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Alpine is a file system that supports atomic transactions and is designed to operate as a service on a 
computer network. Alpine’s primary purpose is to store files that represent databases. An important 
secondary goal is to store ordinary files representing documents, program modules, and the like. 

Unlike other file servers described in the literature, Alpine uses a log-based technique to implement 
atomic file update. Another unusual aspect of Alpine is that it performs all communication via a 
general-purpose remote procedure call facility. Both of these decisions have worked out well. This 
paper describes Alpine’s design and implementation, and evaluates the system in light of our 
experience to date. 

Alpine is written in Cedar, a strongly typed modular programming language that includes garbage- 
collected storage. We report on using the Cedar language and programming environment to develop 
Alpine. 
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1. INTRODUCTION 

Alpine is a file system that supports atomic transactions and is designed to 
operate as a service on a computer network. (The system is known within Xerox 
as “Research Alpine,” sometimes abbreviated “RAlpine.” For simplicity, we call 
it “Alpine” in this paper.) 

A comprehensive survey article [26] describes the concept of atomic transac- 
tions and the notion of file service on a computer network. Alpine’s primary 
purpose is to store files that represent databases. An important secondary goal 
is to store ordinary files representing documents, program modules, and the like. 

At the time this paper was written (February 1984), an Alpine server stored 
the personal and shared databases used daily by about 45 people at Xerox PARC. 
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It had been available as a service for ten months. The system did not meet all of 
its goals, and was still being developed. 

Section 2 of this paper describes the situation that led us to build Alpine: we 
needed it in order to continue doing research on databases and applications. 
Section 3 details Alpine’s aspiration level along many dimensions: concurrency, 
reliability, availability, and so forth. We try to justify these goals in terms of the 
motivations described in Section 2. 

Section 4 discusses the two decisions that had the greatest impact on the 
Alpine system: the use of logs instead of shadow pages to implement atomic file 
update, and the use of remote procedure calls instead of streams or message 
passing for communication. It may seem unnatural to discuss an implementation . 
technique, like logging, before the design of Alpine has been described in more 
detail. But both of the decisions highlighted in Section 4 were made very early 
in the design of Alpine and had a large impact on the rest of the design. In 
Section 5 we present that design in detail, explaining the abstractions that a 
programmer sees when using Alpine. Section 6 discusses our implementation of 
these abstractions. 

Section 7 evaluates Alpine. We describe the experience gained from Alpine 
applications, present some information about Alpine’s performance, and give the 
current status and plans for the system. 

Alpine is written in the Cedar language [15], using the Cedar programming 
environment [25, 271. Section 8 describes the effect that using Cedar had on the 
development of Alpine. We defer most discussion of Cedar to Section 8, but a 
few facts will help with the intervening sections. The Cedar language evolved 
from and is similar to Mesa [lo, 201, a programming language featuring interface 
and implementation modules, strong type checking, and inexpensive concurrent 
processes. (Ada is similar to Mesa in many respects.) The Cedar nucleus is a 
basic environment for running Cedar programs. It includes a paged virtual 
memory and a simple file system with a read-write interface. The Cedar nucleus 
does not provide either separate address spaces or a protection boundary between 
the nucleus and its clients; the Cedar language’s type checking makes it very 
unlikely that a nonmalicious program will corrupt another program or the 
nucleus. 

2. MOTIVATION FOR BUILDING ALPINE 

Among the research topics being investigated in Xerox PARC’s Computer Science 
Laboratory was the use of database management systems to support work in 
office applications and programming environments. In our laboratory, all shared 
files, including files that represent databases, were stored on file servers. There- 
fore, research involving shared databases required an appropriate file server. 

Xerox Distributed File System (XDFS), also known as Juniper [14,19], was a 
file server implemented on an Alto and designed to meet this goal. XDFS 
supported random access to files and provided atomic transactions. We con- 
structed a database management system [6] and several applications that used 
XDFS to store shared databases. But the database applications were not usable 
because of problems with XDFS. The basic operations such as creating a 
transaction, reading and writing file pages, and committing a transaction were 
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slow but tolerable. A larger problem was that the server crashed frequently, and 
recovery from any crash took over an hour. The largest problem was that only a 
few dozen randomly distributed file pages could be updated in a single transaction; 
the Alto’s small memory soon filled up with data structures related to the updates. 
At that time, the Cedar programming environment project was well underway 
and XDFS, written in Mesa for the Alto, was an unattractive basis for further 
development. 

We decided to build a new Cedar-based file server, Alpine, to support our 
database research. This server would subsume the functions of XDFS, which 
could be decommissioned. 

Given that we were building a new file server, we considered making it good 
for storing ordinary files as well as databases. IFS (interim file server) stored, 
and still does store, nearly all of our laboratory’s shared files. IFS was written in 
Bcpl for the Alto in 1977 and was designed for transferring entire files to and 
from a personal workstation’s local file system. It does not support random access 
to files, so there was no question of using it to store databases. 

One reason for replacing IFS was that Cedar runs on a personal workstation 
that is several times faster than the Alto, and the time spent waiting for IFS to 
do its work (or retrying when the server was rejecting connections) was increas- 
ingly noticeable. A Cedar-based Alpine server could use the same hardware as 
the fastest Cedar workstation. Also, we planned to include a local file system 
that supported transparent caching of remote files in Cedar [24]. We expected 
that the more convenient access to remote files would increase the load on our 
IFS servers, making the performance mismatch between workstation and server 
even greater. Extensions to IFS in support of transparent file caching would be 
desirable, but IFS would not be easy to modify. 

For these reasons, we hoped that Alpine could replace IFS as well as XDFS. 
This was definitely a secondary goal, because the deficiencies of IFS were not as 
serious as those of XDFS. For instance, by partitioning our laboratory’s files 
between two IFS servers we significantly improved file server response to Cedar 
workstations. 

We would not have considered building Alpine on an Alto. Many of the 
problems with XDFS can be traced back to the Alto’s limitations. IFS seems to 
represent the limit of what we can build on a computer with 16-bit addressing 
for data and no hardware support for virtual memory. Cedar’s large virtual and 
real memory are what allowed Alpine’s goals to be more ambitious than those of 
IFS. 

A typical database system implements a set of access methods as a layer on 
top of a file system and implements transactions as part of each access method. 
Access methods are disk-based data structures like B-trees and hash tables. To 
provide transactions, an access method typically sets locks and writes log records. 
Instead, we have a database system on top of a transaction-based file system. 
Why not go the other route and build a typical database system? There was one 
clear reason not to base a database system on file-level transactions, but there 
were four reasons for hoping that our decomposition would work anyway. 

The clear disadvantage of file-level transactions is lower performance, caused 
by the file system’s inability to use database-level semantics to optimize concur- 
rency control and recovery. The file system locks files or pages; a database system 
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that performs its own concurrency control can set locks on logical units and 
avoid some artificial conflicts that arise from file or page locking. Similarly, the 
file system may have to write more bytes to disk to make a page write recoverable 
than a database system does to make a higher-level operation (such as a B-tree 
insertion recoverable). 

Though this loss of performance would clearly not be acceptable in a system 
designed for high-speed processing of banking transactions, the trade-off may be 
different in the application areas on which we concentrate: office applications 
and programming environments. It seems likely to us that the performance lost 
to extra lock conflicts and extra logging can be recouped by developing new 
access methods, avoiding bottlenecks at the server processor, and escaping from 
the database system when that seems appropriate. 

The first advantage of file-level transactions is that they simplify the client 
database management system that builds on them. Without file-level transac- 
tions, each access method must implement transactions by explicitly setting 
locks, writing recovery information on the disk, and interpreting this information 
in case of both soft and hard failures. The basic atomic action available to the 
access method implementor is to write a single page to disk. 

Simplifying the database system is especially important if the database system 
is itself an object of research. Database systems that were originally designed for 
business applications are now being used in new domains such as office systems 
and computer-aided design. This experience has suggested ways to make database 
systems more useful in these new domains, but the complexity of existing 
database systems has hindered experimentation with them. 

The second advantage of file-level transactions is that they provide the option 
of running the database system on a separate machine from the file system. This 
moves some processing load away from a machine that is accessed by all users of 
a particular database. Most database management systems are processor bound, 
so it is worth considering the option of moving some processing load from the 
file server to the workstation, or from the file server to closely coupled database 
servers. 

Running the database system on a separate machine from the file server may 
also have some drawbacks. It does not minimize communication because it 
transmits file pages rather than database records or user keystrokes and display 
updates. This would certainly be a problem on a low-speed communications 
network. If the database system runs in the workstation it is not secure, and 
hence it can provide ironclad access control only at the level of files, not at the 
finer granularity of database record sets or fields. In our laboratory, neither of 
these factors rules out locating the file system and database system on different 
machines. 

The third advantage of file-level transactions is that they ensure that an 
application can use the same transaction abstraction to deal consistently with 
all data stored in the file system. An application may well wish to manipulate 
data stored both in a raw file and in some database used to index this file, or to 
manipulate data stored in several specialized database systems. It is possible to 
create several database systems that share the same transaction abstraction, but 
it seems more likely to occur if the transaction implementation is shared, as it 
can be with file-level transactions. 
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In addition to these potential advantages, there was also the immediate 
advantage that we already had a database management system that assumed a 
transaction-based file system. We were prepared for the possibility that even 
after replacing XDFS we would find that this architecture would not meet our 
needs. But in that case, not too much effort would have been wasted as long as 
most of the implementation of file-level transactions carried over to the database 
system. 

3. GOALS 

The purpose of Alpine was to support other research projects; Alpine was not an 
end in itself. This had some noticeable effects. It encouraged conservative 
design-where possible, we wished to use proven techniques from the published 
literature and even existing code. (IFS, our model of a successful file server, was 
built using many existing Alto packages.) It also encouraged a decomposition of 
the problem in a way that would allow the system to begin supporting its primary 
clients, database systems, without requiring the entire file system to be complete. 
We have much to learn about system support for databases, and people here who 
write database applications have much to learn about using shared, remote 
databases. The sooner we began to provide database storage service, the sooner 
both parties could get on with the learning. At the same time, Alpine was itself 
a research project and permitted us to try out a set of ideas on what functions 
should be included in a file server and how these functions are best implemented. 

