
TRANSLATION OF ARTIFICI~CO IJ%NGUAGES BY

Research Report and Design for Future Languages

Robert F~ Rosin

RA~q~0 Corporation
University of }iichigan

S~A~Y

I. Purpose of the work°

This work was carried out primarily to investigate artificial languages
from the standpoint of translation by nzchineo It was desired to learn
what representations are necessary to make this task more easily accom-
plished~ It was felt that this work would apply not only to translation
of artificial languages but also to natural language translation by
machine and other complex symbol manipulation programs as wello It must
be pointed out that the problem under consideration was pat the transla~
tion algoritb~n~ but the code necessary to trans~rit this algorithm to the
machi~ne. For this reason two relatively u~complicated languages were used°

As a by-product of this work it was hoped to show that the more fl~xibil~
ity with ~hich a language is endowed~ the ~ore powerful programs it may
produce. GAT ~s not intended to be a symbol~manip~ilator-compiler~ but
a compiler with enough power to be useful in both the educational and
applied areas of a university computer instaliation~ To ensure these ends
a very simpl% yet powerful tool was added; the ability to operate with
(read, %Tit% conpar% etc.) alphabetic variables. This was facilitated
by the internal structure of the IBM 650 with alphabetic a~.d special
character devices.

To make this work as pure a demonstration as possible, the translator was
to be written in such a way as to use a minimum of externally produced
subroutines. This meant that some operations which might be carried on
very efficiently in some other languages (e.g. SOAP) would be time and
space consuming in the translator. Due to the character of the GAT lan-
guage these subroutines may be used as operators to some extent and allow
for easy coding of conversions from one mode of internal storage to
another.

It should be noted here that there was never any intent to produce a
production level translator. Compilers today use storage less efficiently
than human coders and also are not equipped to take advantage of all of
the devices available to the human programer. Nevertheless, it was hap-
pily noted that the translation of arithmetic FORTPJq~SIT statements to
the corresponding GAT statements was relatively fast. A representative
time might be about ten statements per minute. This varies according to
the length and complexity of the statement.

75 - i

http://crossmark.crossref.org/dialog/?doi=10.1145%2F612201.612290&domain=pdf&date_stamp=1959-09-01

Iio The translation process°

OAT is essentially an IT-type language with certain added features
which increase its powers The ability to manipulate alphabetic vari-
ables and a more flexible subroutine format have already been mentioned°
FORTRANSIT is the 650 version of FORTRAN which is essentially limited
in several non-critical ways to enable it to be used on the 650.

Certain limitations of the 650 have caused the translator to be a
limited version of the ideal program. ~ainly, it has been found that
2000 words of storage are not enough to store the progr~, the variables
which are used and the constants and linkages and subroutines which the
compiled program needs to function° For that reason there is a large
class of FORTRANSIT statements which are not treated though they are
detected by the program and this is indicated in the output.

Most important among these is the DIF~SION statement which serves to
indicate parameter storage for FORTRANSIT. Since this is not included
in the translated output, subscripted variables and matrix variables
are not handled properly. However~ the treatment is coded and could be
accomplished in a machine with greater than 2000 words of storage~

Arithmetic statements are translated as follows. Subroutine names,
which end in "F" in FORTRANSIT, have their final character changed to
I~' to correspond with GAT notation. This also allows a programer
skilled in the GAT language to code in FORTRANSIT but to use GAT library
subroutines or to write his own GAT subroutines, which is a very simple
procssso Fixed point FORTRANSIT variable names, which must begin with
the letters I through N, are translated into subscripted 3[variables in
G~T~ The remaining, which are floating point, are translated into sub-
scripted C variables. The "* ~' (exponentiation) in FORTRANSIT becomes

P in accordance with GAT notation.

III~ Conclusions°

k primary conclusion which may be drawn from this work is that it is
quite feas|ble to write translators in compiler-type languages. The
coding time for this program was quite minimal, and the entire project
was carried out in spare time in a period of two and one half months.

The conclusions concerning the symbol ~anipulator language may be sum-

marized as follows :
lo It would be convenient to be able to operate with variables of

greater than 5(650) or 6 (704) characters in length. This is especially
true when one approaches the problem of natural language translation.

2. It is necessary to be able to extract a group of characters from
any part of a variable and operate on it and make decisions based on its
content. This should be defined as a unary operator (as the sine func-
tion) and, thus, should be allowed as a part of any program statement.

7 5 - 2

3~ Decisions should be based on a broad set of functions as is
defined in the IoAoLo

4~ Some sort of recursive list structures such as is part of the
Newell-Shaw-Simon IoPoLo ~ s should be available°

5~ One should be able to define special characters within his
program to facilitate translation°

6~ The operation of concatenation (serial conjoining) should be
easily express~ble within the language°

There are two approaches to pro~@ding these features° The most desirable
is the design of machines capable of carrying out these tasks internally~
Buts until such machines are available~ languages utilizing these features
can be developed~

A final result of this work lies in a better understanding on the part
of the author of the complexities of compilers and the translation pro-
cess~ These realizations are applicable to writing natural language
translator% artificial language translators (compilers), pattern recog-
nizers (for what are patterns but multi-dimensional stri~gs of characters
to be deciphered) and other such programs~ The ultimate aim is to pro-
duce a program which will allow specification of both source and object
languages alone to produce a compatible translator between the twos

7 5 - 3

