
An Improved Primal Simplex Variant
for Pure Processing Networks

MICHAEL D. CHANG and CHOU-HONG J. CHEN
Gonzaga University
and
MICHAEL ENGQUIST
Cleveland Consulting Associates

In processing networks, ordinary network constraints are supplemented by proportional flow restric-
tions on arcs entering or leaving some nodes. This paper describes a new primal partitioning algorithm
for solving pure processing networks using a working basis of variable dimension. In testing against
MPSX/370 on a class of randomly generated problems, a FORTRAN implementation of this
algorithm was found to be an order-of-magnitude faster. Besides indicating the use of our methods
in stand-alone fashion, the computational results also demonstrate the desirability of using these
methods as a high-level module in a mathematical programming system.

Categories and Subject Descriptors: G.1.6 [Numerical Analysis]: Optimization--linear program-
ming; G.2.2 [Discrete Mathematics]: Graph Theory--network problems; G.4 [Mathematics of
Computing]: Mathematical Software-efficiency

General Terms: Algorithms, Design, Performance, Theory

Additional Key Words and Phrases: Embedded networks, mathematical programming systems,
sparsity

1. INTRODUCTION

Pure processing networks are minimum-cost flow problems in which proportional
flow restrictions are permitted on the arcs entering or leaving a node. Applications
are widespread, with the proportional flow restrictions governing such things as
the size of loan payments in cash flow models and the relation between raw
materials and finished products in assembly models. A survey of applications is
included in the work of Koene [16]. The proportional flow restrictions can be
modeled either as nonnetwork rows or as nonnetwork columns in a linear
programming (LP) formulation. Our approach uses nonnetwork columns since
they lead to an LP basis with fewer rows. In [16], Koene shows that any LP
problem can be readily transformed to a pure processing network problem at the

Authors’ addresses: M. D. Chang and C.-H. J. Chen, School of Business Administration, Gonzaga
University, Spokane, WA 99258; M. Engquist, Cleveland Consulting Associates, 3415 Greystone
Drive, Suite 204, Austin, TX 78731.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1989 ACM 009%3500/89/0300-0064 $01.50

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989, Pages 64-78.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F62038.62041&domain=pdf&date_stamp=1989-03-01

An Improved Primal Simplex Variant l 65

expense of enlarging the problem size. However, the primal partitioning methods
of this paper will only be more efficient than standard LP methods when the
basic nonnetwork columns form a small fraction of all basic columns. The
allowable size of this fraction is yet to be determined.

The success of primal simplex solution procedures for solving pure networks
is well known. These procedures depend on special data structures popularized
by Glover and Klingman and their co-workers more than a decade ago [7,8, 131.
A detailed description of network methods is given by Bradley et al. [2]. Standard
primal simplex LP codes, however, use data structures for exploiting sparsity in
the basis matrix [20, 221. As shown in [8, 9, 251, specialized network codes have
achieved an advantage in solution speed up to two orders of magnitude over
standard LP codes.

Since LP problems often have a large network component, ways to exploit this
component based on specialized network methods have been sought. This creates
a need to reconcile the two data structure types. Two levels of detail for combining
these data structures have been used. Glover et al. [12] describe a high-level
approach in which a PL/I main program calls both a FORTRAN network code
and MPSX/370 [14] modules in a complex solution procedure for a large
nonlinear mixed integer program. McBride [18] and Glover and Klingman [lo,
111 describe solution methods for embedded network problems in which basis
partitioning allows both network and sparse matrix data structures that are
tightly integrated in maintaining the basis. The specialized FORTRAN code of
[18] ran about five times faster than MINOS [21]. In [111, three large problems,
which included both nonnetwork rows and columns were solved using a FOR-
TRAN embedded network code and MPSX/370. The nonnetwork rows make
these problems more difficult than the test problems of the present paper, and
MPSX/370 solved them about 4 percent faster than the specialized code. These
efforts provide a start in delimiting the class of problems that benefit from tight
integration of the two data structures.

