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A new recursive algorithm for deriving the layout of parallel multipliers is presented. Based on this 
algorithm, a network for performing multiplications of two’s complement numbers is proposed. The 
network can be implemented in a synchronous or an asynchronous way. If the factors to be multiplied 
have N bits, the area complexity of the network is O(N’) for practical values of N as in the case of 
cellular multipliers. Due to the design approach based on a recursive algorithm, a time complexity 
O(log N) is achieved. 

It is shown how the structure can he pipelined with period complexity O(1) and used for single 
and double precision multiplication. 
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parallel; pipeline; C.5.4 [Computer Systems Organization]: Computer System Implementation- 
VLSI 
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1. INTRODUCTION 

Multipliers are fundamental components of computer arithmetic units and signal 
processing systems. In the last thirty years, the design of parallel multipliers has 
received considerable attention. A fundamental contribution to the design of 
combination or simultaneous multipliers has been given by Wallace [21]. He 
proposed a network of Carry Save Adders (CSA) for adding Partial Products 
(PP) generated by two integer factors represented in binary code with N bits 
each and obtaining in O(log N) time two addends whose sum is equal to the 
product of the factors. A pipelined version of this design has been implemented 
in commercially available machines. Wallace’s design approach was improved by 
Dadda [5] who proposed to use Parallel Counters (PC) instead of CSA in order 
to reduce cost. 

In the late 1960s a number of multiplier designs were proposed based on 
iterative arrays of equal cells [3, 6, 71. These structures have an area complexity 
O(N*) and time complexity O(N). The basic cell of the iterative multipliers was 
a gated full adder. CeZZuZurity was considered an advantage for Large Scale 
Integration even if the time complexity of cellular structures was O(N) rather 
than O(log N). In fact, their layout can be automatically generated by iteratively 
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reproducing the layout of a single cell on a plane. Using the same cells, networks 
for multiplying signed numbers were proposed [ 1,9,17] possessing the same area 
and time complexity. An extended review with interesting comments and contri- 
butions to the design of parallel multipliers can be found in the book by Hwang 
[131- 

In order to increase the speed of iterative multipliers with time complexity 
O(N), some macrocellular structures have also been proposed. A new solution 
for the macrocell designs based on multiplexers has been proposed recently [B]. 
It allows for the reduction of the maximum delay of the multiplier array to a 
fraction of N. 

A recent paper by Cape110 and Steiglitz [4] proposes a VLSI layout for parallel 
multipliers with an area complexity A = O(N*log N) and a time complexity 
T = O(log N). Cape110 and Steiglitz compare the existing solutions on the basis 
of a VLSI Figure of Merit (FM) defined as follows: 

FM = AT2(PE)2 (1) 

where A is the area complexity, T is the time complexity, and PE is the period 
complexity. 

Cape110 and Steiglitz [4] have shown that their multipliers can be pipelined 
with a period complexity PE = O(1) corresponding to a figure of merit: 

FM1 = N210g3N. (2) 

They also derived a Lower Bound of Figure of Merit (1) for parallel multipliers 
(LBFM): 

LBFM = N210g2N (3) 

and reported that this lower bound was not reached by any solution published 
before their paper. 

A new recursive algorithm for the layout generation of parallel multipliers is 
presented in this paper. The area complexity of multipliers obtained by the use 
of such algorithm is O(N*) for values of N not exceeding a threshold greater 
than 100, while the time complexity is O(log N). The implementation of such a 
scheme requires essentially two types of cells: carry-save adders and multiplexers. 
Positive as well as two’s complement numbers can be handled. The structure can 
be pipelined with a period complexity O(1) thus reaching the lower bound (3) of 
FM as defined by (1). 

Section 2 of this paper introduces the basic algorithms, Section 3 discusses 
area and time complexities. Section 4 deals with multiplication of two’s comple- 
ment numbers, an issue that is rarely discussed in the presentations of binary 
multipliers with logarithmic time complexity. Section 5 shows how recur- 
sive multipliers can be pipelined. Application and conclusions are presented in 
Section 6. 