Any builder of a file server must make decisions on a wide variety of issues, 
including concurrency, reliability, availability, file access, distribution of function, 
capacity, access control, and accounting. We set the following design goals for 
Alpine: 

Concurrency and reliability, We had already decided that Alpine should imple- 
ment atomic transactions on files but we wanted it to allow concurrent update 
of a file by several transactions. Alpine’s reliability goal was to support, but not 
require, configurations that survive any single failure of the disk storage medium 
without loss of committed information. 

Availability. Our environment did not require that a file server provide contin- 
uous availability; we could tolerate scheduled downtime during off hours and 
small amounts of downtime due to crashes during working hours. Since storage 
medium failure is rare, we decided that Alpine should be allowed to recover from 
it slowly (in a few hours). Crashes caused by software bugs or transient hardware 
problems may be more frequent, and recovery should therefore be much faster 
(5-10 minutes). It seemed likely to us that setting higher goals for availability 
would have a high cost and little payoff for our clients. 

File access. We wanted Alpine to be efficient at both random and sequential 
access to files. Access at the granularity of pages (fixed-length aligned byte 
sequences) seemed sufficient for databases since it is no great advantage to 
provide access to arbitrary byte sequences. The goal was good average-case 
performance for file access, not the guaranteed real-time response that, for 
instance, a voice file server must provide. 

Distribution of function. We decided that a single transaction should be able to 
include files from several different Alpine servers. This seemed useful and did 
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not present any large implementation problems. Adequate techniques for coor- 
dinating multimachine transactions are understood [ 181, and such transactions 
are supported by commercial systems including IBM’s CICS [ 131 and Tandem’s 
TMF [5]. 

Capacity. Our large IFS servers typically controlled six disk drives. We thought 
that Alpine would need to support at least this many drives. 

Access control. We decided that Alpine should implement a simple access 
control scheme with a read and a modify access list for each file. This is all that 
a file system needs to provide a database management system. A database 
management system that wants to enforce complex controls over access to data 
will need to implement them itself, since they will depend on the format of the 
database. The modify access lists of an Alpine file controlled by such a system 
won’t name people, only database servers, thereby forcing all accesses to the file 
to go through one of the servers. 

Based on our experience with IFS, we think that in our environment, a file 
controlled by a simple database management system or an ordinary file needs 
nothing more elaborate in the way of access control. 

Accounting. We decided that Alpine should enforce quotas over the allocation 
of disk space to various users and projects. After all, IFS provided such quotas, 
and IFS was a usable system. Using the file server to store databases does not 
create new problems in this area. A file server without space quotas is not very 
usable, even in our research environment. 

In addition, we had to consider whether Alpine should be designed to run on a 
Cedar workstation as well as a server. This option is sensible because a Cedar 
workstation is a powerful computer with its own rigid disk. Such a single-disk 
system could not survive all single storage medium failures without a loss of 
committed data, but can still be useful. For instance, running Alpine on a 
workstation could support local database storage and small system configurations 
without a dedicated Alpine server. 

Therefore, it seemed worthwhile to provide the option of running Alpine on a 
workstation as long as the development cost was sufficiently low. To keep the 
development cost down, we continued to optimize the design for the multidisk 
server case, doing nothing extra to adapt it to the single-disk case. We also 
imposed the restriction (already assumed in the server design) that Alpine can 
never be the only file system on a computer; a standard Cedar file system must 
always be present for storing boot files, virtual memory backing files, and such. 
(The two file systems can share a single disk drive using Cedar nucleus facilities 
[24].) As a result, providing the workstation configuration adds almost no code 
to Alpine’s implementation. 

We excluded several things from Alpine, deciding that they were best regarded 
as clients of Alpine rather than part of Alpine itself: 

(a) A directory system (mapping the text name of a file into its internal file 
system name) would be required in order to make Alpine usable, but a directory 
system capable of looking up a few files representing databases would be much 
less work to implement than a directory system that emulates IFS. In the future 
we may aspire to include a distributed directory system with more location 
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transparency and some form of file replication. So there are advantages in 
avoiding a strong coupling between Alpine and its directory system. 

(b) A Pup-FTP server [4] would be a client of the directory system and of 
Alpine. The FTP server was not required for database access, but was necessary 
to replace IFS. 

(c) A system for archiving files from the primary disk storage of a file server 
and for bringing back archived files would be a client of the directory system and 
of Alpine. (IFS does not have an archiving system.) 

4. TWO MAJOR DECISIONS 

Two decisions helped us focus our attention on our primary task-providing 
transactions on files for use by a database system. Using the log technique to 
implement atomic file update allowed us to stay out of the business of building 
the lowest levels of a file system; using RPC allowed us to stay out of the 
communications business. Merely saving implementation effort might have been 
enough to justify these decisions, but in fact, we felt, even then, that they would 
lead to a better-performing system than anything else we could conceive. 

4.1 Implement Atomic File Update Using a Log 

The two techniques most often discussed for implementing transactions on files 
are logs and shadow pages. One published paper [12] argues that logs are better 
than shadow pages for large shared databases, and many database systems use 
logs. On the other hand, a recent survey of transaction-based file servers showed 
that, except for Alpine, they have all chosen the shadow page technique [26]. 
What are the tradeoffs between shadow pages and logs? Why did we choose the 
log technique for the Alpine file server? 

To describe the shadow page technique, we must clarify some terminology 
concerning files in general. A file page is a fixed-length aligned byte sequence in 
a file. If the page size is 512 bytes, then bytes [0 . . 5111 are one page, and bytes 
[512 . . 10231 are the next. A file is named by a file ID and a page within a file is 
named by a page number. A disk sector is a region of a disk that is capable of 
storing the bytes of a page. A file system implements files using disk sectors. 

The file map is a representation of the mapping from the pair [file ID, page 
number] to disk sector. To read a file page, the client presents a pair consisting 
of file ID and page number; the file system uses the file map to find the right 
disk sector and returns its contents. The allocation map gives the free or allocated 
status for every disk sector. 

The shadow page technique updates a file by updating the file map. The file 
system allocates a new sector, writes the new page value there, and modifies the 
file map so that reads go to the new sector rather than to the old one. If the 
client commits the transaction, the change to the file map is made permanent, 
and the old sector is freed. If the client aborts the transaction, then the file map 
is restored to its previous state and the new sector is freed. After a file page has 
been written and before the change is committed, the page exists in two versions: 
the new but uncommitted page and the old page, which must be preserved until 
the update is committed. The old page is called the shadow page [12]. 
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There are many variations of the shadow page idea. They largely concern the 
management of the file map and the allocation map. Various representations are 
possible, and for each there are many different algorithms that can be used for 
updating in a way that is consistent with the outcome of transactions. 

To have transactions on files, it is necessary to keep different versions of pages 
around. In the shadow page technique, the versions are stored as pages that are 
incorporated into files by modifying the file map. In the log technique, they are 
stored in log records and are incorporated into files only by copying. In the log 
technique, a file that allows update under a transaction is represented as the log 
plus a file in an underlying file system that does not implement transactions. 

There are several different log techniques; ours is based on redo logs. A log 
record for page update contains the transaction ID of the transaction making the 
update, the pair [file ID, page number] of the page being updated, and the entire 
new value of the page. The file system does not write the new value of the page 
to the underlying file before the transaction commits. It writes a page update log 
record and makes an entry in a data structure called the volatile file map. The 
volatile file map contains entries that map a pair [file ID, page number] to a log 
record. 

The file system starts a read by consulting the volatile file map. If there’s an 
entry for this [file ID, page number] pair, the file system reads from the log; 
otherwise, it reads from the underlying file. The presence of a volatile file map 
entry indicates that the current value of the page resides in the given log record; 
the absence of an entry indicates that the value is in the underlying file. 

To commit a transaction, the system does not have to make the underlying 
file reflect all the updates made by the transaction. It writes a commit log record 
and then waits only until the commit record and all other log records written by 
the transaction have reached the disk. (Something analogous to the commit 
record is also required in the shadow page technique.) The system then creates a 
background process. For each volatile file map entry made by the transaction the 
process copies the value out of the log and erases the entry. The actual disk write 
to the underlying file is performed asynchronously by the buffer manager, possibly 
long after the transaction’s background process has finished its work. To abort 
a transaction, the system just erases the volatile file map entries it has made. 

The log is represented as a fixed-length file in the underlying file system, 
divided into variable-length log records. To keep things simple, the log records 
are allocated in a queue-like fashion. The storage for the oldest log record can be 
reused when its transaction has committed, the value has been copied out of the 
log, and the actual disk write has been made to the underlying file. (The storage 
can also be reused if the transaction aborts.) The log implementation includes a 
checkpoint process to ensure that disk writes eventually reach the underlying 
file. 

The differences between shadow pages and logs can be illustrated by consid- 
ering a client that writes ten pages to an existing file under a transaction and 
commits the transaction. Compare the I/O activity: 

Ten times, the shadow page implementation allocates a disk sector and writes 
a new page value to it. It also writes enough additional information to disk so 
that the tile and allocation maps can remain correct regardless of whether the 
transaction commits or aborts. At commit time it writes a commit record of some 
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sort onto disk. After the commit, the ten sectors containing the current pages 
are incorporated into the file map and the ten sectors containing the shadow 
pages are freed. 

Ten times, the log implementation writes a log record slightly larger than a 
file page. At commit time, it writes a commit record and forces the log to disk. 
After the commit, it copies data out of the log to buffers associated with the 
underlying file. The buffer manager eventually writes the dirty buffers to disk. 

Which technique is preferable? The shadow page implementation seems to 
require less I/O, because each page is written only once, whereas the log imple- 
mentation writes data first to the log, then later reads data from the log and 
writes to the underlying file. It is true that the shadow page implementation 
must also update the nonvolatile file map, which is not necessary in the log 
implementation, but in theory this should require fewer than ten page writes 
because many data pages are referenced by each file map page. We, nonetheless, 
find the log technique preferable. It has five advantages: three performance 
advantages, one added function it supports, and one implementation advantage. 