Tomlin and Welch [25] describe a mathematical programming system written
in assembly language that contains two optimizers, one based on network data
structures and one based on sparse matrix data structures. Some modifications
of network methods were made in order to accommodate the network optimizer
into the system. This is a high-level approach since problems that are partly
network do not benefit from the specialized network data structures. However,
the two optimizers do have common I/O and start routines. For embedded
network problems with nonnetwork rows, a two-stage starting procedure is
described in which the network portion of the problem is first solved using the
network optimizer. This solution is then used to provide a partial basis for the
regular LP optimizer. Presumably this approach is superior to using only the
regular LP optimizer and its start routine; however, comparative solution times
are not provided in [25]. A similar approach was used in [111 where a FORTRAN
network optimizer solved Lagrangian relaxations of the original problem itera-
tively to provide an initial partial basis for MPSX/370. This start procedure
resulted in a total solution time that was 21 times smaller than that achieved
when the MPSX/370 CRASH start procedure was used.

Chen and Engquist [5] described a primal simplex variant that is the precursor
of the algorithm of this paper. One feature of the algorithm of [5] is that all

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

66 l M. D. Chang et al.

nonnetwork columns are always basic. This results in a working basis whose
dimension is equal to the number of nonnetwork columns. When a FORTRAN
implementation of the previous algorithm was tested against MINOS, it was
found to be an order-of-magnitude faster on problems with up to 200 nonnetwork
columns. The question remained as to whether a similar improvement in effi-
ciency could be achieved against an assembly language code such as MPSX/370.
In the present paper, we answer this question in the affirmative. We describe
improvements to both the algorithm and implementation of [5]. In particular,
the working basis for the current method has a dimension that varies with the
number of basic nonnetwork columns. The approach we use involves a fairly
tight integration of network and sparse matrix data structures. The design of our
processing network code, PROCNET, was influenced by Marsten [17] in that it
consists of a library of subroutines that communicate through parameter lists.
Like Marsten’s XMP code, PROCNET utilizes the LAO5 subroutines of Reid
[23, 241. In fact, our extension of the LAO5 subroutines may be beneficial to
XMP users. This is discussed in Section 4. Although PROCNET is already highly
efficient, further speedup is no doubt possible through a tighter integration of
network and sparse matrix (LA05) data structures. It would also be of interest
in future work to use PROCNET as a module in a high-level approach. For
example, in large embedded network problems having both nonnetwork con-
straints and nonnetwork variables, the nonnetwork constraints could be initially
relaxed. PROCNET could then be used to solve the remaining problem and thus
provide a partial starting basis for an LP optimizer.

2. BACKGROUND ON PROCESSING NETWORKS

The pure processing network problem (problem PPN) is:

minimize CNXN + CPXP (2.1)

subject to ANxN + Apxp = b (2.2)

0 5 x,,7 5 hry (2.3)

0 5 xp 5 hp. (2.4)

The m x n matrix AN is the node arc incidence matrix for a pure network N,
while the m X p matrix Ap contains the nonnetwork columns. These nonnetwork
columns are also called processing columns. Vector b contains the supply values,
while CN and cp contain unit costs for the vectors of decision variables XN and XP.
The capacities are the components of the simple upper bound vectors hN and hp.
It is assumed, without loss of generality, that a slack arc and artificial arcs with
Big-M costs have been introduced into the network N so that it is connected and
the matrix AN has rank m. It is also assumed that each row of [AN, Ap] contains
at most one nonzero component from the columns of Ap. The latter assumption
is made to simplify the notation, and it does not restrict the application of our
methods. Each column of AP is of the form

Q”” in row u

-KWJ(2) inroww(z), 2=1,2 ,..., t

0 elsewhere.
ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

(2.5)

An Improved Primal Simplex Variant 67

Fig. 1. A splitting node.

Further, o(,, = 1, 0 < 01,~ < 1, and

c ~“uJ(z)=l (2.6) *=I
must hold.

Corresponding to each column of A, is a column of AN called an allocation
column. The following network diagram is associated with this structure.

In Figure 1, the square is termed a splitting node, while the circles are ordinary
network nodes. Arc (u, u) is called an allocation arc and its column in AN is the
allocation column. The arcs leaving the square node in Figure 1 are termed
processing arcs, and they are represented by a column of the form (2.5). Node u
and nodes w(l), . . . , w (t) in Figure 1 are called processing nodes. Conservation
of flow and the conditions on the a,, imply that a flow x entering the splitting
node in Figure 1 generates a flow (Y,,(,~x along processing arc (u, w (2)). To be
consistent with (2.5) we assume that ordinary network arcs are represented by a
column of A, that contains a 1 in the row corresponding to the tail node of the
arc and a -1 in the row corresponding to the head node. In Figure 1, if arc (u, v)
corresponds to column r of A, and the corresponding processing column (2.5) is
column s of Ap, then it is assumed that the capacities [h,], and [&Is are equal.