2. THE ALGORITHM FOR RECURSIVE MULTIPLIERS 

In order to introduce the algorithm for designing recursive multipliers, an 
iterative algorithm, denoted Algorithm IM (Iterative Multiplication), for multi- 
plying positive binary integer numbers will be first presented. This algorithm 
leads to the implementation of cellular multipliers with area complexity A = 
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O(N’) and time complexity T = 0 (N). A design for a basic cell of these multipliers 
is proposed in [8]. These cells reduce the time complexity to a fraction of N 
allowing one to design fast multipliers for small values of N. Furthermore, these 
cellular multipliers are implemented by repeating an elementary cellular structure 
which is a big advantage from the point of view of automatic design, manufac- 
turing, and testing. Iterative multipliers, also called array multipliers implemented 
as proposed in [8] are testable [ 1 l] and can be pipelined with a period complexity 
O(l). 

2.1 Algorithm IM 

Let 
N-l 

H = C hi2’ 
i=O 

(4) ‘ 

and 
N-l 

K = jzo b2j (5) 

be positive integer factors and 
ZN-1 

P = H*K = x p,2’ 
P=O 

(6) 

be the product. hi, kj, pr are binary variables. 
Let N = RG with R and G integers. Wording the factors H and K in the basis 

2G one gets: 
R-l R-l 

K = C K,,2”’ H = x H,,,2mC (7) 
n=o m=O 

with H, and K, integers less than 2G and expressible in the binary code with G 
bits. 

Figure 1 shows the structure of the iterative multiplier for the case G = 2 and 
N = 6. Some free inputs that can be used for adding two numbers are: 

N-l N-l 

V= C Ui and W= C Wj. 

i=O j=O 

The input wires where V and W are applied are called additive input wires. 
The structure shown in Figure 1 is thus capable of performing the operation 

Z=H*K+ V+ W, (8) 

which is also the expression computed by the basic cell. Dean [6] has called such 
a structure, a full-multiplier. 

A special cell design for G = 2 is proposed in 181. This cell design is based on 
four 16 input-l output multiplexers where variables affected with the highest 
delay are applied at the select input. In this way the cell has a propagation delay 
equal to the switching time of a multiplexer. 

The area complexity in this case is 

A = O(N/2)2 = O(N2). 
ACM Transactions on Computer Systems, Vol. 3, No. 4, November 1985. 
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Fig. 1. Iterative multiplier. 

Let T,,, be the switching time of a multiplexer; the structure has a total 
multiplication delay of 

Td = NT, = O(N). (10) 

Cells with G > 2 can be designed following the approach proposed in [8] with 
multiplexers having 2G select inputs. This would reduce the multiplication delay 
to (2N/G)T,,,. 

An algorithm has been proposed [9] for using full multipliers of positive 
numbers in order to multiply two’s complement binary fractions with the addition 
of peripheral logic which does not affect the area, time, or period complexity 
expressions. Another algorithm has been proposed by Baugh and Wooley for 
two’s complement binary multiplication [l]. It has been shown that the structure 
of Figure 1 can be adapted to perform multiplications of two’s complement 
numbers with Baugh and Wooley’s algorithm [8]. Testability of two’s complement 
multipliers based on iterative arrays of multiplexers has been investigated [ 111. 
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In order to reduce the time complexity from O(N) to O(log IV) by keeping the 
area complexity approximately O(W), a new structure, called recursiue multiplier 
is proposed in this paper. This structure shares the following features with the 
iterative multiplier proposed in [8]: 

-modular layout, 
-possibility of pipelining and multiplying two’s complement factors, 
-possibility of using the structure for a single double precision multiplier or for 

four single precision multipliers. 

An algorithm for designing recursive multipliers and for generating their layout 
will be given in the following section. 

2.2 Algorithm RM 

The Recursive Multiplication algorithm (RM) will be introduced using the same 
assumptions and notations as in relations (4), (5), (6) and (7) of the IM algorithm. 

For every step of the algorithm, the basic operations performed concurrently 
will be given. A device performing each basic operation will be defined and the 
details on how the device output is represented will be indicated. 

Every output, represented by a capital letter, is supposed to be in pure binary 
code (1 bit per weight). The first step of the algorithm, step 0, consists of 
partitioning the N-bits of K and of H into adjacent G-tuples and computing in 
parallel all the products between K,, (1 5 n s R) and H,,, (1 5 m 5 R). 

