi, li u {[true: true ~ co ]}, i + I > 

<{  .... <@co, T >  .... } ,A i ,CAi ,B i , I i , i  > 
Rule 4.3 , where St(E) = < @co, T>. If there exists p = e : blA ... ^bm ~- hl; 

< {... }, Ai, ca i ,  Bi, li U {[6\ (11 ,  i + I > 

• .. ;hn ~ P, (@ co)or = (e)cy, and V(baA...Abm)0 is a logical consequence of  Bi, then ~ = per0 and when co =@q(S, Id, Eve: eond(t),  
Retn), 8 = true:true~---(@m(S,Id,Retn))cy0; when co =@q(S, Id, Eve: cond(t) ,true), 8 = T; otherwise 8 = true:true÷--@m(S,Id,null) 

and ~ = T. 
< [ .... <@ m(Id, return), T > .... }, ai ,  CAi, Bi ,{  .... int .... },i > 

Rule4.4 , where St(E) = <@m(Id, return), 
< {... }, Ai, CAi, Bi, { .... [ Pl \..~." cl A...A Cy +-" (he ;. . .;  hn) 0 ] .... },i + 1 > 
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T>, and the intention with identifier Id is int = [p~\ ... \ f :  CiA ...A Cy ~ $(Para);h2; ...; hn ], 0 is substitution {Para/return}. 

< { .... < +.tg(t), j > .... }, Ai,  CAi, Bi,  { .... [ Pl \" "\Pz ] .... }, i > 
Rule 4.5 , where St(E) = <+!g(t), j>, j = [Pl\ ... \P~], Pz = f : 

< {...  }, A i ,  CAi ,  B i , {  . . . .  [ p l k . . \ p z  \pcrO] .... },i + 1 > 

clA ... ACy +- !g(t);h2; ... ;h, ,  p = +!g(s) : blA ... Abm ~-- kl; ... ;kx, g(t)~ = g(s)cr and V(blA...mbm)0 is a logical consequence of  

B i .  

< El,  Ai,  CAi, Bi,  { .... [ P l \ .  ?f" cl A...A Cy ~ .tg(t); h2 ;... ; hn ] .... }, i > 
Rule 4.6 , where Sx(Ii) = [Pl\ ... \Pz], Pz = f"  clA 

< Ei u {< +.tg(t), j >}, Ai,  CAi, Bi, { .... [ Pl \ ' ' \ p z  ] .... },i + 1 > 

... ACy ~ !g(t);h2; ... ;hn. 

< El ,  Ai, CAi, Bi, [ .... [ p l \ .  Af" cl A...A Cy ~-- ?g(t); h2 ;.. .  ; hn ] .... },i > 
Rule 4.7 , where S x ( I i )  = [ p l \  . . .  ~f : Cl A ... 

< El ,  A i ,  CAi, Bi ,  { . . . .  [ Pl \ . .V ."  cl /x . . . /x  Cy)O <---- h2 0; . . .  ; hn 0 ] . . . .  }, i + I > 

ACy <-- ?g(t);h2; ... ;hn], Vg(t)0 is a logical consequence of  Bi. 

< El ,  Ai, CAi, Bi, { .... [ px2..kf: cl r,...A Cy +- a(t); ha ;... ; hn ] .... }, i > 
Rule 4.8 , where Sx(Ii) = [Pl\ ... ~f" cl/x ... 

< Ei,  Ai u {a(t)}, CAi, Bi, { .... [ pl\ . .Xf: el/X...A ey +-- hz ;.. .  ; h,  ] .... }, i + 1 > 

Acy ~ a(t);h2; ... ;h,]. 
< El ,  Ai, CAi, Bi, { .... [ p lk . . k  pz.lX.tg(O: Cl/x...A Cy <-- true] .... }, i > 

Rule 4.9 , where Sx(Ii) = [Pa\ .-. \Pz], P~ = 
< Ei, As, CAi, Bi, { .... [ plk..Xpz_2\( e: bl A...A bx <-'- h2 ;... ; hn)O ] .... },i + 1 > 

!g(t) : c1^ .../XCy <--- true, Pz-1 = e : bl/X .../xbx <--- !g(s);h2; ... ;ha, g(t)0 = g(s)0. 