The first performance advantage is that the total cost of the I/OS performed 
in the log technique is often less than in shadow pages. Both techniques sooner 
or later write the new page onto a file page on the disk; both have to write 
commit records. There the similarity ends. The shadow page technique must also 
recoverably update the file map and recoverably update the allocation map, both 
to allocate disk sectors and to free them. The log technique must also write log 
records and read them. Though the total number of pages touched by the shadow 
page technique is sometimes smaller, every read and every write is random and 
therefore expensive. In the log technique, the writing is always sequential and 
therefore cheap, and the reading is often buffered and therefore free. 

In the shadow page scheme, the file map is updated by every transaction, 
whereas in the log scheme it’s updated only when the number of pages in a file 
changes. The theory in shadow page technique was that a page of file map would 
cover several pages updated by the same transaction; but in fact, as the files get 
larger this is less and less likely to be true. 

Almost every page update in a shadow page system requires the services of the 
general disk allocator for file pages. In contrast, log records are allocated sequen- 
tially from a bounded file, so allocation involves a pointer increment and test. 
Writes to the log are strictly sequential because we implement the log as a single 
file. Furthermore, the techniques for writing log records efficiently are well 
understood [21]. Reads directed to the log will often find the data in the buffer 
pool because the typical client commits a transaction shortly after performing all 
of its writes. So if all goes well, each page updated by a transaction is written 
once to the log (a sequential I/O) and once to the underlying file (a sequential or 
random I/O depending upon the client’s access pattern). 

The second performance advantage of the log technique is that it allows an 
extent-based file structure, that is, a file structure that attempts to allocate 
logically sequential pages in a physically sequential manner on the disk. An 
extent-based file structure can improve performance in both sequential and 
random access. Sequential access goes faster on contiguous files; the extent-based 
file starts and remains contiguous, while the shadow page file loses its contiguity 
when it is updated. Random access (as well as sequential access) goes faster when 
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the file map is smaller because file reads seldom require extra I/OS to access the 
file map. The file map in an extent-based file system typically needs to represent 
the location of a few long runs of pages; in a shadow page file system it typically 
needs to represent the location of each individual page. Therefore, the file map 
in an extent-based file system is smaller than in a shadow page system. 

The third performance advantage is that the log implementation (at least the 
redo log we have described) defers more work until after commit than shadow 
pages do. The shadow page technique writes data to file pages before commit, 
while the redo log technique waits until after. If the system is lightly loaded, or 
heavily loaded but with a bursty pattern of update requests, deferring work makes 
update transactions respond faster than doing it before commit. If the load is 
steady and heavy, there is still a performance advantage if part of the update 
load is concentrated on a small set of pages. With the redo log implementation, 
each write to a frequently updated file page need not result in a corresponding 
disk write. Unlike log writes, which are forced to disk at commit time, file writes 
take place asynchronously, caused by page replacements and by the checkpoint 
process of the log manager. 

The added function that the log technique supports is file backup. A log-based 
system needs to do only three things in order to survive any single storage 
medium failure without loss of committed data: It must maintain two copies of 
the log file, each copy on a different disk drive, it must periodically take a volume- 
by-volume dump of the file system, and it must perform log archiving by saving 
one copy of each log record written after the most recent dump has been started. 
The performance cost of two-copy logging is quite small if the two drives have 
separate controllers and the drives are dedicated to logging; it is larger if they 
share a controller or are shared with normal files. Dumping can proceed concur- 
rently with file update activity and hence be nondisruptive [ 111. 

In contrast, the entire idea of the shadow page technique is to write new data 
just once. With a shadow page system, the only practical backup method short 
of maintaining a duplicate on-line file system is to take periodic volume dumps 
and maintain . . . a log. Backup is a larger incremental addition to shadow pages 
than to logs. 

The implementation advantage of the log-based technique is that it can be 
layered on an existing file system. The log approach does not rely on any special 
properties of how files are implemented; it simply reads and writes files: the 
faster the underlying file system, the better the performance of the log-based 
implementation. The log-based file system can be structured so that most of it 
does not depend on details of the underlying file system and can be easily ported 
from one file system to another. Adding transaction logging to an existing file 
system is much less work than writing a new file system, with all of its associated 
utility programs. Given our experience with IFS and XDFS, and our pragmatic 
goals for Alpine, this advantage seemed very powerful to us. 

4.2 Communicate Using Remote Procedure Calls 

Many specialized protocols have been designed for access to a file on a remote 
server. For instance, XDFS included a specially tailored protocol built directly 
upon the Pup packet level [4]. In principle, client programs viewed interactions 
with XDFS in terms of the sequence of request and result messages exchanged. 
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In practice, clients of XDFS used a standard package to provide a procedure- 
oriented interface to the file server. One of the usual arguments in favor of 
message-oriented communication is that messages provide parallelism; a client 
program can send a message and then do more computation, perhaps even send 
more messages, before waiting for a reply. In the Mesa environment, parallelism 
can be obtained by creating processes. These processes are quite inexpensive 
[16]. Therefore, in the Mesa environment it was natural to view interactions 
with XDFS as remote procedure calls. 

Unfortunately, the implementation of XDFS itself did not reflect this view, 
perhaps because the Mesa process facilities were added after the XDFS project 
was well under way. There was no clean separation between the file system and 
data communications components of XDFS. For instance, a data type defining a 
packet format was known to the file system component of XDFS. As a result, 
changes in the communications component could force recompilation of the 
entire system. 

In Alpine we decided to use RPC instead. We were quite fortunate that a 
project to produce a general-purpose remote procedure call facility [3] was carried 
out concurrently with the design and implementation of Alpine. One result of 
this project is a compiler, called Lupine, that takes a Cedar interface as input 
and produces server and client stub modules as output. The client stub module 
exports the Cedar interface, translating local calls into a suitable sequence of 
packets addressed to a server. The server stub imports the Cedar interface, 
receiving packets and translating them into local calls. Lupine imposes some 
restrictions on interface design; it will not produce stubs to transmit arbitrary 
data structures from one machine to another. 

Thus the functionality of Alpine is defined by a small set of Cedar interfaces, 
not by a network protocol. The full functionality of Alpine is available remotely 
by making remote calls to these interfaces. The interfaces are also accessible to 
local clients like a directory system and an FTP implementation. 

A general-purpose RPC is not necessarily less efficient than a protocol that is 
specialized to the task at hand. Birrell and Nelson take advantage of the 
assumption that RPC is the standard mode of communication by optimizing the 
path of a remote call and return through the layers of communication software. 
It would not be feasible to optimize more than a few protocols in this way, so it 
follows that the processor overhead for an RPC can actually be less than for a 
more specialized protocol. 

5. INTERFACES 

In the interfaces that follow, the notation for procedure declarations is 

ProcName [argl, arg‘2, . . . , argN]+[resultl, result‘2, . . . , resultM] 
! exceptionl, exception2, exceptionK. 

Normally an argument or result consists of a simple name; when the type for 
the argument or result is not obvious, the name is followed by “:” and the type. 
An exception is a name optionally followed by “I”, then a list of the possible 
error codes for the exception, and then “I”. 

But to make sense of the interfaces, some knowledge of Cedar RPC is necessary. 
The Cedar RPC mechanism uses Grapevine RNumes for individuals and groups 
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[l]. An RName for an individual (person or server) looks like “Schroeder.pa”; 
for a group, “CSLf.pa”. 

When a program calls a procedure P in a remote interface I, the server that 
gets called is determined by the current RPC binding on I. The binding is made 
by calling the RPC machinery and passing it the RName of the desired server. 
This means that one need not pass the RName of the server on every procedure 
call. To get any understanding of how RPC binding works, read Birrell and 
Nelson [ 31. 

A client must call the RPC system to establish a conuersation with a server 
before it can make authenticated calls to the server [2]. The conversation 
embodies the authenticated identities of both the client and the server, and the 
security level (encrypted or unencrypted) of their communication. By convention, 
a conversation is the first parameter to all server procedures. To make the 
procedure declarations easier to read, we omit the conversation parameter. 

An Alpine file system exports four public interfaces: AlpineTransaction, 
AlpineVolume, AlpineFile, and AlpineOwner. 

5.1 AlpineTransaction Interface 

The AlpineTransaction interface provides two logically distinct abstractions, the 
transaction coordinator and the transaction worker. The coordinator manu- 
factures transaction IDS and controls workers in the two-phase commit protocol. 
The worker performs data manipulation under a transaction and obeys the 
coordinator during a commit. It is not strictly necessary to expose these distinct 
services to the client of transactions; XDFS did not. But exposing them makes 
the AlpineTransaction interface more straightforward to implement than the 
XDFS transaction interface, and Alpine no harder for our typical client to use. 

A transaction ID contains enough unpredictable bits so that it is extremely 
difficult to forge. Therefore, an Alpine server can treat it as a capability. Any 
client that has a transaction’s ID and the transaction coordinator’s RName may 
participate in the transaction. 

It is useful for a server administrator to be able to bypass access control checks 
in some situations, while obeying them in normal situations. We allow an 
administrator to explicitly “enable” a specific transaction for access control 
bypassing. 

Create [createLocalWorker: BOOLEAN]+[transID] 

! OperationFailed (busy). 

Call to coordinator; requests the coordinator to create a new transaction. 
Raises OperationFailed[ busy] if the server is overloaded. If createLocal Worker, 
the coordinator calls Create Worker[transZD, RName-of-this-server]. 

CreateWorker [transID, coordinator: RName] 

! Unknown {coordinator, transIDJ, OperationFailed (busyj. 

Call to worker; informs the worker that transaction transZD is being coordi- 
nated by the Alpine instance coordinator. Raises Unknown[coordinator] if the 
worker cannot communicate with coordinator, and Unknown[transZD] if transZD 
is unknown to coordinator. Raises OperationFailed[busy] if the server is over- 
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loaded. If this procedure returns without an exception, the worker is willing to 
perform Alpine data manipulation procedures using this transaction. 

Finish [transID, requestedOutcome:(abort, commit}, continue: BOOLEAN]+ 
[outcome: (abort, commit, unknown], newTransID]. 

Call to coordinator; requests the coordinator to complete the transaction. 
When a client using a transaction has completed its calls to the Alpine data 
manipulation procedures, it calls with requestedOutcome = commit to commit the 
transaction. To give up on a transaction and undo its effects, a client calls with 
requestedOutcome = abort. If the transaction has already committed or aborted, 
this procedure simply returns the outcome, which is unknown if the transaction 
has been finished for more than a few minutes. 

