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Abstract. This paper introduces a new class of games called symmetric complementing games. These 
games are interesting since their related complexity classes include many well-known graph problems: 
Finding mlmmum spanning forests; k-connectiwty and k-blocks; and recognition of chordal graphs, 
comparabdity graphs, interval graphs, spht graphs, permutation graphs, and constant valence planar 
graphs. For these problems probabihstlc sequential algorithms requiring simultaneously logarithmic 
space and polynomial time are given Furthermore, probabfllsUc parallelism algorithms requiring 
simultaneously loganthmic time and a polynomml number of processors are also given. 

Categories and Subject Descriptors: F. 1.2 [Computation by Abstract Devices]: Modes of Computation-- 
alternatwn and nondetermmtsm; parallehsm; probabthsttc computation; F. 1.3 [Computation by Abstract 
Devices]: Complexity Classes--complextty hterarchies; reductbthty and completeness; relations among 
complexity classes, F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms 
and Problems--computattons on dtscrete structures 
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1. Introduction 

1.1. PREVIOUS WORK. In the previous decade, considerable success has 
been made in the design of time-efficient sequential algorithms for many combi- 
natorial problems on graphs (such as spanning trees, k-connectivity for k = 1, 2, 
and 3 [18], and planarity testing [19] using the technique of depth-first search. 
Also, breadth-first search has been used for time-efficient sequential algorithms for 
other graph problems. By applying well-known simulation results (e.g., [12], we 
can derive parallel space-efficient algorithms from these sequential time-efficient 
algorithms. Also, parallel time has been related to sequential space (by the simu- 
lation results, of, e.g., [8, 12]). It is intriguing therefore to ask 

(i) Is there a general graph search technique that yields sequential algorithms 
with optimal space and (either by simulation results or directly) also yields parallel 
algorithms with optimal time? 

We require that these algorithms be reasonable: that a sequential algorithm with 
space bound S(n) uses no more than 2 °ts~n)) sequential time (hence, if S(n) = 

Presented at the 14th Annual Symposmm on Theory of Computing, San Francisco, Calif., April 1982. 
This work was supported m part by the National Science Foundation Grant NSF-MCS79-21024, the 
Office of Naval Research Contract N00014-80-C-0647. 
Author's address: Alken Computation Laboratory, Harvard University, Cambridge, MA 02138. 
Permission to copy without fee all or part of this material is granted provided that the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
pubhcation and its date appear, and noUce is gtven that copying is by permission of the Association for 
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. 
© 1984 ACM 0004-5411/84/0400-0401 $00.75. 

Journal of the Assooat~on for Computing Machinery, Vol 3 I, No 2, Apn11984, pp 401--421 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F62.322436&domain=pdf&date_stamp=1984-03-30


402 JOHN H. RE1F 

O(logn), then n c~) sequential time will be used) and that a parallel algorithm with 
time bound T(n) use no more than 2 °¢rcn)) processors (again, note that T(n) = 
O(logn) implies n °°) processors will be used). Hence, certain probabilistic Turing 
machines (TMs) have a time bound doubly exponential in their space bound and 
are therefore not reasonable. 

The depth-first search techniques appear not to be applicable to (i) owing to their 
sequential nature. A possible technique for solving a graph problem is to reduce 
the problem efficiently to Boolean transitive closure, for which there is a known 
O(log2n) parallel time algorithm [7]. Using this technique, breadth-first search can 
be done in parallel time O(logn) 2. Savage and Ja'Ja' [29], Hirschberg [16], and 
Hirschberg et al. [ 17] use parallel breadth-first search and parallel Boolean transitive 
closure to do planarity testing and to solve connectivity problems in O(log2n) 
parallel time. However, Boolean transitive closure has no known algorithm with 
less than 9(log2n) parallel time bound, and this bound seems very difficult to 
improve, whereas we show here the planarity testing and connectivity problems 
actually have O(log n) probabilistic parallel t ime algorithms. 

A related problem is 

(ii) Is there a logic, in which a significant class of combinatorial problems may 
be succinctly expressed, and such that validity of sentences in the logic may be 
decided efficiently or even optimally (with respect to sequential space or parallel 
time)? 

A logic satisfying the conditions of (ii) could be used as the kernel of a language 
for parallel programming, where programs may be "compiled" into time-optimal 
code for parallel machines. 

1.2. OUR RESULTS. This paper proposes solutions to (i) and (ii). A space- 
efficient sequential probabdistic search technique was first introduced by Aldiunas 
et al. [2] to test connectivity. We generalize the probabilistic search technique to 
yield optimal algorithms (in sequential space and also parallel time) for a complexity 
class Z,CSYMLOG, which contains many important combinatorial problems. 
Furthermore, we propose a restricted quantified Boolean logic ~ , Q B F ~  as a 
solution to (ii). 

Our results are actually stated in a more general setting. This paper introduces a 
class of 1-player games of perfect information, which we call complementing games; 
the player is allowed moves that complement the value of successive plays. A 
complementing game is symmetrtc if all noncomplement  moves are reversible (i.e., 
form a symmetric relation). These games are naturally related to a class of machines 
we call symmetric complementing machines. Symmetric nondeterministic ma- 
chines were introduced in [24]; they can be viewed as a restricted class of our 
symmetric complementing machines with complement moves allowed only on 
termination. Of particular interest is the complexity class ~,CSYMLOG, which 
contains the outcome problem of symmetric complementing games with constant 
complement bound with game positions encoded in log space, and next move 
relations computable in log space. We show that the decision problem for a 
restricted quantified Boolean logic ~ , Q B F ~  is complete in ~,CSYMLOG. We 
also show that ~ ,CSYMLOG contains many well-known and common combina- 
torial problems: 

(1) min imum spanning forests, 
(2) k-connectivity and k-blocks; 
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and also the recognition problems for many classes of graphs: 

(3) planar graphs of constant valence, 
(4) chordal graphs, 
(5) comparability graphs, 
(6) interval graphs, 
(7) split graphs, 
(8) permutation graphs. 

We present a probabilistic algorithm (this is an algorithm that makes probabilistic 
choices [27], but with no assumptions about the probability distribution of the 
inputs) for recognizing the languages of ~;.CSYMLOG within space O(log(n)) and 
simultaneous time n °tj~, with error probability <e for any given ~, 0 < ~ < 1. As a 
consequence, problems (1)-(8) can be done probabilistically in space O(log(n)) and 
simultaneously within polynomial time. Previously, the best known algorithms for 
problems (1)-(3) required deterministic space fl(log2n) [21 ], and for problems (4)- 
(8) space fl(n). 

Also, we give a probabihstic parallel algorithm (which employs the Hardware 
Modification Machines of [6], with independent distributed probabilistic choice) 
for recognizing the languages of S .CSYMLOG within parallel time O(logn) and 
error probability <e, for any given e, 0 < ~ < 1. Thus, we also have parallel time 
O(logn) algorithms for problems (1)-(8). Our parallel algorithms require only a 
small polynomial number of processors. The best previously known parallel 
algorithms for problems (1) and (2) required parallel time f~(logZn) [16, 17, 29], 
problem (3) also required parallel time ~2(log2n) [20], and we know of no previous 
parallel algorithms for problems (4)-(8). Furthermore, we show (by a counting 
argument) that for each input length n ___ 0, the probabilistic choice can be 
eliminated in both our sequential and parallel algorithms. This does not affect the 
efficiency of the algorithms but makes our algorithms nonuniform (i.e., we have a 
different algorithm for each input length). 

1.3. ORGANIZATION OF THIS PAPER. Section 2 defines complementing games 
and machines, and complexity notation. Section 3 provides a sequential decision 
algorithm tbr the problems of ~,CSYMLOG, which runs in probabilistic space 
O(logn) and can be modified to run in nonuniform deterministic space O(logn). 
Section 4 gives a probabilistic parallel algorithm that can simulate any sequential 
space S(n)-bounded probabilistic computation within parallel time O(S(n)). We 
also show in Section 4 that we can eliminate probabilistic choices in our parallel 
algorithm without degrading its running time, but introducing nonuniformity. 
Section 5 introduces our logic ~ , Q B F ~  and shows its decision problem is complete 
in ~,CSYMLOG. We also show in Section 5 that various combinatorial problems 
(including (1)-(8) mentioned above) are in ~,CSYMLOG. 