< E i ,  Ai ,  CAi ,  Bi ,  { . . . .  [ p l  \ . .kf" Cl A . . .A  Cy ~ 0); h2 ; . . .  ; hn ] . . . .  } , i  > 
R u l e  4.10 , w h e r e  S ~ ( I i )  = [ p l \  . . .  ~f : C l A  ... 

< Ei ,A i ,CAi~J{co} ,B i , {  .... [p l \ . . k f ' c lA . . .ACy  +- 6;h2; . . . ;hn]  .... } , i + l  > 

^% ~ 0o;h2; ... ;hn]. If  co = @q(Send,Rec,self, Eve: cond(t) ,  Retn ), 8 = $(Retn); if ~0 = @q(Send,Rec,self, Eve: cond(t) ,  true ) or 

= @m(Rec,id,retn ), 8 = true. 

< Ei ,  Ai,  CAi, Bi , {  . . . .  [ P l \ . . k P  z ] .... },i > /x3cr(c(t)t7 e B) 
Rule 4.11 

< Ei,  Ai,  CAi, Bi, [ .... [ Pl\..~." cl A...A ey +-- sl ;. . .;  Sk ; h2 ;... ; hn ] .... }, i + 1 > 

< El ,  Ai, CAi, Bi ,{  .... [P l  \ . . \ p z ]  .... },i > A ~3tr(c(t)cr ~ B) 

< Ei ,  A i ,  CAi,  B i ,  { . . . .  [ Pl  \ .  .~." Cl A. . .A ey <--" h2 ; . . . ;  hn ] . . . .  },i  + 1 > 

where S ~ ( I i )  = [ p l \  . . .  \ P z ] ,  P~ = f :  C1A ...A Cy ~--- IF ?c(t) : sl; ...; sk FI ;h2; ...; h , .  
The rules of  the other cases can be written accordingly. 
Definition 4.3 A BDI derivation is a finite or infinite sequence of  BDI  configurations, i.e., Yo . . . . .  Yi ..... 
Using the above proof rules we can formally prove certain behavioral properties, such as safety and liveness o f  agent 

system. 

5 An Example--Electronic Market Simulation System 

5.1 Descriptions 
Suppose on user sweet's computer there is a service-performing agent, named aide, who provides services such as email- 

classifying, meeting-scheduling, and pastime-scheduling. By means of  observing and learning from sweet's everyday behaviors, 
aide gets accustomed to sweet's habits little by little and accumulates them in its base belief set. On receiving sweet 's  request, 
aide tries to decompose user's goal into subgoals, generates a dynamic plan, and sends the subgoals which need to cooperate 
with other agents to electronic market agent, named market. After receiving replies, aide recommends appropriate information 

to sweet. 
Now, suppose aide receives a goal from user sweet: "go to see a film on Sunday, and then have a meal nearby". Also 

suppose part o f  the current base belief set of  aide is as follows(separated by ; ): 
custom_dish number(2); leisure(sunday); liketype(cornedy); -liketype(action); 
likeeat(vegetable); -like_eat(spicydish); like_drink(coffee); 

aide decomposes sweet's goal into two subgoals: see a f i lm and have a meal, and then enters the electronic market to negotiate 
with other agents, aide selects an appropriate cinema first and tries to find a restaurant nearby which satisfies sweet. If  no such 
restaurant exists, aide will try to select another cinema and continue the above procedure until success. According to sweet 's  
preferences (likes vegetable, hates spicy, likes comedy, hates action films, etc.) and the constraints (on Sunday, nearby), aide 

generates the dynamic plan DP as follows: 



!true : true <- 
+-satisfied(sweeO; 
II ?satisfied: 

@q(aide, market, Self, select_cinema: true, Cinema ); 
@ q(aide, Cinema, Self, select film:leisure(sunday) & likeO79e(comedy) & ~likeot~e(action), Film ); 
@q(aide, market, Self, select_rest: near(Cinema), Rest ); 
IF ?-(Rest = null): 

?custom dish number(Num); 
+index(Num); 
II ?(index(X) & X > O) : 

@q(aide,Rest, Self, select dish: like_eat(vegetable) & -like_eat(spicy_dish), Dish); 
bookmark(Dish); /*primitive action, write information into bookmark*/ 
IF ?index(Y): +index(Y-I) FI; 