This product will be represented as 

f%,n = H,,,K,,2(m+n)G, 

where the superscript 0 remembers that the product is the result of the compu- 
tation performed at step 0. Products P”,,, can all be computed with iterative 
arrays of macrocells based on multiplexers. The delay introduced by these arrays 
can be reduced by allowing the most significant bits of the output to be 2 for 
each weight. 

A layout for such arrays is shown in Figure 2a. There is one output for the 
first G least significant bits. Let L”,,, be the binary number represented by these 
bits. On the contrary, there are two outputs per weight for the G most significant 
bits. These output bits can be considered as forming two binary numbers, 

xrz,, and Mi’,,,, 

where each of these numbers has one bit per weight. 

stepO(Orm<R,Osn<R) 
for every pair (m, n) do 
cobegin 

Compute: P”,,, = H,,,K,z$~+~)~ 

coend 
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Each concurrent operation is performed by a device called a GO-pseudomul- 
tiplier whose input-output characteristics are defined as follows: 

Go-pseudomultiplier (m, n) 
Input: H,,,, K, 

Output: P”,,, = HmKn2(m+n)G 

The output is represented as follows: 

P”,,, = L:,n2(m+n)G + (My,,, + M$,,n)2(m+n+1’G 

- (Lo,,, < 2’, MY,,,, < 2G, M;,,, < 2’). 

Figure 2a shows the layout of a GO-pseudomultiplier with G = 8 using the cells 
whose design has been introduced in [8]. The area complexity of this multiplier 
is 

AG = (G/2)2 (11) 

and the time complexity is 

Tc = GT,,,. (12) 

Figure 2b shows a schematic representation of a GO-pseudomultiplier. 
Each cell in Figure 2a is, a 2 bits full multiplier. in the figure the following 

assumptions have been made: 

i=O 

Hm = i h,+i2i, 
i=O 

LO,,, = i Om+7a+i2i9 
i=O 

i=O 

Mm,n = i hn+n+i+82i* 
i=O 

Step 1 of the algorithm consists in grouping Go-pseudomultipliers into squares 
of four each and in pseudoadding the outputs using carry-save pseudoadders. 
Pseudoadditions are performed on six numbers and produce two numbers whose 
sum is equal to the sum of the initial six. Pseudoaddition is a carry-save operation 
performed in a time that does not depend on the number of bits of the addends. 
The operation is repeated until two numbers whose sum is equal to the product 
are found. 
ACM Transactions on Computer Systems, Vol. 3, No. 4, November 1985. 



A Recursive Algorithm for Binary Multiplication l 301 

Let step y be the generic pseudoaddition step and let step Y be the final step. 

Step Y 
Let: n, = 0, 2y, . . . , q2y, . . . , R - 2y; 

my = 0, 2y, . . . , ~2~, . . . , R - 2y; 
for every (my, ny) do 
cobegin 

coend 

Each concurrent operation is performed by a device called a G,-pseudomul- 
tiplier whose input-output characteristics are defined as follows: 

G,-pseudomultiplier (my, ny) 

input: 

output: P&n, = H~yKn,2(my+n+ 

The output is represented as follows: 

p’,,,n, = (Lymy,ny + L;my,ny)2’“y+“JG + (Mfmx,ny + M~~~,ny)2(mY+nY+2Y)c. (13) 

The computation of two numbers 

P,y = (L1y + M:)22RG 
(14) 

P2’ = (L,y + M922RG, 

such that 

P = P: + Pz’ 

is obtained by performing step #0 and then repeat step y until y = Y such that 

2y = R. (15) 

There will be only one pseudomultiplier Gy-(0, 0) giving two output bits for 
each weight. These outputs can be added using a special adder having O(log N) 
time complexity [ 21. 

Figure 3 shows an example of the execution of a multiplication using the 
algorithm introduced so far. Numbers are represented in decimal code with one 
digit per weight for the sake of simplicity. 

Although the algorithm proposed so far is iterative, a recursive algorithm can 
be introduced for defining a Gy-pseudomultiplier in terms of Gy-pseudomultipliers 
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STEP 1 

STEP 2 

STEP 3 

Fig. 3. Recursive multiplication example. 

(0 % y < Y). The recursive algorithm can be used for the generation of the 
multiplier layout. 