A call with continue = TRUE commits the effects of a transaction, then creates 
and returns a new transaction that holds the same data state (locks, open files, 
and so forth) as the previous transaction. This feature encourages a client that 
is making many updates to commit periodically, whenever it has made a con- 
sistent set of changes. 

AssertAlpineWheel [transID, enable: BOOLEAN] 
! OperationFailed (grapevineNotResponding, notAlpineWheel), 

Unknown (transID]. 

Call to worker. When called with enable = TRUE, causes subsequent Alpine 
procedure calls for this [conversation, transID] pair to pass access control checks 
without actually performing the checks; raises OperationFailed[notAlpine Wheel] 
if the caller is not a member of the AlpineWheels group for this server. When 
called with enable = FALSE, causes normal access control checking to resume 
for this [conversation, transID] pair. Raises Unknown[translD] if transID is 
not known to the worker. This might be because the client has not called 
Create Worker, or because the transaction is already finished. 

5.2 AlpineVolume Interface 

There are several reasons for providing the volume as an abstraction of a physical 
disk volume. A volume often corresponds to a disk arm, so a client can improve 
performance by locating its most frequently accessed files under different arms. 
A volume can be dismountable and belong to a single user. A volume can be the 
unit of scavenging, so dividing a large file system into volumes reduces the delay 
in restart if a single volume needs to be scavenged. Alpine has no ambitions of 
its own for volumes; it uses whatever volume structure is provided by the 
underlying file system. Alpine does assume that volume IDS are globally unique. 

Though volumes are useful, they can also be a nuisance. When a user creates 
a file on a server, he usually does not care which volume it is on. Therefore, 
every Alpine volume belongs to a volume group. The file creation procedure 
(AlpineFile.Create) accepts either a volume or a volume group as a parameter; 
when a volume group is given, Alpine selects some volume in the group and 
creates the file there. 

A file owner is an entity identified by the RName of a person or a group. Each 
volume group contains an owner database, a set of records indexed by the RNames 
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of valid owners for files in the volume group. Among other things, an owner 
database record contains the disk space quota for an owner, so that users do not 
have to manage quotas on a per volume basis. The AlpineOwner interface below 
contains operations on owner databases. 

Any procedure that takes a transID parameter raises the exception Un- 
known[ transID] if the transID is not known to the worker. This might be because 
the client has not called AlpineTransaction. Create Worker, or because the trans- 
action is already finished. We do not mention this exception in the individual 
procedure descriptions for any of the procedures in this or the next two sections. 

GetNextGroup [transID, previousVolumeGroupID]+[volumeGroupID] 
! Unknown (volumeGroupID ). 

Stateless enumerator for the on-line volume groups of this Alpine instance. 
Calling with previousGroup = nullVolumeGroupID starts an enumeration, and 
volumeGroupID = nullVolumeGroupID is returned at the end of an enumeration. 

GetGroup [transID, volumeGroupID]-+[volumes: LIST OF VolumeID] 
! Unknown {volumeGroupID). 

Returns the list of volumes belonging to the specified volume group. 

5.3 AlpineFile Interface 

A file is a sequence of 51%byte pages and a set of property values. A file is named 
by a file ID that is unique within the volume containing the file. A UniversalFile 
is a globally unique file name: a [volume ID, file ID] pair. The pages of a file are 
indexed starting from zero. The size of a file is the number of pages that it 
contains. 

The properties of an Alpine file are given by the enumerated type Property, 
and are the bytelength, createdTime, textName, owner, readAccessList, 
modifyAccessList, and highWaterMark. This set of properties is not expandable 
by the client. Alpine does not interpret a file’s byte length, created time, or text 
name. These properties are read and written by clients and Alpine performs no 
checking. 

An Alpine user may read a file if he is either in the file’s read or modify access 
list and may modify a file if he is in the file’s modify access list. Each list can 
contain both RNames and the two special names “Owner” and “World”. An 
RName can name a group, so a short access list such as (“CSLT.pa”, “ISLf.pa”) 
can name a large number of individuals. Alpine sets a fixed upper bound on the 
total number of characters in the two lists; the bound is large enough to 
accommodate more than 20 typical RNames. 

A file may contain pages at the end whose contents are considered undefined 
by Alpine; the high water mark is the page number of the first page with undefined 
contents. Alpine can optimize writes to undefined pages. When a file is created 
all of its pages are undefined, and when a file is extended the additional pages 
are undefined. Alpine advances the high water mark automatically when pages 
of a file are written, but a client can also set the high water mark explicitly. 
Decreasing the high water mark is a way of declaring that some portion (or all) 
of a file’s contents are no longer interesting. We expect the high water mark 
feature to be used in IFS style file transfers. 
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To manipulate a file a client must first open it. Opening a file accomplishes 
three things. First, it sets a lock on the file (locks are discussed below). Second, 
it associates a brief handle, the open file ID, with a considerable amount of state 
that is kept by the server and need not be supplied in each call. That is, an open 
file ID represents a single client’s access to a single file under a single transaction. 
Third, it performs file access control, and associates a level of access (read-only 
or read-write) with the open file. This allows a client to restrict itself to read- 
only operations on a file even if the client has permission to open the file for 
writing. 

The procedures that transfer page values to and from open files operate on 
runs of consecutive pages, allowing clients to deal conveniently in units that are 
any multiple of the basic page size, and reducing the per page overhead on 
sequential transfers. A run of consecutive pages is described by a PageRun: a 
[PageNumber, PageCount] pair. 

Alpine uses locks to control concurrent access to files from different transac- 
tions. The locks are similar to System R locks [12], with a few differences. The 
locking hierarchy has two levels only: whole-file locks and page locks. When page 
locks are used on a file, the file properties are locked as a unit. As in System R, 
Alpine uses intention lock modes to control the interactions between clients who 
lock at different levels of the hierarchy. In addition to read and write lock modes 
(called share and exclusive by System R), Alpine supports an update mode similar 
to that used in XDFS. A client can lock in update mode and perform uncommitted 
updates without waiting for existing readers to finish. New readers are blocked 
by the update lock. If the existing readers are not gone by the time the updater 
commits, the updater must wait for them to finish. 

A client chooses between whole-file locking and page locking when opening a 
file. If a client chooses page locking, then its page reads and writes implicitly set 
additional locks. In case of a lock conflict, these procedures wait until either the 
lock is acquired or the transaction is aborted. A client who is satisfied with this 
locking behavior need not be concerned further with locks. But more ambitious 
clients may (1) set locks in order to reserve resources early in a transaction, (2) 
set stronger locks than the default when performing operations that implicitly 
set locks, (3) release read locks before the end of a transaction to reduce conflicts, 
and (4) cause procedures to fail immediately on lock conflict rather than waiting. 

Alpine places few restrictions upon its clients when it comes to concurrent 
operations within a single transaction. Locks do not synchronize concurrent 
procedure calls for the same transaction; this is the client’s responsibility. Alpine 
is perfectly willing to execute, say, seven ReadPages and two WritePages calls at 
the same time for a single transaction. It is probably not useful for a read to be 
concurrent with a write of the same page; the result of the read will be either the 
old value or the new value of the page, but the reader cannot tell which. If a 
client attempts to commit a transaction while another Alpine operation is in 
progress for the transaction, Alpine aborts the transaction. 

Any procedure that takes an owner or volumeID parameter raises the exception 
Unknown (owner, volumeID 1 if the corresponding argument does not identify an 
existing object. Any procedure raises the exception StaticallyInvalid if it detects 
an out of range argument value by some static test, for instance, an invalid value 
from an enumerated type. Any procedure with a lockOption parameter raises the 
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exception LockFailed if lockOption.ifConflict is fail and the lock cannot be set. 
We shall not mention these exceptions in the individual procedure descriptions 
in this or the next section. 

Create [transID, volumeID, owner: RName, initialPageCount, 
referencepattern: {random, sequential)]-+[openFileID, universalFile] 
! AccessFailedlownerCreate, spaceQuota], 
OperationFailed (insufficientSpace). 

Creates and opens the new file universalFile with initialPageCount pages under 
transaction transID. The volumeID parameter may be either a specific volume 
ID or a volume group ID; in the latter case, the server chooses among the volumes 
of the group. The client must be a member of owner’s create access list (a field 
of an owner database record), and the allocation must not exceed owner’s quota 
or the capacity of the server. 

All file properties are set to default values: byteLength and highWaterMark: 0, 
createdTime: now, readAccess: “World”, modifyAccess: “Owner” plus owner’s 
create access list, owner: owner, and textName: empty string. 

If the call is successful, the new file is locked in write mode, and the client has 
read-write access to the file using openFileID. Alpine uses the referencepattern 
parameter to control read-ahead and buffer replacement strategies for the file. 

Open [transID, universalFile, access: (readonly, readwrite), lock, 
referencepattern: (random, sequentialj]+[openFileID, fileID] 
! AccessFailed (tileRead, fileModify). 
Opens an existing file universalFile for access under transID. The file’s access 

lists are checked to ensure that the client is allowed to use the file as specified 
by access. If access = readonly, the client is restricted to read operations on 
openFileZD, even if the client passes the checks for read-write access. The entire 
file is locked in lock.mode; lock.ifConflict is also remembered and is used when 
performing certain file actions (e.g., Delete) that do not allow a LockMode 
specification. Alpine uses the referencepattern parameter to control read-ahead 
and buffer replacement strategies for the file. 

A file ID contains an identifier which is permanently unique, relative to the 
containing volume. It may also contain information used to find the file within 
the volume; this location information is treated as a hint [15], and may change 
during the lifetime of a file. Open returns a file ID whose location hint may differ 
from the hint in the file ID that is contained in universalFile. When the file ID 
changes, the client should store it in its own data or directory structures so that 
subsequent Open calls will be more efficient. 

Close [ openFileID] . 
Breaks the association between openFiZeID and its file. The number of simul- 

taneous open tiles permitted on one Alpine file system is large but not unlimited; 
clients are encouraged to close files that are no longer needed, particularly when 
referencing many files under one transaction. Closing a file does not terminate 
the transaction and does not release any locks on the file; nor does it restrict the 
client’s ability to later reopen the file under the same transaction. 

