
Symmetric Complementation

JOHN H. REIF

Harvard Unwerstty, Cambridge, Massachusetts

Abstract. This paper introduces a new class of games called symmetric complementing games. These
games are interesting since their related complexity classes include many well-known graph problems:
Finding mlmmum spanning forests; k-connectiwty and k-blocks; and recognition of chordal graphs,
comparabdity graphs, interval graphs, spht graphs, permutation graphs, and constant valence planar
graphs. For these problems probabihstlc sequential algorithms requiring simultaneously logarithmic
space and polynomial time are given Furthermore, probabfllsUc parallelism algorithms requiring
simultaneously loganthmic time and a polynomml number of processors are also given.

Categories and Subject Descriptors: F. 1.2 [Computation by Abstract Devices]: Modes of Computation--
alternatwn and nondetermmtsm; parallehsm; probabthsttc computation; F. 1.3 [Computation by Abstract
Devices]: Complexity Classes--complextty hterarchies; reductbthty and completeness; relations among
complexity classes, F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms
and Problems--computattons on dtscrete structures

General Terms: Algorithms, Theory

Additional Key Words and Phrases' Symmetric computation, parallelism, alternation, probabilistic
computation, graph problems, connectivity, planarity

1. Introduction

1.1. PREVIOUS WORK. In the previous decade, considerable success has
been made in the design of time-efficient sequential algorithms for many combi-
natorial problems on graphs (such as spanning trees, k-connectivity for k = 1, 2,
and 3 [18], and planarity testing [19] using the technique of depth-first search.
Also, breadth-first search has been used for time-efficient sequential algorithms for
other graph problems. By applying well-known simulation results (e.g., [12], we
can derive parallel space-efficient algorithms from these sequential time-efficient
algorithms. Also, parallel time has been related to sequential space (by the simu-
lation results, of, e.g., [8, 12]). It is intriguing therefore to ask

(i) Is there a general graph search technique that yields sequential algorithms
with optimal space and (either by simulation results or directly) also yields parallel
algorithms with optimal time?

We require that these algorithms be reasonable: that a sequential algorithm with
space bound S(n) uses no more than 2 °ts~n)) sequential time (hence, if S(n) =

Presented at the 14th Annual Symposmm on Theory of Computing, San Francisco, Calif., April 1982.
This work was supported m part by the National Science Foundation Grant NSF-MCS79-21024, the
Office of Naval Research Contract N00014-80-C-0647.
Author's address: Alken Computation Laboratory, Harvard University, Cambridge, MA 02138.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
pubhcation and its date appear, and noUce is gtven that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
© 1984 ACM 0004-5411/84/0400-0401 $00.75.

Journal of the Assooat~on for Computing Machinery, Vol 3 I, No 2, Apn11984, pp 401--421

http://crossmark.crossref.org/dialog/?doi=10.1145%2F62.322436&domain=pdf&date_stamp=1984-03-30

402 JOHN H. RE1F

O(logn), then n c~) sequential time will be used) and that a parallel algorithm with
time bound T(n) use no more than 2 °¢rcn)) processors (again, note that T(n) =
O(logn) implies n °°) processors will be used). Hence, certain probabilistic Turing
machines (TMs) have a time bound doubly exponential in their space bound and
are therefore not reasonable.

The depth-first search techniques appear not to be applicable to (i) owing to their
sequential nature. A possible technique for solving a graph problem is to reduce
the problem efficiently to Boolean transitive closure, for which there is a known
O(log2n) parallel time algorithm [7]. Using this technique, breadth-first search can
be done in parallel time O(logn) 2. Savage and Ja'Ja' [29], Hirschberg [16], and
Hirschberg et al. [17] use parallel breadth-first search and parallel Boolean transitive
closure to do planarity testing and to solve connectivity problems in O(log2n)
parallel time. However, Boolean transitive closure has no known algorithm with
less than 9(log2n) parallel time bound, and this bound seems very difficult to
improve, whereas we show here the planarity testing and connectivity problems
actually have O(log n) probabilistic parallel t ime algorithms.

A related problem is

(ii) Is there a logic, in which a significant class of combinatorial problems may
be succinctly expressed, and such that validity of sentences in the logic may be
decided efficiently or even optimally (with respect to sequential space or parallel
time)?

A logic satisfying the conditions of (ii) could be used as the kernel of a language
for parallel programming, where programs may be "compiled" into time-optimal
code for parallel machines.

1.2. OUR RESULTS. This paper proposes solutions to (i) and (ii). A space-
efficient sequential probabdistic search technique was first introduced by Aldiunas
et al. [2] to test connectivity. We generalize the probabilistic search technique to
yield optimal algorithms (in sequential space and also parallel time) for a complexity
class Z,CSYMLOG, which contains many important combinatorial problems.
Furthermore, we propose a restricted quantified Boolean logic ~ , Q B F ~ as a
solution to (ii).

Our results are actually stated in a more general setting. This paper introduces a
class of 1-player games of perfect information, which we call complementing games;
the player is allowed moves that complement the value of successive plays. A
complementing game is symmetrtc if all noncomplement moves are reversible (i.e.,
form a symmetric relation). These games are naturally related to a class of machines
we call symmetric complementing machines. Symmetric nondeterministic ma-
chines were introduced in [24]; they can be viewed as a restricted class of our
symmetric complementing machines with complement moves allowed only on
termination. Of particular interest is the complexity class ~,CSYMLOG, which
contains the outcome problem of symmetric complementing games with constant
complement bound with game positions encoded in log space, and next move
relations computable in log space. We show that the decision problem for a
restricted quantified Boolean logic ~ , Q B F ~ is complete in ~,CSYMLOG. We
also show that ~ ,CSYMLOG contains many well-known and common combina-
torial problems:

(1) min imum spanning forests,
(2) k-connectivity and k-blocks;

Symmetric Complementation 403

and also the recognition problems for many classes of graphs:

(3) planar graphs of constant valence,
(4) chordal graphs,
(5) comparability graphs,
(6) interval graphs,
(7) split graphs,
(8) permutation graphs.

We present a probabilistic algorithm (this is an algorithm that makes probabilistic
choices [27], but with no assumptions about the probability distribution of the
inputs) for recognizing the languages of ~;.CSYMLOG within space O(log(n)) and
simultaneous time n °tj~, with error probability <e for any given ~, 0 < ~ < 1. As a
consequence, problems (1)-(8) can be done probabilistically in space O(log(n)) and
simultaneously within polynomial time. Previously, the best known algorithms for
problems (1)-(3) required deterministic space fl(log2n) [21], and for problems (4)-
(8) space fl(n).

Also, we give a probabihstic parallel algorithm (which employs the Hardware
Modification Machines of [6], with independent distributed probabilistic choice)
for recognizing the languages of S .CSYMLOG within parallel time O(logn) and
error probability <e, for any given e, 0 < ~ < 1. Thus, we also have parallel time
O(logn) algorithms for problems (1)-(8). Our parallel algorithms require only a
small polynomial number of processors. The best previously known parallel
algorithms for problems (1) and (2) required parallel time f~(logZn) [16, 17, 29],
problem (3) also required parallel time ~2(log2n) [20], and we know of no previous
parallel algorithms for problems (4)-(8). Furthermore, we show (by a counting
argument) that for each input length n ___ 0, the probabilistic choice can be
eliminated in both our sequential and parallel algorithms. This does not affect the
efficiency of the algorithms but makes our algorithms nonuniform (i.e., we have a
different algorithm for each input length).

1.3. ORGANIZATION OF THIS PAPER. Section 2 defines complementing games
and machines, and complexity notation. Section 3 provides a sequential decision
algorithm tbr the problems of ~,CSYMLOG, which runs in probabilistic space
O(logn) and can be modified to run in nonuniform deterministic space O(logn).
Section 4 gives a probabilistic parallel algorithm that can simulate any sequential
space S(n)-bounded probabilistic computation within parallel time O(S(n)). We
also show in Section 4 that we can eliminate probabilistic choices in our parallel
algorithm without degrading its running time, but introducing nonuniformity.
Section 5 introduces our logic ~ , Q B F ~ and shows its decision problem is complete
in ~,CSYMLOG. We also show in Section 5 that various combinatorial problems
(including (1)-(8) mentioned above) are in ~,CSYMLOG.

2. Preliminary Definitions
2. I. SYMMETRIC RELATIONS. Let R _ D x D be a relation on domain D. Let

its inverse be R - = {(b, a) laRb}. R is symmetric i fR = R- . R is deterministic if,
for all a E D, there is at most one b E D such that aRb.

2.2. COMPLEMENTING GAMES. A (l-player) complementing game consists of
a quadruple G = (P, W, I-, t-c) where

(i) P is the set of positions; P is assumed to be a set of strings over a finite
alphabet;

404 JOHN H. REIF

O
q o E Q
QAC_Q

_ (Q x (zz x {left, right})
x (Z2 x {left, right})'-~) 2

5c___ 6

(ii) W C_ p are the winning positrons;
(iii) I- _C p x P is the next move relation;
(iv) I--c _C I-- are the complement moves.