G,-pseudomultiplier (m, n) 
begin 

ify=O then 
compute P”,,, using iterative arrays 

else 
cobegin 

G+l,-pseudomultiplier (m, n); 
G~,-I,-pseudomultiplier (m + 2y-1, IZ); 
G~,-l,-pseudomultiplier (m, n + 2y-*); 
G+lj-pseudomultiplier (m + 2y-1, n + 2y-‘); 

coend 
ACM Transactions on Computer Systems, Vol. 3, No. 4, November 1985. 
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compute P$,, as represented in step y using Pseudo-Adders (PA) and represent 
it by two numbers 

PLI,, = (Ll,,, + L;m,n)2(m+n)G 

%,n = (ML,, + M;m,n)2(m+n+2Y)G 

end 

Notice that the size of a G,-pseudomultiplier (defined as the number of factor 
bits involved in the operation) is 2YG. Notice also that with the notation adopted 
here the index of the recursion is the subscript of G. 

The algorithm of the entire multiplier can be described as 

multiplier (H, K); 
inputs: H, K; 
output: P; 
begin 

y:= y; 
G,-pseudomultiplier (0, 0); 
P:=PIy+P2y; 

end; 

The addition of P? and Pz’ that represents the output P ’ of the Gy-pseudomul- 
tiplier is performed by a Special Adder. The way PY,,, is computed using the 
outputs of 4 GC,-lj-pseudomultipliers is shown in Figure 4. PA stays for Pseudo- 
Adder. Symbols in Figure 4 have been simplified for the sake of clarity. Some 
auxiliary variables OLij and OMij have been introduced (1 5 i, j 5 2) for 
representing pairs of numbers that are the results of partial pseudoadditions 
performed by PAS. 

Notice that here pseudoadditions reduce, with a carry-save operation, six binary 
numbers to two binary numbers whose sum is equal to that of the six addends. 
The details of the operation performed by the PAS in Figure 4 are given in the 
following: 

(o&l + 0~~;1)2(m+n+z~-‘G) 

= (Ml;’ + n/i;;1 + ~7;’ + ~5;’ + ~3;1)2h+n+2~-‘G), 

(OMf;l + OM;;,-’ )2h+n+ZW 

= (L$;l + L;;l + Mf;’ + MC;;,-’ + Mfc;-’ + M;;1)2(m+“+2YG), 

OLf;’ = p-1 lWI,It, (16) 

OLjy = p-1 2m,n* 

O&T' = M~~++zY-~G),(,+~Y-Ic), 

O&f&-;- = MY-l 2(m+2Y-'G),(n+2u-'G). 

All the symbols used in (16) represent pure binary numbers having one bit per 
weight. 

ACM Transactions on Computer Systems, Vol. 3, NO. 4, November 1985. 
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Fig. 5. Recursive multiplier layout. 

The representation of the output PY,,,, according to the scheme proposed by 
step y, is obtained by combining the outputs of Pseudo-Adders as follows: 

2(m+n)L;m n = OLf;l2(m+n) + OL.g-12(m+n+2Y-1G) 
9 

2h+n)Ls,,, = OLs;;l2h+n) + OLg-1 2(m+n+ZY-‘G), 
(17) 

2(m+n+2yG)MS;m n = 0~‘;;12(m+n+2~G) + ojpfg;l2(m+n+2YG+2Y-‘G), 

2(m+n+2yG)M$m n = (,M~;12(m+n+2rG, + OM~~12(m+n+2YG+2r-‘G,. 

Figure 5 shows a schematic layout for a G2-pseudomultiplier; connections 
between macrocells and PAS have been omitted for the sake of simplicity. The 
PAS are represented in Figure 5 by dashed lines. The maximum number of input 
addends in a PA is 6 and wires carrying pairs of addends are already ordered in 
such a way that most of the wires carrying bits of the same weight are adjacent. 

The Special-Adder (SA) layout occupies two sides of the square and is also 
represented by dashed lines. 

The layout. of a PA is shown in Figure 6. Figure 6a shows the structure of the 
Special Adder which uses four Carry-Save Adders for adding six numbers AI, A2, 
B1, B2, C1, C, in order to produce two output O1 and O2 whose sum is equal to 
the sum of the six addends. Figure 6b shows the detailed implementation of the 
CSAs. Each cell is a full adder, the sum and carry outputs are indicated by S and 
C. Capital letters in Figure 6a indicate binary numbers and lower case letters in 
Figure 6b indicate their bits. 