In [16], the definition of pure processing networks includes the structure
formed when the direction of the arcs in Figure 1 is reversed. For problems with
finite capacities, by complementing flows with respect to these capacities and
adjusting supply values appropriately, this structure can be reduced to the one
shown in Figure 1. Thus there is no loss of generality in restricting attention to
the structure of Figure 1.

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

68 - M. D. Chang et al.

In order to exploit the network structure of PPN, it is necessary to see how
this structure carries over to a basis. The first observation to be made is that the
slack arc column must be present in any basis matrix, otherwise the rows of the
matrix would sum to zero. Next we note that when the processing columns and
the slack column are removed from a basis matrix containing r processing
columns, the remaining columns correspond to the arcs in r + 1 trees. This
follows by a simple counting argument. These r + 1 trees are called basis trees.
The basis tree that is incident to the problem’s slack arc, when taken together
with that arc, forms the basis quasitree. For the remaining r trees, root nodes are
chosen arbitrarily and the resulting r rooted trees are called the rooted basis
trees. We let a basis matrix B containing r processing columns be partitioned as

B = LB,, &I (2.7)

where B, contains network columns and Bz contains the processing columns.
If the last r rows of B correspond to roots of rooted basis trees, then

B,= D’ [I and BP =
c [I F (2.8)

results where T and C have m - r rows and D and F have r rows. The working
basis corresponding to basis B is defined to be the matrix Q where

Q = F - DT-‘C. (2.9)

It can be shown that Q is nonsingular (see, e.g., [5, 151).
The matrix T in (2.8) corresponds to a collection of quasitrees. By judicious

use of matrices T and Q, updated entering columns and dual variables for the
primal simplex algorithm can be computed without the need for maintaining a
factorization of the entire basis matrix B. If

G= a1 [I a2

is the entering column and it is partitioned to be compatible with (2.8), then a
straightforward calculation shows that the updated entering column

[3 Yl
Y2

is obtained by solving

QYP = a2 - DT-‘al (2.10)

y1 = T-la, - T-Icy,. (2.11)

Similarly we partition the basic costs c R = [cl, c,] and the dual variables r =
[7r1, x2] so that they are compatible with (2.8). The dual variables are computed
by solving

7r2Q = c2 - c,T-‘C (2.12)

?r, = clT-’ - r2DT-‘. (2.13)

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989

An improved Primal Simplex Variant 69

Suppose that column j of B, is the processing column with splitting node u. Pi,
is defined to be the set of processing nodes in rooted basis tree i that correspond
to nonzero values in column j of B,. The following theorem was proved in [5].

THEOREM. For a basis B, the elements qij of the working basis Q satisfy

qij = C Quo (2.14)
WEPi,

where the sum in (2.14) is defined to be zero in case Pij is empty.

If the entering column corresponds to an arc with both end nodes in a common
basis tree, it follows from (2.10) and (2.11) that the only flow changes occur on
the cycle in the tree formed by the entering arc. Furthermore, the theorem implies
that no working basis update is required in this case. This type of pivot is termed
a pure network pivot while all other pivots are termed processing network pivots.

3. PRIMAL SIMPLEX VARIANT

The fundamental observation in the development of the primal simplex variant
that we use relates to Figure 1. The flow on the allocation arc (u, U) must equal
the value of the variable for the associated processing column. Thus, if the
processing column is to be the leaving variable, the allocation arc can leave the
basis instead. Note that the allocation arc must be basic in this situation, since
otherwise the pivot would lead to the impossible situation in which both the
allocation arc and the processing column are nonbasic.

Before stating the simplex algorithm, we outline the situations that are to be
considered in updating the basis trees and the working basis Q during the basis
exchange step. Before the basis exchange is executed, we assume that 70 is the
basis quasitree and Ti, i = 1, 2, . . . , r are the rooted basis trees. Those basis trees
that have been changed during the exchange step will be designated by means of
an asterisk. If a change to Ti, i # 0, results in a change to one of the sets Pij in
(2.14), then row i of Q must be updated.