I I ;  
@q(aide, Rest, Self, select_drink: like_drink(coffee), Drink ); 
bookmark(Drink) ; 
+satisfied(sweet); 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 
(lO) 
(11) 
(12) 

(13) 
(14) 
(15) 

FI; 
II ; return. (16) 

market provides facilities for cooperation between the active agents registered in it. Suppose part of market's current base 
belief set and plan set are as follows: 
assistant(aide); cinema_proxy(redstar); cinemaproxy(dawn); restaurant__proxy(mallow); restaurantproxy(nestle); nearby(redstar, nestle); 
nearby(dawn, mallow); -restaurant_full(nestle); cinema..full(dawn); restaurant full(mallow); -cinema_full(redstar); 
@q(Al,ld, select_cinema:true ,X) : -cinema full(X) <- true. (EPlanl) 
@q(A2,1d, select rest:near(X),Y): nearby(X,Y) & -restaurant full(Y) <- @q(market, Y, Self, decrease_room : 1, true). (EPlan2) 

Cinema proxies provide the services of ticket booking according to customs' different requests. Suppose part of the 
cinema proxy redstar's current base belief set and plan set are as follows: 
show_on((~lml,sunday); show_on~lm2,sunday); show_on(~lm3,saturday); 
show_on((~lm4,saturday); is(O~ilm2,comedy); is(film3,comedy); is(~Im4,action); 
@q(A, Id, select film:leisure(Time) & liketype(X) & -liketype(Y),Film): 

show_On(Film, Time) & is(Film, X) & -is(Film, Y) <- take_a_ticket(Film). (CPlanl ) 
According to different users' appetites, restaurant agents are responsible for meal-booking, dish-selecting, etc.. Suppose 

part of nestle's base belief set and plan set are shown as follows: 
vacancy(5); have_drinks(beer); havedrinks(coffee); is(dishl,spicy_dish); is(dish2,vegetable); is(dish3,vegetable); is(dishl,vegetable); 
@q(A2,1d, decrease_room:X, true): vacancy(Y) & Y>X <- !decrease(X). (RPlanl ) 
!decrease(X): vacancy(Y) <- +vacancy(Y-X). (RPlan2) 
@ q(A, ld, select_dish: like_eat(X) & -like_eat(Y), Dish):is(Dish, X) & -is(Dish, Y)<-true. (RPlan3 ) 
@q(A, ld, select drink:likedrink(Drink), Drink): have_drinks(Drink) <-true. (RPlan4) 

5.2 Execut ion  
On starting, aide executes the intention [TDP]. The first statement of the dynamic plan DP is a belief assertion, which is 

used to add a new belief, -satisfied(sweeO, into its belief set. A loop is followed, which is ended until the belief satisfied(sweet) 
is satisfied. In the loop body, Statement(3) is used to ask market to select an appropriate cinema(with no constraints) and 
ascribe it to the parameter Cinema. Statement(4) is used by aide to ask Cinema to select a film(with the constraints: shown on 
Sunday, comedy and not action film) and ascribe it to the parameter Film. Statement(5) is used to ask market to select a 
restaurant which is near the selected cinema. If there exists such restaurant(Rest ~ Null), then a loop is entered to select dishes 
for sweet. From previous experiences, aide learned that sweet was used to select just two dishes, like vegetable and hate spicy. 
Based on these, aide selects two dishes for sweet and records them into bookmark. And voluntarily, aide will try to select a kind 
of drink for sweet. Another belief assertion is followed to end the outer loop. At last, aide returns its bookmark to sweet. 

On receiving the message @q(aide, market, id, select cinema: true, Cinema) from aide, market generates a triggering event 
< @q(aide, id, select_cinema: true, Cinema), T>. Suppose market selects Eplanl to unify with this event, after unification Eplanl 
is changed into @q(aide, id, select cinema: true, Cinema) : -cinema full(Cinema) <-true. An substitution, (Cinema/redstar}, 
which satisfies market's base belief set, is selected and a new intention [Tktrue:true<-@m(aide, id, redstar)\@q(aide, 
id, select cinema:true, redstar): -cinema_full(redstar) <- true] is generated. Since the body of the top plan of this intention is 
true, after execution, the intention is changed into [l~true:true<-@m(aide, id, redstar)]. Now, market will send message 
@m(aide, id, redstar) and return "redstar" to aide. 