The time complexity of the proposed PA structure is O(3). The area complexity 
of a PA is 0((2’Y-1)G)(a2(Y-1)G + 4)) = O((Y(Z’~-“G)~). Where (Y is the ratio 
between the area complexity of a pair of wires and the side of a Go-pseudomulti- 
plier divided by G. 

ACM Transactions on Computer Systems, Vol. 3, No. 4, November 1985. 
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3. TIME AND AREA COMPLEXITIES 

3.1 Time Complexity 

Assuming that D is the delay introduced by an AND/OR circuit implementing 
the basic functions of a PA and the Special Adder @A), assuming T(G) is the 
delay introduced by a Go-pseudomultiplier, if Y recursions are applied, then the 
multiplication delay is the sum of three contributions due to the special adder, 
the chain of PAS, and the Go-pseudomultipliers. The contribution of the special 
adder is taken from [4]. This global delay can be expressed as follows: 

T = (log 2N + 3Y)D + T(G). (18) 

Logarithms are supposed to be base two unless specified otherwise. 
Using the just described design approach, a cellular Go-pseudomultiplier of G 

bit can be designed with a delay 

T(G) = GD. (1% 

The Go-pseudomultiplier could also be implemented with a Read Only Memory 
(ROM) making T(G) independent of G. In this case the (18) can be rewritten as 

T = (log 2N + 3Y)D + T(ROM). 

A technologically acceptable solution could be a ROM with a number of bits less 
than 212. 

In order to find a relation between Y and N from (14) ones obtains 

Y = flog(N/G)l. W-N 

Where IA1 means A if A is integer or the least integer greater than A. 
In order to keep the time complexity of the structure logarithmic, different 

conditions on G can be imposed. A very simple one is the following: 

G = log N. (21) 

With this assumption the global delay can be expressed as 

T = (log 2N + 3 log(N/logN) + log N)D. 

and the overall time complexity is O(log N). Notice that for low values of N, 
3 log(N/log N) does not introduce a remarkable contribution to the overall delay. 

3.2 Area Complexity 

The area complexity of the recursive multiplier can be computed by inspection 
of Figures 5 and 6 as follows: 

O(A) = O(A(Gy-pseudomultiplier) + A (Special Adder)) 

= O(4A (Gy-l-pseudomultipplier)) 

+ O(N log N) + area of 2((N/2) bit pseudoadders)) 

= 0 (16A ( Go-pseudomultiplier) ) 

+ area of 2((N/2) bit pseudoudders)) 

+ urea of 4( (N/4) bit pseudoudders)) + O(N log N). 
ACM Transactions on Computer Systems, Vol. 3, No. 4, November 1985. 
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In general, there are (N/G)’ Go-pseudomultipliers whose area complexity is 
O(N’). 

There are Y = log(N/log N) levels of pseudoadders. At level Y there are two 
pseudoadders. Each one of them has an area complexity that can be computed 
from the scheme of Figure 6. The horizontal size is proportional to 2aN/2 and 
the vertical size is proportional to N/2. Thus the area complexity at level Y is: 

0(2*2a*+?(a9. 

Given the proposed structure and the cell design proposed in [8], CY is the ratio 
between the area complexity of a wire and the area complexity of a size of a cell 
of the Go-pseudomultiplier. 

At level Y - 1 there are 2’ PAS handling N/22 wires. The area complexity at 
level Y - 1 is 

0(2*2a*+l(a$). 

The overall area complexity of the PAS is 

ApA = O(aN2(~l i)) = 0(aN2). (22) 

Equation (22) does not take into account the space that remains free in Figure 
5. Part of this space is occupied by wires that connect pseudomultipliers with 
pseudoadders. 

Taking this space into account in the evaluation of area complexity represents 
a worst-case situation in which no attempt is made for squeezing Go-pseudomul- 
tipliers and pseudoadders in order to obtain an optimal layout with O(N’) area 
complexity. In the worst case situation, corresponding to the layout of Figure 5, 
it is important to notice that each square containing four G,-pseudomultipliers 
has two strips whose sizes are 

N N 
2Y-Y 

and 2a - CJY-y+l * 

Thus, the overall area complexity can be computed as follows: 

APA 1 1 = 2 1 * 2a * N2 
m 

+ 22 -----++4--- 

2l * 22 22 * 23 
+ . . . 