Fix an initialposition Po E P. A move is a pair (p, p ') 6 I--. The move (p, p ') is
an initial move (complement move) i f p = Po((P, P') E I--c). A complement game G
is symmetric if I-'-s = I--- - l--c is a symmetric relation (see 2.1). Let a play be a
maximal length sequence of positions Po, P~ where po is the initial position,
and p,_~ ~ p, for i = 1, 2 (we allow a trivial play Po). For any finite k >__ 0, let
po have complement bound k if any play from po has < k complements, ignoring
the initial move (ignoring the initial move allows us to maintain the duality
between ~k and 7rk). Suppose Po has finite complement bound k. Let OUT-
COME(po) = true if there exists a finite play prefix Po, P~ pj, with no
complement moves and where either p+ E W o r there exists at least one complement
move from pj and O U T C O M E (p ') -- false for each complement move (pj, p') E
[-c. Otherwise OUTCOME(po) = false.

2.3. MACHINE DEFINITIONS. l Let a complementing (Turing) machine be a 9-
tuple M = (~, I', b, t, Q, qo, QA, 6, ~c) where

is the finite input alphabet;
I ~ is the finite tape alphabet, with ~ C_ 1";
b E F - ~ is the distinguished blank symbol;
t is the number o f two-way infinite tapes, where tape

1 is the input tape;
is the finite state set;
is the inttial state;
are the accepting states;
is the transition relatmn;

are the complement transitions.

The syntax of 6 is slightly nonstandard so that we can easily define symmetric
machines in a manner similar to [24]. (However, the semantics are not essentially
different from the standard definitions.)

Suppose transition ((q, albtm~, . . . , atbtm,), (q', a~b~m~, . . . , a'tb[m[)) ~ ~ is
taken. Then the previous state was q and the new state is q ' . Each tape i E { 1 , . . . ,
t} moves its head one cell in direction m ;, and m, is the reverse of direction m,: If
m ', = right, then previously the head of tape i was scanning symbol a, and "peeking"
at symbol b, located one cell to the right; in the new configuration these symbols
a,b, are replaced by symbols a;b; and the head is scanning symbol b;. The case m;
--- left is similar, except the head was previously scanning over symbol b, while
"peeking" at symbol a, located one cell to the left; afterward, the head is scanning
symbol a;. Let M be symmetric if noncomplement transitions bs = 6 - 6c are a
symmetric relation. Let _¢ be the configurations of M, defined in the usual way for
TMs. We may extend 6 in the usual way to the next move relation ~ C 3" x
Let I-c ~ I-- be the next moves, which are complements. Note that i f M i s symmetric,
then the relation I--s = I-- - I--c is symmetric. Let W C J be the accepting
configurations. GM = (-7, W, I-, I-c) is the computation game of M.

~See conclusion of this paper for a discussion of previous and equivalent machine definitions for
symmetric alternating machines.

Symmetric Complementation 405

Given an input string o~ ~ Z", we let the initial configuration I0(o~) have the
initial state qo and all tapes blank except that the input tape contains w surrounded
by infinite strings of blank symbols (since b q~ Z, no endmarkers are required).
The input tape head initially scans the first symbol of ~o. I0(w) is the initial position
of Gu. Computation sequences of M are plays of GM from Io(w). Suppose M has a
finite complement bound from Io(o~). M accepts o~ if OUTCOME(I0(w)) --- true. If
M has no complement moves, then M is a nondetermmistic machine; furthermore,
ifl-s is also symmetric, then M is a symmetric nondeterministic machine as defined
by Lewis and Papadimitriou [24].

2.4. COMPLEXITY CLASSES. Let complementing machine Mhave space bound
S(n) (complement bound K(n)) if, on any input of length n _ 0, each computation
sequence has no more than S(n) nonblank cells on any work tape in each
configuration (fewer than K(n) complements on any computation sequence ignor-
ing the initial moves).

Note that nondeterministic and co-nondeterministic machines have complement
bound 1. For notational simplicity, we define a complementing machine with
complement bound 0 to be a deterministic TM. Let Jg be a class of complementing
machines. Let _/ZSPACE(S(n)) be the languages accepted by those machines in Jg
with space bound S(n). Let ZklgSPACE(S(n)) (IIk.t(SPACE(S(n))) be the languages
accepted by those machines in ~g with space bound S(n), complement bound k,
and no complement moves (only complement moves, respectively) for the initial
moves. Let 2;.JgSPACE(S(n)) -- Uk,_O~kJgSPACE(S(n)); that is, the machines
operate in some constant number of complements, regardless of the input length.

In the context of complexity classes, we let D denote the class of deterministic
TMs, let N denote the nondeterministic TMs, and let NSYM be the symmetric
nondeterministic machines. Let C be the complementing machines, and let CSYM
be the symmetric complementing machines. For example, the complexity class
NSYMSPACE(S(n)) --- {L I L is accepted by a symmetric nondeterministic machine
with space S(n)} previously investigated by Lewis and Papadimitriou [24]. The
complexity class ~K(n)CSYMSPACE(S(n)) --- {LIL is accepted by a symmetric
complementing machine with space bound S(n), complement bound K(n), and no
complement initial moves} is of central importance to this paper. For notational
simplicity, let NSYMLOG = NSYMSPACE(log(n)), and CSYMLOG = CSYM-
SPACE(log(n)).

Let L, ---~os L2 denote that language L, can be many-one reduced in deterministic
log space to language L2. Let L~ be -log equivalent to L2 if L, ---~o8 L2 and Za Slog
L~. Let L2 be complete in a family of languages 54 if Lz ~ 54 and Ll <-io~ L2 for
each L~ E 54. Note that if S(n) >__ logn, L~ <-~og L2, and L2 ~ CSYMSPACE(S(n)),
then L~ ~ CSYMSPACE(S(n)), by Proposition 2.2.

2.5. PRELIMINARY RESULTS FOR SYMMETRIC COMPLEMENTING MACHINES.
Let M be a symmetric complementing machine that accepts language L C ~*. If
we augment M by an initial complementing move, then the resulting machine
accepts Z* - L. On the other hand, if we remove an initial complementing move
of M, then the resulting machine also accepts Z* - L. Hence, we have

PROPOSITION 2.1. For any L C_ Z*, L E ~r(n) CSYMSPACE(S(n)) iff~* - L
IIK(~) CSYMSPACE(S(n)).

Lewis and Papadimitriou [24] show DSPACE(S(n)) C_. NSYMSPACE(S(n)).
Thus, NSYMSPACE(S(n)), for S(n) >_ logn, is closed under many-one deterministic
log-space reductions. Their proof easily extends to CSYMSPACE(S(n)).

406 JOHN H. REIF

PROPOSITION 2.2. I f L has a many-one deterministic log-space reduction to a
language in Zr(n) CSYMSPACE(S(n)) and S(n) >_ log n, then L E ~K(,) CSYM-
SPACE(S(n)).

Also, since any symmetric complementing machine is a complementing ma-
chine:

PROPOSITION 2.3. DSPACE(S(n)) CZK(~)
CSPACE(S(n))

CSYMSPACE(S(n)) C~K(~)

(Note that space-bounded complementing machines accept the same languages
as space-bounded alternating machines. Both complementing machines and ordi-
nary alternating machines without resource bounds accept any arithmetic set.
However, this is not relevant to this paper.)

3. A Space-Efficient Decision Algortthm for Symmetric Complementing Machines

We give a O(S(n)K(n)) space sequential algorithm for recognizing the languages of
ZK(,) CSYMSPACE(S(n)). The algorithm is probabilistic (see Sections 3.1 and 3.2),
though we show it can be made deterministic by introducing nonuniformity (see
Section 3.3).

3.1. PROBABILISTIC SEQUENTIAL MACHINES. We define aprobabtlistic TM to
be a multitape deterministic Turing machine PM with a special read-only, one-
way tape (distinct from the input and work tapes) containing an infinite binary
sequence. The contents of this "random bitvector" tape are chosen randomly on
each execution of PM. Let 2; be the input alphabet of PM and let L C_ Z*. For any
~(n), 0 _< ~(n) < 1 say PM recogmzes L within error E(n) if for all o~ E ~",

C I. w ~ L implies Pr(PM accepts 00) ___ 1 >_ ~(n),
C2. o~ ~ L implies Pr(PM accepts ~o) < ~(n).

To justify this definition, we note that Adleman's [1] definition of acceptance of
probabilistic machines is similar to ours, except 4n) --- ½ in CI and he strengthens
condition C2 by requiring that w ~ L imply PM does not accept ~0 on any
probabilistic choice. Many probabilistic algorithms in number theory satisfy this
more restrictive property, but it is too restrictive for many of the applications in
this paper. On the other hand, Gill [13] defines acceptance ofprobabilistic machines
with the max of the error of acceptance and rejection less than ½ and called the
polynomial time-bounded class BPP.