On receiving the message @q(aide, market, id, select_rest: near(redstar), Rest ) from aide, a similar procedure is adopted 

by market and the answer "nestle" is returned. 
On receiving the message @q(aide, redstar, id, select film:leisure(sunday) & liketype(comedy) & -liketype(action), Film) 
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from aide, redstar generates a triggering event <@q(aide, id, seIect film: leisure(sunday) & liketype(come@) & 
-liketype(action), Film ), T>. Suppose redstar selects Cplanl to unify with this event. After unification, C~lanl is changed into 
@ q(aide, id, select_jTlm: leisure(sunday)&liketype(comedy)&-liketype(action),Film): show_On( Film, sunday)&is( Film, comedy) 
& -is(Film, action) <- take a ticket(Film). An substitution, {Film/film2}, which satisfies redstar's base belief set, is selected 
and a new intention [Tktrue:true<-@m(aide, id, film2)\@q(aide, id, select film: leisure(sunday)&liketype(comedy)& 
liketype(action),film2): show_On(film2,sunday) & is(film2,comedy) & -is(film2, action) <- take a ticket(O~ilm2)] is generated. 
Since the body of the top plan of this intention is an action take a ticket, the action is added into set A. After execution of this 
action, the intention is changed into [Tqrue:true<-@m(aide, id, film2)]. Now market will send message @m(aide, id, film2) to 
return answer 'film2". 

On receiving the message @q(market, nestle, id, decrease_room: 1,true) from market, nestle generates a triggering event 
< @q(market, id, decrease_room: 1,true), T>. Suppose Rplanl is used to unify with this event, which generates a new intention 
i . . . .  Since the body of the top plan of inew is an achievement goal ~decrease(I), an internal triggering event, +!decrease(I), is 
generated. At this point, nestle will divert its attention by selecting Rplan2 to unify with +~decrease(l) and generate another 
intention inew: The execution of/new' will revise the belief vacancy(5) to vacancy(4). 

For the message @q(aide, nestle, id, select_dish: like_eat(vegetable) & -like_eat(spicydish), Dish) and @q(aide, 
nestle, id, select drink: like_drink(coffee), Drink ), nestle can process in the same way. 

In this example, aide, redstar/dawn, mallow~nestle are the instances of the subclasses of ActiveAgent, market is an 
instance of the subclass of CoopAgent. Service-performing agent aide reflects many features of agents: it can determine how to 
achieve a top level task (autonomy); it can cooperate with other service-performing agent (social ability); if a restaurant is full, 
it will try another one (responsibility); it can voluntarily check with nestle to book a cup of drink (proactiveness). In addition, 
mobility can also be added, where an agent can move from the local computer to the computer where market lies, in order to 
lessen the network cost. 

6 Comparisons  

6.1 Comparisons Between SPLAW and Pure Logic Program 
An agent specification of SPLAW includes a base belief set and a set of plans, which is similar to a logic programming 

specification of facts and rules. However, some of the major differences between a logic program and an agent program arc as 
follows: 

In a pure logic program there is no difference between a goal in the body of a rulc and the head of a rule. In an agent 
program the head consists of a triggering event rather than a goal. This allows the plans to be invoked not only by data-directed 
(using addition/deletion of beliefs), but also goal-directed (using addition/deletion of goal) stimuli. 

Rules in a pure logic program are not context-sensitive as plans of SPLAW. 
Execution of Rules successfully returns a binding/for unbound variables; In addition to this, execution of plans also 

generates a sequence of primitive actions that affect the environment. 
In SPLAW, a goal is called indirectly by generating an event. This gives the agent better real-time control as it can change 

its focus of attention, if needed, by adopting and executing a different intention. Thus, one can view agent programs as multi- 
threaded, intcrruptable logic programs. While, in a logic program, the goal being queried cannot be interrupted. 

6.2 Comparisons with Related Work 
Shoham has provided a new paradigm---agent-oriented programming and designed a simple agent language AGENT0 I81. 