Delete [openFileID] 
! AccessFailed (handleReadWrite1. 
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First locks the entire file in write mode; then deletes the file. openFileID must 
allow read-write access. Delete makes openFileID invalid for subsequent opera- 
tions. The owner’s allocation is credited with the released pages when the 
transaction commits. 

ReadPages [openFileID, pageRun, resultPageBuffer, lockOption] 
! OperationFailed (nonexistentFilePage). 
Reads data from the pages described by pageRun for the file associated with 

openFileID, and puts it contiguously into client memory in the block described 
by resultPageBuffer. 

A ResultPageBuffer consists of a pointer into virtual memory and a word count. 
Lupine, the RPC stub generator, understands that the contents of the block (not 
the pointer and count) is the real value, and that this value is really a procedure 
result (not an argument). 

WritePages [openFileID, pageRun, ValuePageBuffer, lockOption] 
! AccessFailed (handleReadWrite), OperationFailed (nonexistentFilePage]. 

Writes data from client memory in the block described by ualuePageBuffer to 
the pages described by pageRun of the file associated with openFileID, which 
must allow read-write access. 

A ValuePageBuffer has the same representation as a ResultPageBuffer, but 
Lupine understands that in this case the value is really a procedure argument 
(not a result). 

LockPages [openFileID, pageRun, lockOption]. 

Sets locks on the specified pages of the file. 

UnlockPages [openFileID, pageRun]. 
If the specified pages of the file are locked in read mode, removes those locks. 

It is the client’s responsibility to assure consistency of any subsequent operations 
whose behavior depends on the data that was read under those locks. Lock 
requests are counted and the lock is not removed until one UnlockPages has been 
done for each LockPages or ReadPages previously performed on the same pages. 
Attempts to remove nonexistent locks or locks other than read are ignored 
without error indication. 

GetSize [openFileID, lockOption]+[size: PageCount]. 
Returns the file’s size, after setting a lock on the file properties. 

SetSize [openFileID, new PageCount, lockOption] 
! AccessFailed (handleReadWrite, spaceQuotaj, 
OperationFailed(insufficientSpace]. 

Sets a write lock on the file properties, then changes the file’s size to new- 
PageCount. 

Decreasing a file’s size locks the entire file in write mode. openFileID must 
allow read-write access; the client need not be a member of the owner’s create 
access list. 

If the file size is being increased, the owner’s allocation is charged for the new 
pages immediately, but if the size is being decreased, the owner’s allocation is 
credited when the transaction commits. 
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ReadProperties [openFileID, desiredproperties: PropertySet, lockOption]+ 
[properties: LIST OF PropertyValuePair]. 

The type PropertySet represents a set of file properties, for example 
{createdTime, textName]. The type PropertyValuePair represents a property, 
paired with a legal value for that property, for example [createdTime, February 
12, 1984 11:46:52 am PST] or [textName, “/Luther.alpine/MBrown.pa/ 
Walnutsegment “1. ReadProperties returns a list of the property values specified 
by desiredproperties, ordered as in the declaration of Property. 

WriteProperties [openFileID, properties: LIST OF PropertyValuePair, 
lockOption] 

! AccessFailed (handleReadWrite, ownercreate, spaceQuota), 
OperationFailed(insufficientSpace, UnwritableProperty). 

Writes the supplied properties, which may be ordered arbitrarily. To write the 
bytelength, createdTime, high WaterMark, and textName properties requires that 
the openFileID have access = readwrite. To write readAccess or mod&Access 
requires that the client be the file’s owner or a member of the file owner’s create 
access list, but does not require that openFileID have access = readwrite. To 
write owner requires that both the above conditions be satisfied, and additionally 
requires that the client be a member of the new owner’s create access list; the 
disk space occupied by the file is credited to the old owner and charged to the 
new one. 

If the number of characters in the resulting access lists is too large, the 
exception OperationFailed[insufficientSpace ] is raised. If multiple properties are 
written by one call and this error occurs, some of the properties may nevertheless 
have been written successfully. 

5.4 AlpineOwner Interface 

As previously mentioned, each volume group contains an owner database, a set 
of records indexed by the RNames of valid owners for files in the volume group. 
The entries in an owner database record are given by the enumerated type 
OwnerProperty, and are the spaceZnUse, quota, rootFile, createAccessLi.st, and 
modifyAccessList. This set of entries is not expandable by the client. 

An owner’s space in use is the total number of pages in all owned files, plus a 
fixed overhead charge per owned file. Hence, space in use is changed as a side 
effect of AlpineFile.Create, Delete, SetSize, and WriteProperties calls. An owner’s 
quota is an upper bound on space in use, enforced by AlpineFile.Create, SetSize, 
and WriteProperties calls. The owner root file is a UniversalFile that can be read 
and written by clients, It is intended for use by a directory system. 

An owner’s create access list governs file creation for an owner and access list 
modification for an owner’s existing files. An owner’s modify access list controls 
updates to the owner’s create access list; this provides a limited amount of 
decentralized administration of the owner database. 

Alpine allows other updates to the owner database, such as creating owners 
and changing space quotas, only for transactions with wheel status enabled by 
AlpineTransaction.AssertAlpine Wheel. We omit the procedures that perform 
these administrative updates. 
ACM Transactions on Computer Systems, Vol. 3, No. 4, November 1985. 



The Alpine File System l 279 

ReadProperties [transID, volume GroupID, owner: RName, 
desiredproperties: OwnerPropertySet] 
*[properties: LIST OF OwnerPropertyValuePair]. ’ 

Reads the properties specified by desiredproperties, ordered as in the declara- 
tion of OwnerProperty. 

WriteProperties [transID, volumeGroupID, owner: RName, 
properties: LIST OF OwnerPropertyValuePair] 
! AccessFailed {alpinewheel, ownerEntry), 

OperationFailed {ownerRecordFull, grapevineNotResponding). 

Writes the supplied properties, leaving the others unchanged. 
The spaceInUse property is read only. The owner, and members of the owner’s 

modify list, can update the CreateAccessList of an owner record. The owner and 
members of the owner’s create list can update the rootFile property of an owner 
record. If an update is restricted to these properties and the access control checks 
fail, then WriteProperties raises the exception AccessFailed[ownerEntry]. Other- 
wise the update requires the client to be enabled as a wheel using transID. Alpine 
enforces some integrity constraints; owner access lists always contain “Owner” 
and never contain “World”. An update to an owner access list may raise 
OperationFailed[ownerRecordFull], much as for file access lists. 

6. IMPLEMENTATION 

Alpine’s implementation decomposes into six components: Buffer, Log, Lock, 
Trans, File, and OwnerDB. 

Buffer provides a buffer manager [ll] on the underlying file system. Operations 
in this interface allow runs of consecutive pages to be specified, but Buffer does 
not always return the entire run in contiguous virtual memory. Buffer always 
reads the disk in blocks several pages long, but writes only the dirty pages back. 
Buffer allows its clients to present hints to control file read-ahead and write- 
behind. 

Log provides a log abstraction and controls crash recovery. Log writing and 
reading is built upon Buffer in a straightforward way. Log writing requires the 
ability to write a specified page run to disk synchronously, which Buffer provides. 

The log checkpoint process is responsible for freeing up log space for reuse. 
For simplicity, it does this on the basis of transactions rather than of individual 
log records. The log space used by a transaction may be reused when all of the 
transaction’s updates have been performed at the Buffer interface, and these 
updates have been written to disk. Therefore, the checkpoint process periodically 
examines all transactions to determine which of them have completed their 
updates at the Buffer interface, then calls a Buffer procedure that synchronously 
writes all currently dirty buffer pages to disk. This procedure is allowed to take 
a relatively long time and does not interfere with other Buffer operations that 
may dirty more pages. When this procedure returns, the checkpoint process can 
reclaim the space used by these transactions. It writes a checkpoint log record to 
define the stait of the log for recovery processing, and writes a pointer to this 
checkpoint record in a known location to avoid a linear search of the log during 
restart [12]. 
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The log watchdog process ensures that the checkpoint process makes progress. 
If the oldest transaction in the log is sufficiently old (in terms of log written 
since it started), then the log watchdog aborts it. 

Lock implements a lock manager [ll]. It detects deadlocks within a single file 
system and aborts transactions to break these deadlocks. Lock also uses timeouts 
as follows: If one transaction is being blocked by another that has not called the 
Alpine server lately, then Lock aborts the inactive-looking transaction. 

(Trans implements two-phase commitment of transactions [18]. Interserver 
communication for coordinating transactions is performed using RPCs through 
a private interface not described in Section 5. The implementation avoids 
redundant synchronous log writes in the common case of a transaction that 
performs no file updates, and in the case of a transaction that performs all file 
updates in the same Alpine instance as the transaction coordinator. 

File implements the file abstraction. Its implementation of atomic tile update 
generally follows the redo log scheme discussed in Section 4.1. Elhardt and Bayer 
have proposed a similar logging scheme for use in implementing a database 
management system [9]. Their technique writes no log records for a transaction 
until phase one of transaction commit, and requires that all log records for a 
single transaction be contiguous in the log. Their technique only reads the log 
during recovery, but this limits the number of pages written in a transaction to 
the size of the buffer pool, which resides in main store. 

File represents a file’s properties using a single leader page. This requires 
length restrictions on variable-length file properties, but allows a straightforward 
implementation. 

Alpine deviates from the pure redo log scheme in the following important 
respect. Actions that allocate disk space, such as AlpineFikCreate and Alpine- 
FileSetSize (when extending the file) are not deferred until after transaction 
commit. Instead, Alpine writes a log record that is sufficient to undo the action, 
then performs it. Should the transaction abort, the undo is performed. One reason 
that we do not defer disk allocations is that with the underlying file systems we 
expect to use there is no practical way to commit to a disk allocation without 
actually doing it. Very little information needs to be written into the log in order 
to make a disk allocation undoable, which is not the case for a file page write. 

Another deviation from the pure redo log scheme is the file high water mark 
optimization. Page writes past the high water mark are made directly to the file 
and not logged. Alpine forces these writes to disk before a transaction commits. 

Because the File component is designed to defer work during normal operation, 
it falls out naturally for it to defer work during crash recovery as well. That is, 
the Alpine system can export its public interfaces without bringing the underlying 
files to a transaction-consistent state. 