Several cases occur in the basis exchange step of the simplex algorithm.
However, the variant we describe allows us to restrict attention to the two
following cases.

(i) The entering column is a processing column and the leaving column is a
network column (arc). If the leaving arc is in 7i, then row i of Q will be
updated (unless i = 0) and an additional row and column will be adjoined
to Q.

(ii) Both the entering and leaving columns are network columns (arcs). If the
entering arc is incident to 7; and rj , then these two trees are joined to form
7’. If the leaving arc is contained in 7k, then i-k splits into two trees upon its
removal. One of these becomes 7; and the other becomes r,*. If i, j, and k are
nonzero and distinct, then three rows of Q will be updated. Otherwise special
cases occur in which at most two rows of Q are updated. One of these special
cases is the pure network pivot for which no updating of rows of Q is
necessary.

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

70 * M. D. Chang et al.

We remark that cases in which a processing column leaves the basis are not
considered here, since the allocation arc can be chosen to leave instead.

The basis trees can be visualized as hanging downward from their roots. The
node incident to the slack arc in the basis quasitree is taken as the root there. If
two basis trees 7i and Tj are joined by an entering arc, the resulting T* will retain
the root of 7; while 7j will hang below 7i in T’. Also when a leaving arc is deleted
from a basis tree 7k, an upper tree i-k1 that contains the root of ?k and a lower
tree ?k2 are formed.

A starting PPN basis can be obtained by first setting the variables xp in (2.1)-
(2.4) to upper or lower bounds according to some heuristic procedure. These
variables are set nonbasic in the PPN basis. Those xp variables at upper bounds
induce supplies in network N in addition to those represented by b in (2.2). The
resulting network problem is solved to optimality to give the initial collection of
basis trees which, in this case, consists of a single quasitree. Of course, this
quasitree may contain artificial arcs with positive flow. An extension of this
starting procedure has been implemented as described in Section 4.

We introduce the vector h to represent certain quantities which may be thought
of as pseudo node potentials.

X = clT-l. (3.1)

It will be useful to extend X by defining Xj = 0 for root nodes j of rooted basis
trees. For convenience, this extension will also be denoted as X.

3.1 Primal Simplex Algorithm for PPN
(0) Obtain an initial basis. Set up the initial basis trees and working basis. Compute

initial dual variables and basic solution.
(1) Price nonbasic processing columns and arcs. If an entering processing column is

found, go to Step 3. If an entering arc is found, go to Step 2. If no entering process-
ing column or arc exists, check for basic artificial arcs with positive flow. If basic
artificials with positive flow exist, stop with an infeasible problem; otherwise,
stop with an optimal solution.

(2) If both end nodes of entering arc e are not in a common basis tree 7, go to Step 3.
Otherwise, restrict the ratio test and flow update to the arcs on the cycle formed in 7
by e. Update X on the tree hanging below e after the leaving arc is removed. Go to
Step 6.

(3) Compute y, and yz using (2.10) and (2.11).
(4) Perform the ratio test restricted to arcs. Update basic solution values.
(5) Update basis trees and working basis (basis exchange step). If an arc is entering the

basis go to (ii).

(i) A processing column enters the basis, and the leaving arc is in TV. The leaving arc
is removed to form an upper tree 7k1 and a lower tree 7k2. Tree 7k2 becomes T,,~,
X is updated on T~+~, and row r + 1 of Q is created using (2.14). Column r + 1 of
Q corresponding to the entering column is also created using (2.14). Tree TV,
becomes ~2 and row k of Q is updated (unless k = 0). Go to Step 6.

(ii) An arc e enters the basis. (The details follow for this step when e is incident to 7,
and 7, , the leaving arc is in TV, and i, j, k are nonzero and distinct. The remaining
cases involve at most two rows of Q and the details are omitted.) First,, 7, hangs
below 7i via arc e to form 7 T and X is updated on 7,. Row i of Q is updated to form
Q*. Next the leaving arc is removed from 7k to form an upper tree TV, and a lower
tree TV*. The lower tree becomes 77 and X is updated on ~7. Row j of Q* is updated
to form Q**. Finally 7k1 becomes 7: and row k of Q** is updated to form Q***.