Note that a probabilistic machine may not be reasonable in the sense defined in
the introduction (since Gill [13] gives a probabilistic machine with space bound
S(n) and expected time bound 22"s~)); however, the probabilistic machine imple-
menting the PROB-SEARCH algorithm of Section 3.2 will be reasonable.

3.2. PROBABILISTIC SIMULATION OF SPACE-BOUNDED SYMMETRIC COMPLE-
MENTING MACHINES. We show

THEOREM 3.1. For any e(n), 0 < e(n) < 1, there ts a probabilistic TM that
recogmzes L ~ ~K(n) CSYMSPACE(S(n)) within given error e(n) and space
O(K(n)(S(n) + log d(n))) and time (d(n)2°ts("))) K("), where d(n) = K(n)(O(S(n)) +
log(O(K(n))) - log 4n).

Symmetric Complementation 407

Note that if ~(n) is constant, then we require space O(K(n)S(n)) and time 2 °~K~")s~n)).
Thus

COROLLARY 3.1. For each constant ~, 0 < ~ < 1, and L E ~ , CSYMLOG, there
is a probabdistic TM that recognizes L within error E and simultaneous space
O(logn) and time n °").

Although Theorem 3.1 suffices for our applications, we also show its space
bounds can be improved.

THEOREM 3.2. For each L E ZK~,) CSYMSPACE(S(n)), there is a probabilistic
TM that recognizes L within error ~(n) and space O(K(n)(S(n) + log(S(n) + log
d(n)))).

Our probabilistic search technique will utilize the following result:

LEMMA 3. I. [2]. Let G = (V, E) be any undirected, connected graph. Let a
random walk r in G from any vertex v ~ V be constructed from trivial path v by
repeatedly extending the front end of r by adding a random edge of E, which is
connected to the current front end vertex of r. Let r be a random walk of length
2 JE[([VJ - 1). Then Pr(r visits all vertices in V) >_ ½:

Lewis and Papadimitriou [24] observe that this lemma immediately implies a
space O(S(n)) probabilistic algorithm for NSYMSPACE(S(n)). A generalized prob-
abilistic search technique is used here to decide acceptance of symmetric comple-
menting machines.

PROOF OF THEOREMS 3.1 AND 3.2. Let M be a symmetric complementing
machine as defined in Section 2.2. We assume M has complement bound K(n) >_
1 and constructible space bound S(n) >_ logn (otherwise, we use the standard
technique of trying S(n) = logn, 1 + logn to the construction given below).
Let J be the set of configuration of M and let W _C _7 be the accepting
configurations. Let k- be the next move relation of M. Let k-c, I-s __ b- be the
complement and noncomplement moves of V-, respectively. Fix some n _> 0. Let
J ' c_ 3" be the configurations that have <_S(n) nonblank cells on each work tape.

We define a recursive procedure that takes as input a configuration I E J ' .
Also, the procedure has a global variable t (which determines the procedure's
probability of success).

procedure PROB-SEARCH,(I)
begin

local integer z, set COMP
i<--0
while i _ t do

begin
if I is accepting then return true
COMP ,,- {I' ~ _7' [Ik-cI'l
if COMP # O then

if PROB-SEARCHt(I') = false for all I' ~ COMP then return true
choose a random I' from {I' E J ' I I k-s I'}
I<--I'
i<--l+ 1

end
return false

end

For each k, 1 <_ k <_ K(n) let _Tk _ f be the configurations that also have
complement bound k.

408 JOHN H. REIF

Let ~,, be the max probability that PROB-SEARCHt(I) = false for any I ~ -gk
such that OUTCOME(I) = true. Let ~k,t be the max probability that PROB-
SEARCHt(I) = true for any I ~ _~ such that OUTCOME(/) = false. Thus, ~k,t and
ik, t are the upper bounds of error probabilities for rejection and acceptance,
respectively.

LEMMA 3.2. There are constants b, c >_ 1, dependent only on M , such that f o r
a n y d > _ l , k > _ 1,

max(~k,t, ~k,t) <- k2-d(tb) k-~
where t = 2dc stn).

PROOF. Let k-" -- (J ' x J ') tq k-s. Since M is symmetric (J ' , k-') is an
undirected graph. There exists a constant b ___ 1 that is an upper bound on the
number of next configurations 1 I ' 1 I k- I ' } possible from any given configuration
L Also there exists a constant c~ ___ 1 such that I J " l --- c~ n). Thus, there exists a
constant c2 _-2 0 such that Ik-gl --- c2 ~'). Let c = c1.c2 SO t ----- 2dl J ' l Ik-'l.

For each pair of configurations/, I ' E J k for which there is a noncomplementing
computation sequence from I to I ' , by Lemma 3.1, we have Pr(r visits I ') >_ 1 -

2 -d for a random walk r in (J g , k-g) starting at I and of length 2d 1-7' I I k-" 1.
Now we prove Lemma 3.2 by induction on k. For k --- 1, we show max(6l, t , ~l,t)

_ 2 -a. The upper bound on the error probability for rejection and acceptance from
any I E J I with no complement next move is -<2 -a and 0, respectively. Thus, the
total worst case error probability for rejection and acceptance from any I E _~l is
--<2 -d and -<2 -d, respectively.

Since there are at most tb direct calls to PROB-SEARCH during a single
execution of the body of the PROB-SEARCH procedure, for k > 1 we have

~k,t <-- 2 -d + tbgk-! and ~k,t <- tb~k-i.

By the induction hypothesis,

max(~k-~,t, ik-~,t) <-- (k - 1)2-d(tb) k-2.

Hence
m a x (E k , t, ~k,t) ~ 2 -d + tb~k-i

<- 2 -d + (k - 1)2-d(tb) k-I
<_ k2-d(tb) k-l. []

Let L be the language accepted by M. Suppose we are given some error function
~(n), 0 < ~(n) < 1. Let PM be the probabilistic TM that on input o~ ~ Z", computes
PROB-SEARCHt~,)(Io(~o)) and accepts iff the result is true, provided that d(n) =
K(n)log(t(n)b) - log ~(n) and t(n) = 2d(n)c s~"). (Note that both d(n) and t (m) are
decreasing functions of ~(n).) By Lemma 3.2, PM recognizes L within error ~x~n) -
E(n). Furthermore, PM has time bound O(t(n)) K~) = (d(n)2°tst~))) x~). PM has space
bound o(g(n)(S(n) + logd(n))), since we must store b = O01) configurations of size
O(S(n)), and a "time counter" requiring space logt(n) = O(S(n) + logd(n)) to
implement each of the K(n) recursive cells. Thus we have proved Theorem 3.1. []

Although Theorem 3.1 is good enough for our applications to ~.CSYMLOG, it
is nevertheless interesting to observe that we may decrease the space bound by
using a trick due to Gill [13]. To avoid storing the "time counter" in the procedure
PROB-SEARCHt, we instead sample a random bit on each iteration of the while
statement. If at any time there have been log t consecutive zero's chosen, then we
immediately exit the while statement. This test replaces the test (i ___ t) in the
original text of PROB-SEARCH,. To achieve error ~ct~) - ~(n), we must only

Symmetric Complementation 409

increase d(n) by a factor of 1/(1 - logexp(1)). Only O(K(n)(S(n) + loglog t(n))) --
O(K(n)(S(n) + log(S(n) + logd(n)))) space is required by this method (but note that
we no longer have a deterministic time bound). Thus we have proved Theorem
3.2. []

3.3. ELIMINATING PROBAB~L~S~r~c ChOiCES. Let a nonuniform deterministtc
TM be a deterministic TM augmented with a special read-only tape, called the
advice tape, whose contents are fixed for all inputs of the same length n, but which
may have different contents for distinct input lengths n and n'. (Neither the input
tape nor the advice tape is considered in the space bound of this machine.) This
nonuniform machine has advice bound A(n) if, on inputs of length n, the advice
tape has A(n) cells (see [23]). We show

THEOREM 3.3. Each L ~ Zig(n) CSYMSPACE(S(n)) ts accepted by a nonuniform
deterministic TM within space bound O(K(n)S(n)), time bound 2 °ac(")s~")), and advice
bound 2 o(s~,)).

COROLLARY 3.3. Each L E Z .CSYMLOG is accepted by a nonuniform deter-
mlnisttc TM within simultaneous space bound O(logn), ttme bound n °"), and
advice bound n °(1).