OwnerDB implements the owner database and access controls. The owner 
database is represented as a normal Alpine file; to read and write the owner 
database, OwnerDB calls File through the AlpineFile interface. For instance, 
when a client calls AlpineFiZe.Create to create a ten page file for a particular 
owner under a transaction, Create calls OwnerDB to read the owner database 
under this transaction and verify that the client is authorized to create the tile 
and that the ten additional pages will not exceed the limit for the owner. To 
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reduce contention OwnerDB builds a volatile representation of the quota and 
releases the read lock on the owner database file page. Just before the transaction 
commits, OwnerDB updates the owner database under the transaction to show 
ten more pages in use by the owner. Hence, the transaction mechanism guarantees 
the consistency of the owner database. The owner database file is organized as 
an open-address hash table with one record per page. When it fills up, the 
administrator calls a procedure to expand and reorganize the owner database, 
again using the transaction facility to cover the update. 

OwnerDB tests membership in access control lists by calling Grapevine. 
Grapevine performs membership tests for RNames that name groups. The 
efficiency of this is acceptable because OwnerDB caches the results of calls to 
Grapevine. OwnerDB discards old cache entries in order to track Grapevine 
updates; this simple technique suffices because Grapevine’s own consistency 
guarantees are not strong. 

7. EXPERIENCE AND EVALUATION 

By early 1983, we had coded the implementation and started to test it. We had 
fallen short of two of our goals: The implementation did not include two-copy 
logging, volume dumping, and log archiving; therefore, it did not meet the goal 
of surviving all single storage medium failures without the loss of committed 
information. The implementation provided a single volume group containing a 
single volume; therefore, it did not meet the goal of supporting multiple disk 
drives. Though we were committed to both of these goals, we decided that it was 
more important to get some experience with what we had built than to build 
more. 

Even without meeting all of our goals, we were able to make progress again in 
the area of database experimentation. People in the laboratory who want to do 
database work are no longer being stalled by the absence of a file server that can 
support databases. We did not replace IFS. 

7.1 Supporting Facilities 

To make Alpine usable from Cedar, we built three external components: a 
directory system, an implementation of Cedar open files, and a user interface to 
the server’s administrative functions. Each of these components runs on an 
Alpine user’s workstation as an ordinary Alpine client. 

A directory system maps the text name for a file into a UniuersalFile. To 
replace IFS, Alpine needs a hierarchical directory system that supports file 
version numbers and various other features. As a temporary expedient, we 
implemented a directory system that provides a flat name space to each file 
owner. This interim directory system is adequate to support Alpine’s use as a 
database repository. 

A Cedar open file is an object that implements operations such as Read (pages 
from open file to virtual memory) and Write (pages from virtual memory to open 
file). In Cedar, all but a few low-level clients of files access them via open files, 
so implementing this abstraction integrates Alpine with Cedar to a considerable 
degree. For instance, file streams are implemented using open files, so any 
program that takes a stream as input can be passed a stream for an Alpine file. 
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A Cedar user may sometimes need to deal directly with an Alpine server, as 
when checking a disk quota or changing a file access list. Cedar’s expression 
interpreter allows a user to do this by making calls to procedures in the various 
Alpine interfaces. But this is inconvenient because of the large amount of “boiler- 
plate” involved in binding to a server, creating a transaction, and so forth. 
Therefore, we implemented a set of procedures that are analogous to the admin- 
istrative procedures exported from the Alpine server except that each procedure 
call runs as a new transaction. Because this “Alpine commands package” runs 
on a user’s workstation, any Cedar user is free to modify it as he or she sees fit. 

In addition to building these three new components, we modified the existing 
database management system to use Alpine files as well as XDFS files. To make 
it sensible for users to try Alpine, we implemented a trivial backup system that 
copied changed files from an Alpine server to an IFS server during off hours. 

7.2 Applications 

Alpine solves the problem that we built it to solve: It supports research in 
database applications. Cypress [ 7 ] is an entity-relationship database management 
system that evolved from DBTuples [6]. Cypress now uses only Alpine file 
storage. Xerox researchers have written several Cypress applications, including 
a system for storing electronic mail messages, a general-purpose database 
browser, an illustrator, and a database containing relationships between Cedar 
modules. 

The message filing system, called Walnut, is by far the most heavily used 
application of Cypress and Alpine. Walnut represents its data as two files: a 
Walnut log file and a Cypress database. The Walnut log file contains the messages 
and a record of all updates, while the Cypress database is used as an index. The 
Walnut log file can be stored in either a Cedar workstation’s file system or an 
Alpine file system. 

Because of the shortcomings of XDFS discussed in Section 2, it was never 
practical to store Walnut logs and databases on XDFS. Instead, Walnut used the 
Cedar workstation’s Pilot file system [22] which provided transactions. Later, 
Walnut users were given the option of storing their files on an Alpine server and 
almost all did. Alpine provided a noticeable performance improvement over Pilot, 
but the main reason for its popularity was that it allowed a user to access his or 
her filed messages from any Cedar workstation, not just his or her personal 
workstation. 

The first public Alpine server, Luther, has been in service since March 1983. 
(Luther Pass is located in Alpine County, California). Since July 1983, the Alpine 
code running on Luther has not been changed in any significant way, and Luther 
has averaged about two restarts per week. About 40 percent of the restarts were 
due to hardware problems and a microcode bug, and 10 percent were to install 
software changes. All but a few of the remaining restarts were caused by three 
specific Alpine bugs that have been fixed, or for which the fix is understood. A 
restart generally took about two minutes; on two occasions, restart failed and the 
system was cold-started (ignoring the state of the log). 

Luther is the first server at PARC to use the Dorado [8] as its processor. Some 
flaws that are acceptable when the Dorado is used as a workstation are intolerable 
when it is used as a server. On two occasions Luther has been unavailable for 
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more than a day due to problems with Dorado hardware. We are now considering 
a configuration with a warm spare processor to reduce this problem. 

Apart from the disruption caused by hardware-related downtime, the complaint 
heard most often from Alpine users is that Alpine aborts transactions too 
frequently. Some changes can be made in Alpine’s implementation to reduce this; 
these changes will be discussed in Section 7.5. A large part of the problem is that 
Walnut and other applications were developed using Pilot transactions in a local 
file system. These transactions aborted only as a result of a specific request or a 
workstation crash. So applications were not structured with smooth recovery 
from transaction abort in mind. The next generation of applications will be 
designed to hide the low-level transaction concept from users. 

7.3 Effort and Code Size 

We first conceived of building Alpine in December 1980. During the early part 
of 1981 we wrote memos describing the system goals and formed the present 
group of implementors. At first, none of the implementors was able to devote full 
time to the project; later, one was. Alpine activity in 1981 was limited to reading 
published papers on crash recovery and concurrency control in database systems, 
and writing design documents. By the end of 1981 we had designed public 
interfaces that are nearly identical to the ones used today, had divided the 
implementation into components whose interfaces were less well defined, and 
had done a detailed internal design of some components. During 1982 the design 
and coding progressed. In November 1982 we assembled the existing code into a 
whole and made it run; we had to stub out the Lock and OwnerDB components 
because implementations did not exist. By mid-January 1983 these components 
were real and we demonstrated Walnut on Alpine. In February XDFS was 
decommissioned. In March through June we debugged Alpine while supporting 
five users; we then let the number of users gradually increase to its present 45 
(in February 1984). Between five and six man-years of effort have been devoted 
to the system so far, 

An Alpine server contains approximately 21,000 lines of Cedar code in 110 
modules that were manually written for Alpine. We say that an interface module 
is public if it is used by clients outside of the component, otherwise it is private. 
The manually written code is distributed as follows (the percentages are of code 
lines): 

Percentage 
Number 

of modules 

Public interfaces 10 17 
Private interface 16 46 
Implementations 74 47 
Buffer 14 13 
Log 11 11 
Lock 6 5 
Trans 12 21 
File 28 30 
OwnerDB 24 18 
Miscellaneous 5 12 
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Another 3800 lines in the server were generated by Lupine, the Cedar RPC 
stub generator, and 2000 lines resulted from instantiating two Cedar packages 
seven times. 

A Cedar workstation accessing Alpine runs 8500 lines of Cedar code for this 
task. About 4000 lines are manually written code not used in the server, and 3200 
lines are Lupine-generated code, not used in the server. The workstation also 
runs 18000 lines of Cypress code for database access. 

During the project, we were surprised by the relative difficulty of the OwnerDB 
component. The present implementation is much simpler than the one we 
designed originally, yet OwnerDB is still the second-largest component in Alpine. 

A second surprise was the amount of effort required for workstation code. This 
is not difficult code to write, but there is a significant amount of it. In addition, 
the cost per line of maintaining workstation code is higher than for code in the 
server. This is because the Alpine server depends on only the most stable Cedar 
interfaces (the Cedar nucleus facilities for virtual memory and file access), 
whereas the workstation code depends on higher level interfaces; hence the 
workstation code is inherently less stable. 

Of the server components, File and OwnerDB would be changed if we decided 
to turn Alpine into a database server that did not support the intermediate 
abstraction of an unstructured tile with transactions. Of course something 
equivalent to OwnerDB would still be required, but it would be built using a 
higher-level access method. This would not actually simplify it much. Even if we 
eventually decide to build other access methods into Alpine, we have not written 
much extra code, and in the meantime we are able to use Cypress with very little 
modification. 

7.4 Performance 

The Alpine server in public use at PARC runs on a Dorado processor. Some 
information on the Dorado’s performance follows. When a Dorado runs a Cedar 
program, the simplest machine instruction takes 125 ns, and a general procedure 
call that passes no arguments and returns no results takes 9 IIS. A Dorado running 
a Cedar program is about 8 times as fast as an Alto running the corresponding 
Mesa program. This speed-up varies with a number of factors; we assume that 
the Alto’s display is turned off to reduce memory interference, and that the 
Dorado’s Cedar program deals in 32-bit quantities while the Alto’s Mesa program 
deals in 16-bit quantities. The Alpine server has 2 mbytes of main store, and 
uses 200 kbytes of virtual memory for file buffers. 

