
Performance Evaluation of Programs for
Certain Bessel Functions
W. J. CODY and L. STOLTZ
Argonne National Laboratory

This paper presents methods for performance evaluation of the K Bessel functions. Accuracy estimates
are based on comparisons involving the multiplication theorem. Some ideas for checking robustness
are also given. The techniques used here are easily extended to the Y Bessel functions and, with a
little more effort, to the Z and J functions. Details on a specific implementation for testing the K
Bessel functions are included.

Categories and Subject Descriptors: G.l.O [Numerical Analysis]: General--numerical algorithms;
G.4 [Mathematics of Computing]: Mathematical Software-certification and testing

General Terms: Algorithms, Performance, Reliability

Additional Key Words and Phrases: Accuracy, Bessel functions, performance evaluation, robustness

1. INTRODUCTION

We believe that testing of a function program should be akin to a physical
examination. That is, the test procedures should be thorough, including assess-
ments of efficiency, accuracy, and robustness, and should seek to discover both
strengths and weaknesses of programs under test. Test programs should be
general enough to be used on any program for the given function, should be
written with the same care and attention to detail that goes into other numerical
software, and should be highly transportable.

Not all of these goals are yet attainable. We still know of no way to determine
efficiency in a portable way; efficiency implies timing the execution of the
program, hence an intimate system-dependent interaction with the operating
system. There are portable ways to obtain information about accuracy and
robustness, however.

In the next section we discuss an accuracy-testing methodology that relies on
carefully selected identities, while Section 3 presents some ideas on assessing
robustness. Although the discussions concentrate on the particular case of test
programs for the real function K(x), the methodology is widely applicable.

This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under contract W-31-109-Eng-38.
Authors’ current address: Mathematics and Computer Science Division, Argonne National Labora-
tory, Argonne, IL 60439-4801.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1989 ACM 0098-3500/89/0300-0041 $01.50

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989, Pages 41-48.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F62038.62039&domain=pdf&date_stamp=1989-03-01

42 - W. J. Cody and L. Stoltz

Details of a specific implementation are given in Section 4. Section 5 demon-
strates the degree to which we have achieved our goals of transportability and
generality in the tests, by presenting test results obtained on several different
computing systems for several different function programs. Generalizations of
the test procedures for use on other Bessel functions are outlined in Section 6.

2. ACCURACY TESTING

Almost any testing procedure, even comparison against published tables, will
quickly pick out function programs that are accurate to only a few digits. More
sophisticated methods are necessary to demonstrate accuracy approaching ma-
chine precision. The best-known technique for sensitive accuracy testing is a
controlled comparison against higher-precision computations on the host ma-
chine. This technique is not transportable, however, and cannot be conveniently
used when the function being tested already uses the maximum precision on the
machine.

A third possibility lies somewhere between these two extremes in sensitivity-
the careful evaluation of identities. This method was exploited successfully in
the ELEFUNT suite of test programs for elementary functions [5]. While
accuracy statistics generated in this approach are not as discriminating as those
generated in tests against higher-precision computations, they have proven
useful, and they are relatively consistent across machines.

Of course, testing must be based on an identity that is not likely to be used in
a program computing the function. The best identities involve no function other
than the one being tested, although it is not always possible to find such an
identity. We base our tests for the K Bessel functions on the multiplication
theorem (Equation 9.6.51 in [l])

m
K,(y) = A” C Aiz(x)Ku+k(~) = A”

k=O
Ku(x) + i Ak(X)Ku+k(X)

k=l

where

A
k

(x) = (1 - X”)%7/2)k

k! ’

y = Xx, 0 5 v % 1, and X < 1. This identity compares a single function value
against a sum constructed from a sequence of function values at a slightly
different argument. We note that K,(y) > K,(x) (because X < 1) and that
0 < Kv+kb) < Ku+k+l (x) for all k. Thus all terms in the summation are positive,
K,(y) is essentially K,(x) plus a small correction term, and we expect the
summation to be numerically stable.

Let S,(X) denote the partial sum of the series through the K,+,(x) term, and
assume that n is large enough that S,(x) theoretically represents the sum to
within machine precision. Then we estimate the relative error in K,(y) with the
expression

E = K(Y) - A’S,(x)
K,(Ax) *

ACM Transactions on Mathematical Software, Vol. 15. No. 1, March 1989.

Performance Evaluation of Programs for Certain Bessel Functions 43

Let 6 be the relative error in the computation of K,(y), and Ah that in K+!+(X).
Then,

E = K(y)0 + 6) - A” CSo Ak(~)Ku+d~)(l + A,)

K(Y)(l + 6)

Simple algebra, ignoring error terms higher than the first order, gives finally,

E=6- &$ i Ak(r)K,+k(~)A/z.
Y k 0

Because the series is convergent, the Ak for larger k have little effect, and the
error associated with the first few terms of the series dominates.