2. Preliminary Definitions 
2. I. SYMMETRIC RELATIONS. Let R _ D x D be a relation on domain D. Let 

its inverse be R -  = {(b, a) laRb}. R is symmetric i fR  = R- .  R is deterministic if, 
for all a E D, there is at most one b E D such that aRb. 

2.2. COMPLEMENTING GAMES. A (l-player) complementing game consists of 
a quadruple G = (P, W, I-, t-c) where 

(i) P is the set of positions; P is assumed to be a set of strings over a finite 
alphabet; 
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(ii) W C_ p are the winning positrons; 
(iii) I- _C p x P is the next move relation; 
(iv) I--c _C I-- are the complement moves. 

Fix an initialposition Po E P. A move is a pair (p, p ' )  6 I--. The move (p, p ' )  is 
an initial move (complement move) i f p  = Po((P, P' )  E I--c). A complement  game G 
is symmetric if I-'-s = I--- - l--c is a symmetric relation (see 2.1). Let a play be a 
maximal length sequence of  positions Po, P~ . . . .  where po is the initial position, 
and p,_~ ~ p, for i = 1, 2 . . . .  (we allow a trivial play Po). For any finite k >__ 0, let 
po have complement bound k if any play from po has < k  complements,  ignoring 
the initial move (ignoring the initial move  allows us to maintain the duality 
between ~k and 7rk). Suppose Po has finite complement  bound k. Let OUT-  
COME(po) = true if there exists a finite play prefix Po, P~ . . . . .  pj, with no 
complement  moves and where either p+ E W o r  there exists at least one complement  
move from pj and O U T C O M E ( p ' )  -- false for each complement  move (pj, p') E 
[-c. Otherwise OUTCOME(po)  = false. 

2.3. MACHINE DEFINITIONS. l Let a complementing (Turing) machine be a 9- 
tuple M = (~, I', b, t, Q, qo, QA, 6, ~c) where 

is the finite input alphabet; 
I ~ is the finite tape alphabet, with ~ C_ 1"; 
b E F - ~ is the distinguished blank symbol; 
t is the number o f  two-way infinite tapes, where tape 

1 is the input tape; 
is the finite state set; 
is the inttial state; 
are the accepting states; 
is the transition relatmn; 

are the complement transitions. 

The syntax of  6 is slightly nonstandard so that we can easily define symmetric 
machines in a manner  similar to [24]. (However, the semantics are not essentially 
different from the standard definitions.) 

Suppose transition ((q, albtm~, . . . ,  atbtm,), (q', a~b~m~, . . . ,  a'tb[m[)) ~ ~ is 
taken. Then the previous state was q and the new state is q ' .  Each tape i E { 1 , . . . ,  
t} moves its head one cell in direction m ;, and m, is the reverse of  direction m,: If  
m ', = right, then previously the head of  tape i was scanning symbol a, and "peeking" 
at symbol b, located one cell to the right; in the new configuration these symbols 
a,b, are replaced by symbols a;b; and the head is scanning symbol b;. The case m;  
--- left is similar, except the head was previously scanning over symbol b, while 
"peeking" at symbol a, located one cell to the left; afterward, the head is scanning 
symbol a;. Let M be symmetric if noncomplement  transitions bs = 6 - 6c are a 
symmetric relation. Let _¢ be the configurations of  M, defined in the usual way for 
TMs. We may extend 6 in the usual way to the next move relation ~ C 3"  x 
Let I-c ~ I-- be the next moves, which are complements.  Note  that i f M i s  symmetric, 
then the relation I--s = I-- - I--c is symmetric. Let W C J be the accepting 
configurations. GM = (-7, W, I-, I-c) is the computation game of  M. 

~See conclusion of this paper for a discussion of previous and equivalent machine definitions for 
symmetric alternating machines. 
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Given an input string o~ ~ Z", we let the initial configuration I0(o~) have the 
initial state qo and all tapes blank except that the input tape contains w surrounded 
by infinite strings of blank symbols (since b q~ Z, no endmarkers are required). 
The input tape head initially scans the first symbol of ~o. I0(w) is the initial position 
of Gu. Computation sequences of M are plays of GM from Io(w). Suppose M has a 
finite complement bound from Io(o~). M accepts o~ if OUTCOME(I0(w)) --- true. If 
M has no complement moves, then M is a nondetermmistic machine; furthermore, 
ifl-s is also symmetric, then M is a symmetric nondeterministic machine as defined 
by Lewis and Papadimitriou [24]. 

2.4. COMPLEXITY CLASSES. Let complementing machine Mhave  space bound 
S(n) (complement bound K(n)) if, on any input of length n _ 0, each computation 
sequence has no more than S(n) nonblank cells on any work tape in each 
configuration (fewer than K(n) complements on any computation sequence ignor- 
ing the initial moves). 

Note that nondeterministic and co-nondeterministic machines have complement 
bound 1. For notational simplicity, we define a complementing machine with 
complement bound 0 to be a deterministic TM. Let Jg be a class of complementing 
machines. Let _/ZSPACE(S(n)) be the languages accepted by those machines in Jg 
with space bound S(n). Let ZklgSPACE(S(n)) (IIk.t(SPACE(S(n))) be the languages 
accepted by those machines in ~g with space bound S(n), complement bound k, 
and no complement moves (only complement moves, respectively) for the initial 
moves. Let 2;.JgSPACE(S(n)) -- Uk,_O~kJgSPACE(S(n)); that is, the machines 
operate in some constant number of complements, regardless of the input length. 

In the context of complexity classes, we let D denote the class of deterministic 
TMs, let N denote the nondeterministic TMs, and let NSYM be the symmetric 
nondeterministic machines. Let C be the complementing machines, and let CSYM 
be the symmetric complementing machines. For example, the complexity class 
NSYMSPACE(S(n)) --- {L I L is accepted by a symmetric nondeterministic machine 
with space S(n)} previously investigated by Lewis and Papadimitriou [24]. The 
complexity class ~K(n)CSYMSPACE(S(n)) --- {LIL is accepted by a symmetric 
complementing machine with space bound S(n), complement bound K(n), and no 
complement initial moves} is of central importance to this paper. For notational 
simplicity, let NSYMLOG = NSYMSPACE(log(n)), and CSYMLOG = CSYM- 
SPACE(log(n)). 

Let L, ---~os L2 denote that language L, can be many-one reduced in deterministic 
log space to language L2. Let L~ be -log equivalent to L2 if L, ---~o8 L2 and Za Slog 
L~. Let L2 be complete in a family of languages 54 if Lz ~ 54 and Ll <-io~ L2 for 
each L~ E 54. Note that if S(n) >__ logn, L~ <-~og L2, and L2 ~ CSYMSPACE(S(n)), 
then L~ ~ CSYMSPACE(S(n)), by Proposition 2.2. 

2.5. PRELIMINARY RESULTS FOR SYMMETRIC COMPLEMENTING MACHINES. 
Let M be a symmetric complementing machine that accepts language L C ~*. If 
we augment M by an initial complementing move, then the resulting machine 
accepts Z* - L. On the other hand, if we remove an initial complementing move 
of M, then the resulting machine also accepts Z* - L. Hence, we have 

PROPOSITION 2.1. For any L C_ Z*, L E ~r(n) CSYMSPACE(S(n)) iff~* - L 
IIK(~) CSYMSPACE(S(n)). 

Lewis and Papadimitriou [24] show DSPACE(S(n)) C_. NSYMSPACE(S(n)). 
Thus, NSYMSPACE(S(n)), for S(n) >_ logn, is closed under many-one deterministic 
log-space reductions. Their proof easily extends to CSYMSPACE(S(n)). 
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PROPOSITION 2.2. I f  L has a many-one deterministic log-space reduction to a 
language in Zr(n) CSYMSPACE(S(n)) and S(n) >_ log n, then L E ~K(,) CSYM- 
SPACE(S(n)). 

Also, since any symmetric complementing machine is a complementing ma- 
chine: 

PROPOSITION 2.3. DSPACE(S(n)) CZK(~) 
CSPACE(S(n)) 

CSYMSPACE(S(n)) C~K(~) 

(Note that space-bounded complementing machines accept the same languages 
as space-bounded alternating machines. Both complementing machines and ordi- 
nary alternating machines without resource bounds accept any arithmetic set. 
However, this is not relevant to this paper.) 

