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This paper presents methods for performance evaluation of the K Bessel functions. Accuracy estimates 
are based on comparisons involving the multiplication theorem. Some ideas for checking robustness 
are also given. The techniques used here are easily extended to the Y Bessel functions and, with a 
little more effort, to the Z and J functions. Details on a specific implementation for testing the K 
Bessel functions are included. 
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1. INTRODUCTION 

We believe that testing of a function program should be akin to a physical 
examination. That is, the test procedures should be thorough, including assess- 
ments of efficiency, accuracy, and robustness, and should seek to discover both 
strengths and weaknesses of programs under test. Test programs should be 
general enough to be used on any program for the given function, should be 
written with the same care and attention to detail that goes into other numerical 
software, and should be highly transportable. 

Not all of these goals are yet attainable. We still know of no way to determine 
efficiency in a portable way; efficiency implies timing the execution of the 
program, hence an intimate system-dependent interaction with the operating 
system. There are portable ways to obtain information about accuracy and 
robustness, however. 

In the next section we discuss an accuracy-testing methodology that relies on 
carefully selected identities, while Section 3 presents some ideas on assessing 
robustness. Although the discussions concentrate on the particular case of test 
programs for the real function K(x), the methodology is widely applicable. 
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Details of a specific implementation are given in Section 4. Section 5 demon- 
strates the degree to which we have achieved our goals of transportability and 
generality in the tests, by presenting test results obtained on several different 
computing systems for several different function programs. Generalizations of 
the test procedures for use on other Bessel functions are outlined in Section 6. 

2. ACCURACY TESTING 

Almost any testing procedure, even comparison against published tables, will 
quickly pick out function programs that are accurate to only a few digits. More 
sophisticated methods are necessary to demonstrate accuracy approaching ma- 
chine precision. The best-known technique for sensitive accuracy testing is a 
controlled comparison against higher-precision computations on the host ma- 
chine. This technique is not transportable, however, and cannot be conveniently 
used when the function being tested already uses the maximum precision on the 
machine. 

A third possibility lies somewhere between these two extremes in sensitivity- 
the careful evaluation of identities. This method was exploited successfully in 
the ELEFUNT suite of test programs for elementary functions [5]. While 
accuracy statistics generated in this approach are not as discriminating as those 
generated in tests against higher-precision computations, they have proven 
useful, and they are relatively consistent across machines. 

Of course, testing must be based on an identity that is not likely to be used in 
a program computing the function. The best identities involve no function other 
than the one being tested, although it is not always possible to find such an 
identity. We base our tests for the K Bessel functions on the multiplication 
theorem (Equation 9.6.51 in [l]) 

m 
K,(y) = A” C Aiz(x)Ku+k(~) = A” 

k=O 
Ku(x) + i Ak(X)Ku+k(X) 

k=l 

where 

A 
k 

(x) = (1 - X”)%7/2)k 

k! ’ 

y = Xx, 0 5 v % 1, and X < 1. This identity compares a single function value 
against a sum constructed from a sequence of function values at a slightly 
different argument. We note that K,(y) > K,(x) (because X < 1) and that 
0 < Kv+kb) < Ku+k+l (x) for all k. Thus all terms in the summation are positive, 
K,(y) is essentially K,(x) plus a small correction term, and we expect the 
summation to be numerically stable. 

Let S,(X) denote the partial sum of the series through the K,+,(x) term, and 
assume that n is large enough that S,(x) theoretically represents the sum to 
within machine precision. Then we estimate the relative error in K,(y) with the 
expression 

E = K(Y) - A’S,(x) 
K,(Ax) * 
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Let 6 be the relative error in the computation of K,(y), and Ah that in K+!+(X). 
Then, 

E = K(y)0 + 6) - A” CSo Ak(~)Ku+d~)(l + A,) 

K(Y)(l + 6) 

Simple algebra, ignoring error terms higher than the first order, gives finally, 

E=6- &$ i Ak(r)K,+k(~)A/z. 
Y k 0 

Because the series is convergent, the Ak for larger k have little effect, and the 
error associated with the first few terms of the series dominates. 