PROOF OF THEOREM 3.3. We require a technical graph-theoretic result.
Let G = (V, E) be a undirected regular graph, with valence b. We assume G has

a fixed adjacency list representation, so for each vertex v we have a list l(v) of
vertices adjacent to v. Given a string U ~ {1 , . . . , bt* and a vertex v, let U(G, v) be
the path v = v0 , . . . , vl~l such that v, is the U(i) element of list l(vz-~) for i = 2,
l aj. Let J,,b be the class of all undirected, regular graphs with _n vertices and
valence b. Let U ~ { 1 , . . . , b}* be (n, b)-universal if for each graph G ~ ~,,0 and
each vertex v of G, U(G, v) visits all the vertices of G.

LEMMA 3.3 [2]. For each b >_ 1, there is a c(b) such that for each n >_ 0 there is
a (n, b)-umversal string U,,b of length <_c(b)n3logn.

Let M be a symmetric complementing machine of Section 3.2 with complement
bound K(n) and space bound S(n). Let (J ' , ~'~) be the undirected graph of valence
b defined in the proof of Lemma 3.2. Clearly, we can add redundant transitions so
that (J ' , t-'~) is regular with valence b. Let NONUNIFORM-SEARCH~I) be the
deterministic procedure derived from PROB-SEARCHt(I) of Section 3.2 by using
the (I _7'] , b)-universal string Ui J , I,b in place of probabilistic choice, for choosing
the configurations to be explored in (J ' , t-'s).

By the proof of Lemma 3.2, there exists some cl ~ 1 such that I J¢ ' J - c~ "). Let
t(n) = c(b)(S(n)log c~)c~ s("). Then Lemma 3.3 immediately implies

LEMMA 3.4. For each input string o~ ~ ~",

NONUNIFORM-SEARCHt(,)(Io(~o)) = true iff M accepts w.

This procedure may be implemented by a nonuniform deterministic TM with
space bound O(K(n)S(n)), time bound t(n) x(") = 2 °(K(")s(")), and advice bound t(n) =
2 ~s(")). Thus, we have proved Theorem 3.3. []

Note that Reif [28] also describes how to eliminate probabilistic choice from
probabilistic parallel computations with bounded error, and Adleman [1] and
Bennett and Gill [3] describe how to construct circuits from sequential probabilistic
computations with bounded error. However, none of these results imply Theorem
3.3.

410 JOHN H. RE1F

4. A Parallel Algoruhm

4.1. THE HARDWARE MODIFICATION MACHINE. Our parallel machine model
is the hardware modification machine (HMM) of [8] (though we consider proba-
bilistic and nonuniform variants of it below). The HMM was invented as the
parallel analog of the storage modification machine of [31]. The HMM seems to
be the simplest possible parallel machine with modifiable storage structure, and
the HMM can be simulated within real time, with the same number of processors,
by many other such parallel machines, including the P-RAM of [12] (this P-RAM
model was assumed for the parallel graph algorithms of [20]), the PRAM of [30],
and the SIMDAGs of [15]. A survey of parallel machine models and related
complexity results are given in [6].

Intuitively, a HMM consists of a finite collection of deterministic finite state
machines, which we call processors. The state transition functions of these proces-
sors are identical. Each processor also contains the same fixed, finite number of
input and output connections for transmission of values, from a finite alphabet,
between processors. On each step (the state transitions of the processor are syn-
chronous), a processor will read the values of its input connections, which were set
by its neighboring processors on the last step, write new values on each of its output
connections (only one process is associated with each output connection), and
enter a new state. In addition, a processor may reconnect any input connection to
any machine that can be reached by a path of length ___2 from the previous input
connection. Also, a processor may reconnect an input connection to a new
processor (with the same finite state control, initialized in some given state and
with all input connections directed to its creator).

Given an input string ~o E ~n, we assume the initial configuration of the HMM
consists of a chain of n + 1 identical processors PPo, Pi t , PP,, each in the
same initial state and each with input connections connected back to itself, except
that each PP,_~, for 0 < i <_ n, has a distinguished input connection to PP, where
the value output by PP, is the tth symbol of the input string o~. (This initialization
scheme is somewhat simpler than that defined by Dymond and Cook [8] but yields
the same technical results of interest here.) The HMM accepts oo if PPo ever enters
a distinguished accepting state qA.

The time bound T(n) (processor bound P(n)) of the HMM is the maximum
number of steps (processors, respectively) taken on any accepting computation for
any input of length n. Generally we assume the HMM is uniform: The processors
have the same finite state transition function for all input strings. However, we
consider in Section, 4.4 nonumform HMMs, which must only have the same finite
state transitions for all input strings of the same length. The advice bound A(n) of
a nonuniform HMM is the number oftuples defining the processor state transition
function for input of length n.

4.2. THE PROBABILISTIC HMM. In addition to the above for a uniform HMM,
suppose we allow each processor PP, probabilistie choice by providing a special
read-only register r,, which is set randomly to 0 or 1 each step, with each step
independent of each other. Let PPM be the resulting probabilistic HMM. PPM
recognizes language L C_ ~* withln error ~(n), 0 _< ~(n) < 1, if for all o~ E Z",

CI. 00 E L implies Pr{PPM accepts w] _> 1 - ~(n),
C2. 00 $ L implies Pr{PPM accepts 00} < ,(n).

(Note that the conditions CI, C2 for probabilistic recognition are identical to those
given in 3.1. Reif [28] gives complexity bounds for various other probabilistic

Symmetric' Complementation 411

parallel machines and for both Adleman's [1] and also Gill's [13] bounded error
definitions of probabilistic acceptance. If Adleman's definition of acceptance is
used, then we can eliminate probabilistic choice in our parallel machines by
introducing nonuniformity without any increase in parallel time. On the other
hand, if Gill's bounded error definition of probabilistic acceptance is used, then we
show in [28] that probabilistic parallel space S(n) contains parallel space S(n) with
nondeterministic choice.)

4.3. PARALLEL SIMULATION OF PROBAB1LISTIC SEQUENTIAL COMPUTATIONS. Dy-
mond and Cook [8] prove that

THEOREM 4.1. IlL ~ DSPACE(S(n)) for S(n) >_ log n, then L is recognized by
a (deterministic) H M M in simultaneous parallel t ime bound O(S(n)) andprocessor
bound 2 °<st")).

We generalize their results to probabilistic computations.

THEOREM 4.2. Let P M be a probabilistic T M with space-bound S(n) >_ log n
and time bound T(n). Suppose for some ~(n), 0 < E(n) < 1, L C_ ~* is recognized by
P M within error ~(n). Then there is a probabilistic H M M that recognizes L within
error ~(n) and with O(S(n) + log T(n)) parallel t ime and utilizes T(n).2 °<s~"))
processors. Furthermore, this H M M is uniform.

PROOF. Fix some input string w ~ ~" and let Io(w) be the initial configuration
of PM. Let _Y' be the configurations of PM using <_S(n) tape cells. Clearly there
exists a constant c > 0 such that I J ' l - c s~"). We assume S(n) and T(n), are
constructible (otherwise we can in parallel use a diagonalization of S(n) -- O, 1, . . .
and T(n) -- 0, 1, ...).

Our simulating probabilistic HMM, which we call PPM, will utilize a processor
PPI, t for each t, 0 <- t <_ T(n) and 1 6 _7'. These processors can be created in binary
tree fashion within O(log(T(n) l_~ ' I)) time. Each processor PPI, t chooses a config-
uration I ' randomly from those allowed from configuration I by PM. PPt, t then
makes a distinguished j u m p connection to processor PPr,t+~. These connections
can be made in time 0(log(1-7' I)), again using binary trees for indexing. There-
after, each process PP~,t repeatedly connects its jump connection to that which was
its jump connection of distance 2 in the previous step. These steps are executed
synchronously by all the processes, and the HMM is allowed to halt and accept
only when process PPld,o),o has a jump connection to a process P1,t, where I is an
accepting configuration of PM.

Suppose I0, I~ is an execution sequence of M, with particular probabilistic
choices r. Suppose also that the RAMs of PPM make particular probabilistic
choices r ' , such that PPI,,t initially sets its jump connection to process PPI,÷,.t÷~ for
t = O, 1 T(n) - 1. Then it is easy to verify that PPM accepts w (when making
probabilistic choices r ') iff PM accepts co (when making probabilistic choices r.
Since r and r ' are chosen randomly, it follows that

Pr{PM accepts w} = Pr{PPM accepts w}.

Furthermore, i fPPM accepts w, then there is a path PPzo,O, PI~,~, . . . , Pt,,t induced
by the initial jump connections such that Io(w) = Io, I~ , L is an accepting
computation of M, and t <_ T(n). On each iteration, this pathls length decreases by
a factor of ½. Thus, PPM accepts within parallel time

O(log(T(n) l . J ' l)) = O(log(T(n)Z°tS~")))) = O(S(n) + log T(n)). []

4 1 2 JOHN H. REIF

Combining Theorems 3.1 and 3.2, we have

THEOREM 4.3. For any S(n) >__ log n, K(n) >_ 1, and for each ~(n), 0 < ,(n) < 1
and L E ~xt,)CSYMSPACE(S(n)), there is a probabilistic H M M that recognizes L
within error ~(n), with parallel time bound O(K(n)(S(n) + log d(n))) and processor
bound (d(n)2°tst"))) Kt") where d(n) is defined as in Theorem 3.1.