3. A Space-Efficient Decision Algortthm for Symmetric Complementing Machines 

We give a O(S(n)K(n)) space sequential algorithm for recognizing the languages of 
ZK(,) CSYMSPACE(S(n)). The algorithm is probabilistic (see Sections 3.1 and 3.2), 
though we show it can be made deterministic by introducing nonuniformity (see 
Section 3.3). 

3.1. PROBABILISTIC SEQUENTIAL MACHINES. We define aprobabtlistic TM to 
be a multitape deterministic Turing machine PM with a special read-only, one- 
way tape (distinct from the input and work tapes) containing an infinite binary 
sequence. The contents of this "random bitvector" tape are chosen randomly on 
each execution of PM. Let 2; be the input alphabet of PM and let L C_ Z*. For any 
~(n), 0 _< ~(n) < 1 say PM recogmzes L within error E(n) if for all o~ E ~", 

C I. w ~ L implies Pr(PM accepts 00) ___ 1 >_ ~(n), 
C2. o~ ~ L implies Pr(PM accepts ~o) < ~(n). 

To justify this definition, we note that Adleman's [ 1 ] definition of acceptance of 
probabilistic machines is similar to ours, except 4n) --- ½ in CI and he strengthens 
condition C2 by requiring that w ~ L imply PM does not accept ~0 on any 
probabilistic choice. Many probabilistic algorithms in number  theory satisfy this 
more restrictive property, but it is too restrictive for many of the applications in 
this paper. On the other hand, Gill [ 13] defines acceptance ofprobabilistic machines 
with the max of the error of acceptance and rejection less than ½ and called the 
polynomial time-bounded class BPP. 

Note that a probabilistic machine may not be reasonable in the sense defined in 
the introduction (since Gill [ 13] gives a probabilistic machine with space bound 
S(n) and expected time bound 22"s~)); however, the probabilistic machine imple- 
menting the PROB-SEARCH algorithm of Section 3.2 will be reasonable. 

3.2. PROBABILISTIC SIMULATION OF SPACE-BOUNDED SYMMETRIC COMPLE- 
MENTING MACHINES. We show 

THEOREM 3.1. For any e(n), 0 < e(n) < 1, there ts a probabilistic TM that 
recogmzes L ~ ~K(n) CSYMSPACE(S(n)) within given error e(n) and space 
O(K(n)(S(n) + log d(n))) and time (d(n)2°ts("))) K("), where d(n) = K(n)(O(S(n)) + 
log(O(K(n))) - log 4n). 
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Note that if ~(n) is constant, then we require space O(K(n)S(n)) and time 2 °~K~")s~n)). 
Thus 

COROLLARY 3.1. For each constant ~, 0 < ~ < 1, and L E ~ ,  CSYMLOG, there 
is a probabdistic TM that recognizes L within error E and simultaneous space 
O(logn) and time n °"). 

Although Theorem 3.1 suffices for our applications, we also show its space 
bounds can be improved. 

THEOREM 3.2. For each L E ZK~,) CSYMSPACE(S(n)), there is a probabilistic 
TM that recognizes L within error ~(n) and space O(K(n)(S(n) + log(S(n) + log 
d(n)))). 

Our probabilistic search technique will utilize the following result: 

LEMMA 3. I. [2]. Let G = (V, E) be any undirected, connected graph. Let a 
random walk r in G from any vertex v ~ V be constructed from trivial path v by 
repeatedly extending the front end of  r by adding a random edge of  E, which is 
connected to the current front end vertex of  r. Let r be a random walk of  length 
2 JE[([ VJ - 1). Then Pr(r visits all vertices in V) >_ ½: 

Lewis and Papadimitriou [24] observe that this lemma immediately implies a 
space O(S(n)) probabilistic algorithm for NSYMSPACE(S(n)). A generalized prob- 
abilistic search technique is used here to decide acceptance of symmetric comple- 
menting machines. 

PROOF OF THEOREMS 3.1 AND 3.2. Let M be a symmetric complementing 
machine as defined in Section 2.2. We assume M has complement bound K(n) >_ 
1 and constructible space bound S(n) >_ logn (otherwise, we use the standard 
technique of trying S(n) = logn, 1 + logn . . . .  to the construction given below). 
Let J be the set of configuration of M and let W _C _7 be the accepting 
configurations. Let k- be the next move relation of M. Let k-c, I-s __ b- be the 
complement and noncomplement moves of V-, respectively. Fix some n _> 0. Let 
J '  c_ 3" be the configurations that have <_S(n) nonblank cells on each work tape. 

We define a recursive procedure that takes as input a configuration I E J ' .  
Also, the procedure has a global variable t (which determines the procedure's 
probability of success). 

procedure PROB-SEARCH,(I) 
begin 

local integer z, set COMP 
i<--0 
while i _ t do 

begin 
if I is accepting then return true 
COMP ,,- {I' ~ _7' [Ik-cI'l 
if COMP # O then 

if PROB-SEARCHt(I') = false for all I' ~ COMP then return true 
choose a random I' from {I' E J '  I I k-s I'} 
I<--I' 
i<--l+ 1 

end 
return false 

end 

For each k, 1 <_ k <_ K(n) let _Tk _ f be the configurations that also have 
complement bound k. 
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Let ~,, be the max probability that PROB-SEARCHt(I) = false for any I ~ -gk 
such that OUTCOME(I) = true. Let ~k,t be the max probability that PROB- 
SEARCHt(I) = true for any I ~ _~ such that OUTCOME(/) = false. Thus, ~k,t and 
ik, t are the upper bounds of error probabilities for rejection and acceptance, 
respectively. 

LEMMA 3.2. There are constants  b, c >_ 1, dependent  only  on M ,  such that f o r  
a n y d > _  l , k > _  1, 

max(~k,t, ~k,t) <- k2-d(tb) k-~ 
where t = 2dc stn). 

PROOF. Let k-" -- ( J '  x J ' )  tq k-s. Since M is symmetric ( J ' ,  k-') is an 
undirected graph. There exists a constant b ___ 1 that is an upper bound on the 
number of next configurations 1 I ' 1 I  k- I ' }  possible from any given configuration 
L Also there exists a constant c~ ___ 1 such that I J " l  --- c~ n). Thus, there exists a 
constant c2 _-2 0 such that Ik-gl --- c2 ~'). Let c = c1.c2 SO t ----- 2dl J ' l  Ik-'l. 

For each pair of  configurations/, I '  E J k  for which there is a noncomplementing 
computation sequence from I to I ' ,  by Lemma 3.1, we have Pr(r visits I ' )  >_ 1 - 

2 -d for a random walk r in ( J g ,  k-g) starting at I and of length 2d 1-7'  I I k-" 1. 
Now we prove Lemma 3.2 by induction on k. For k --- 1, we show max(6l, t ,  ~l,t) 

_ 2 -a. The upper bound on the error probability for rejection and acceptance from 
any I E J I  with no complement next move is -<2 -a and 0, respectively. Thus, the 
total worst case error probability for rejection and acceptance from any I E _~l is 
--<2 -d  and -<2 -d, respectively. 

Since there are at most tb direct calls to PROB-SEARCH during a single 
execution of the body of the PROB-SEARCH procedure, for k > 1 we have 

~k,t <-- 2 -d + tbgk-! and ~k,t <- tb~k-i.  

By the induction hypothesis, 

max(~k-~,t, ik-~,t) <-- (k  - 1)2-d(tb) k-2. 