Round-off error in the evaluation of the series is easily controlled. Let ah(~) = 
(1 - X2)(x/2)/k, and evaluate S,(X) with Horner’s nested multiplication scheme: 

S,(x) = K”(X) + a1(x)[K+,(x) + a2(x)K+2(x) + *** + Glb)K+n(x)l **.I. 
This process is numerically stable for a wide range of x provided some care is 
exercised in selecting the control variable X. If 1 - X2 < f, then C&(r) C l/k for 
x: < 16. Further, given a random machine argument X, it can be perturbed slightly 
so that X, y, and 1 - X2 are all exact machine numbers (see Section 4). Because 
the series converges so rapidly, only the error in al(x) is potentially visible in the 
final sum, and that error has been rendered small. 

This analysis suggests that a reasonably sensitive error test can be built with 
the multiplication theorem. In Section 5 we show how to verify this expectation 
experimentally. 

There remains the task of generating the necessary sequence of Bessel func- 
tions. Because the recurrence 

K+j+l(X) = K+j-l(X) + 
2b + j) 
~ Kv+j(n) 1c 

is known to be numerically stable in the forward direction, the required sequence 
can be constructed accurately from the first two elements provided overflow does 
not interfere. (Prevention of overflow is also discussed in Section 4.) Testing the 
accuracy of a routine for either Ko(x) or K1 (n) thus requires that both routines 
be used. When testing the accuracy of a routine that generates a sequence of 
functions, that routine could be used to generate the entire sequence. However 
we believe that only the first two elements of the sequence should be obtained 
from that routine, and that the rest should be generated explicitly in the test 
program. 

3. ASSESSING ROBUSTNESS 

Robustness refers to the ability of a program to recover from misuse. Robust 
programs have built-in recovery from illegal arguments and are written to avoid 
intermediate underflow or overflow. While it is probably impossible to test all 
misuses of a Bessel function program, our test programs check the most obvious 
ones in a series of calls with illegal arguments, and arguments at or beyond 
thresholds where Bessel programs are expected to malfunction. 
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Tests are ordered in estimated severity of the expected error. The first set of 
tests uses invalid arguments, such as negative values for x and v. The expectation 
is that the Bessel program will diagnose the problem and warn the user without 
aborting execution. The second set of tests uses extreme parameters, such as the 
smallest positive floating-point number and, in the case where the function 
program returns e%,(X), the largest floating-point number, XMAX. Finally, 
K,(x) is tested near its underflow threshold, x,,,~~, which must be determined by 
the test program. Asymptotically, K,(X) has the form 

K,(x) - em’ 
+ (4u2 - 1)(4v2 - 9) + 

2!(83~)~ 

The underflow threshold is the solution to the equation K,(x) = XMIN, where 
XMIN is the smallest positive floating-point number. The test program deter- 
mines x,~, by using Newton iteration on the equation 

e --x minexp 
P , 

where /3 is the radix for the floating-point representation and minexp is the 
smallest representable power of /3. This equation is obtained from the first three 
terms of the asymptotic form with v = 0, which, because of the monotonic 
behavior of K,(x) for fixed x, is the worst case. 

4. IMPLEMENTATION DETAILS 

The ideal test program reports only error generated by the function software 
under test operating on exact arguments. That error is easily contaminated by 
rounding error generated in the testing process, and by errors attributed to 
inexact arguments. Careful implementation of the test algorithms minimizes the 
first contamination and eliminates the source of the second completely. 

The key is to generate values of X, 1 - X2, X, and y that are all exact machine 
numbers. This approach permits accurate generation of the ok needed for the 
Horner scheme and guarantees that the Bessel function programs use exact 
arguments. Everything hinges on the choice of X. 

Recall that we want X < 1 and 1 - X2 < i. If X = (2” - 1)/2”, then 1 - X2 = 
(2 n+1 - 1)/22", and only n bits are needed to represent X and n + 1 bits to 
represent 1 - X2 exactly on a binary machine. All of the conditions on X are 
satisfied for n > 3. 

