
T e c h n i c a l R e p o r t N o : 2 0 0 1 / 0 1

FPGAs in Critical Hardware/Software Systems

Adrian Hilton
Gemma Townson

Jon G. Hall

September 2002

Department of Computing
Faculty of Mathematics and Computing
The Open University
Walton Hall,
Milton Keynes
MK7 6AA
United Kingdom

http://computing.open.ac.uk

l

FPGAs in Mission Critical Hardware / Software

Systems

Adrian J. Hilton Gemma Townson∗ Jon G. Hall†

September 26, 2002

Abstract

FPGAs are being used in increasingly more complex roles in critical systems,
interacting with conventional critical software. Established safety standards
require rigorous justification of safety and correctness of the conventional soft-
ware in such systems. Newer standards now make similar requirements for
safety-related electronic hardware, such as FPGAs, in these systems.

In this paper we examine the current state-of-the-art in programming FP-
GAs, and their use in conventional (low-criticality) hardware/software systems.
We discuss the impact that the safety standards requirements have on the co-
development of hardware/software combinations. and suggest adaptations of
existing best practice in software development that could discharge them. We
pay particular attention to the development and analysis of high-level language
programs for FPGAs designed to interact with conventional software.

1 Introduction

FPGAs are increasingly important components of safety-critical systems. By
placing simple processing tasks within auxiliary hardware, the software load on
a conventional CPU can be reduced, leading to improved performance. The
use of FPGAs in this role impacts safety-critical system development in that
hardware/software combinations become subject to relevant standards, such as removed:

requirements for

the

UK Defence Standard 00-54 [?] and IEC 61508 [?], which, in particular, will re-
quire safety and correctness arguments for the programmable logic components
in addition to, and in combination with, those for the conventional software.

In addition, technological improvements mean that program development
for FPGAs has become more like software development in terms of program

∗Praxis Critical Systems Ltd., 20 Manvers Street,Bath BA1 1PX
†Department of Computing, The Open University, Walton Hall, Milton Keynes

1

size, syntax, complexity, and the need to clarify a program’s purpose and struc-
ture. Taken together, safety-critical use and technological improvement have
important implications for hardware/software co-development.

This paper describes the impact that requirements from mandated standards
have on hardware/software co-development, in the context of existing software
development best practice for safety-critical systems. We then show how best
practice might be adapted to FPGAs without incurring undue overhead in sys-
tem development time.

2 Safety Standards

A safety-critical system is a collection of components acting together where
interruption of the normal function of one or more components may cause injury
or loss of life. Examples of such systems in general public life are air traffic
control centres and railway signalling systems.

As such, their development is the subject of many standards. One example
is UK Defence Standard 00-54 (Def Stan 00-54) [?] – an interim standard for
the use of safety-related electronic hardware (SREH) in UK defence equipment1

– relates to systems developed under a safety systems document such as IEC
61508 [?]. Other standards include [?].

Def Stan 00-54 contains the following requirements of the development pro-
cess which are of particular interest to us:

(§12.2.1) [That] a formally defined language which supports math-
ematically based reasoning and the proof of safety properties shall
be used to specify a custom design2;

(§13.4.1) [That] safety requirements shall be incorporated explicitly
into the hardware specification using a formal representation; and

(§13.4.4) [That] correspondence between the hardware specification
and the design implementation shall be demonstrated by analyti-
cal means, subject to assumptions about physical properties of the
implementation.

Def Stan 00-54 notes that widely used standard hardware description lan-
guages (HDLs) without formal semantics, such as VHDL and Verilog, present
compliance problems if used as a design capture language: Z [?] is suggested as
an example of a suitable language.

Although Def Stan 00-54 is interim, the concerns which it expresses about
existing practices and its suggestions for process improvements are worth careful

1All the authors are British, and so are most familiar with British standards. Other such
standards include [?]

2‘Custom design’ refers to the non-standard components of the electronic component under
examination; in particular, this includes an FPGA’s program data

2

scrutiny. In particular, the requirement for ‘formal representation’ which sup-
ports reasoning about FPGA behaviour is expected to appear in the final ver-
sion; with this in mind we describe a development process for hardware/software
systems which aims to satisfy the requirements of Def Stan 00-54. Examine public

AAvA infoWe now examine the best practice in safety-critical software development
to identify practices appropriate for systems incorporating software and pro-
grammable hardware in their architecture.

3 Current Best Practice

Best practice in the development of software for safety-critical systems is to be
found in software which has been developed to a software standard (such as
Def Stan 00-54) and which is in current use. To illustrate what is involved in
safety-critical software development, then, we consider the SHOLIS helicopter-
landing system, developed to UK Defence Standard 00-55 [?] as currently in
use on Royal Navy Duke-class frigates. (From this, we will extrapolate to what
would be needed for hardware/software co-development.)