Hence 
m a x ( E k ,  t, ~k,t) ~ 2 -d + tb~k-i 

<- 2 -d + (k  - 1)2-d(tb) k-I 
<_ k2-d(tb) k-l. [] 

Let L be the language accepted by M. Suppose we are given some error function 
~(n), 0 < ~(n) < 1. Let PM be the probabilistic TM that on input o~ ~ Z", computes 
PROB-SEARCHt~,)(Io(~o)) and accepts iff the result is true, provided that d(n) = 
K(n)log(t(n)b) - log ~(n) and t(n) = 2d(n)c s~"). (Note that both d(n) and t (m)  are 
decreasing functions of ~(n).) By Lemma 3.2, PM recognizes L within error ~x~n) - 
E(n). Furthermore, PM has time bound O(t(n)) K~) = (d(n)2°tst~))) x~). PM has space 
bound o(g(n)(S(n) + logd(n))), since we must store b = O01) configurations of size 
O(S(n)),  and a "time counter" requiring space logt(n) = O(S(n)  + logd(n)) to 
implement each of the K(n)  recursive cells. Thus we have proved Theorem 3.1. [] 

Although Theorem 3.1 is good enough for our applications to ~.CSYMLOG, it 
is nevertheless interesting to observe that we may decrease the space bound by 
using a trick due to Gill [ 13]. To avoid storing the "time counter" in the procedure 
PROB-SEARCHt, we instead sample a random bit on each iteration of the while 
statement. If at any time there have been log t consecutive zero's chosen, then we 
immediately exit the while statement. This test replaces the test (i ___ t) in the 
original text of  PROB-SEARCH,. To achieve error ~ct~) - ~(n), we must only 
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increase d(n) by a factor of 1/(1 - logexp(1)). Only O(K(n)(S(n) + loglog t(n))) -- 
O(K(n)(S(n) + log(S(n) + logd(n)))) space is required by this method (but note that 
we no longer have a deterministic time bound). Thus we have proved Theorem 
3.2. [] 

3.3. ELIMINATING PROBAB~L~S~r~c ChOiCES. Let a nonuniform deterministtc 
TM be a deterministic TM augmented with a special read-only tape, called the 
advice tape, whose contents are fixed for all inputs of the same length n, but which 
may have different contents for distinct input lengths n and n'. (Neither the input 
tape nor the advice tape is considered in the space bound of this machine.) This 
nonuniform machine has advice bound A(n) if, on inputs of length n, the advice 
tape has A(n) cells (see [23]). We show 

THEOREM 3.3. Each L ~ Zig(n) CSYMSPACE(S(n)) ts accepted by a nonuniform 
deterministic TM within space bound O(K(n)S(n)), time bound 2 °ac(")s~")), and advice 
bound 2 o(s~,)). 

COROLLARY 3.3. Each L E Z .CSYMLOG is accepted by a nonuniform deter- 
mlnisttc TM within simultaneous space bound O(logn), ttme bound n °"), and 
advice bound n °(1). 

PROOF OF THEOREM 3.3. We require a technical graph-theoretic result. 
Let G = (V, E) be a undirected regular graph, with valence b. We assume G has 

a fixed adjacency list representation, so for each vertex v we have a list l(v) of 
vertices adjacent to v. Given a string U ~  {1 , . . . ,  bt* and a vertex v, let U(G, v) be 
the path v = v0 , . . . ,  vl~l such that v, is the U(i) element of list l(vz-~) for i = 2, . . . .  
l aj. Let J,,b be the class of all undirected, regular graphs with _n vertices and 
valence b. Let U ~ { 1 , . . . ,  b}* be (n, b)-universal if for each graph G ~ ~,,0 and 
each vertex v of G, U(G, v) visits all the vertices of G. 

LEMMA 3.3 [2]. For each b >_ 1, there is a c(b) such that for each n >_ 0 there is 
a (n, b)-umversal string U,,b of length <_c(b)n3logn. 

Let M be a symmetric complementing machine of Section 3.2 with complement 
bound K(n) and space bound S(n). Let ( J ' ,  ~'~) be the undirected graph of  valence 
b defined in the proof of Lemma 3.2. Clearly, we can add redundant transitions so 
that ( J ' ,  t-'~) is regular with valence b. Let NONUNIFORM-SEARCH~I) be the 
deterministic procedure derived from PROB-SEARCHt(I) of Section 3.2 by using 
the (I _7'] ,  b)-universal string Ui J ,  I,b in place of probabilistic choice, for choosing 
the configurations to be explored in ( J ' ,  t-'s). 

By the proof of Lemma 3.2, there exists some cl ~ 1 such that I J¢ '  J - c~ "). Let 
t(n) = c(b)(S(n)log c~)c~ s("). Then Lemma 3.3 immediately implies 

LEMMA 3.4. For each input string o~ ~ ~", 

NONUNIFORM-SEARCHt(,)(Io(~o)) = true iff M accepts w. 

This procedure may be implemented by a nonuniform deterministic TM with 
space bound O(K(n)S(n)), time bound t(n) x(") = 2 °(K(")s(")), and advice bound t(n) = 
2 ~s(")). Thus, we have proved Theorem 3.3. [] 

Note that Reif [28] also describes how to eliminate probabilistic choice from 
probabilistic parallel computations with bounded error, and Adleman [1] and 
Bennett and Gill [3] describe how to construct circuits from sequential probabilistic 
computations with bounded error. However, none of these results imply Theorem 
3.3. 
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4. A Parallel Algoruhm 

4.1. THE HARDWARE MODIFICATION MACHINE. Our parallel machine model 
is the hardware modification machine (HMM) of [8] (though we consider proba- 
bilistic and nonuniform variants of it below). The HMM was invented as the 
parallel analog of the storage modification machine of [31]. The HMM seems to 
be the simplest possible parallel machine with modifiable storage structure, and 
the HMM can be simulated within real time, with the same number of processors, 
by many other such parallel machines, including the P-RAM of [ 12] (this P-RAM 
model was assumed for the parallel graph algorithms of [20]), the PRAM of [30], 
and the SIMDAGs of [15]. A survey of parallel machine models and related 
complexity results are given in [6]. 

Intuitively, a HMM consists of  a finite collection of deterministic finite state 
machines, which we call processors. The state transition functions of these proces- 
sors are identical. Each processor also contains the same fixed, finite number of 
input and output connections for transmission of values, from a finite alphabet, 
between processors. On each step (the state transitions of the processor are syn- 
chronous), a processor will read the values of its input connections, which were set 
by its neighboring processors on the last step, write new values on each of its output 
connections (only one process is associated with each output connection), and 
enter a new state. In addition, a processor may reconnect any input connection to 
any machine that can be reached by a path of length ___2 from the previous input 
connection. Also, a processor may reconnect an input connection to a new 
processor (with the same finite state control, initialized in some given state and 
with all input connections directed to its creator). 

Given an input string ~o E ~n, we assume the initial configuration of the HMM 
consists of  a chain of n + 1 identical processors PPo, Pi t  . . . .  , PP,, each in the 
same initial state and each with input connections connected back to itself, except 
that each PP,_~, for 0 < i <_ n, has a distinguished input connection to PP, where 
the value output by PP, is the tth symbol of the input string o~. (This initialization 
scheme is somewhat simpler than that defined by Dymond and Cook [8] but yields 
the same technical results of interest here.) The HMM accepts oo if PPo ever enters 
a distinguished accepting state qA. 

The time bound T(n) (processor bound P(n)) of the HMM is the maximum 
number of steps (processors, respectively) taken on any accepting computation for 
any input of length n. Generally we assume the HMM is uniform: The processors 
have the same finite state transition function for all input strings. However, we 
consider in Section, 4.4 nonumform HMMs, which must only have the same finite 
state transitions for all input strings of the same length. The advice bound A(n) of 
a nonuniform HMM is the number oftuples defining the processor state transition 
function for input of length n. 

4.2. THE PROBABILISTIC HMM. In addition to the above for a uniform HMM, 
suppose we allow each processor PP, probabilistie choice by providing a special 
read-only register r,, which is set randomly to 0 or 1 each step, with each step 
independent of each other. Let PPM be the resulting probabilistic HMM. PPM 
recognizes language L C_ ~* withln error ~(n), 0 _< ~(n) < 1, if for all o~ E Z", 

CI. 00 E L implies Pr{PPM accepts w] _> 1 - ~(n), 
C2. 00 $ L implies Pr{PPM accepts 00} < ,(n). 

(Note that the conditions CI, C2 for probabilistic recognition are identical to those 
given in 3.1. Reif [28] gives complexity bounds for various other probabilistic 
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parallel machines and for both Adleman's [1] and also Gill's [13] bounded error 
definitions of probabilistic acceptance. If Adleman's definition of acceptance is 
used, then we can eliminate probabilistic choice in our parallel machines by 
introducing nonuniformity without any increase in parallel time. On the other 
hand, if Gill's bounded error definition of probabilistic acceptance is used, then we 
show in [28] that probabilistic parallel space S(n) contains parallel space S(n) with 
nondeterministic choice.) 