Round-off error in the evaluation of the series is easily controlled. Let ah(~) =
(1 - X2)(x/2)/k, and evaluate S,(X) with Horner’s nested multiplication scheme:

S,(x) = K”(X) + a1(x)[K+,(x) + a2(x)K+2(x) + *** + Glb)K+n(x)l **.I.
This process is numerically stable for a wide range of x provided some care is
exercised in selecting the control variable X. If 1 - X2 < f, then C&(r) C l/k for
x: < 16. Further, given a random machine argument X, it can be perturbed slightly
so that X, y, and 1 - X2 are all exact machine numbers (see Section 4). Because
the series converges so rapidly, only the error in al(x) is potentially visible in the
final sum, and that error has been rendered small.

This analysis suggests that a reasonably sensitive error test can be built with
the multiplication theorem. In Section 5 we show how to verify this expectation
experimentally.

There remains the task of generating the necessary sequence of Bessel func-
tions. Because the recurrence

K+j+l(X) = K+j-l(X) +
2b + j)
~ Kv+j(n) 1c

is known to be numerically stable in the forward direction, the required sequence
can be constructed accurately from the first two elements provided overflow does
not interfere. (Prevention of overflow is also discussed in Section 4.) Testing the
accuracy of a routine for either Ko(x) or K1 (n) thus requires that both routines
be used. When testing the accuracy of a routine that generates a sequence of
functions, that routine could be used to generate the entire sequence. However
we believe that only the first two elements of the sequence should be obtained
from that routine, and that the rest should be generated explicitly in the test
program.

3. ASSESSING ROBUSTNESS

Robustness refers to the ability of a program to recover from misuse. Robust
programs have built-in recovery from illegal arguments and are written to avoid
intermediate underflow or overflow. While it is probably impossible to test all
misuses of a Bessel function program, our test programs check the most obvious
ones in a series of calls with illegal arguments, and arguments at or beyond
thresholds where Bessel programs are expected to malfunction.

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

44 l W. J. Cody and L. Stoltz

Tests are ordered in estimated severity of the expected error. The first set of
tests uses invalid arguments, such as negative values for x and v. The expectation
is that the Bessel program will diagnose the problem and warn the user without
aborting execution. The second set of tests uses extreme parameters, such as the
smallest positive floating-point number and, in the case where the function
program returns e%,(X), the largest floating-point number, XMAX. Finally,
K,(x) is tested near its underflow threshold, x,,,~~, which must be determined by
the test program. Asymptotically, K,(X) has the form

K,(x) - em’
+ (4u2 - 1)(4v2 - 9) +

2!(83~)~

The underflow threshold is the solution to the equation K,(x) = XMIN, where
XMIN is the smallest positive floating-point number. The test program deter-
mines x,~, by using Newton iteration on the equation

e --x minexp
P ,

where /3 is the radix for the floating-point representation and minexp is the
smallest representable power of /3. This equation is obtained from the first three
terms of the asymptotic form with v = 0, which, because of the monotonic
behavior of K,(x) for fixed x, is the worst case.

4. IMPLEMENTATION DETAILS

The ideal test program reports only error generated by the function software
under test operating on exact arguments. That error is easily contaminated by
rounding error generated in the testing process, and by errors attributed to
inexact arguments. Careful implementation of the test algorithms minimizes the
first contamination and eliminates the source of the second completely.

The key is to generate values of X, 1 - X2, X, and y that are all exact machine
numbers. This approach permits accurate generation of the ok needed for the
Horner scheme and guarantees that the Bessel function programs use exact
arguments. Everything hinges on the choice of X.

Recall that we want X < 1 and 1 - X2 < i. If X = (2” - 1)/2”, then 1 - X2 =
(2 n+1 - 1)/22", and only n bits are needed to represent X and n + 1 bits to
represent 1 - X2 exactly on a binary machine. All of the conditions on X are
satisfied for n > 3.

Given y, the corresponding x must be generated exactly. This is done with a
process called argument purification, in which trial values of the desired argu-
ments are generated and then perturbed slightly so the desired mathematical
relations hold. In this instance, starting with a random value of y, the correspond-
ing trial value of x is perturbed sufficiently to introduce n low-order zero bits
(just enough to guarantee that subsequent multiplication by X will be exact), and
then y is reconstructed. Clearly, a small value of n in the definition of X
will minimize the perturbation on x. The following sequence of FORTRAN
ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

Performance Evaluation of Programs for Certain Bessel Functions 45

statements purifies the arguments when n = 4:

X = Y/XLAM
W = SIXTEN * X

Tl= W+X
X=Tl-W
Y=X*XLAM

where XLAM = 15.0/16.0 and SIXTEN = 16.0. The addition of 16x to x, and its
subsequent subtraction off again, introduces the desired four low-order zero bits,
provided the intermediate results are not retained to more than working precision.
The sequence of statements given above is intended to fool optimizing compilers
on machines with over-length registers into storing (and using) these interme-
diate results at working precision. Even so, it may be necessary to control
optimization through compiler directives on some machines.