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989

AnJmproved Primal Simplex Variant l 71

(6) Update 7rz using (2.12). Compute a, using

~1 = h - ?r,DT-',
where X has been previously updated. Go to Step 1.

(3.2)

In the above algorithm, processing columns are allowed to enter the basis, but
not to leave. However, when the basis is reinverted, eligible processing columns
are removed from the basis via a series of degenerate pivots. More details on this
procedure are given in Section 4.

Updating of X on a tree that is rehung is done by adding a certain constant to
these X values in the same way as node potentials are updated in the pure network
case.

4. IMPLEMENTATION

A FORTRAN implementation, PROCNET, of the primal simplex algorithm of
Section 3 was created. This version of PROCNET extends and enhances a
previous version, which is described in [5]. Problem data storage in PROCNET
is accomplished by means of arrays for arc costs, capacities, and head nodes.
Also, arrays containing the nonzero values in processing columns and the posi-
tions of these values are used. The costs of processing columns, components of
cp in (2.1), are assumed to be zero, since such costs can be placed on the allocation
arcs instead.

The basis trees are incorporated into a single, larger tree following [lo, 111.
This tree is referred to as the master basis tree and its root is called the master
root. The roots of all basis trees are connected to the master root by artificial
arcs, and the slack arc of the basis quasitree is disregarded since it plays no role
in the implementation. For maintaining the master basis tree, the predecessor,
depth, thread, and reverse thread functions [2, 13, 151 are employed.

Since the updates to Q in Step 5 of the primal simplex algorithm involve more
changes to rows than to columns, we have elected to maintain Q by applying
column replacement techniques to its transpose Q’.

Three LAO5 subroutines were written in FORTRAN by Reid, and they are
described in [23, 241. These subroutines implement a sparse variant of the
Bartels-Golub algorithm [l]. In order to utilize these subroutines for maintaining
the working basis for PROCNET, we needed to extend them by providing a
means for adjoining additional rows and columns. The two subroutines we created
for this purpose are described in this section and we note that they may be useful
in situations other than maintaining a working basis. For example, Marsten’s
XMP linear programming code [17] uses the original LAO5 subroutines for
maintaining the LP basis. Our additional subroutines can be used to provide a
restart capability for XMP when one or more rows are adjoined to an LP problem.

We proceed with an explanation of the functions of the three original LAO5
subroutines as applied to the r X r matrix Q’ in PROCNET.

The LA05A subroutine produces a factorization

QT=LU. (4.1)

The lower triangular factor L is maintained as a sequence of eta vectors. The
upper triangular factor U is stored as a sparse matrix with the nonzeros in the

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

72 l M. D. Chang et al.

rows held in packed form, while only the positions for nonzeros in columns are
kept. Additional information that is maintained includes the pivot order and the
number of nonzeros per row or column.

The LA05B subroutine solves sets of equations

Q’g = 6 (4.2)

and

Qi = 6 (4.3)

where X and 6 are r-dimensional vectors. This solution is carried out with the
use of (4.1).

The third subroutine, LAO.X, revises the factorization (4.1) when one of the
columns of Q’is changed.

In order to accommodate additional rows and columns for Q’ in (4.1), we
embed this matrix in a larger matrix Q’ where

(4.4)

and I is an identity matrix of dimension s. When an additional row d of QT of
length r + 1 is created, it is embedded in a row of length s + r containing s - 1
initial zeros as

10, 0, dl (4.5)

and the row of (4.5) is inserted as row s of Q’ in (4.4). Likewise, an additional
column of Q’ is supplied with s - 1 initial zeros and inserted as column s
in (4.4).

A new subroutine LAO5SS was created that takes the original factorization of
Q’ from (4.1) as provided by LA05A and adjusts the information for storing L
and U to produce the factorization

--
QT= LU (4.6)

where I 0
L= 0 L -[1

and

- I 0 u=o u [1

(4.7)

(4.8)

Essentially what is done is to change the pointers for rows and columns of U and
to insert the nonzeros (ones) for the identity matrix. The rows acted on by the
eta vectors of L must also be changed appropriately.