4.3. PARALLEL SIMULATION OF PROBAB1LISTIC SEQUENTIAL COMPUTATIONS. Dy- 
mond and Cook [8] prove that 

THEOREM 4.1. IlL ~ DSPACE(S(n))  for  S(n) >_ log n, then L is recognized by 
a (deterministic) H M M  in simultaneous parallel t ime bound O(S(n)) andprocessor 
bound 2 °<st")). 

We generalize their results to probabilistic computations. 

THEOREM 4.2. Let  P M  be a probabilistic T M  with space-bound S(n) >_ log n 
and time bound T(n). Suppose for some ~(n), 0 < E(n) < 1, L C_ ~* is recognized by 
P M  within error ~(n). Then there is a probabilistic H M M  that recognizes L within 
error ~(n) and with O(S(n) + log T(n)) parallel t ime and utilizes T(n).2 °<s~")) 
processors. Furthermore, this H M M  is uniform. 

PROOF. Fix some input string w ~ ~" and let Io(w) be the initial configuration 
of PM. Let _Y' be the configurations of PM using <_S(n) tape cells. Clearly there 
exists a constant c > 0 such that I J ' l  - c s~"). We assume S(n) and T(n), are 
constructible (otherwise we can in parallel use a diagonalization of S(n) -- O, 1, . . .  
and T(n) -- 0, 1, ...). 

Our simulating probabilistic HMM, which we call PPM, will utilize a processor 
PPI, t for each t, 0 <- t <_ T(n) and 1 6  _7'. These processors can be created in binary 
tree fashion within O(log(T(n) l_~ '  I)) time. Each processor PPI, t chooses a config- 
uration I '  randomly from those allowed from configuration I by PM. PPt, t then 
makes a distinguished j u m p  connection to processor PPr,t+~. These connections 
can be made in time 0(log(1-7' I)), again using binary trees for indexing. There- 
after, each process PP~,t repeatedly connects its jump connection to that which was 
its jump connection of distance 2 in the previous step. These steps are executed 
synchronously by all the processes, and the HMM is allowed to halt and accept 
only when process PPld,o),o has a jump connection to a process P1,t, where I is an 
accepting configuration of PM. 

Suppose I0, I~ . . . .  is an execution sequence of M, with particular probabilistic 
choices r. Suppose also that the RAMs of PPM make particular probabilistic 
choices r ' ,  such that PPI,,t initially sets its jump connection to process PPI,÷,.t÷~ for 
t = O, 1 . . . . .  T(n) - 1. Then it is easy to verify that PPM accepts w (when making 
probabilistic choices r ' )  iff PM accepts co (when making probabilistic choices r. 
Since r and r '  are chosen randomly, it follows that 

Pr{PM accepts w} = Pr{PPM accepts w}. 

Furthermore, i fPPM accepts w, then there is a path PPzo,O, PI~,~, . . . ,  Pt,,t induced 
by the initial jump connections such that Io(w) = Io, I~ . . . .  , L is an accepting 
computation of M, and t <_ T(n). On each iteration, this pathls length decreases by 
a factor of ½. Thus, PPM accepts within parallel time 

O(log(T(n) l . J ' l ) )  = O(log(T(n)Z°tS~")))) = O(S(n) + log T(n)). [] 
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Combining Theorems 3.1 and 3.2, we have 

THEOREM 4.3. For any S(n) >__ log n, K(n) >_ 1, and for each ~(n), 0 < ,(n) < 1 
and L E ~xt,)CSYMSPACE(S(n)), there is a probabilistic H M M  that recognizes L 
within error ~(n), with parallel time bound O(K(n)(S(n) + log d(n))) and processor 
bound (d(n)2°tst"))) Kt") where d(n) is defined as in Theorem 3.1. 

Note that if E(n) is constant, then HMM has parallel time bound O(K(n)S(n)) 
and processor bound 2 ~Kt')s~n)). Thus 

COROLLARY 4.3. For each constant ~, 0 < ~ < 1, and L E ~,.CSYMLOG, there 
is a probabilistic H M M  that recognizes L within error ~ and with parallel time 
O(log n) and n °") processor bound. 

4.4. A NONUNIFORM PARALLEL ALGORITHM. By Theorems 3.3 and 4.1, we can 
eliminate probabilistic choice in our parallel algorithm, by introducing nonuni- 
formity. 

THEOREM 4.4. For each L ~ ~Kt,)CSYMSPACE(S(n)) with S(n) >_ log n, L is 
accepted by a nonuniform H M M  with parallel time bound O(K(n)S(n)), processor 
bound 2 °¢Kt")s~")), and advice bound 2 °tst")). 

COROLLARY 4.4. Each L ~ ~,.CSYMLOG is accepted by a nonunform H M M  
with stmultaneous parallel time bound O(log n), processor bound n °tl) and advice 
bound n °"). 

5. Computational Problems in Z,CSYMLOG 

5.1. SYMMETRIC COMPLEMENTING GAMES. Let G = (P, W, I-, t-c) be a com- 
plementing game. Let the next move relation I- be log space if there is a determin- 
istic log space next move transducer, which, given any position p E P, outputs 
{P'IP ~- P'}. Let G have position length bound S(n) (complement bound K(n)) if, 
for each position p ~ P of length n, all positions reachable from p have length not 
more than S(n) (there are fewer than K complement moves on any play from p, 
respectively). The outcome problem for G is given p E P, next move transducer I-, 
and recognizer for the winning positions W, compute OUTCOME(p). 

Let CYSMGAMES(S(n), K(n)) be the class of languages that are outcome 
problems for symmetric complementing games with position length bound S(n), 
complement bound K(n), and next moves and winning positions recognizable in 
O(log n) space. 

By our definition of complementing machines, we have 

THEOREM 5.1. For S(n) >_ logn, CSYMGAMES(S(n), K(n)) is complete for the 
class of languages accepted by symmetric complementing machines wtth space 
bound S(n) and complement bound K(n). 

COROLLARY 5. l. The outcome problems Uk~.O CSYMGAMES(log n, k) are 
complete for Z,  CSYMLOG. 

5.2. QBF~. Given a set X of Boolean variables, let literals (X) = X O {-~x [ 
x E X} U { true, false]. Let C N F ~  be the set of  Boolean formulas consisting of a 
conjunction of clauses, each clause consisting of the exclusive-OR l • l '  of two 
literals l, l'. Note that / • l '  is equivalent to (-~l) • (-~l'). 

Jones et al. [22] and Lewis and Papadimitriou [24] show the problem of testing 
CNF@ unsatisfiability is deterministic log-space complete in NSYMLOG. Let 
ZkQBF~ and IIoQBF~ be the truth values {true, false]. Inductively, let ZkQBF~ 
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be the set of quantified Boolean formulas F of the form (3X)G A . . .  A C,n where 
X is a set of Boolean variables and each clause (7, is either of  form I • 1' or of  form 
l V F '  where l, l '  ~ literals(X) and F '  is a formula of IIk_~QBF~. Also, let 
IIkQBF~ be the set of quantified Boolean formulas F of the form (VX)C~ V • .. V 
Cm where each clause C, is of the form l • l '  or of the form 1 A F '  where l, l '  
literals(X) and formula F '  must be in Zk-~QBF~. Let Z,QBF~) = 1.3k~0 ~gQBF~. 
Note that all variables are bound in QBF~  formulas. 

THEOREM 5.2. For all k >__ O, the truth problem for ZkQBF~ is complete in 
IIkCSYMLOG, and the truth problem for IIkQBF~ is complete in ~kCSYMLOG. 

PROOF OF THEOREM 5.2. Our proof requires a technical Lemma. This Lemma 
is an easy generalization of a result of [22], which characterized truth of  C N F ~  
formulas. 

LEMMA 5.1. Let F be a formula of ZkQBF~. F is false iff there exists a sequence 
of hterals lo . . . . .  lj such that lo • -nl~ . . . . .  lj_~ • ~lj are equivalent to clauses o fF  
and lo = ~lj or both (1) and (2) hold. 

(1) l0 = true or lo V F'  is a clause o fF where F'  is a false formula in IIk-IQBF~. 
(2) lj = false or ~lj V F" is a clause ofF where F" is a false formula in IIk-IQBF~. 