With these values for h and x, it is now possible to generate the ak,
k = 1, n, and the partial sum S,(x) accurately. Because x is exact with
trailing zero bits, x/2 will be exact on most binary machines. Therefore, ak =
(1 - X2)(x/2)/k will be correct to within one or two rounding errors. The
Horner scheme evaluates the summation starting with the smallest terms.
Because a,, < x/(16n), rounding errors in the evaluation of a,,, K,+,(x), and their
product are lost in the subsequent addition to Ku+,-l(x). For x small, rounding
errors in each step of the Horner scheme are lost in this way. Even for x = 20,
only rounding errors from the final few steps will appear in the sum.

The necessary sequence of Bessel functions is generated from the recurrence
relation, starting with the first two elements. The problem is to generate sufficient
function values to ensure convergence of the sum and yet to avoid overflow in
the recurrence. There are sufficient terms for convergence when Ak(x)KV+k(x) <
Sl(x)t/lOO, where e is the smallest number such that 1 + t > 1. Avoidance of
overflow is a little trickier. Overflow is most likely to occur on machines in which
the total exponent range is less than five times the length of the significand,
and then when y < l/2. In this situation the recurrence is scaled by t at the
start, and S,(x) is unscaled at the end. As an added precaution, comparison
of (2/x)(v +j)K,+j(x) against the largest machine-representable number, XMAX,
is used to check for overflow in the next recurrence step. To avoid overflow in
the comparison itself, the test becomes (2/x)(v +j) > XMAX/K,+j(x). If overflow
is predicted, the recurrence is abandoned and computation skips to the next
argument.

The test program for K,(x) uses X = 15/16, u random in [0, 11, and x chosen
randomly from three intervals: [O.O, 1.01, [l.O, 10.01, and [lO.O, 20.01. The first
interval isolates the troublesome region near the singularity at, the origin, and is
the region where most of the cases will be rejected because of unavoidable
overflow in the recurrence. The second interval is a region where the test program
and the Bessel function programs are expected to perform well. The upper limit
of the third interval is dictated by the earlier error analysis. Each interval is
divided into 2,000 subintervals, and a test argument y is randomly selected from
each, thus ensuring a uniform distribution of test arguments.

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

46 l W. J. Cody and L. Stoltz

The statistics reported for each interval are the maximum relative error (MRE)
and root mean square error (RMS) in K”(Y). These statistics are expressed in
terms of the estimated loss of base-p digits in the floating-point significand, a
measure that is independent of the machine wordlength. For example, the
reported value of MRE is

MRE = p - ln(max] E])/ln(/3),

where p is the number of significant base-p digits in the sign&and.
Machine-dependent parameters, such as XMAX, & and minexp, are determined

dynamically with the subroutine MACHAR [4].

5. TEST RESULTS

Our test program is designed to report error generated in the function program
being tested, but some error is inherent in the testing process. To measure this,
we must test the testing procedure itself. This calibration process, or benchmark,
is accomplished by running the test program on an ideal function program, a
single-precision program that does all computations in double precision and
returns the best possible single-precision result. The calibration results then
approximate the error introduced by the testing program.

Table I lists results for accuracy tests run on a VAX 11/‘780 under 4.2 BSD
UNIX’, a SUN 3/60 running SUN UNIX 4.2, an Alliant FX/8 running Concen-
trix 4.0.0, and an IBM XT using the Microsoft Fortran 4.01 compiler. The VAX
tests were all run with locally developed replacements for some of the double-
precision elementary functions.

Not many programs are available for K,(x). In addition to the calibration runs,
tests were performed on programs from the SPECFUN package [3], on single-
precision programs from FNLIB (obtained from NETLIB [6]), and on programs
from the IMSL SFUN library [7]. The SPECFUN program, RKBESL, is a
heavily revised portable version of Campbell’s IBM program RBESK [2]. The
revisions include the addition on nonscaled functions, more accurate approxi-
mations, parameterization of machine dependencies, and the elimination of
underflow/overflow problems. The IMSL library was only available to us on the
VAX. However we believe that many of the FNLIB routines are early versions
of SFUN programs. Note that the VAX results for the FNLIB program for K,(x)
are identical to those for the IMSL SFUN program. Also note the uniformity of
the calibration results across machine lines, and the general agreement of the
results for a particular program for different machines.