The server’s I/O devices can be characterized as follows. The Alpine volume 
lives on a 300-mbyte removable pack disk drive. This drive has a track-to-track 
seek time of 6 ms, a maximum seek time of 55 ms, and an average seek time of 
30 ms. The drive has an average rotational latency of 8.3 ms and a transfer rate 
of 1.2 mbytes/s. The server is interfaced to a 2.94 mbits/s experimental Ethernet. 

We were most interested in Alpine’s performance when running database 
applications, given that we built Alpine to support them. The Cypress database 
management system measures the average elapsed time per call for several of its 
internal procedures, including all file I/O procedures. Cypress uses Alpine- 
File.ReadPages and WritePages to transfer a single page per call. When Cypress 
is called from Walnut, the message filing system, the average time for an 
ACM Transactions on Computer Systems, Vol. 3, No. 4, November 1985. 



The Alpine File System 285 

AlpineFile.ReadPages call varies between 20 and 40 m. The average time for an 
AlpineFile. WritePages call is generally about 10 ms. These times are for a Walnut 
database of about 5 mbytes. 

We were also interested in Alpine’s performance when performing sequential 
reads and writes, since an IFS replacement will have to do many of these. We 
measured the elapsed time to copy large files between a Cedar workstation and 
Alpine, using the Copy procedure included in the Alpine commands package. 
This procedure performs a loop. Each time through the loop, it calls Alpine- 
File.ReadPages or Writepages, where it is appropriate, transferring 12 pages in 
each call. Copying a &mbyte file from the Alpine server to a Cedar workstation 
(also a Dorado) in this way takes about 89 s, including the time to create the file 
on the workstation. So the Copy procedure copies approximately 450 kbits/s. 

Mitchell and Dion ran some simple experiments to give some indication of the 
relative performance of XDFS and the Cambridge File Server [19]. We ran the 
same experiments on Alpine. First we give some background on the experiments, 
then tabulate the results, and finally interpret these results. 

The experiments involve making various calls from a client machine to a 
server, and measuring the elapsed time of the procedure call on the client 
machine. Hence, this time includes time spent by communications software on 
the client machine, time spent transmitting bits both ways over the network, and 
time spent doing work on the server. The client machine is of the same type as 
the server (both Dorados in the case of Alpine). As stated earlier, XDFS ran on 
an Alto. It used the same model of disk drive and the same experimental Ethernet 
as Alpine does. 

In Experiments 3 and 4 it was not possible to perform precisely the same 
operations on both XDFS and Alpine, because of differences between the systems. 
Therefore, in Table I we mark the Alpine results with an asterisk (a). The 
differences will be explained when interpreting these results below. See Table I. 

Experiment 1 measures the time for a null call to the server. The call takes no 
parameters, returns no results, and does no work. Birrell and Nelson measured 
the time of 1.1 msec. for the Cedar RPC facility that Alpine uses [3]. The 
transmission time on the Ethernet is 130 ms for Alpine, and roughly the same 
for XDFS. 

If XDFS and its client were running on Dorados, this would reduce the 
processor time for a null call and return to (38 - 0.13)/8 = 4.7 msec, versus about 
1.0 msec for the Cedar RPC facility used by Alpine. This reflects Birrell and 
Nelson’s careful implementation of Cedar RPC. 

Experiment 2 measures the time for the null transaction. For Alpine the null 
transaction requires two remote procedure calls: AlpineTransaction.Create with 
createLocal Worker = TRUE, and AlpineTransaction.Finish with requested- 
Outcome = commit and continue = FALSE. For XDFS the null transaction also 
requires two requests. 

Because Alpine notices that the transaction is read-only, it does not wait for 
the commit record to reach the disk before returning from Alpine- 
Transaction.Finish. The Alpine cost is still greater than the average rotational 
latency of the disk drive because AlpineTransaction.Finish waits for a log record 
produced by AlpineTransaction.Create to reach the disk. For most real transac- 
tions this log writing takes place asynchronously during the transaction; for very 
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Table I 

Exoeriment XDFS AlDine 

1. Null call and return 38 ms 1.1 ms 
2. Create Transacticn 
3. Commit Transaction 360 ms 10 ms 
4. Random read (average of 100) 76 ms 25 ms* 
5. Random write (average of 100) 142 ms 9 ms* 

Create Transaction 
Write 256 kbytes to existing file 
Commit Transaction 49.5 s 4.8 s (512 bytes/call) 

2.6 s (2048 bytes/call) 
3.2 s (8192 bytes/call) 

short read-only transactions this (unnecessary) log synchronization determines 
the performance. The XDFS cost is much higher because XDFS makes several 
disk transfers to allocate and write an intentions list and perform full two-phase 
commit. 

Experiment 3 measures the time for 100 reads to randomly chosen pages in an 
existing 256-kbyte file, then divides by 100 for the average time per read. The 
XDFS experiment performs 256 byte reads. This is not possible with Alpine’s 
interface; hence the Alpine experiment performs 512 byte reads. This difference 
is probably negligible. 

It is clear that under the experimental conditions, both systems can generally 
satisfy a random read request using only one disk transfer. It is difficult to 
compare these results more precisely because the times include unknown propor- 
tions of seek time, rotational latency, and compute time; the proportion of seek 
time for the two systems may be quite different because of differences in the way 
the systems allocate disk sectors to file pages. 

Experiment 4 measures the time for 100 writes to randomly chosen pages in 
an existing 256-kbyte file, then divides by 100 for the average time per write. It 
does not include the time to commit the transaction. The XDFS experiment 
writes 256 bytes per request. This is not possible with Alpine’s interface; hence 
the Alpine experiment writes 512 bytes per call. 

The difference here is not negligible: XDFS reads a page (to retrieve the 
unmodified bytes), then allocates and writes a page, while Alpine simply performs 
a log write. XDFS would have saved at most 38 ms if the size of a write request 
had matched its page size (the time for a read in Experiment 3, minus the 
communication overhead), so the correct comparison is Alpine’s 9 ms versus at 
least 104 ms for XDFS. A random Alpine write costs less than a read because 
the write involves only log writing, which is both sequential and asynchronous; 
a random XDFS write costs more than a read because the write involves a page 
allocation. 

Experiment 5 measures the time required to create a transaction, write 256 
kilobytes sequentially into an existing 256-kbyte file, and commit the transaction. 
For Alpine, this is 3 + 256/kb remote procedure calls: the same two Alpine- 
Transaction calls as for the null transaction, with an AlpineFikOpen, and a 
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sequence of AlpineFile. Write calls (each call writing kb kilobytes) sandwiched in 
between. We performed this experiment on Alpine with kb = 6,2, and 8. 

When Alpine writes 512 bytes per call, the ratio of Alpine performance to 
XDFS performance is roughly the same as in Experiment 4 (after allowing for 
the reads that XDFS does not perform in Experiment 5). The time with 2048 
bytes per call is roughly half of the time with 512; given the small pages used in 
Alpine, it is good to send a run of pages in a single call. The time increase with 
8192 bytes per call might be related to the fact that the disk rotates more than 
once in the time it takes to transmit 8 kilobytes over the experimental Ethernet. 

XDFS writes two copies of intentions list and file map pages; that slows it 
down on Experiments 2, 4, and 5. Does the extra writing give XDFS more 
reliability than Alpine with one-copy logging? XDFS writes both copies of the 
replicated structures on the same disk volume, so they are not guaranteed to 
survive all single storage medium failures. The XDFS file map contains vital 
information; the Alpine file map, implemented in the Cedar nucleus file system, 
is just a hint that the Cedar nucleus file system scavenger can reconstruct from 
information in disk sector headers. This suggests that Alpine with one-copy 
logging is about as reliable as XDFS. 

Performance was not the deciding factor in replacing XDFS with Alpine, but 
the figures above confirm what our users observed: that using Alpine does improve 
performance. The improvement is partly due to Alpine’s larger virtual and real 
memory, partly from Alpine’s different algorithms, and partly from Alpine’s 
faster processor. 

7.5 Future Work 

We took a detour to get applications running. Alpine’s goals can still be met. 
Based on experience, there are still some changes and improvements we would 
make to Alpine. 

An IFS-like hierarchical directory system and a Pup-FTP server have been 
coded as Alpine clients, but not yet integrated with the Alpine server. Also, as 
mentioned earlier, Alpine’s implementation does not yet support backup or 
multiple volumes. When these tasks are complete, Alpine should be a viable 
replacement for IFS. 

Experience with Alpine applications to date has suggested the following three 
changes to Alpine. All three changes relate to transactions. 

Alpine’s clients have made heavy use of the feature AlpineTransaction.Finish, 
which allows them to commit updates but immediately creates a new transaction, 
maintaining the consistency of their application data structures by not releasing 
locks on Alpine. This seems to be a fine way to operate when the application 
works on a private database, but using this feature reveals a problem with Alpine. 
Recall that the act of extending a file sets a write lock on an owner database 
page (to change the space in use for the file owner). This lock is not released by 
calling AlpineTransaction.Finish with continue = TRUE. Therefore, when the 
user runs two “private database” applications, the second application to extend 
a file will run into a lock conflict! Since Alpine writes the owner database by 
calling AlpineFile. WritePages, the best solution may be a change in the AlpineFile 
interface that allows lock requests to be specified as short or long in duration. 
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Every Alpine transaction writes one log record when it is created, and this 
limits the duration of a transaction. When this part of the log file needs to be 
reused, the transaction must go away. Our users would like to be able to run long 
read-only transactions without this interference. Alpine should provide this. 

Alpine gives the client no way to find out why a transaction has aborted. Our 
users have convinced us that this is wrong. Alpine should log information about 
the cause of each transaction abort, and provide procedures so that a client can 
read this information. 

A probable change to the Cypress database management system also suggests 
a change to Alpine. Cypress can undoubtedly improve its performance by increas- 
ing the size of database pages from 512 bytes to some larger unit, such as 2048 
bytes. Alpine should support a block size file property so that Cypress will not be 
penalized with unnecessary locking overhead when it makes this change. The 
block size would be the number of pages locked by each fine-grained lock on a 
file. The default block size of one would result in page locking, as is provided 
now. 

Another change is suggested by the design of Alpine’s backup system. To dump 
a volume without disrupting transactions in progress, the backup system must 
be able to read files without setting read locks on them. Alpine should provide a 
new lock mode for this type of access, so that the backup system can read files 
using the AlpineFile interface. 