It will also be useful to note that 

PROPOSrnON 5.1. I f  F is a formula of IIkQBF~, then ~F is equivalent to a 
formula P of ~kQBF~, where [z is formed by switching the quantification symbols 
V, 3 and also swttchmg the logical connectives V, A in F. So F is fa l se / f fF  is true. 

PROOF OF THEOREM 5.2 BY INDUCTION ON k. IIoQBF~ and ZoQBF~ can easily 
be shown complete in IIoCSYMLOG = ZoCSYMLOG = DSPACE(Iog n). 

Suppose for some k ___ 1 the theorem holds for all k' < k. Let F be a ZkQBF~ 
formula of  length n. To decide F, we play a symmetric complementing game. Let 
the player begin by choosing a sequence of literals lo, . . . , /1 such that lo • ~1~, . . . ,  
lj_~ • ~lj are equivalent to clauses of F. Note that only the first literal and last 
literal need be stored, and this requires O(log n) space. This choice sequence is 
reversible since (l,_~ • "-1/,) --- (l, • ~l,_~). The player enters the accepting state (and 
thus wins) if either lo = --,l~ in both cases (1), (2) of Lemma 5.2 holds. This may 
require deciding formulas F ' ,  F"  of IIg_~QBF~. To do this, we allow the player 
two simultaneous complement moves from the current position. In these comple- 
ment moves, we let the player test whether both F '  and F "  are false. By the 
induction hypothesis, these tests are in IIk_~CSYMLOG. Thus the symmetric 
complementing game can be implemented by a symmetric complementing ma- 
chine with complement bound k and space bound O(logn). By Lemma 5.2, the 
player wins iff F is false. We have thus shown that testing falsehood of formulas in 
Z~QBF~ is in ZkCSYMLOG. By Proposition 2.1, testing truth of  formulas in 
~ Q B F ~  is in IIkCSYMLOG. 

Now let M be a symmetric complementing machine with complement bound k 
and space bound log n. Let t-~ be the noncomplement moves of M. For each k', 
l _< k' _< k, let ~k' be the set of configurations o f M w i t h  _<logn nonblank cells per 
work tape and for which there is a complement bound of k'. Let 5~, be the 
configurations of _~, that have a complement as a next move. By the induction 
hypothesis we can assume for each I ~ ~k-~ a formula F'(I) of IIk_tQBF~ such 
that F'(I) is false iff OUTCOME(/*) = false for each complement move (I, I ' )  
from L 
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For each I E .fig we assume a distinct variable xi. Let X = {xiI I ~ _Tk}. Let W' 
be configurations of M that are accepting and have f log  n nonblank cells per work 
tape. For each I ~ W',  let g~ be the formula Xl • true. Thus, gl is true iffx~ = false. 
For each I ~ -Y~k-v let g~ be the formula (~x~) V F' (I). For each I E _~ and J E 
W' 13 ~k-~, let fi.~, = (true • ~x~) A (A1,~-drri, • "axl~) A gj, where I--s,k = I--sN 
( ~  X ~ ) .  Thus, (3X)f~,j is false iffthere exists a computation sequence I, . . . . .  Ij 
such that I~ = / , / j  = J, and OUTCOME(J) = true. 

Now for each I = J k  and J ~ W' 13 ~k-l, let x/J be a new distinct variable and 
let f~.j be derived from j~,j by substituting x/J, for each instance of variable Xr for 
each I '  ~ Jk.  Let x '  = {x~JI I ~ J k  and J ~ W' 13 ~ - l t .  For each I ~ Jk '  let 
F(I) = (3X ' )  Aj~w.u ~_, j~,J. Clearly F(I) is in ~kQBF~ and, furthermore, F(I) is 
false iff OUTCOME(I )  = true. Hence F(Io(o~)) is false iff M accepts ~0. 

We have thus shown that the invalidity problem for ~kQBF~ is complete in 
~kCSYMLOG. By Propositions 2.1 and 5.1, the truth problem for IIkQBF~ is 
complete in ~kCSYMLOG. [] 

5.3. k-CONNECTIVn'V. Given a graph G = (V, E) and vertices u, v ~ v, let k- 
PATHS(G, u, v) be the problem: Do there exist k paths from u to v that are 
mutually vertex disjoint? The problem 1-PATHS is commonly called the UGAP 
problem. 

THEOREM 5.3. UGAP is complete in NSYMLOG. 

PROOF [24]. Given an undirected graph G of n vertices with distinguished 
vertices u, v, we nondeterministically traverse a path in G from u and accept if the 
vertex v is reached. This can easily be done by a nondeterministic machine in space 
O(log n) to store the currently visited vertex. But this nondeterministic machine 
can be made symmetric since any edge can be traversed in both directions. 

On the other hand, suppose M is a symmetric, nondeterministic machine with 
logn space bound and input string w E ~ .  Let - 7  be the configurations of M, with 
space ___log n, let F-~ C _.~x _7 be the nondeterministic moves of M, and let W C 
3" be the accepting configurations. We construct an undirected graph with vertices 
V =  _.~ U {If} where I f ~  _.~, and edges E = {{L I'} I I~- , I ' l  u {{L IA I Ib- , I '  for 
some I '  ~ W}. Then Maccepts o~ iffthere is a path in (V, E) from I0(~) to Iy. [] 

By Theorems 2.1 and 5.3, 

COROLLARY 5.3. The complement of  the UGAP problem is complete in 
fl  , CSYMLOG. 

THEOREM 5.4. For each k >_ l, k-PATHS is complete in NSYMLOG. 

PROOF. By Menger's Theorem [4] for any graph G = (V, E) and vertices u, v 
V, k-PATHS(G, u, v) ~ (Vx, . . . . .  Xk-, ~ V -  {u, v})UGAP(G', u, v) where G'  is 
derived from G by deleting vertices x, . . . .  , Xk-, and all edges connected to these 
vertices. By Theorems 5.2 and 5.3, we can construct in deterministic log space a 
formula in II~CNF~ that is false iff k-PATHS(u, v). Thus, by Theorem 5.2, k- 
PATHS is complete in NSYMLOG. [] 

Let a graph G = (V, E) be k-connected if for all distinct vertices u, v ~ V, there 
exists k paths from u to v that are vertex disjoint. Matula [25] defines a k-block of 
G to be a maximal k-connected subgraph of G. 

(Note: To facilitate planarity testing, McLane [26] and Hopcroft and Tarjan [ 19] 
define "triconnected" components somewhat differently from 3-blocks. However, 
McLane's components are homeomorphic to the 3-blocks.) 
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By Menger's Theorem, any two k-blocks intersect at no more than k -  1 vertices. 
Thus, some k vertices suffice to uniquely determine any k-block of  (7. Let k- 
BLOCK(G, x, {v l , . . . ,  Vk}) be the problem: Is vertex x in the k-block of G determined 
by {vl . . . . .  Vk}? 

COROLLARY 5.4. k-BLOCK is complete in NSYMLOG. 

PROOF. By Menger's Theorem, 

k-BLOCK(G, x, {v, . . . .  , Vk}) ~ A k-PATHS(G, x, v,). 
l.<t<_k 

Again, we may apply Theorems 5.2 and 5.4 to show there is a formula in II ,QBF~ 
with false iffk-BLOCK(G, x, Iv1, . . . ,  Vk}). [] 

5.4. MINIMUM SPANNING FORESTS. Here we show the IIICSYMLOG contains 
the problem of recognizing an edge of a (unique) minimum spanning forest. 

Let G = (V, E) be an undirected graph with a mapping W: E ---, I~l ÷ labeling the 
edges with distinct positive integers. Consider the following well-known greedy 
algorithm for constructing a minimum weight spanning forest of  G: 

Input graph G = (V, E) and edge weighting W. 
(1) sort the edges E = {e~, ..., em} so that W(e,) < W(e,+l) for i = 1 . . . . .  m - 1. 
(2) SF "--. 
(3) f o r t = l t o m d o  

ifSFU {e,} contains no cycles, then SF,,- SFU [e,} 
Return ( V, SF). 

Note that the minimum spanning forest output by this algorithm is unique for a 
fixed W(even though, in general, there may exist many minimum spanning forests 
of a given graph). Let SPANNING-EDGE(G, W, e) be true if e E SF and false 
otherwise. 

THEOREM 5.5. SPANNING-EDGE is complete in IIICSYMLOG. 