Note that if E(n) is constant, then HMM has parallel time bound O(K(n)S(n))
and processor bound 2 ~Kt')s~n)). Thus

COROLLARY 4.3. For each constant ~, 0 < ~ < 1, and L E ~,.CSYMLOG, there
is a probabilistic H M M that recognizes L within error ~ and with parallel time
O(log n) and n °") processor bound.

4.4. A NONUNIFORM PARALLEL ALGORITHM. By Theorems 3.3 and 4.1, we can
eliminate probabilistic choice in our parallel algorithm, by introducing nonuni-
formity.

THEOREM 4.4. For each L ~ ~Kt,)CSYMSPACE(S(n)) with S(n) >_ log n, L is
accepted by a nonuniform H M M with parallel time bound O(K(n)S(n)), processor
bound 2 °¢Kt")s~")), and advice bound 2 °tst")).

COROLLARY 4.4. Each L ~ ~,.CSYMLOG is accepted by a nonunform H M M
with stmultaneous parallel time bound O(log n), processor bound n °tl) and advice
bound n °").

5. Computational Problems in Z,CSYMLOG

5.1. SYMMETRIC COMPLEMENTING GAMES. Let G = (P, W, I-, t-c) be a com-
plementing game. Let the next move relation I- be log space if there is a determin-
istic log space next move transducer, which, given any position p E P, outputs
{P'IP ~- P'}. Let G have position length bound S(n) (complement bound K(n)) if,
for each position p ~ P of length n, all positions reachable from p have length not
more than S(n) (there are fewer than K complement moves on any play from p,
respectively). The outcome problem for G is given p E P, next move transducer I-,
and recognizer for the winning positions W, compute OUTCOME(p).

Let CYSMGAMES(S(n), K(n)) be the class of languages that are outcome
problems for symmetric complementing games with position length bound S(n),
complement bound K(n), and next moves and winning positions recognizable in
O(log n) space.

By our definition of complementing machines, we have

THEOREM 5.1. For S(n) >_ logn, CSYMGAMES(S(n), K(n)) is complete for the
class of languages accepted by symmetric complementing machines wtth space
bound S(n) and complement bound K(n).

COROLLARY 5. l. The outcome problems Uk~.O CSYMGAMES(log n, k) are
complete for Z, CSYMLOG.

5.2. QBF~. Given a set X of Boolean variables, let literals (X) = X O {-~x [
x E X} U { true, false]. Let C N F ~ be the set of Boolean formulas consisting of a
conjunction of clauses, each clause consisting of the exclusive-OR l • l ' of two
literals l, l'. Note that / • l ' is equivalent to (-~l) • (-~l').

Jones et al. [22] and Lewis and Papadimitriou [24] show the problem of testing
CNF@ unsatisfiability is deterministic log-space complete in NSYMLOG. Let
ZkQBF~ and IIoQBF~ be the truth values {true, false]. Inductively, let ZkQBF~

Symmetric Complementation 413

be the set of quantified Boolean formulas F of the form (3X)G A . . . A C,n where
X is a set of Boolean variables and each clause (7, is either of form I • 1' or of form
l V F ' where l, l ' ~ literals(X) and F ' is a formula of IIk_~QBF~. Also, let
IIkQBF~ be the set of quantified Boolean formulas F of the form (VX)C~ V • .. V
Cm where each clause C, is of the form l • l ' or of the form 1 A F ' where l, l '
literals(X) and formula F ' must be in Zk-~QBF~. Let Z,QBF~) = 1.3k~0 ~gQBF~.
Note that all variables are bound in QBF~ formulas.

THEOREM 5.2. For all k >__ O, the truth problem for ZkQBF~ is complete in
IIkCSYMLOG, and the truth problem for IIkQBF~ is complete in ~kCSYMLOG.

PROOF OF THEOREM 5.2. Our proof requires a technical Lemma. This Lemma
is an easy generalization of a result of [22], which characterized truth of C N F ~
formulas.

LEMMA 5.1. Let F be a formula of ZkQBF~. F is false iff there exists a sequence
of hterals lo lj such that lo • -nl~ lj_~ • ~lj are equivalent to clauses o fF
and lo = ~lj or both (1) and (2) hold.

(1) l0 = true or lo V F' is a clause o fF where F' is a false formula in IIk-IQBF~.
(2) lj = false or ~lj V F" is a clause ofF where F" is a false formula in IIk-IQBF~.

It will also be useful to note that

PROPOSrnON 5.1. I f F is a formula of IIkQBF~, then ~F is equivalent to a
formula P of ~kQBF~, where [z is formed by switching the quantification symbols
V, 3 and also swttchmg the logical connectives V, A in F. So F is fa l se / f fF is true.

PROOF OF THEOREM 5.2 BY INDUCTION ON k. IIoQBF~ and ZoQBF~ can easily
be shown complete in IIoCSYMLOG = ZoCSYMLOG = DSPACE(Iog n).

Suppose for some k ___ 1 the theorem holds for all k' < k. Let F be a ZkQBF~
formula of length n. To decide F, we play a symmetric complementing game. Let
the player begin by choosing a sequence of literals lo, . . . , /1 such that lo • ~1~, . . . ,
lj_~ • ~lj are equivalent to clauses of F. Note that only the first literal and last
literal need be stored, and this requires O(log n) space. This choice sequence is
reversible since (l,_~ • "-1/,) --- (l, • ~l,_~). The player enters the accepting state (and
thus wins) if either lo = --,l~ in both cases (1), (2) of Lemma 5.2 holds. This may
require deciding formulas F ' , F" of IIg_~QBF~. To do this, we allow the player
two simultaneous complement moves from the current position. In these comple-
ment moves, we let the player test whether both F ' and F " are false. By the
induction hypothesis, these tests are in IIk_~CSYMLOG. Thus the symmetric
complementing game can be implemented by a symmetric complementing ma-
chine with complement bound k and space bound O(logn). By Lemma 5.2, the
player wins iff F is false. We have thus shown that testing falsehood of formulas in
Z~QBF~ is in ZkCSYMLOG. By Proposition 2.1, testing truth of formulas in
~ Q B F ~ is in IIkCSYMLOG.

Now let M be a symmetric complementing machine with complement bound k
and space bound log n. Let t-~ be the noncomplement moves of M. For each k',
l _< k' _< k, let ~k' be the set of configurations o f M w i t h _<logn nonblank cells per
work tape and for which there is a complement bound of k'. Let 5~, be the
configurations of _~, that have a complement as a next move. By the induction
hypothesis we can assume for each I ~ ~k-~ a formula F'(I) of IIk_tQBF~ such
that F'(I) is false iff OUTCOME(/*) = false for each complement move (I, I ')
from L

414 JOHN H. REIF

For each I E .fig we assume a distinct variable xi. Let X = {xiI I ~ _Tk}. Let W'
be configurations of M that are accepting and have f log n nonblank cells per work
tape. For each I ~ W', let g~ be the formula Xl • true. Thus, gl is true iffx~ = false.
For each I ~ -Y~k-v let g~ be the formula (~x~) V F' (I). For each I E _~ and J E
W' 13 ~k-~, let fi.~, = (true • ~x~) A (A1,~-drri, • "axl~) A gj, where I--s,k = I--sN
(~ X ~) . Thus, (3X)f~,j is false iffthere exists a computation sequence I, Ij
such that I~ = / , / j = J, and OUTCOME(J) = true.

Now for each I = J k and J ~ W' 13 ~k-l, let x/J be a new distinct variable and
let f~.j be derived from j~,j by substituting x/J, for each instance of variable Xr for
each I ' ~ Jk. Let x ' = {x~JI I ~ J k and J ~ W' 13 ~ - l t . For each I ~ Jk ' let
F(I) = (3X ') Aj~w.u ~_, j~,J. Clearly F(I) is in ~kQBF~ and, furthermore, F(I) is
false iff OUTCOME(I) = true. Hence F(Io(o~)) is false iff M accepts ~0.

We have thus shown that the invalidity problem for ~kQBF~ is complete in
~kCSYMLOG. By Propositions 2.1 and 5.1, the truth problem for IIkQBF~ is
complete in ~kCSYMLOG. []

5.3. k-CONNECTIVn'V. Given a graph G = (V, E) and vertices u, v ~ v, let k-
PATHS(G, u, v) be the problem: Do there exist k paths from u to v that are
mutually vertex disjoint? The problem 1-PATHS is commonly called the UGAP
problem.

THEOREM 5.3. UGAP is complete in NSYMLOG.

PROOF [24]. Given an undirected graph G of n vertices with distinguished
vertices u, v, we nondeterministically traverse a path in G from u and accept if the
vertex v is reached. This can easily be done by a nondeterministic machine in space
O(log n) to store the currently visited vertex. But this nondeterministic machine
can be made symmetric since any edge can be traversed in both directions.