= 2aN2(1 + 1 + ..-) 

= 2aN’log R. 

In the worst case, the area complexity of the Gy-pseudomultiplier is 

A = O(N’(1 + 2aY)). (23) 

The area complexity of the proposed structure can be assumed to be O(N2) as 
far as 

log(N/log N) s (1/2a). (24) 
ACM Transactions on Computer Systems, Vol. 3, No. 4, November 1985. 
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Following the cell design proposed in 181, each cell of a Go-pseudomultiplier 
contains four 16-input multiplexers and circuits implementing functions of four 
variables. Based on the above considerations it can be assumed that 0 = 0.025 
which makes (24) an acceptable condition for a large class of practical multipliers. 

4. MULTIPLICATION OF TWO’S COMPLEMENT NUMBERS 

From Figure 2a it appears that a Go-pseudomultiplier can accept two additive 
inputs, a G bit number along the vertical inputs lines and a BG-bits number along 
the diagonal lines. In the layout sketched in Figure 5 each square represents a 
Go-pseudomultiplier each one of which can accept two additive inputs. In partic- 
ular, the lowermost row and the leftmost column of Go-pseudomultipliers can 
accept two addends whose bit weights range from 2N-’ to 22N-2. We will show 
how these inputs can be used for multiplying two binary numbers with negative 
numbers represented in the two’s complement notation using the Baugh and 
Wooley [l] algorithm. For the sake of clarity the algorithm will be summarized 
in the following. 

Let now assume that H and K are N bits two’s complement numbers: 

N-Z 

H = -hN-12N-’ + 2 h;2’, 
i=O 

N-2 

K = -kN-12N-1 + C ki2’. 
i=O 

The product P can then be expressed as follows: 

P = PI + Pz + P3 + P4 + P5 + PC, 

p1 = 22N-1, 
-- 

P* = (hN-1 + kN-1 + hN-lkN-1)22N-2, 

N-2 N-2 

Ps = C C hikj2’+‘, 
i=O j=O 

N-2 

P4 = c hrJ-&2N-1+j, 
j=O 

N-2 

Pb = x k+lK2N-1+i, 
i=O 

(25) 

(26) 

PO = (hN-1 + kN-1)2N-‘. 

The term P3 is the main product performed by the Gy-pseudomultiplier. The 
term P4 can be added in the leftmost column of cells of Go-pseudomultipliers by 
introducing an array of cells made by an inverter and a two input AND gate fed 
by hj+, and the complement of hj. In the same way, the term P6 can be added in 
the lowermost row. 

The terms PI, P2 and PC can be created by some small additional hardware 
and added to SA. 
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hr+1 

ho - 

hl - 

h-1 - 

h-3 - 

h-2 - 

Fig. 7. Scheme for two’s complement multiplication. 

Figure 7 shows the details of the modification introduced in the leftmost 
column and the lowermost line of Go-pseudomultipliers in order to make the 
structure capable of multiplying two’s complement numbers. By inspection of 
Figure 7 it is clear that the introduced modifications do not affect the delay nor 
the area complexities of the multiplier as evaluated in Section 3. 

5. PIPELINING 

Let PE be the period of a multiplier, defined as the time between completion of 
successive multiplication instances. If the number of bits of the multiplier and 
the application for which the multiplier is designed are such that the combina- 
tional array introduced so far can complete an operation before a new operation 
is started, then registers can be introduced only for storing the factors and the 
product. In this case, the period complexity of the array would be 

PE = 1. 
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If the application requires a period between the output of two successive results 
to be less than the multiplication time, then the array can be pipelined for 
reducing the idle time of the circuit cells. 

Concepts derived from retiming transformation [14] can be applied to the 
recursive multiplier in order to implement pipelining. Following a recent sugges- 
tion by Hawck et al. [ 121, pipelining can be implemented by first adding registers 
on the inputs and then retiming to minimize the period. 

The degree of pipelining can be defined as the maximum number of cells 
between any pair of registers. For our specific application, there are two types of 
cells, normally, the cells of the Go-pseudomultiplier and the carry-save adders 
used in the Pseudo-Adders and in the Special Adder. 