In AGENT0, the mental states of an agent arc composed of belief, capability and commitment. However, the request between 
agents can only include primitive actions, and complex actions must be decomposed into primitive actions and sent one by one, 
which lavishes the computational resources of agent and network bandwidth. PLACA [91 is an extended version of AGENT0. A 
new attitude, intention, is added and the planning capability for top level goals is provided. But it is based on modal logic, no 
proof theory is provided, and it is not clear how the data structures to capture the model theoretical semantics of belief, 
capability, and intention. While, in our work, wc have discussed the correspondence between the proof theory and the 
operational semantics of SPLAW. 

Although AgentSpeak I71 has provided the operational semantics and proof theory of BDI agent, it provides no 
communicative mechanism, and has not provided semantics for non-deterministic statements, conditional statements and loop 
statements. While, in SPLAW, not only the semantics of all kinds of components arc provided, but has two other advantages: (i) 
based on standard inter-agent communication language KQML; and (ii) inheritance facilities. 

Agcnt_K t21 also adopts the standard of KQML, which makes it possible for the Agent_K agents to cooperate with other 
agents that abide by the same standard. But it is also lacks a proof theory and explicit semantics, just as PLACA. 

8 ~ ....... 



CONGOLOG t41 is a single thread programming language, and its semantics is based on situated calculus. While, SPLAW 
is a multi-thread system with the feature of inherence. 

6 C o n c l u s i o n  

In SPLAW, the mental states of agent are expressed by data structures, which avoids the complexity of the proof theory of 
multi-agent logic. The semantics of agent system is described not from model theory, but from operation. The proof theory of 
SPLAW is given by means of labeled transition system, and the correspondence between the operational semantics and its proof 
theory is guaranteed, which makes it possible to unify the theory and practice. 

Although the inheritance of agent has been presented for a long time tSl, it has not been paid much attention. In this paper, 
from social behaviors of agents, we try to organize and define some basic agent classes for SPLAW. By inheriting these basic 
agent classes, or augmenting with new agent classes, user can design their agent systems of different application domains 
smoothly. By this way, the relation between OOP and AOP can be established naturally. 

References 

[ 1 ] Cohen P.R. and Levesque H.J. Intention is choice with commitment. A142(3), 1990. 
[2] Davies W.H. and Edwards P. Agent-K: An Integration of AOP and KQML.The Proceedings of the Third International 

Conference on Information and Knowledge Management ( CIKM'94), ACM Press, November 1994. 
[3] Gardenfors P. and Rott H. Belief Revision. In Gabbay D. M., Hogger C.J. and Robinson J.A., editors, Handbook of 

Logic in Artificial Intelligence and Logic Programming, Volume 4, Epistemic and Temporal Reasoning. Clarendon 
Press, Oxford, 1995, 35-132. 

[4] Lesperance Y., Levisque H.J., Lin F. and Marcu D. Foundations of a Logical Approach to Agent Programming. In 
Wooldridge M., Muller J.P. and Tambe M., editors, Intelligent Agents II --HCAI'95 Workshop (ATAL) Montreal, 
Canada, August 19-20. LNAI 1037, Springer-Verlag, 1996, 331-346. 

[5] Mayfield J., Labrou Y. and Finin T. Evaluation of KQML as an Agent Communication Language. In Wooldridge M., 
Muller J.P. and Tambe M., editors, lntelligent Agents II --HCAI'95 Workshop(ATAL) Montreal, Canada, August 19-20. 
LNAI 1037, Springer-Verlag, 1996, 347-360. 

[6] Ovum Report. Intelligent agent: the new revolution in software. 1994. 
[7] Rao A.S. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In Van de Vide W. and Perram 

J.W., editors, Agents Breaking Away, MAAMAW'96, Eindhoven, The Netherlands, January 1996. LNAI 1038, Springer- 
Verlag, 1996, 42-55. 

[8] Shoham Y. Agent -oriented programming. Artificial Intelligence, 60(1):51-92, 1993. 
[9] Thomas S.R. The PLACA Agent Programming Language. In Wooldridge M. and Jennings N. R., editors, Intelligent 

Agents -- Proceedings of the 1994 Workshop on Agent Theories, Architectures, and Languages (ATAL-94). LNAI 
890,Springer-Verlag, 1995, 355-370. 

[ 10] M. Wooldridge. Coherent Social Action. In Proceedings of the Eleventh European Conference on AI (ECAI-94), 
Amsterdam, The Netherlands, August 1994. 

69 