On the other hand, suppose M is a symmetric, nondeterministic machine with
logn space bound and input string w E ~ . Let - 7 be the configurations of M, with
space ___log n, let F-~ C _.~x _7 be the nondeterministic moves of M, and let W C
3" be the accepting configurations. We construct an undirected graph with vertices
V = _.~ U {If} where I f ~ _.~, and edges E = {{L I'} I I~- , I ' l u {{L IA I Ib- , I ' for
some I ' ~ W}. Then Maccepts o~ iffthere is a path in (V, E) from I0(~) to Iy. []

By Theorems 2.1 and 5.3,

COROLLARY 5.3. The complement of the UGAP problem is complete in
fl , CSYMLOG.

THEOREM 5.4. For each k >_ l, k-PATHS is complete in NSYMLOG.

PROOF. By Menger's Theorem [4] for any graph G = (V, E) and vertices u, v
V, k-PATHS(G, u, v) ~ (Vx, Xk-, ~ V - {u, v})UGAP(G', u, v) where G' is
derived from G by deleting vertices x, , Xk-, and all edges connected to these
vertices. By Theorems 5.2 and 5.3, we can construct in deterministic log space a
formula in II~CNF~ that is false iff k-PATHS(u, v). Thus, by Theorem 5.2, k-
PATHS is complete in NSYMLOG. []

Let a graph G = (V, E) be k-connected if for all distinct vertices u, v ~ V, there
exists k paths from u to v that are vertex disjoint. Matula [25] defines a k-block of
G to be a maximal k-connected subgraph of G.

(Note: To facilitate planarity testing, McLane [26] and Hopcroft and Tarjan [19]
define "triconnected" components somewhat differently from 3-blocks. However,
McLane's components are homeomorphic to the 3-blocks.)

Symmetric' Complementation 415

By Menger's Theorem, any two k-blocks intersect at no more than k - 1 vertices.
Thus, some k vertices suffice to uniquely determine any k-block of (7. Let k-
BLOCK(G, x, {v l , . . . , Vk}) be the problem: Is vertex x in the k-block of G determined
by {vl Vk}?

COROLLARY 5.4. k-BLOCK is complete in NSYMLOG.

PROOF. By Menger's Theorem,

k-BLOCK(G, x, {v, , Vk}) ~ A k-PATHS(G, x, v,).
l.<t<_k

Again, we may apply Theorems 5.2 and 5.4 to show there is a formula in II ,QBF~
with false iffk-BLOCK(G, x, Iv1, . . . , Vk}). []

5.4. MINIMUM SPANNING FORESTS. Here we show the IIICSYMLOG contains
the problem of recognizing an edge of a (unique) minimum spanning forest.

Let G = (V, E) be an undirected graph with a mapping W: E ---, I~l ÷ labeling the
edges with distinct positive integers. Consider the following well-known greedy
algorithm for constructing a minimum weight spanning forest of G:

Input graph G = (V, E) and edge weighting W.
(1) sort the edges E = {e~, ..., em} so that W(e,) < W(e,+l) for i = 1 m - 1.
(2) SF "--.
(3) f o r t = l t o m d o

ifSFU {e,} contains no cycles, then SF,,- SFU [e,}
Return (V, SF).

Note that the minimum spanning forest output by this algorithm is unique for a
fixed W(even though, in general, there may exist many minimum spanning forests
of a given graph). Let SPANNING-EDGE(G, W, e) be true if e E SF and false
otherwise.

THEOREM 5.5. SPANNING-EDGE is complete in IIICSYMLOG.

PROOF. Let e = {u, v} be an edge of G --- (V, E) and let Ge -- (V, {e' ~ El
W(e') < W(e)]. Then, SPANNING-EDGE(G, W, e) ~ ~UGAP(Ge, u, v). The result
then follows from Corollary 5.3. []

This construction was also independently discovered by C. Savage.

5.5. OTHER GRAPH RECOGNITION PROBLEMS CONTAINED IN II~CSYMLOG.
Here we note that the recognition problems for many interesting and commonly
found classes of graphs (including chordal graphs, comparability graphs, interval
graphs, split graphs, and permutation graphs) are contained in IIICSYMLOG. Our
proofs use known characterization lemmas.

Let G = (V, E) be an undirected graph. Let its complement be G -- (V, {{u, v}
El u, v E V}). We define here some graphs commonly found in the literature. Each
has a characterization lemma, which immediately implies, by Corollary 5.3, its
recognition problem is in IIICSYMLOG (by a deterministic log-space reduction to
the complement of the UGAP problem). G is a chordal graph if every cycle C of
length >3 contains a chord (an edge connecting two nonconsecutive vertices of C).

LEMMA 5.2. G is chordal iff for every vertex v E V and cycle C of length >3, i f
C contains v, then C has a chord {x, y} such that both x and y are of distance <_2
from v.

PROOF. Repeatedly apply the chordal graph definition. []

G is a comparability graph if its edges may be transitively directed.

416 JOHN H. REIF

LEMMA 5.3 [14]. G is a comparability graph iff for every cycle C of G, if
{x, y} ~ E for every pair of vertices x, y of distance 2 in C, then C has an even
number of edges.

G is an interval graph if its vertices can be put into 1-1 correspondence with a
set of intervals on the real line, such that two vertices are connected by an edge of
G iff their corresponding intervals have nonempty intersection.

LEMMA 5.4 [14]. G is an interval graph iff G is a chordal graph and G is a
comparabdity graph.

G is a spht graph if its vertex set V can be partitioned into sets Vi, V2 such that
E(V~) = O and (V2, E(V2)) is a complete graph.

LEMMA 5.5 [l l] . G is a split graph iff G and G are chordal graphs.

G = (V, E) is a permutation graph if V = {v~ vn} and there is a permutation
of {1 n} such that {v,, vj} ~ E iff(i - j) (a - l (i) - a-l(j)) < O.

LEMMA 5.6 [1 0] . G is a permutation graph iffboth G and G are comparability
graphs.

By the above Lemmas and Corollary 5.3,

THEOREMS 5.6-5.10. The recognition problem for each of the graph classes
(chordal graphs, comparability graphs, interval graphs, split graphs, and permuta-
tion graphs) are m II~CSYMLOG.

G is bipartite if the vertex set V may be partitioned into disjoint sets V~, V2 such
that E _ {{u, v]luE V~, vE V2}.

LEMMA 5.7. G is bipartite iff G has no cycle of odd length.

By using this characterization lemma, Jones et al. [22] show the recognition
problem for nonbipartite graphs is -<~og equivalent to the complement of UGAP.
Thus, by Corollary 5.3,

THEOREM 5.11. The bipartite graph recognition problem is complete in
II I CS YMLOG.

Also, Jones et al. [22] give restricted cases of the NP-complete problems CHRO-
MATIC NUMBER, CLIQUE COVER, EXACT COVER, and HITTING SET and
show that their restricted problems are -<~o~ equivalent to UGAP and thus complete
in NSYMLOG.

5.6. CONSTANT VALENCE PLANARITY TESTING IS IN II3CSYMLOG.

• 5.6.1. Embedding Rotations Let G = (V, E) be an undirected graph with
vertex set Vand undirected edge set E C_ {{u, v} Idistinct u, v ~ V}. Let D(E) =
{(u, v) I {u, v} ~ E] U {(v, u)l {u, v} ~ El be the set obtained by directing edges of
E. Following Edmonds [9] (also see [32]), we define an embedding onto an oriented
surface purely combinatorially; let an embedding rotation be a set 0 = {0v Iv ~ V}
where 0v is a cyclic ordering of the set of directed edges D~(E) = {(x, y) E D(E)
Ix = v} of D(E) departing from vertex v. Intuitively, 0v gives the clockwise rotation
of edges as they are embedded around vertex v, in a graph with a planar embedding.

Let R(O) C_ D(E) x D(E) be the relation such that eTR(O)e2 iff directed edge el
departs from the same vertex v that directed edge e2 departs from, and e2 appears
immediately after el in 0~ (where el- is the reverse of edge e0. (See Figure I. Note

Symmetric Complementation

R(O) t ~ "l

R(0)) ; ,'.lel

P f " ;t F)l \ \ "~ R(8) \ "a

FIGUR~ 1

417

that e3 immediately follows e2, which immediately follows el in Figure 1, so
e(R(O)e2 and e£R(O)e3, but not e?R(O)e3.)

R(O) is easily shown to be partitioned into a set of cyclic permutations. Let c be
the number of connected components of G. Let X(0) be the number of orbits of
R(O). By Euler's formula, the embedding rotation 0 is planar if X(0) - I EI +
I V I = 2c. Intuitively, if 0 is planar and c = 1, then the orbits of R(O) are in 1-1
correspondence with the connected regions of the embedding, with the borders of
the regions oriented counterclockwise. If 0 is planar and c --- 1, then c orbits of R
will be associated with the exterior regions of the embedding.