PROOF. Let e = {u, v} be an edge of G --- (V, E) and let Ge -- (V, {e' ~ El 
W(e') < W(e)]. Then, SPANNING-EDGE(G, W, e) ~ ~UGAP(Ge, u, v). The result 
then follows from Corollary 5.3. [] 

This construction was also independently discovered by C. Savage. 

5.5. OTHER GRAPH RECOGNITION PROBLEMS CONTAINED IN II~CSYMLOG. 
Here we note that the recognition problems for many interesting and commonly 
found classes of graphs (including chordal graphs, comparability graphs, interval 
graphs, split graphs, and permutation graphs) are contained in IIICSYMLOG. Our 
proofs use known characterization lemmas. 

Let G = (V, E) be an undirected graph. Let its complement be G -- (V, {{u, v} 
El u, v E V}). We define here some graphs commonly found in the literature. Each 
has a characterization lemma, which immediately implies, by Corollary 5.3, its 
recognition problem is in IIICSYMLOG (by a deterministic log-space reduction to 
the complement of the UGAP problem). G is a chordal graph if every cycle C of 
length >3 contains a chord (an edge connecting two nonconsecutive vertices of C). 

LEMMA 5.2. G is chordal iff for every vertex v E V and cycle C of  length >3, i f  
C contains v, then C has a chord {x, y} such that both x and y are of  distance <_2 
from v. 

PROOF. Repeatedly apply the chordal graph definition. [] 

G is a comparability graph if its edges may be transitively directed. 
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LEMMA 5.3 [14]. G is a comparability graph iff for every cycle C of G, if 
{x, y} ~ E for every pair of vertices x, y of distance 2 in C, then C has an even 
number of edges. 

G is an interval graph if its vertices can be put into 1-1 correspondence with a 
set of intervals on the real line, such that two vertices are connected by an edge of 
G iff their corresponding intervals have nonempty intersection. 

LEMMA 5.4 [14]. G is an interval graph iff G is a chordal graph and G is a 
comparabdity graph. 

G is a spht graph if its vertex set V can be partitioned into sets Vi, V2 such that 
E(V~) = O and (V2, E(V2)) is a complete graph. 

LEMMA 5.5 [ l l ] .  G is a split graph iff G and G are chordal graphs. 

G = (V, E) is a permutation graph if V = {v~ . . . . .  vn} and there is a permutation 
of {1 . . . . .  n} such that {v,, vj} ~ E iff(i - j ) ( a - l ( i )  - a-l(j)) < O. 

LEMMA 5.6 [ 1 0 ] .  G is a permutation graph iffboth G and G are comparability 
graphs. 

By the above Lemmas and Corollary 5.3, 

THEOREMS 5.6-5.10. The recognition problem for each of the graph classes 
(chordal graphs, comparability graphs, interval graphs, split graphs, and permuta- 
tion graphs) are m II~CSYMLOG. 

G is bipartite if the vertex set V may be partitioned into disjoint sets V~, V2 such 
that E _  {{u, v]luE V~, vE  V2}. 

LEMMA 5.7. G is bipartite iff G has no cycle of odd length. 

By using this characterization lemma, Jones et al. [22] show the recognition 
problem for nonbipartite graphs is -<~og equivalent to the complement of UGAP. 
Thus, by Corollary 5.3, 

THEOREM 5.11. The bipartite graph recognition problem is complete in 
II I CS YMLOG. 

Also, Jones et al. [22] give restricted cases of the NP-complete problems CHRO- 
MATIC NUMBER, CLIQUE COVER, EXACT COVER, and HITTING SET and 
show that their restricted problems are -<~o~ equivalent to UGAP and thus complete 
in NSYMLOG. 

5.6. CONSTANT VALENCE PLANARITY TESTING IS IN II3CSYMLOG. 

• 5.6.1. Embedding Rotations Let G = (V, E) be an undirected graph with 
vertex set Vand undirected edge set E C_ {{u, v} Idistinct u, v ~ V}. Let D(E) = 
{(u, v) I {u, v} ~ E] U {(v, u)l {u, v} ~ El be the set obtained by directing edges of 
E. Following Edmonds [9] (also see [32]), we define an embedding onto an oriented 
surface purely combinatorially; let an embedding rotation be a set 0 = {0v Iv ~ V} 
where 0v is a cyclic ordering of the set of directed edges D~(E) = {(x, y) E D(E) 
Ix = v} of D(E) departing from vertex v. Intuitively, 0v gives the clockwise rotation 
of edges as they are embedded around vertex v, in a graph with a planar embedding. 

Let R(O) C_ D(E) x D(E) be the relation such that eTR(O)e2 iff directed edge el 
departs from the same vertex v that directed edge e2 departs from, and e2 appears 
immediately after el in 0~ (where el- is the reverse of edge e0. (See Figure I. Note 
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that e3 immediately follows e2, which immediately follows el in Figure 1, so 
e(R(O)e2 and e£R(O)e3, but not e?R(O)e3.) 

R(O) is easily shown to be partitioned into a set of cyclic permutations. Let c be 
the number of connected components of G. Let X(0) be the number of orbits of 
R(O). By Euler's formula, the embedding rotation 0 is planar if X(0) - I EI + 
I V I = 2c. Intuitively, if 0 is planar and c = 1, then the orbits of R(O) are in 1-1 
correspondence with the connected regions of the embedding, with the borders of 
the regions oriented counterclockwise. If 0 is planar and c --- 1, then c orbits of R 
will be associated with the exterior regions of the embedding. 

By Edmonds' [9] characterization, the graph G is planar iff it has a planar 
embedding rotation. To test if G is planar, we construct a formula Ha, which is 
true iff G is planar. (Previously, Ja'Ja' and Simon [21 ] gave a log-space construction 
of a 2CNF formula which is true if a triconnected graph G is planar, but may also 
be true if G is not planar.) Our construction makes no assumptions about the 
connectivity of G. However, we assume G has constant valence. 

5.6.2. The Basis Cycles. Let us impose an arbitrary, fixed numbering of the 
edges E from 1 . . . . .  I E I. We consider this numbering to be an edge weighting of 
the graph G = (V, E). The greedy algorithm of Section 5.4 constructs a unique 
minimum spanning forest (V, SFG). For each direct edge (u, v), where {u, v} E 
E - SFG, there is a unique directed simple cycle C(u,v) containing (u, v) and directed 
edges derived from SFG. We call C(u,v) a basis cycle Let Y be the set of all basis 
cycles. By applying Theorem 5.5, we have 

LEMMA 5.8. II~CSYMLOG contains the test: Is edge sequence C in ~?  

5.6.3. 7he Bridges of G. Let Cbe  a basis cycle in 5~ of graph G = (IT, E). Let 
a bridge of C be a maximal edge set B c_ E - {{u, v} I(u, v) ~ C} such that Vel, 
e2 ~ B and there is a path p in B containing both el and e2, but visiting vertices of 
C only at the endpoints ofp. Given C, we can construct in deterministic log space 
a graph (this graph is derived from G by substituting a distinct new vertex ve and 
edge {u, Vel for each edge e = {u, vt of  E such that a vertex v appears in C) whose 
connected components are in l - l  correspondence with the bridges of C. Thus, by 
Proposition 2.1 and Corollary 5.4, a symmetric complementing machine with 
logarithmic space and a single complement move on the first move can test whether 
B is a bridge of a given basis cycle; furthermore, by Lemma 5.8, this symmetric 
complementing machine can also enumerate all basis cycles in logarithmic space 
using a single further complement (yielding a total complement bound of 2). Thus 
we have 

LEMMA 5.9. The bridges of all the cycles of the bastc SS may be recognized in 
~2CSYML, OG. 
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5.6.4. Embedding Formulas. For each vertex v E V and each cyclic ordering 
0v of the set Dv(E) of directed edges departing from v, we have a distinct Boolean 
variable O~(0v). Note that since G has constant valence, there is only a constant 
number of such cyclic orderings. Let hi be the CNF@ formula consisting of the 
conjunction of subformulas Ov(0~) @ O~(0~') for all v ~ V and distinct 0~, 0' of  
D~(E). 

Also, for each undirected edge e ~ E and basis cycle C ~ SC not containing e, 
we have a Boolean variable OUT(C, e). (Intuitively, this variable will be true iff e 
is embedded into the exterior of the closed region of the sphere defined by C.) Let 
h2 be the CNF~ formula consisting of the conjunctions of subformulas O~(00 
-nOUT(C, {v, u31) for all C E ~ and (ul, v), (v, u2) E C, and {v, u3} ~ E, and 0~ 
orders (v, u3) between (v, u2) and (v, u0. 