Given y, the corresponding x must be generated exactly. This is done with a 
process called argument purification, in which trial values of the desired argu- 
ments are generated and then perturbed slightly so the desired mathematical 
relations hold. In this instance, starting with a random value of y, the correspond- 
ing trial value of x is perturbed sufficiently to introduce n low-order zero bits 
(just enough to guarantee that subsequent multiplication by X will be exact), and 
then y is reconstructed. Clearly, a small value of n in the definition of X 
will minimize the perturbation on x. The following sequence of FORTRAN 
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statements purifies the arguments when n = 4: 

X = Y/XLAM 
W = SIXTEN * X 

Tl= W+X 
X=Tl-W 
Y=X*XLAM 

where XLAM = 15.0/16.0 and SIXTEN = 16.0. The addition of 16x to x, and its 
subsequent subtraction off again, introduces the desired four low-order zero bits, 
provided the intermediate results are not retained to more than working precision. 
The sequence of statements given above is intended to fool optimizing compilers 
on machines with over-length registers into storing (and using) these interme- 
diate results at working precision. Even so, it may be necessary to control 
optimization through compiler directives on some machines. 

With these values for h and x, it is now possible to generate the ak, 
k = 1, . . . . n, and the partial sum S,(x) accurately. Because x is exact with 
trailing zero bits, x/2 will be exact on most binary machines. Therefore, ak = 
(1 - X2)(x/2)/k will be correct to within one or two rounding errors. The 
Horner scheme evaluates the summation starting with the smallest terms. 
Because a,, < x/( 16n), rounding errors in the evaluation of a,,, K,+,(x), and their 
product are lost in the subsequent addition to Ku+,-l(x). For x small, rounding 
errors in each step of the Horner scheme are lost in this way. Even for x = 20, 
only rounding errors from the final few steps will appear in the sum. 

The necessary sequence of Bessel functions is generated from the recurrence 
relation, starting with the first two elements. The problem is to generate sufficient 
function values to ensure convergence of the sum and yet to avoid overflow in 
the recurrence. There are sufficient terms for convergence when Ak(x)KV+k(x) < 
Sl(x)t/lOO, where e is the smallest number such that 1 + t > 1. Avoidance of 
overflow is a little trickier. Overflow is most likely to occur on machines in which 
the total exponent range is less than five times the length of the significand, 
and then when y < l/2. In this situation the recurrence is scaled by t at the 
start, and S,(x) is unscaled at the end. As an added precaution, comparison 
of (2/x)(v +j)K,+j(x) against the largest machine-representable number, XMAX, 
is used to check for overflow in the next recurrence step. To avoid overflow in 
the comparison itself, the test becomes (2/x)(v +j) > XMAX/K,+j(x). If overflow 
is predicted, the recurrence is abandoned and computation skips to the next 
argument. 

The test program for K,(x) uses X = 15/16, u random in [0, 11, and x chosen 
randomly from three intervals: [O.O, 1.01, [l.O, 10.01, and [lO.O, 20.01. The first 
interval isolates the troublesome region near the singularity at, the origin, and is 
the region where most of the cases will be rejected because of unavoidable 
overflow in the recurrence. The second interval is a region where the test program 
and the Bessel function programs are expected to perform well. The upper limit 
of the third interval is dictated by the earlier error analysis. Each interval is 
divided into 2,000 subintervals, and a test argument y is randomly selected from 
each, thus ensuring a uniform distribution of test arguments. 
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The statistics reported for each interval are the maximum relative error (MRE) 
and root mean square error (RMS) in K”(Y). These statistics are expressed in 
terms of the estimated loss of base-p digits in the floating-point significand, a 
measure that is independent of the machine wordlength. For example, the 
reported value of MRE is 

MRE = p - ln(max ] E ])/ln(/3), 

where p is the number of significant base-p digits in the sign&and. 
Machine-dependent parameters, such as XMAX, & and minexp, are determined 

dynamically with the subroutine MACHAR [4]. 

5. TEST RESULTS 

Our test program is designed to report error generated in the function program 
being tested, but some error is inherent in the testing process. To measure this, 
we must test the testing procedure itself. This calibration process, or benchmark, 
is accomplished by running the test program on an ideal function program, a 
single-precision program that does all computations in double precision and 
returns the best possible single-precision result. The calibration results then 
approximate the error introduced by the testing program. 

Table I lists results for accuracy tests run on a VAX 11/‘780 under 4.2 BSD 
UNIX’, a SUN 3/60 running SUN UNIX 4.2, an Alliant FX/8 running Concen- 
trix 4.0.0, and an IBM XT using the Microsoft Fortran 4.01 compiler. The VAX 
tests were all run with locally developed replacements for some of the double- 
precision elementary functions. 