The most effective level of pipelining depends on many practical and techno- 
logical considerations. A practically acceptable degree of pipelining given the 
actually available adders and multiplexers is four. This implies that registers can 
be placed at the output of the pseudoadders whose structure is proposed in Figure 
6 but there is no need of providing registers inside them. 

Figure 8 shows a rearrangement of the layout shown in Figure 5 where 
Go-pseudomultipliers are represented by squares, pseudoadders are represented 
by rectangles and the wires carrying the bits of each of the binary numbers 
representing a PA’s output are represented by a single arrow. A black arrow 
represents also an array of registers on the corresponding wires. 

As far as G < 4, there is no need of introducing registers inside the Go- 
pseudomultipliers. It suffices to introduce registers at their outputs. From in- 
spection of Figure 8 one can conclude that extra registers are required at the 
output of the PA feeding the SA in order to synchronize the appearance of the 
bits of the same product at the input of SA. The number of extra registers 
required is zero for the rightmost and the lowermost SA and increases by one 
going leftward and upward. These registers are not shown in Figure 8 for the 
sake of simplicity. Pipelining SA has been discussed elsewhere [2] and won’t be 
discussed here. 

Should the Go-pseudomultiplier be pipelined, the same technique proposed by 
Hawck et al. [12] can be used for placing the registers. In any case, a period 
complexity PE = O(1) can be achieved. 

Several VLSI Figures of Merit have been proposed. The ones that have been 
mostly discussed are: 

FM, = AT2(PE)2, 

FM* = A(PE)2, (28) 

FM, = A(PE)Z’, 

Lower bounds for binary multipliers have been derived for each VLSI figure. 
The recursive structure proposed meets these lower bounds with the complex- 

ities: 

A = N2, 

T = log N, (29) 

PE = 1. 
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Fig. 8. Pipelined multiplier layout. 

6. SOME APPLICATIONS OF THE RECURSIVE STRUCTURE 
AND CONCLUSIONS 

Figure 9 shows a layout for a structure based on Gy-pseudomultipliers capable of 
performing a single double-precision multiplication or four single-precision mul- 
tiplications. Binary numbers are represented with a single arrow. 

Si, S2, SB, S, represent single precision outputs, DP represents a double 
precision output. Essentially, four SAs are included for single precision with a 
global contribution to the whole area complexity of AhsA = 4N log N. These 
single-precision SAs are bypassed when double-precision multiplication has to 
be performed. External switches must be added to send the factor bits to the four 
Gy-pseudomultipliers and to select the outputs to be stored. The complexity of 
these switches, which are now shown in Figure 9 for the sake of clarity, is O(N). 
Thus, the overall area complexity remains O(N2) and the time complexity 
remains unchanged. 

Convolution and digital filter circuits can be conceived with the same approach. 
Gy,pseudomultipliers can be used for producing two numbers whose sum is equal 
to the product. Partial additions of products can be performed using pseudoad- 
ders. A single Special Adder can be used for producing the final output as in [lo]. 

Using the same layout shown in Figure 5, a C-order convolution can be 
performed with a latency complexity log CN and an area complexity CN2. A 
similar approach can be taken for digital filter design. 

In conclusion, the recursive design approach introduces some new ideas that 
can be useful for an automatic layout design. Another potentially useful idea 
presented is that of combining multiplexer-based macrocells with pseudoadders. 
Macrocells based on multiplexers allow a fast propagation of changes of variables 
affected by a large delay, by applying them to the address select inputs while 
ACM Transactions on Computer Systems, Vol. 3, No. 4, November 1985. 



A Recursive Algorithm for Binary Multiplication l 313 

Fig. 9. Single and double precision operation. 

using simpler and slower circuits applied at the multiplexer inputs for handling 
factor bits. Paths containing a few macrocells in cascade can be tolerated as far 
as their delay is not the predominant contribution to the overall multiplier delay. 
Efficient pseudoadders with constant delay can be used for adding up the outputs 
of chains of macrocells in order to produce two numbers whose sum is equal to 
the desired product. 

A recursive procedure can systematically place pseudoadders in a regular layout 
of macrocells making the maximum length of a chain of pseudoadders propor- 
tional to log N. 

It is hoped that these ideas will suggest improvements on the layout design of 
circuits other than multipliers. 
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