By Edmonds' [9] characterization, the graph G is planar iff it has a planar
embedding rotation. To test if G is planar, we construct a formula Ha, which is
true iff G is planar. (Previously, Ja'Ja' and Simon [21] gave a log-space construction
of a 2CNF formula which is true if a triconnected graph G is planar, but may also
be true if G is not planar.) Our construction makes no assumptions about the
connectivity of G. However, we assume G has constant valence.

5.6.2. The Basis Cycles. Let us impose an arbitrary, fixed numbering of the
edges E from 1 I E I. We consider this numbering to be an edge weighting of
the graph G = (V, E). The greedy algorithm of Section 5.4 constructs a unique
minimum spanning forest (V, SFG). For each direct edge (u, v), where {u, v} E
E - SFG, there is a unique directed simple cycle C(u,v) containing (u, v) and directed
edges derived from SFG. We call C(u,v) a basis cycle Let Y be the set of all basis
cycles. By applying Theorem 5.5, we have

LEMMA 5.8. II~CSYMLOG contains the test: Is edge sequence C in ~?

5.6.3. 7he Bridges of G. Let Cbe a basis cycle in 5~ of graph G = (IT, E). Let
a bridge of C be a maximal edge set B c_ E - {{u, v} I(u, v) ~ C} such that Vel,
e2 ~ B and there is a path p in B containing both el and e2, but visiting vertices of
C only at the endpoints ofp. Given C, we can construct in deterministic log space
a graph (this graph is derived from G by substituting a distinct new vertex ve and
edge {u, Vel for each edge e = {u, vt of E such that a vertex v appears in C) whose
connected components are in l - l correspondence with the bridges of C. Thus, by
Proposition 2.1 and Corollary 5.4, a symmetric complementing machine with
logarithmic space and a single complement move on the first move can test whether
B is a bridge of a given basis cycle; furthermore, by Lemma 5.8, this symmetric
complementing machine can also enumerate all basis cycles in logarithmic space
using a single further complement (yielding a total complement bound of 2). Thus
we have

LEMMA 5.9. The bridges of all the cycles of the bastc SS may be recognized in
~2CSYML, OG.

4 1 8 JOHN H. REIF

5.6.4. Embedding Formulas. For each vertex v E V and each cyclic ordering
0v of the set Dv(E) of directed edges departing from v, we have a distinct Boolean
variable O~(0v). Note that since G has constant valence, there is only a constant
number of such cyclic orderings. Let hi be the CNF@ formula consisting of the
conjunction of subformulas Ov(0~) @ O~(0~') for all v ~ V and distinct 0~, 0' of
D~(E).

Also, for each undirected edge e ~ E and basis cycle C ~ SC not containing e,
we have a Boolean variable OUT(C, e). (Intuitively, this variable will be true iff e
is embedded into the exterior of the closed region of the sphere defined by C.) Let
h2 be the CNF~ formula consisting of the conjunctions of subformulas O~(00
-nOUT(C, {v, u31) for all C E ~ and (ul, v), (v, u2) E C, and {v, u3} ~ E, and 0~
orders (v, u3) between (v, u2) and (v, u0.

Note that hi A h2 holds just when an embedding rotation 0 is induced with the
following property: For each v ~ V and basis cycle C E _fC containing vertex v, if
(ul, v), (v, u2) are directed edges of C and {v, u3} is any other edge containing v,
then {v, u3} is embedded to the exterior of the region defined by C if 0~ cyclically
orders (v, u3) between (v, u2) and (v, ul) (see Figure 2).

By Proposition 2.2 and Lemma 5.8, both hi and hE can be constructed by a
complementing symmetric machine with logarithmic space and complement
bound I. Finally, let h3 be the formula consisting of the conjunction of subformulas
OUT(C, el) • -nOUT(C, e2) for all C E _~, and el, e2 ~ E, and el, e2 are in the
same bridge of C.

Note that h3 holds just when for each bridge B of any cycle C E ~ either all
edges of B are embedded interior to the region defined by C, or all edges of B are
embedded exterior to the region defined by C. By Proposition 2.2 and Lemmas
5.8 and 5.9, h3 may be constructed by a symmetric complementing machine with
logarithmic space and complement bound 2.

Let Ho be the formula hi A h2 A h3 with existential quantification on all the
OUT and O variables.

LEMMA 5.10. G is planar t f f Hc is true.

PROOF. Suppose G is planar. Then by Edmond's characterization, G has some
planar embedding orientation 0. We use 0 to define the truth values for the O~ and
OUT variables. They clearly satisfy hi, h2, and h3. Thus, we can satisfy H~.

On the other hand, suppose H~ is true for some variable assignment. Let 0 be
the embedding rotation induced by the O~ variables. Let ~(0) be the number of
orbits of R(O). Now we must show ~,(0) - IEI + I VI = 2, implying by Euler's
formula that 0 is planar. Fix the spanning forest S F = SF~. Suppose we delete an
edge e ~ E - S F from G, so that the resulting graph is G' = (V, E ') with E ' -
E - {e}. We claim that if 0' is the resulting embedding rotation, then X(0) -
IEI + I VI = ~,(0') - IE ' I + IVI. Clearly IE ' I = IEI = 1 so we must show
X(O') = A(0)- 1.

Let e = {u, vt be the undirected edge to be deleted from E - SF. Let 7rl, ~r2 be
the orbits of R(O) containing directed edges d l = (u, v), d2 = (v, u), respectively, so
di- = d2 and d~ =dl. We claim now that ~rl # ~r2.

For each i E {l, 2}, let Cd, E 5S be the unique basis cycle that contains directed
edge d,. If zr, is a cyclic permutation of Cd,, then Ca, and zr, do not contain the
reverse edge dT, so 7rl # 7r2.

Otherwise, for each i = 1, 2 let (x,, y,) be the first edge of zr, following d, such
that (x,, y,) is not in Ca,. Let f, be the directed edge of 7r, immediately preceding

Symmetric Complementatlon

Ul

,/," ",~l C
: , [: ' ,

u3 o • 8v u 2

FIGURE 2

419

(x,, y,). By definition of orbits, (x,, y,) immediately follows f 7 in Ox,. Note also
that f must be a directed edge in Ca,. Let g, be the directed edge of Ca, immediately
following f . Then (x,, y,) is cyclically ordered between f 7 and g~ in Ox,. Since h2 is
satisfied, OUT(Ca: {x,, y,}) = false for i = l, 2. But since Ca2 is the reverse of
directed cycle Cat, g~ appears just before f~- in Cat and so OUT(Ca,, {x2, y2}) =
true.

However, we claim OUT(Ca: {x, y}) = false for all {x, y} E E such that (x, y) is
contained in ~r~, but not Cat. This has already been proved for x = Xl and y = yr.
For any subsequence ~r' of ~r~ contained on only a single bridge of Ca,, since h3 is
satisfied, we have OUT(Ca: {x, y}) = OUT(Ca: {x', y'}) for all (x, y) and (x', y')
in 7r'. Also, if (x, y)Tr"(x', y') is a subsequence of ~r~ where ~r" is a subsequence of
Cat but (x, y) and (x', y') do not appear in Cat, then, since h2 is satisfied, we have
OUT(Cdt, Ix, Y}) = OUT(Ca,, Ix', Y'}).

If (x2, Y2) is in lrl, then we have just shown OUT(Ca: {x2, Y2}) -- false, a
contradiction. Hence, (x2, Y2) is not in 7rl, but by assumption is in ~r2; so 7r~ # ~r2.

Without loss of generality, let ~rl = d:r{ and ~rz = d : ~ , where neither Ir[nor ~r~
contain dl or d2. Hence, when e is deleted from E - SF, the orbits ~r~ and 7r~ of
R(O) are merged into a single new orbit ~rj'z~ of R(O'), and no other orbits are
modified.

Thus, ~(0') = X(0) - 1, and we have shown ~(0) -]El + J V] remains invariant.
We repeat this process (deleting edges not in SF) until we have only E ' = SF. Let
c be the number of maximal trees in the spanning forest SF; c is also a number of
connected components of SF. Then ~(0') = c, I SFI = n - c, and] VI = n. Hence,
our invariant is ~,(0) - IE] + I V[= ~(0') - [SFJ # I vI = 2c, which implies by
Euler's formula that the embedding orientation 0 is planar. Thus, by Edmonds
characterization, G is planar. []

The formula Ha is constructed by a symmetric complementing machine with
logarithmic space and complement bound 2. Furthermore, by Theorem 5.2, a
single further complementation is required to test if HG is true. Thus by Lemma
5.10.

Tr~EO~EM 5.12. Plananty testing of constant valence graph is in II3CSYMLOG.