A new subroutine LA05TT carries out the task of inserting a new row (4.5)
when this is required. We note that changes are needed for the data maintaining
D but eta vectors corresponding to r remain correct. For insertion of a new
column to QT, LA05C is used.

PROCNET obtains an initial basis for PPN by means of a heuristic based on
[3, 61. In order to apply the heuristic, the arc data for each processing arc are
ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

An Improved Primal Simplex Variant 73

generated. The resulting pure network with proportional flow restrictions relaxed
is solved first. Next the flow values of the relaxed solution on the allocation arcs
are used to create a new pure network problem with nonzero lower bounds on
the processing arcs. If the flow value on the allocation arc (u, u) of Figure 1 is X,
then the lower bound on arc (u, w (2)) is set to 0.75a,,(,)x. This second network
problem is solved and the flows on allocation arcs are saved. If such flows are at
the original problem bounds, the corresponding processing columns are made
nonbasic while the allocation arc is basic. If an allocation arc has a flow between
the original problem bounds, a parallel allocation arc is created with a capacity
equal to this flow value. The parallel arc is given the same cost as the original
allocation arc, while the original allocation arc is replaced by a modified allocation
arc whose capacity equals the original capacity less the flow value. In the initial
PPN basis, the modified allocation arc is nonbasic at zero, the parallel arc is
nonbasic at capacity and the corresponding processing column is basic. The
initial working basis Q is an r X r identity matrix where r is the number of
parallel arcs created. The initial flows through allocation arcs and their parallel
arcs induce supply values on the remainder of the network. This remaining
network problem is solved to optimality and the resulting optimal tree becomes
the initial PPN basis quasitree.

We note that an improvement to the way allocation arcs and their parallel
arcs are handled has resulted in about a 10 percent decrease in the number of
PPN iterations over the previous version of PROCNET [5]. This improvement
is accomplished by reinstating the original allocation arc and eliminating the
modified allocation arc and its parallel arc once one of the latter arcs enters the
basis. In the previous version of the code both the modified allocation arc and its
parallel arc were maintained for all PPN pivots, and this restricted the amount
of flow change that could be achieved on a single pivot involving these arcs.

PROCNET uses two conditions to trigger a basis reinversion. The first of
these conditions is a total of 40 column and row/column updates of QT. The
other condition involves the dimension s of I in (4.8). After s processing columns
have entered the basis, the next entering processing column causes a basis
reinversion during which a new identity I is created. PROCNET currently uses
a value of 10 for s. At the time of basis reinversion, PROCNET searches for
basic processing columns having corresponding aliocation arcs (see Figure l),
which are nonbasic. Before this basis reinversion takes place, a series of degen-
erate pivots is executed in which such processing columns are made nonbasic
while their allocation arcs become basic.

Pricing for PROCNET is handled by means of two candidate lists, Ll and L2.
Ll is used for pure network pivots while processing network pivots arising from
either entering processing columns or arcs are placed on L2. In order to identify
arcs that correspond to pure network pivots, basis trees are numbered. A node
length array, treenum, assigns to each node of a given tree the number of that
tree. If treenum values at end nodes of a pivot eligible arc agree, the arc is placed
on Ll. Otherwise, it is placed on L2. PROCNET repeats Step 2 of the prima1
simplex algorithm for all eligible arcs from Ll before updating irZ in Step 6. The
length of Ll was set at 50 and the length of L2 was set at 30. After all pivots
from Ll have been made, up to 15 of the best pivots from L2 are made following
the logic of [191.

ACM Transactions on Mathematical Software, Vol. 15, No. I, March 1989.

74 * M. D. Chang et al.

Pure network pivots are accomplished following the same procedure used in a
pure network algorithm. For processing network pivots, yz in (2.10) is computed
using LA05B. If i denotes a processing column such that [yzli # 0, then PROC-
NET flags basis trees containing processing nodes corresponding to column i. In
computingy, by means of the reverse thread in (2.11), only trees that are flagged
are traced. Since processing columns do not leave the basis until a reinversion
occurs, only y1 values are used in the ratio test.

All parameter settings for PROCNET mentioned in this section remained
fixed at these values for the testing described in Section 5.

