
REMARK ON ALGORITHM 246

Graycode[Z] [J. Boothroyd, Commun. ACM 7,12 (Dec. 19641, 7011

M. C. Er [Received October 1984; revised March 1985; accepted October 19851
Department of Computer Science, University of Western Australia, Nedlands,
WA 6009, Australia

After the publication of Algorithm 246, Misra [l] suggested an improvement to
it. He gave no detailed coding; but from his descriptions, we obtain the following
algorithm for generating the binary Gray code of N bits, assuming that A [l . . N]
is an array of bits, which is initialized to all 0’s.

procedure Misral(N: integer);
var s, j, i: integer;
begin

s := 1;
j := 0;
PrintCode;
while j <> 1 do begin

if odd(s) then begin
if A[N] = 1 then begin

j := pop;
j := pop;
wdj);

else begin (A(N] = 0)
push(N);

‘,s N;
A[N] :;= 1 - A[N];
end

else begin {even(s)}
j := pop;
if A[j - l] = 1 then

i := pop
else {A[j - l] = 0)

push(j - 1);
push 1;
A[j-l]:=l-A[j-11;
end,

PrintCode;
s := s + 1;
end;

end {Misra 1);

Here, the procedure PrintCode simply prints the contents of A[1 . . N]. The invariant of
the loop is

Rl: (j = MAX(i: 1 I i 5 N: A[i] = 1) \/j = 0) /\
the stack contains the positions of all 1 bits in sorted order.

We see that the position of the rightmost 1 bit is frequently pushed onto and
popped off from the stack. The efficiency of the algorithm can be improved by

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985, Pages 441-443.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F6187.356154&domain=pdf&date_stamp=1985-12-01

442 l M. C. Er

not storing the position of the rightmost 1 bit in the stack but remembering it
j. Hence we obtain the following improved algorithm

procedure MisraZ(N: integer);
var s, j, i: integer;
begin

s := 1;
j := 0;
PrintCode;
while j <> 1 do begin

if odd(s) then begin
if A[N] = 1 then

j := pop
else begin (A[N] = 01

push(j 1;

‘,s”;
A[N] :;= 1 - A[N];
end

else begin (even(s))
ifA[j- l] = 1 then

i := pop
else {A[j - l] = 0)

push(j - 1);
tii- l] := 1 - A[j - 11;

Printdode;
s := s + 1;
end,

end (MisraSj;

in

The invariant of the loop is now:

R2: (j= MAX(i:ls is N:A[i]=l)\/j=O)/\
the stack contains the positions of all 1 bits, except the rightmost 1 bit,
and position 0 in sorted order.

The position 0 stored in the stack is simply a sentinel value, and is not referred
to at all.

The procedure Misra2 is more efficient than the procedure Misral, as it
performs only a push or a pop per iteration. Despite the improvement, the
overhead for maintaining the stack is still too high.

If recursion is allowed, a recursive algorithm can generate the binary Gray
code more efficiently than the above iterative algorithms. Let A[1 . . N] be an
array of bits, initially containing all zeros. The following recursive procedure,
when called as GrayCodel(l), will generate the binary Gray code of N bits.

procedure GrayCodel(n:natural);
begin

if n C= N then begin
GrayCodel(n + 1);
A[n] := 1 - A[n];
GrayCodel(n + 1);
end

else PrintCode;
end (GrayCodel);

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

Remark on Algorithm 246 l 443

Table I. The running times (in seconds) of the algorithms
Misral, Misra2, GrayCodel and GrayCode on a Vax 11/750

N Misral MisraQ GrayCodel GrayCode

6 0.80 0.70 0.67 0.60
7 1.73 1.50 1.43 1.37
8 3.63 3.30 3.07 3.00
9 7.83 7.20 6.87 6.70

10 17.13 15.60 14.97 14.17
11 36.40 34.17 32.10 31.10
12 77.17 70.97 68.03 67.23
13 164.27 154.27 147.33 143.80

Three comments are in order. First, the procedure GrayCodel is considerably
shorter than the procedures Misral and Misra2. Second, the procedure Gray-
Code1 manipulates no auxiliary data structures at all. Third, the total number
of procedure calls to GrayCodel to generate 2* - 1 codewords is 2*+’ - 1; hence
each codeword is generated in O(2) units of time, on average. The average-time
complexity can be improved to O(1) by removing redundant procedure calls as
shown below:

procedure GrayCodeZ(i:natural);
begin

if i < N then begin
GrayCodeS(i + 1);
A[i] := 1 - A[i];
PrintCode;
GrayCode2(i + 1);
end

else begin {i = NJ
A[i] := 1 - A[i];
PrintCode;
end,

end (GrayCodeBJ;

The efficiencies of these four procedures implemented in PASCAL have been
timed on a Vax 11/750 computer running under UNIX, and are summarized in
Table I. The actual running times (measured in seconds of CPU time) support
the above observations.

Thus we conclude that GrayCode is the most efficient algorithm to generate
the binary Gray Code, whereas Misral is the least efficient one among these four
algorithms.

REFERENCE

1. MISRA, J. Remark on Algorithm 246: Graycode[Z]. ACM Trans. Math. Softw. 1,3 (Sept. 1975),
285.

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