Note that hi A h2 holds just when an embedding rotation 0 is induced with the 
following property: For each v ~ V and basis cycle C E _fC containing vertex v, if 
(ul, v), (v, u2) are directed edges of C and {v, u3} is any other edge containing v, 
then {v, u3} is embedded to the exterior of the region defined by C if 0~ cyclically 
orders (v, u3) between (v, u2) and (v, ul) (see Figure 2). 

By Proposition 2.2 and Lemma 5.8, both hi and hE can be constructed by a 
complementing symmetric machine with logarithmic space and complement 
bound I. Finally, let h3 be the formula consisting of the conjunction of subformulas 
OUT(C, el) • -nOUT(C, e2) for all C E _~, and el, e2 ~ E, and el, e2 are in the 
same bridge of C. 

Note that h3 holds just when for each bridge B of any cycle C E ~ either all 
edges of B are embedded interior to the region defined by C, or all edges of B are 
embedded exterior to the region defined by C. By Proposition 2.2 and Lemmas 
5.8 and 5.9, h3 may be constructed by a symmetric complementing machine with 
logarithmic space and complement bound 2. 

Let Ho be the formula hi A h2 A h3 with existential quantification on all the 
OUT and O variables. 

LEMMA 5.10. G is planar t f f  Hc  is true. 

PROOF. Suppose G is planar. Then by Edmond's characterization, G has some 
planar embedding orientation 0. We use 0 to define the truth values for the O~ and 
OUT variables. They clearly satisfy hi, h2, and h3. Thus, we can satisfy H~. 

On the other hand, suppose H~ is true for some variable assignment. Let 0 be 
the embedding rotation induced by the O~ variables. Let ~(0) be the number of 
orbits of R(O). Now we must show ~,(0) - IEI + I VI = 2, implying by Euler's 
formula that 0 is planar. Fix the spanning forest S F  = SF~. Suppose we delete an 
edge e ~ E - S F  from G, so that the resulting graph is G' = (V, E ' )  with E '  - 
E - {e}. We claim that if 0' is the resulting embedding rotation, then X(0) - 
IEI + I VI = ~,(0') - IE ' I  + IVI. Clearly IE ' I  = IEI = 1 so we must show 
X(O') = A(0)- 1. 

Let e = {u, vt be the undirected edge to be deleted from E - SF. Let 7rl, ~r2 be 
the orbits of R(O) containing directed edges d l =  (u, v), d2 = (v, u), respectively, so 
di- = d2 and d~ =dl.  We claim now that ~rl # ~r2. 

For each i E {l, 2}, let Cd, E 5S be the unique basis cycle that contains directed 
edge d,. If zr, is a cyclic permutation of Cd,, then Ca, and zr, do not contain the 
reverse edge dT, so 7rl # 7r2. 

Otherwise, for each i = 1, 2 let (x,, y,) be the first edge of zr, following d, such 
that (x,, y,) is not in Ca,. Let f, be the directed edge of 7r, immediately preceding 
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(x,, y,). By definition of orbits, (x,, y,) immediately follows f 7  in Ox,. Note also 
that f must be a directed edge in Ca,. Let g, be the directed edge of Ca, immediately 
following f .  Then (x,, y,) is cyclically ordered between f 7  and g~ in Ox,. Since h2 is 
satisfied, OUT(Ca: {x,, y,}) = false for i = l, 2. But since Ca2 is the reverse of 
directed cycle Cat, g~ appears just before f~- in Cat and so OUT(Ca,, {x2, y2}) = 
true. 

However, we claim OUT(Ca: {x, y}) = false for all {x, y} E E such that (x, y) is 
contained in ~r~, but not Cat. This has already been proved for x =  Xl and y = yr. 
For any subsequence ~r' of ~r~ contained on only a single bridge of Ca,, since h3 is 
satisfied, we have OUT(Ca: {x, y}) = OUT(Ca: {x', y'}) for all (x, y) and (x', y') 
in 7r'. Also, if (x, y)Tr"(x', y') is a subsequence of ~r~ where ~r" is a subsequence of 
Cat but (x, y) and (x', y') do not appear in Cat, then, since h2 is satisfied, we have 
OUT(Cdt, Ix, Y}) = OUT(Ca,, Ix', Y'}). 

If (x2, Y2) is in lrl, then we have just shown OUT(Ca: {x2, Y2}) -- false, a 
contradiction. Hence, (x2, Y2) is not in 7rl, but by assumption is in ~r2; so 7r~ # ~r2. 

Without loss of generality, let ~rl = d:r{ and ~rz = d : ~ ,  where neither Ir[ nor ~r~ 
contain dl or d2. Hence, when e is deleted from E - SF, the orbits ~r~ and 7r~ of 
R(O) are merged into a single new orbit ~rj'z~ of R(O'), and no other orbits are 
modified. 

Thus, ~(0') = X(0) - 1, and we have shown ~(0) - ]El + J V] remains invariant. 
We repeat this process (deleting edges not in SF) until we have only E '  = SF. Let 
c be the number of maximal trees in the spanning forest SF; c is also a number of 
connected components of SF. Then ~(0') = c, I SFI = n - c, and ] VI = n. Hence, 
our invariant is ~,(0) - IE] + I V[ = ~(0') - [SFJ # I vI = 2c, which implies by 
Euler's formula that the embedding orientation 0 is planar. Thus, by Edmonds 
characterization, G is planar. [] 

The formula Ha is constructed by a symmetric complementing machine with 
logarithmic space and complement bound 2. Furthermore, by Theorem 5.2, a 
single further complementation is required to test if HG is true. Thus by Lemma 
5.10. 

Tr~EO~EM 5.12. Plananty testing of constant valence graph is in II3CSYMLOG. 

6. Concluston 

It may be significant that the symmetric complementing machine introduced in 
this paper has applications to many combinatorial problems found in practice, 
such as spanning trees, k-connectivity, and planarity testing. In this case the 
theoretical study of a new machine type led us to the discovery of new techniques 
for practical combinatorial algorithm design. For example, applying our probabi- 
listic decision algorithm for symmetric games to our proof that constant valence 
planarity testing is in II3CSYMLOG yields a new probabilistic algorithm for 
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planarity testing; furthermore, this algorithm has a quite different structure than 
any of the previously known deterministic planarity testing algorithms such as that 
of Hopcroft and Tarjan [19]. This indicates to us that the field of combinatorial 
algorithms, as well as the field of abstract computational complexity, would benefit 
by further study of unusual machine types and their decision algorithms. 

Note. A. Borodin, J. Hopcroft, M. Paterson, L. Ruzzo, and M. Tompa also 
independently discovered the use of random walks to solve graph connectivity in 
logarithmic parallel time. 

In a preliminary draft of this paper, we defined a restricted type of alternating 
machine whose nonalternation next moves are a symmetric relation. Dexter Kozen 
pointed out to us that such symmetric alternation machines are too restricted for 
our intended applications (in particular, they do not satisfy a complementation 
property such as Proposition 2.1). 

The symmetric complementing machine described in this paper satisfies the 
required complementation property of Proposition 2.1 and also has efficient 
decision algorithms if the machine is both space and complementation bounded. 
Michael Sipser has also suggested an equivalent machine; this is a symmetric 
alternating machine M (with symmetric nonalternation moves), but with a modi- 
fied definition of acceptance: 

M accepts (reJects, respectively) from an existential (universal, respectively) 
configuration I if there exists a finite computation sequence I = It . . . . .  /~-t,/s, 
where Iz . . . .  ,/s-* are existential (universal, respectively) and I contains an accepting 
(rejecting, respectively) state or /s is universal (existential, respectively) and M 
accepts (rejects, respectively) f rom/s.  Also, M rejects (accepts, respectively) from 
existential (universal, respectively) configuration I iff M does not accept (does not 
reject) from I. Thus, Sipser's definitions for acceptance and rejection of these 
machines are duals. This is the same as the standard definition of acceptance of an 
alternating machine from an existential configuration, but differs from the standard 
definition of acceptance from a universal configuration so as to allow for comple- 
mentations of languages. 
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