In SHOLIS, extensive use was made of formal methods development tech-
nologies. These included: specification and proof in Z; tool assisted static anal-
ysis of program code; and semi-automated proof of program properties, such
as absence of run-time exceptions. Formal methods proved useful: the Z proof
phase was found to be significantly the most efficient phase at finding faults,
and the ability to prove the absence of run-time errors demonstrably improved
developer and user confidence in the system. (For detail of the development of
SHOLIS system, the interested reader is referred to [?].) I’m doubtful as

to whether this

sec-

tion/paragraph

adds much

As we wish the same benefits to be available to hardware/software co-
development, we see that best practice should, in particular, facilitate similar
analytical techniques for FPGAs and their relationship with system software.
Unfortunately, the locus of application of formal methods as applicable to sot-
ware is not known to include FPGAs. In particular, there are possible compli-
cations brought on by the use of FPGAs are: the highly parallel nature of their
computations; the difficulties of interfacing to other system components; and
issues of timing.

Whereas timing issues and interfacing can be resolved (to some extent) by the
use of simulation and the synchronous design for the FPGA [, Need ref here], and
asynchronous interfacing to other components, respectively. However, correct
analysis of the parallel structure of FPGAs remains key to extending software
development best practice to cover them.

4 Current FPGA Usage

[“. . . ” means “to be researched and filled in by Gemma”]

3

4.1 Devices

The mainstream devices are X by Xilinx and Y by Altera . . .

4.2 Programming Languages

The low-level hardware description languages (HDLs) for FPGAs are VHDL and
Verilog. These, similar to the relationship between machine code in software,
allow precise control over timings and performance but are hard to use correctly.
Pebble[?] is a simpler, synchronous HDL that allows translation to VHDL or than what, or is

it simpler to

use?

netlist format.
The increased capacity and clock speed of modern FPGAs makes it possible

to trade-off performance for ease-of-device-programming. Handel-C[?], for in-
stance, uses the syntax of ANSI-C to form a language which is partly imperative
and partly declarative: C language constructs describe control and data flow;
extensions add parallel constructs such as channels and indicate parallel exe-
cution of statements. Declarations inform the Handel-C compiler about other
system entities such as RAM and ROM blocks, and implementation details such
as which resources are to be shared.

It is worth noting here that, although Handel-C removes some undesirable Why is it worth

noting here? Is

it because

someone might

ask whether you

couldn’t use it in

the development

of safety-critical

systems? If so,

it might be

better to make

that explicit

features of C programs such as type ambiguity and some of the less clear control
flow features, it retains problems such as the if/if/else syntax ambiguity and

then(?)

adds undesirable features such as inferred variable widths. It is not a language
designed for safety-critical systems.

Ref for “Safer

C”

4.3 Applications

The following systems use FPGAs (and Handel-C) in substantial roles . . .

5 FPGAS in Safety-Critical Systems

added

In this section we first consider the form that safety and correctness arguments
for FPGAs should take, and then look into their combination with those for
software.

5.1 FPGA Safety and Correctness Arguments

changed

FPGAs may be built into safety-critical systems ab initio when the system is first
designed or as part of a re-engineering of a software-based system in which they
replace current software functionality. In the former case, design languages are
likely to be higher-level, and require transformation to lower-level FPGA specific
designs. In the latter case, it is possible that the existing software is that starting
point for the FPGA design. In either case, their incorporation brings with it a
need to be able to reason formally about the safety and correctness of programs
executing on the FPGA (to satisfy Def Stan 00-54). Hence, we identify three
requirements for a FPGA design methodology:

4

1. verifiability and validity : the ability to demonstrate that programs satisfy
their requirements specification;

2. refinability : the ability to refine high-level designs into code while demon-
strating equivalence between them; and

3. interoperability : the ability to reason about behaviour at the interface perhaps not the

best term,

interfacability?

between software and FPGA.

This section is a

bit confused

from here on.

The logical

development

should leave us

looking at (what

I have, perhaps,

erroneously

called

verifiability and

validity,

refinability, and

interoperability)

but, anyway,

three separate

things. Below

the first

confusingly

merges into the

second...needs

restructuring a

little. We also

need to be able

to audit back to

them when we

discharge them

later on. Next

comments on

section 6

We develop these points in the rest of this section, with the objective of
outlining a method to produce a correct FPGA program from a high-level spec-
ification.

5.2 Demonstrating FPGA Program Correctness

There are two choices for showing that a FPGA’s program satisfies its specifi-
cation. The more common, verification, is ‘show that the implementation does
what the requirements say’. One possibility is to use ‘model-checking’, auto-
matic checking of finite state specifications against a given implementation. The
key weaknesses of model checking are:

1. it is very CPU-intensive, due to the number of possible state transitions;

2. usually it will only be able to tell you whether your system is correct, not
where it is weak; and

3. it does not prove properties in the general case, but only for the specific
case of the actual states in the model being checked.