5. COMPUTATIONAL RESULTS

In this study, test problems were solved by MPSX/370 and PROCNET. Testing
was done on the IBM 3081-D at the University of Texas. As previously noted,
MPSX/370 is an assembly language program while PROCNET is written in
FORTRAN. PROCNET was compiled using the FORTVS compiler with opti-
mization level 3, and it maintains all real values using double precision. The
execution times for both codes are reported in central processor seconds. These
times do not include input or output with the exception that one line of output
(iteration log) is produced by MPSX/370 each iteration. This small amount of
output has a negligible effect on the overall comparison of the two codes.

The CRASH and PRIMAL modules of MPSX/370 were employed in solving
the test problems. To be comparable with PROCNET, the reduced cost tolerance
(XTOLDJ) of MPSX/370 was set to 10-5. It was necessary to set the feasibility
tolerance (XTOLV) to lo-* since the default value of 10e5 kept MPSX/370 from
reaching feasibility on the test problems. All other parameters for MPSX/370
were set to default values.

Parameters used by PROCNET, in addition to those previously discussed, are
provided next. The reduced cost and feasibility tolerances were both set to 10W5.
Big-M costs on artificial arcs were set to 99999, while pivots with minimum ratio
less than 10-l’ were treated as degenerate. In LA05A and LA05C, pivot elements
less than 0.1 times the largest element in the pivot row were excluded. Default
values were used for other LAO5 parameters.

The class of allocation/processing (AP) network problems was used for testing.
These problems have a dual block angular form where subproblems corresponding
to diagonal blocks are transportation problems and coupling columns are pro-
cessing columns. This class of test problems was also used in [4, 51.

Problem data, with the exception of total supply, was randomly generated. All
constraints were formulated as equalities. As the problems are generated, a
feasible flow is created. The capacity of each arc with finite capacity is set to a
parameter p times the feasible flow generated for that arc. Total supply was set
at 10,000 for all problems. Two cost ranges, A and B, were used. Cost range A
has costs on allocation arcs in the range 100 to 150 and other arc costs in the
range 1 to 100. Cost range B has allocation arc costs in the range 1 to 100 with
other arc costs in the range -100 to -1.

Because a machine-dependent (CDC) random number generator was employed
in the previous studies [4, 51, we were not able to include the problems from
those studies here. The test problems solved are similar to those of [5]; however,
ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

An Improved Primal Simplex Variant l 75

Problem
Finite

capacity arcs

Table I. AP Problem Data

Processing Nonzeros
Rows Columns columns per proc. cost

P Cm) (n+P) (PI column range

1 allocation arcs 1.1 901 3,010 10

2 allocation arcs 2.0 901 3,010 10

3 allocation arcs m 901 3,010 10

4 all arcs 1.1-2.0 901 3,010 10

5 allocation arcs 1.1 2,001 5,050 50
6 allocation arcs 2.0 2,001 5,050 50
I allocation arcs co 2,001 5,050 50
8 all arcs 1.1-2.0 2,001 5,050 50
9 allocation arcs 1.1 1,501 4,900 100

10 allocation arcs 2.0 1,501 4,900 100

11 allocation arcs co 1,501 4,900 100

12 all arcs 1.1-2.0 1,501 4,900 100

13 allocation arcs 1.1 2,251 5,550 150
14 allocation arcs 2.0 2,251 5,550 150

15 allocation arcs 00 2,251 5,550 150
16 all arcs 1.1-2.0 2,251 5,550 150
17 allocation arcs 1.1 1,951 5,000 200
18 allocation arcs 2.0 1,951 5,000 200
19 allocation arcs cc 1,951 5,000 200
20 all arcs 1.1-2.0 1,951 5,000 200
21 allocation arcs 1.1 1,801 4,750 250
22 allocation arcs 2.0 1,801 4,750 250
23 allocation arcs 01 1,801 4,750 250
24 all arcs 1.1-2.0 1,801 4,750 250
25 allocation arcs 1.1 2,001 5,050 50
26 allocation arcs 2.0 2,001 5,050 50
21 allocation arcs u2 2,001 5,050 50
28 all arcs 1.1-2.0 2,001 5,050 50

16 A
16 A
16 A
16 A
6 A
6 A
6 A
6 A
4 A
4 A
4 A
4 A
4 A
4 A
4 A
4 A
4 A
4 A
4 A
4 A
4 A
4 A
4 .A
4 A
6 B
6 B
6 B
6 B

problems with more processing columns and problems with variable p values are
included here.