Not many programs are available for K,(x). In addition to the calibration runs, 
tests were performed on programs from the SPECFUN package [3], on single- 
precision programs from FNLIB (obtained from NETLIB [6]), and on programs 
from the IMSL SFUN library [7]. The SPECFUN program, RKBESL, is a 
heavily revised portable version of Campbell’s IBM program RBESK [2]. The 
revisions include the addition on nonscaled functions, more accurate approxi- 
mations, parameterization of machine dependencies, and the elimination of 
underflow/overflow problems. The IMSL library was only available to us on the 
VAX. However we believe that many of the FNLIB routines are early versions 
of SFUN programs. Note that the VAX results for the FNLIB program for K,(x) 
are identical to those for the IMSL SFUN program. Also note the uniformity of 
the calibration results across machine lines, and the general agreement of the 
results for a particular program for different machines. 

6. GENERALIZATIONS FOR OTHER BESSEL FUNCTIONS 

The procedures we have described in the context of testing programs for the 
K,(x) Bessel function can be extended for use on other Bessel functions. When 
stand-alone programs exist for K,(x) and K, (x), the modifications are minimal. 
These two programs must be considered together (to obtain the necessary starting 
values for the recurrence), and the details of the test program must be modified 

’ UNIX is a trademark of AT&T Bell Laboratories 
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Code 

Table I. Test Results for K,(x), 0 5 v 5 1 

Test intervals 

(0.0, 1.0) (1.0, 10.0) (10.0, 20.0) 

MRE RMS MRE RMS MRE RMS 

VAX 11/780 
Calibration 
SPECFUN (S.P.) 
SPECFUN (D.P., D-Format) 
FNLIB (S.P.) 
SFUN (S.P.) 
SFUN (D.P., D-Format) 

SUN 3/60 
Calibration 
SPECFUN (S.P.) 
SPECFUN (D.P.) 
FNLIB (S.P.) 

Alliant FX/8 
Calibration 
SPECFUN (S.P.) 
SPECFUN (D.P.) 
FNLIB (S.P.) 

IBM XT (MS 4.01) 
Calibration 
SPECFUN (S.P.) 
SPECFUN (D.P.) 
FNLIB (S.P.) 

1.86 0.00 1.56 0.00 2.05 0.23 
3.54 0.90 2.56 0.79 2.67 0.86 
4.67 1.13 2.65 0.94 3.05 1.07 
6.20 2.05 5.70 2.00 3.18 1.27 
6.20 2.05 5.70 2.00 3.18 1.27 
5.13 1.88 5.30 2.41 3.85 2.08 

1.61 0.00 1.81 0.00 1.99 0.15 
3.27 0.68 2.06 0.39 2.16 0.46 
3.93 0.84 2.04 0.32 2.11 0.45 
5.36 1.70 4.89 1.43 2.63 0.90 

1.75 0.00 1.88 0.00 2.00 0.28 
3.28 0.87 2.67 0.86 2.58 0.90 
3.60 0.96 2.76 0.80 2.64 0.88 
5.79 1.99 4.75 1.84 3.14 1.28 

1.04 0.00 1.31 0.00 1.95 0.08 
3.27 0.66 1.97 0.30 2.10 0.42 
4.03 0.87 1.97 0.26 2.06 0.42 
5.36 1.70 4.89 1.42 2.64 0.88 

slightly when testing K,(X) to start the summation with the second term in the 
sequence obtained from the recurrence. Otherwise the test programs are similar 
to that for K,(x). 

Extension of the procedures for use with the Y family of Bessel functions is 
more difficult. The main complication is that Y,(z) is ultimately oscillatory, and 
the summation often involves functions that are both positive and negative. 
Furthermore when hx: is close to a zero of the function, the summation loses 
accuracy through subtraction error. All of this complicates the error analysis. 
Even so, with extra care in the selection of intervals and in the tests for 
convergence of the summation, it is possible to adapt our test procedures for the 
Y functions. Test programs have already been produced for the special cases 
YO(n) and YI(x), where the two programs are considered together. (This work 
was done with the assistance of G. Zazi, a Faculty Research Participant from 
Chicago State University.) We intend to write a test for general Y”(x). 

The multiplication theorem can also be used to test programs for the I and J 
families of functions. The main additional complication here is that backward 
recurrence must be used to generate the function values for the summation, but 
the techniques for doing this are well known. We expect to produce a set of test 
programs for these functions analogous to those discussed for the K and Y 
functions. 
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