In this paper we adopt the second strategy which is often initially harder: a
proof-theoretic approach to ‘develop the requirements into an implementation’.

We use Synchronous Receptive Process Theory (SRPT) to model formally
the structure of FPGAs. SRPT, described in [?], was developed with the moti-
vation of being able to reason about synchronous (clocked) events. It specifies
a system as a set of events Σ, and a set of processes Pi each of which has a
set of input and output events. Processes are defined in terms of output events
in reaction to input events. SRPT has a denotational semantics expressed in
terms of the traces of each process. Interested readers are referred to Barnes [?,
§5.3-5.4] for the details of the semantics.

The structure of a FPGA can be considered as a collection of small SRPT
processes reacting to input signals to produce output signals, when cells are
viewed as processes and their routing is viewed as describing which signals pass
to which process. In our work to date we have demonstrated a method of proof
that a FPGA cell (modelled by an SRPT process) satisfies a specification in
terms of event sequences in its traces.

5

5.3 Small-Scale Refinement

In [?] the authors demonstrate a refinement calculus suitable for developing
abstract specifications into an implementation in the aforementioned Pebble
HDL. The calculus semantics are based on Back and Wright [?]. The calculus
provides refinement rules for transforming specifications into SRPT processes,
which can then be compiled automatically into a Pebble implementation.

Pebble’s structure is simple enough to compile to VHDL or netlist format
without too high a probability of serious compiler error, and high-level enough to
abstract away from device dependencies. SRPT processes at a suitably concrete
level can be mapped directly into Pebble with minimal effort.

The authors demonstrated the use of this calculus by developing a provably
correct carry look-ahead adder. It is, however, painstaking work and would be
hard to apply to developing all of a realistically sized real-world system. In the
next section we examine the wider task of designing and implementing the rest
of the system.

6 Design Refinement

Given a detailed Z specification, we wish to develop a system design into a
hardware-software implementation, demonstrably maintaining correctness. We
note that, typically, FPGAs will form only a relatively small adjunct to software.
In this case, a useful stepping stone for FPGA design would be a software
language that could act as the target of refinement from Z and as well as being
able to be compiled directly into SRPT processes.

Our candidate language for this role is SPARK Ada [?, ?]. SPAKR Ada
is a subset of the Ada language [?, need ref here]. The use of SPARK Ada is
well-known in safety critical system development; indeed, it was the main im-
plementation language for the SHOLIS project. Proof of concept is established,
in [?, ref], the authors have produced a design for a SPARK interpeter which
allows arbitrary sections of SPARK programs to be compiled directly into pro-
grammable logic. In combination with its traditional software use, this shows
that SPARK Ada is a good candidate.

6.0.1 Benefits of SPARK Ada

SPARK Ada has many desirable characteristics as a language for form devel-
opment. It has a formal semantics defined in Z[?, ref here]; tool support from
the SPARK Examiner static analysis tool[?, ref here]; and uses the strong type
system of Ada[?, ref here]. SPARK Ada is also strongly recommended for use
in developing SIL 4 systems[?, ref here].

Methodologically, SPARK Ada is supported by the INFORMED method
[?]. INFORMED provides for the top-down development of a system from its
specification . Specifically, INFORMED helps identify the boundaries between In Z?

the SPARK Ada program and any “real world” devices. INFORMED analysis
Does this

discharge one of

our three

requirements?

is key to the design of our system.

Why is it key?

Is it just an

important

component?

next two paras:

Are they

relevant? If so

why?

6

SPARK Ada programs do not currently include the Ada tasking (parallel
processing) statements. Audsley and Ward [?] describe how to model a parallel
Ada program using the Ravenscar Profile safe tasking model [?] to schedule
SPARK Ada programs on programmable logic devices, allowing worse-case ex-
ecution time analysis. We can use the results of the INFORMED analysis to
separate out the individual SPARK Ada programs which are executed in par-
allel.

Current development of SPARK Ada is incorporating the Ravenscar profile
into the language; the ‘protected objects’ with which processes communicate
are modelled as data streams. Other process interactions are mapped using a
combination of suspension objects and atomic variables. Analysing the detail
of the inter-process interaction is done with existing Ravenscar-specific tools.

SPARK Ada can, with very few extensions to the language, replace Handel-
C in such systems. Many of the features which Handel-C adds to C (e.g. specific But you said it

was not used!bit-width typing and casting restrictions) are present in Ada; others (e.g. for-
bidding side-effects in expressions) are implemented in SPARK.