6. Concluston

It may be significant that the symmetric complementing machine introduced in
this paper has applications to many combinatorial problems found in practice,
such as spanning trees, k-connectivity, and planarity testing. In this case the
theoretical study of a new machine type led us to the discovery of new techniques
for practical combinatorial algorithm design. For example, applying our probabi-
listic decision algorithm for symmetric games to our proof that constant valence
planarity testing is in II3CSYMLOG yields a new probabilistic algorithm for

420 JOHN H. REIF

planarity testing; furthermore, this algorithm has a quite different structure than
any of the previously known deterministic planarity testing algorithms such as that
of Hopcroft and Tarjan [19]. This indicates to us that the field of combinatorial
algorithms, as well as the field of abstract computational complexity, would benefit
by further study of unusual machine types and their decision algorithms.

Note. A. Borodin, J. Hopcroft, M. Paterson, L. Ruzzo, and M. Tompa also
independently discovered the use of random walks to solve graph connectivity in
logarithmic parallel time.

In a preliminary draft of this paper, we defined a restricted type of alternating
machine whose nonalternation next moves are a symmetric relation. Dexter Kozen
pointed out to us that such symmetric alternation machines are too restricted for
our intended applications (in particular, they do not satisfy a complementation
property such as Proposition 2.1).

The symmetric complementing machine described in this paper satisfies the
required complementation property of Proposition 2.1 and also has efficient
decision algorithms if the machine is both space and complementation bounded.
Michael Sipser has also suggested an equivalent machine; this is a symmetric
alternating machine M (with symmetric nonalternation moves), but with a modi-
fied definition of acceptance:

M accepts (reJects, respectively) from an existential (universal, respectively)
configuration I if there exists a finite computation sequence I = It /~-t,/s,
where Iz ,/s-* are existential (universal, respectively) and I contains an accepting
(rejecting, respectively) state or /s is universal (existential, respectively) and M
accepts (rejects, respectively) f rom/s. Also, M rejects (accepts, respectively) from
existential (universal, respectively) configuration I iff M does not accept (does not
reject) from I. Thus, Sipser's definitions for acceptance and rejection of these
machines are duals. This is the same as the standard definition of acceptance of an
alternating machine from an existential configuration, but differs from the standard
definition of acceptance from a universal configuration so as to allow for comple-
mentations of languages.

ACKNOWLEDGMENTS. The author wishes to thank Larry Denenberg, Vassos Had-
zilacos, Joe Halpern, Harry Lewis, A. Prasad, Michael Sipser, and Paul Spirakis
and the referees for a careful reading and many useful comments on preliminary
drafts of this paper.

REFERENCES

1. ADLEMAN, L Two theorems on random polynomial time. In Proceedings of the 18th IEEE
Symposium on Foundauons of Computer Sctenee IEEE, New York, 1978, pp. 75-83.

2. ALEHUNAS, R., KARP, R.M., L,'TON, R.H., LOV~,SZ, L., AND RACKOFF, C. Random walks,
universal traversal sequences, and complexity of maze problems. In Proceedings of the 20th Annual
Symposium on Foundatwns of Computer Science. IEEE, New York, 1979, pp. 218-223.

3 BENNEV~r, C.H, AND GILL, J. RelaUon to a random oracle A, pa # Npa # coNPa with probabdlty
!. SIAMJ Comput 10, 1 (Feb. 1981), 98-113.

4 BONDY, J.A., AND MURTY, U.S R. Graph Theory with Apphcattons Elsevier North-Holland. New
York, 1977.

5. CHANDRA, A.K., KOZl~N, D.C., AND STOCKMEYER, L.J. Alternation. J. ACM 28, 1 (Jan. 1981),
114-133.

6. COOK, S A Towards a complexity theory of synchronous parallel computation. Extratt de
L'Enstgetgntement Mathematique T XXVII, FASC 1-2 (1981), 100-124.

7 CSANKV, L. Fast Parallel Matrix Inversion Algonthms. SIAMJ Comput 5 (1976), 618-623.

Symmetr ic Complementatton 421

8. DVMOND, P., ANt) COOK, S.A. Hardware complexity and parallel computation. In Proceedings of
the 21st Annual Symposium on Foundattons of Computer Science. IEEE, New York, 1980, pp.
360-372.

9. EDMONDS, J. A combinatorial representation for polyhedral surfaces. Am. Math. Soe. Not. 7
(1960), 646

10. EVEN, S., PNUELI, A, AND LEMPEL, A Permutation graphs and transitive graphs. J. ACM 19, 3
(1972), 400-410.

11. FOLDES, S, AND HAMMER, P.L. Split graphs. In Proceedmgs of the 8th Southeastern Conference
on Combmatorlcs, Graph Theory and Computmg, (Baton Rouge, La., 1977). Utilitas Mathematica,
Univ of Manitoba, Winnipeg, Man., Canada, pp. 311-315.

12. FORTUNE, S., AND WYLLIE, J. Parallelism in random access machines. In Proceedings of the lOth
ACM Symposium on Theory of Computing (San Diego, Calif., May 1-3). ACM, New York, 1978,
pp. ll4-118.

13 GILL, J. Complexity ofprobabihstic Turing machines. SIAMJ Comput. 6, 4 (1977), 675-695.
14. GILMORE, P.C., AND HOFEMAN, A.J. A characterization of comparability graphs and of interval

graphs. Canad J Math 16 (1964), 539-548.
15. GOLDSCHLAGER, L. A unified approach to models of synchronous parallel machines. In Proceed-

rags of the lOth Annual ACM Symposium on the Theory of Computing (San Diego, Calif., May
1-3). ACM, New York, 1978, pp. 89-94.

16. HIRSCHBERG, D.S. Parallel algorithms for the transitive closure and the connected components
problems. In Proceedings of the 8th Annual ACM Symposium on the Theory of Computing. (Hershey,
Pa., May 3-5). ACM, New York, 1976, pp. 55-57.

17. HIRSCHBERG, D S, CHANDRA, A.K., AND SARWATA, O.V. Computing connected components on
parallel computers. Commun ACM 22, 8 (Aug. 1979), 461-464.

18 HOPCROFT, J.E., AND TAR JAN, R.E. Efficient algorithms for graph manipulation. Commun. ACM
16. 6 (1973), 372-378.

19. HOPCROFT, J.E., AND TARJAN, R.E. Efficient planary testing J ACM21, 4 (Oct. 1974), 549-568.
20. JA'JA', J, AND SIMON, J Parallel algorithms in graph theory: Planarity testing. SIAMJ. Comput.

11, 2 (May 1982), 314-328.
21. JA'JA', J, AND SIMON, J Some space-efficient algorithms. In Proceedings of the 17th Allerton

Conference 1979, pp. 677-684. Tech Rep CS-80-14, Penn State Univ., 1980.
22. JONES, N.D., LIEN, Y.E, AND LAASER, W.T. New problems complete for nondeterministic log

space. Math Syst Theory 10 (1976), 1-17.
23 KARP, R.M., AND LIPTON, R.J. Some connections between nonuniform and uniform complexity

classes. In Proceedings of the 12th Annual ACM Symposium on Theory of Computing (Los Angeles,
Apr 28-30) ACM, New York, 1980, pp. 302-309. (Also presented at the Specker Symposium on
Complexity (Zurich, February 1980)).

24 LEWIS, H.R., AND PAPADIMITRIOU, C.H. Symmetric space bounded computation. Theor. Comput.
Sct 19(1982), 161-187.

25. MATULA, D. k-blocks and ultrablocks in graphs. J Comb Theory, Set. B 624 (1978), 1-13.
26. MCLANE, S. A combinatorial condition for planar graphs. Fundam Math. 28 (1937), 22-32.
27. RABIN, M.O. Probabihstic algorithms. In Algorzthms and Complextty, New Directions and Recent

Results, J. Traub, Ed. Academic Press, New York, 1976, pp. 21-36.
28 REIF, J.H. On the power of probabilistic choice in synchronous parallel computations. In Pro-

ceedmgs of the 9th Internattonal Colloqmum on Automata, Languages and Programming (Aarhus,
Denmark, July 1982). Springer Vedag, Berlin, pp. 442-450.

29. SAVAGE, C., AND JA'JA', J. Fast efficient parallel algorithms for some graph problems. SIAM J
Comput 10, 4 (Nov. 1981), 682-691.

30. SAVITCH, W. J., AND STIMSON, M.J. Time bounded random access machines with parallel
processing. J ACM26, 1 (Jan. 1979), 103-118.

31. SCHONHAGE, A. Storage modification machines. Technical Report, Mathematisehes Institut,
Universltat Tubingen, Germany, 1979.

32. WHITE, A. Graphs, Groups and Surfaces Elsevier North-Holland, New York, 1973.

RECEIVED AUGUST 1981; REVISED JUNE 1983; ACCEPTED JULY 1983

Journal of the Association for Computing Machinery, Vol 31, No 2, April 1984