6. GENERALIZATIONS FOR OTHER BESSEL FUNCTIONS

The procedures we have described in the context of testing programs for the
K,(x) Bessel function can be extended for use on other Bessel functions. When
stand-alone programs exist for K,(x) and K, (x), the modifications are minimal.
These two programs must be considered together (to obtain the necessary starting
values for the recurrence), and the details of the test program must be modified

’ UNIX is a trademark of AT&T Bell Laboratories

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989

Performance Evaluation of Programs for Certain Bessel Functions 47

Code

Table I. Test Results for K,(x), 0 5 v 5 1

Test intervals

(0.0, 1.0) (1.0, 10.0) (10.0, 20.0)

MRE RMS MRE RMS MRE RMS

VAX 11/780
Calibration
SPECFUN (S.P.)
SPECFUN (D.P., D-Format)
FNLIB (S.P.)
SFUN (S.P.)
SFUN (D.P., D-Format)

SUN 3/60
Calibration
SPECFUN (S.P.)
SPECFUN (D.P.)
FNLIB (S.P.)

Alliant FX/8
Calibration
SPECFUN (S.P.)
SPECFUN (D.P.)
FNLIB (S.P.)

IBM XT (MS 4.01)
Calibration
SPECFUN (S.P.)
SPECFUN (D.P.)
FNLIB (S.P.)

1.86 0.00 1.56 0.00 2.05 0.23
3.54 0.90 2.56 0.79 2.67 0.86
4.67 1.13 2.65 0.94 3.05 1.07
6.20 2.05 5.70 2.00 3.18 1.27
6.20 2.05 5.70 2.00 3.18 1.27
5.13 1.88 5.30 2.41 3.85 2.08

1.61 0.00 1.81 0.00 1.99 0.15
3.27 0.68 2.06 0.39 2.16 0.46
3.93 0.84 2.04 0.32 2.11 0.45
5.36 1.70 4.89 1.43 2.63 0.90

1.75 0.00 1.88 0.00 2.00 0.28
3.28 0.87 2.67 0.86 2.58 0.90
3.60 0.96 2.76 0.80 2.64 0.88
5.79 1.99 4.75 1.84 3.14 1.28

1.04 0.00 1.31 0.00 1.95 0.08
3.27 0.66 1.97 0.30 2.10 0.42
4.03 0.87 1.97 0.26 2.06 0.42
5.36 1.70 4.89 1.42 2.64 0.88

slightly when testing K,(X) to start the summation with the second term in the
sequence obtained from the recurrence. Otherwise the test programs are similar
to that for K,(x).

Extension of the procedures for use with the Y family of Bessel functions is
more difficult. The main complication is that Y,(z) is ultimately oscillatory, and
the summation often involves functions that are both positive and negative.
Furthermore when hx: is close to a zero of the function, the summation loses
accuracy through subtraction error. All of this complicates the error analysis.
Even so, with extra care in the selection of intervals and in the tests for
convergence of the summation, it is possible to adapt our test procedures for the
Y functions. Test programs have already been produced for the special cases
YO(n) and YI(x), where the two programs are considered together. (This work
was done with the assistance of G. Zazi, a Faculty Research Participant from
Chicago State University.) We intend to write a test for general Y”(x).

The multiplication theorem can also be used to test programs for the I and J
families of functions. The main additional complication here is that backward
recurrence must be used to generate the function values for the summation, but
the techniques for doing this are well known. We expect to produce a set of test
programs for these functions analogous to those discussed for the K and Y
functions.

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

48 - W. J. Cody and L. Stoltz

REFERENCES

1. ABRAMOWITZ, M., AND STEGUN, I. A. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series
Vol. 55, U. S. Government Printing Office, Washington, D.C., 1964.

2. CAMPBELL, J. B. A FORTRAN IV subroutine for the modified bessel functions of the third
kind of real order and real argument. Report NRC/ERB-925, National Research Council, Canada,
1980.

3. CODY, W. J. SPECFUN-a portable special function package. In New Computing Enuiron-
ments: Microcomputers in Large-Scale Scientific Computing. A. Wouk, ed. SIAM, Philadelphia,
1987, pp. 1-12.

4. CODY, W. J. Algorithm 665: MACHAR: A subroutine to dynamically determine machine
parameters. ACM Trans. Math. Softw. 14, 4 (Dec. 1988), 303-311.

5. CODY, W. J., AND WAITE, W. Software Manual for the Elementary Functions. Prentice-Hall,
Englewood Cliffs, N.J., 1980.

6. DONGARRA, J. J., AND DU CROZ, J. Distribution of mathematical software via electronic mail.
Tech. Rep. MCS-TM-48, Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, Ill., 1985.

7. SFUNILIBRARY User’s Manual. IMSL, Inc., Houston, Tex., 1987

Received April 1988; revised July 1988; accepted September 1988

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