We expect that further changes will be suggested by the use of Alpine as an 
IFS replacement. The high water mark optimization was designed to eliminate 
the need for unlogged file updates, as in the Cambridge File Server’s standard 
files [19]; it will be interesting to see how well this succeeds. 

8. CEDAR’S INFLUENCE ON ALPINE 

Alpine was implemented in the Cedar language, and calls the Cedar nucleus and 
Cedar RPC facilities. The four novel features of Cedar that helped most in 
implementing Alpine were garbage collection and finalization; lightweight pro- 
cesses; Cedar RPC and its stub generator; and interface and implementation 
modules. 

8.1 Garbage Collection and Finalization 

The Cedar language’s most significant extensions of Mesa are garbage collected 
storage and the option of runtime, rather than compile-time or bind-time, type 
discrimination and checking. The Cedar nucleus includes runtime support for 
storage allocation, garbage collection, and type discrimination. Cedar’s automatic 
storage management exists at an unusually low level in the system, and it is used 
by all the main operating system components except for the virtual memory 
manager [23]. (This structure is not unique to Cedar; Lisp Machine Lisp [29] 
and Interlisp-D [28] are also built in this way.) 

Automatic storage reclamation is obviously a convenience to the programmer, 
and is considered an absolute necessity in some programming communities. But 
other programmers consider languages like Bliss, C, and Pascal to be the highest- 
level languages suitable for “systems programming”; one often hears concerns 
about the cost or unpredictable performance of garbage collection. Since a file 
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server is clearly a systems programming project, our experience in building Alpine 
using Cedar’s automatic storage management system should be of interest. 

Cedar’s garbage collector is incremental and operates as a background activity. 
Without this property, we would not be able to use garbage-collected storage, 
because we cannot regularly refuse service to clients for the ten or so seconds it 
takes a trace-and-sweep garbage collector to do its work. In exchange for the 
convenience of an incremental garbage collector, we must be careful to avoid 
circular data structures, or to break up the circularities before releasing such 
structures. This was not a problem in Alpine. 

In implementing Alpine we consciously minimized the allocation of new storage 
in places where we expected performance to matter most, for example in the 
AlpineFile procedures ReadPages and WritePages. Well under ten percent of the 
code falls into this category. Elsewhere in the implementation we allocate storage 
as seems convenient. This definitely makes the code easier to write and to 
understand. But there are qualitative differences even between the code that 
minimizes allocations and code that we have previously written in standard Mesa, 
which lacks garbage collection. The differences are known to implementors of 
production Lisp programs, who also must minimize storage allocation in some 
situations. 

First, all debugging is done at a level that hides the format of objects in memory 
and the details of the storage allocator. This is possible because essentially all of 
Alpine is written in a subset of the Cedar language that allows the compiler to 
check that the program cannot destroy the garbage collector’s invariants. Only 
the call on the Cedar nucleus that reads from the disk into virtual memory 
buffers cannot be checked by the Cedar compiler. In Mesa, dangling references 
occur and a programmer must sometimes debug at the level of the underlying 
machine. 

A second difference is that cleanup in exceptional condition handling need not 
be performed so carefully. If a Mesa program cleans up by freeing some set of 
allocated objects, the corresponding Cedar program has no explicit cleanup at 
all. 

The most important advantage of automatically managed storage is that it 
simplifies the design of interfaces between modules and simplifies the design of 
data structures that are shared between processes. Procedures can accept refer- 
ences to arbitrary data structures or compute and return such objects without 
concern over whether the caller or the callee “owns” the storage. This is especially 
important when the procedures are possibly remote. 

Sometimes there is an explicit action that must be performed when a collectible 
object is to be reclaimed. For example, there is a hash table that maps file 
identifiers to the volatile objects representing files actively in use. When a file 
object ceases to be referenced from anywhere in the system, we need to remove 
it from the hash table. To accomplish this we use Cedar’s finalization mechanism, 
which permits arbitrary programmer-provided code to be executed when an object 
is about to be garbage collected, or when a specified number of references to the 
object remain. In this way, Cedar’s automatic storage management facility helps 
us to accomplish a task that would otherwise have to be done by manual reference 
counting. 
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While developing Alpine, we identified several deficiencies in Cedar’s imple- 
mentation of automatic storage management. Most notable was a limit on the 
number of simultaneous references to an object; exceeding this limit would make 
the object’s reference count become “pinned,” causing it not to be reclaimed until 
a trace-and-sweep garbage collection was invoked. Experience with Alpine and 
other Cedar applications led to a significant reengineering of the Cedar automatic 
storage management facility to eliminate all the arbitrary limitations that had 
existed. 

8.2 Lightweight Processes 

With Alpine, we reaffirmed our belief in the value of lightweight process machin- 
ery, a legacy of Mesa that has been carried over into Cedar [16]. In Cedar, a 
system can have hundreds of processes, if necessary. The cost of switching 
between processes is negligible, and they use the same address space so data 
sharing is inexpensive. This leads to a programming style in which separate 
processes are used for separate activities, however small. The process machinery 
eliminates the need to explicitly multiplex or schedule activities (except where 
shared data must be referenced) and improves concurrency. 

The remote procedure call mechanism exploits lightweight processes to the 
fullest. On the server, each incoming procedure call causes a process to come into 
existence; when the procedure returns, the process terminates. A remote proce- 
dure call can be of arbitrary duration, since it executes concurrently with other 
procedure calls and activities. 

8.3 Cedar RPC 

Overall we feel that RPC and Lupine, the stub generator, were a boon to Alpine. 
In spite of its restrictions on argument types, Lupine did not inhibit the design 
of our file system interfaces. Lupine translates roughly 600 lines of Alpine public 
interfaces into roughly 7000 lines of bug-free Cedar code that performs well. 

Lupine has made the evolution of Alpine much simpler, because we can build 
a new version of the system without investing a lot of effort to keep the 
communications component consistent with the file system component. It is 
possible that we could have maintained the clean separation between communi- 
cations and file system without Lupine, even without adopting an RPC-style 
interface, but the existence of Lupine eliminated the possibility of being incorrect. 

RPC implementations compatible with Cedar’s have been produced for C, 
Interlisp, Mesa, and Smalltalk programs, so calls can cross between many 
programming environments. 

While implementing Alpine, we noticed two inconvenient aspects of RPC. 
First, one semantic difference between remote and local calls is that in the remote 
case the caller and callee do not share the same address space. For Alpine, this 
means that the caller cannot refer to an object such as an open file or a transaction 
simply by presenting a pointer to that object, but must instead present some 
identifier that names the object. The callee must maintain a data structure that 
maps identifiers to objects, and the caller must manage the set of active identifiers 
somehow. It seems possible that, in some cases, the RPC system could manage 
surrogate objects for the client, send the object identifier down the wire, and 
make the call in terms of the real object at the server. 
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Second, the Cedar language provides no convenient way to manage and refer 
to a dynamically varying set of instances of the same interface, each located at a 
different server. This problem seldom arises in the strictly local case, since it is 
rare for there to be more than one instance of any given interface, and therefore 
the binding can be specified by a static configuration (for which Cedar’s facilities 
are well developed). 

To overcome these inconveniences, we constructed an “Alpine object package” 
that resides on the client machine and isolates client programs from direct access 
to Alpine’s remote interfaces. This package maintains surrogate objects corre- 
sponding to servers, transactions, and open files. A client can therefore deal with 
an open file rather than with an [open file ID, server] pair. Remote procedures 
are then called by invoking the corresponding operations on the appropriate local 
objects. The objects, being allocated from automatically managed storage, are 
reclaimed when no longer in use, and any desirable remote side-effects (e.g., 
closing open files) are triggered by means of the finalization mechanism men- 
tioned earlier. 

We would have liked to have a debugger that understood RPC. Because RPC 
is a stylized form of communication, the Cedar debugger could have been extended 
to trace a call stack across machine boundaries. In many situations the rest of 
the server could have continued delivering service while a process that raised an 
exception was being debugged remotely. 

With such a small user community, we have never attempted to support two 
versions of the Alpine public interfaces at one time. Lupine and RPC do not 
completely solve the difficult problem of protocol evolution, but we think they 
will help. One can easily imagine extensions to Lupine that would help even 
more, by generating a server stub that imports a new interface version and 
exports the old version (as long as the old is sufficiently similar to a subset of 
the new). 

It is worth reemphasizing the point that RPC does not make a remote call look 
exactly like a local call. RPC does not attempt to hide the fact that the address 
spaces are different in the remote case, or that the remote call is to a machine 
that has failures independent of the originating machine. A great advantage of 
RPC is that the remote calls take a familiar form, and that you are not tempted 
to call in a different way in the local case out of laziness or to make the local call 
more efficient. RPC allows local calls to look remote, not the other way around. 

8.4 Interface and Implementation Modules 

We feel that the interface module (borrowed from Mesa) is the strongest feature 
of the Cedar language. Cedar interfaces prevent errors by providing type checking 
across implementation module boundaries. Modules help you organize thinking 
and work; the entire design process for the Alpine system was organized around 
the writing of interface modules, and the implementation was also coordinated 
at that level. If Cedar hadn’t already had interfaces, Lupine would have made it 
necessary to invent them. 

Interface modules encourage the sort of clean decomposition of a large system 
that is necessary if it is to evolve. In Section 4 we noted that a log-based 
transaction implementation can be structured so that most of it does not depend 
on details of the underlying file system, and is easy to move from one file system 
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to another. We tested this hypothesis in the Alpine project by converting Alpine 
to use a new Cedar nucleus file system that bore no resemblance to the previous 
file system, based on Pilot. Essentially the entire work of the conversion was 
confined to the Buffer component, as expected. 

Alpine used the feature of Cedar (and Mesa) interfaces that allows them to be 
parameterized at compile time: this is analogous to generic package instantiation 
in Ada. But this feature can be difficult to use; often a programmer must define 
a new interface just to transmit a few parameters to the package, and must also 
keep track of several files generated by the compiler in the instantiation process. 
The Cedar system modeller [17] is designed to solve these file management 
problems in building large Cedar programs. Lacking the modeler, we used module 
instantiation for one large package that was instantiated only twice. For a smaller 
package that was used in more places within Alpine, we instantiated it by copying 
its source code in a stylized way. This is okay as long as the package is stable. 
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