SPARK Ada includes features that assist in compiling imperative structures
to hardware. The information and data flow known to a SPARK Examiner We should say

earlier that these

form part of the

annotations

makes it feasible to detect potential race conditions in code intended for par-

automatically

detect?

allel execution. SPARK also allows the proof that no variable in the program
goes outside of its declared numeric range; this is a substantial aid to both com-
pilation and correctness. Ada defines compiler directives for representing values
of enumerations and the specific addresses of variables.

Parallel constructs present more of a challenge. Fine-grained parallelism
would need an explicit program marker. One option would be use of a pragma
parallel on a subprogram, marking the subprogram’s statements to be exe-
cuted in parallel. Channels between threads could be modelled using Ravenscar
protected objects.

The greatest benefit from this work is that an entire system program could
be represented with a SPARK program; parts to be implemented on an FPGA
would be subject to static analysis both in isolation and as part of the larger
system. The FPGA program would then have been implemented in a high-level
language designed (and proven effective) for use in safety-critical systems.

Our current investigations involve producing a map from SPARK Ada onto
Handel-C; given this, we can then work on going directly from SPARK to VHDL.

6.1 Correct Refinement

The formal refinement of a state-based specification into a parallel process model
is, in the general case, hard to manage correctly. One promising unified theory
is Circus [?], an integration of the CSP process algebra and the Z specification
language. This uses a Z schema to describe the state of each process and CSP-
like action to describe the control behaviour of each process. Circus has well-
defined refinement rules for transforming specifications from abstract to concrete
form.

7

Circus is appropriate to our development process at a higher level than
SRPT. It gives us a way to refine down from an initial abstract specification to
a collection of relatively independent processes, omitting specific timing descrip-
tions as long as they are irrelevant. The developer would then translate these
specifications to a SPARK Ravenscar system design, or (for certain identified
processes) into an SRPT process specification.

Circus is as yet untested in an industrial-scale development; nevertheless, its
framework and the rigour of its specification and refinement laws show promise
for practical system specification.

6.2 Testing

A well-recognised method of increasing confidence in a system is the use of
testing. Testing methods for conventional software are understood, and existing
standards make various recommendations about rigorous approaches to testing
e.g. statement and decision coverage, unit testing versus system testing and the
use of dynamic test tools.

Unit testing of programmable logic devices presents new problems, such as
detecting the effects of corruption to the programming bitstream. An approach
such as that in [?] aims to identify stuck-at conditions for cells, open and shorted
interconnections and coupling faults. The development testing plan must in-
clude such testing of the programmable logic components.

We have noted that high integrity systems require careful specification. Such
specifications form a natural basis for testing, and it is therefore possible to
write test cases from the specifications early in the development process; indeed,
writing test cases before the implementation starts is not only possible but
desirable since it gives the developer an immediate check as to whether his code
satisfies the specifications.

In summary, then, the testing of a high integrity hardware-software system:

• is key to establishing confidence in the system;

• can exploit existing software techniques effectively as a side effect of pos-
sessing a rigorous specification; and

• requires specific testing techniques for the programmable logic component.

7 Process

The overall development process is illustrated in Figure 1. We start with an
abstract specification in Z. Through the INFORMED method we identify the
boundaries and components of our system. Any computation obviously suit-
able for programmable logic is split off into a separate specification and refined
manually into SRPT processes then compiled into Pebble.

The main Ada program is split into processes which interact using the Raven-
scar tasking subset. Each process is developed into a SPARK Ada program,
which is verified with the SPARK Examiner and proof checking tools.

8

height 90mm width 82mm process.pdf

Figure 1: Development Process

Any subsection identified as suitable for implementation in an FPGA is
modified to have the appropriate parallel constructs and interface declarations
(e.g. to on-chip RAM and ROM). This modified code is statically analysed with
the rest of the system. At compile time, the FPGA-specific code is compiled
into VHDL; within the main Ada program, it is replaced by a veneer sending
data to and from the FPGA via a method appropriate to the particular system
(e.g. memory-mapped I/O or a bus interface package).

8 Conclusion

We have seen how safety standards place requirements for analytical demonstra-
tion of the safety of systems incorporating programmable logic. We have identi-
fied key technologies and methods for such analysis, and proposed a process for
developing programs for FPGAs to a high standard of integrity. This process
combines established safety-critical software development tools with techniques
for developing correct programmable logic programs.

At the level of implementation we have identified the deficiencies of exist-
ing FPGA programming languages and proposed the extension of the SPARK
Ada high-integrity programming language to fill this gap. We have examined
the problem of testing hardware/software systems and identified existing and
proposed test methods appropriate for the task.

8.1 Acknowledgements

Thanks are due to Rod Chapman and Brian Dobbing for information on SPARK
Ada and the Ravenscar Profile.

9