Test problem data are given in Table I. Problems in the groups l-4, 5-8, . . . ,
25-28, have the same network topology. Also, groups 5-8 and 25-28 differ only
in their cost ranges. For problems 4, 8, . . . , 28, the value of p was randomly
selected from the interval [l.l, 2.01 for each arc. Computational results for these
problems are reported in Table II. The count of iterations for both codes begins
with the first pivot after the start (CRASH) procedure. The number of basic
processing columns at optimality is obtained by PROCNET. This number
provides an estimate of the dimension of the matrix Q” near optimality. The
ratio of total solution time for MPSX/370 to that of PROCNET is 11.46. Average
time per iteration for MPSX/370 is 0.0638 set/iteration while for PROCNET it
is 0.0283 set/iteration. The ratio of these average times per iteration is about
2.25. The larger ratio for total solution time can be attributed to the superiority
of the PROCNET start procedure and pivot strategy over that of MPSX/370 on
the problems tested.

The efficacy of the PROCNET start procedure and pivot strategy is strongly
dependent on p as shown in Table III. The ratio of total MPSX/370 solution

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

76 l M. D. Chang et al.

Table II. Computational Results for AP Problems

MPSX/370 MPSX/ Basic proc.
PROCNET PROCNET PROCNET CRASH MPSX/370 370 columns at

Problem start time total time iterations time total time iterations optimality

1 2.2 5.4 292 7.2 61.2 2,107
2 1.8 15.6 1,259 7.2 128.4 3,225
3 1.4 18.8 1,537 7.8 116.4 2,755
4 2.3 21.3 2,004 6.6 205.8 5,722
5 5.5 23.2 604 21.0 557.4 8,063
6 3.9 37.3 1,059 20.4 928.6 12,144
7 3.5 48.2 1,531 21.6 765.0 9,929
8 4.4 59.9 2,038 13.2 1,234.g 16,827
9 3.4 9.4 306 16.8 103.2 2,727

10 2.9 21.8 1,041 16.8 151.2 3,341
11 2.5 24.3 1,179 16.8 141.6 3,008
12 4.4 32.1 1,800 11.4 114.6 6,230
13 4.8 14.7 324 24.6 166.8 3,322
14 4.3 31.7 916 27.0 239.4 3,847
15 3.6 32.3 984 26.4 211.2 3,350
16 5.6 43.1 1,706 17.4 297.6 5,658
17 9.6 37.1 816 24.0 608.4 8,760
18 6.4 59.1 1,248 23.4 786.6 10,953
19 5.0 68.0 1,565 23.4 656.4 8,850
20 8.3 83.7 1,829 13.2 1,239.0 16,885
21 9.6 37.3 818 24.6 457.8 8,078
22 6.3 71.3 1,562 25.8 735.0 11,054

23 4.8 92.0 2,110 29.4 645.0 9,163
24 9.2 120.8 2,606 14.4 1,240.g 17,794
25 5.3 20.9 550 21.0 561.0 8,480

26 2.8 78.4 2,636 21.0 798.0 10,229
27 2.5 101.0 3,562 20.4 715.8 9,231
28 3.8 93.3 3,498 13.8 1,057.8 14,097

TOTAL 130.1 1,302.O 41,380 516.6 14,925.0 225,829

10
10
10
10
24
47
50
47
77
77
99
98

150
150
150
150

71
182
196
187

71
212
238
227

15
40
48
46

Table III. Performance Values versus p

Problems u

PROCNET % PROCNET MPSX/370 MPSX/370 to PROCNET
pure network avg. pivot avg. pivot avg. pivot total time

Divots time time time ratio ratio

1,5,. . . ,25 1.1 17.3 0.0290 0.0572 1.97 17.00
2, 6, . . , 26 2.0 20.3 0.0295 0.0662 2.24 11.95
3,7,...,27 m 21.3 0.0290 0.0671 2.31 8.45
4, 8, . . . , 28 1.1-2.0 28.6 0.0269 0.0637 2.37 11.87

time to that of PROCNET decreases from 17.00 for p = 1.1 down to 8.45 for
p = ~0. These results show that PROCNET is especially effective on tightly
capacitated problems. Average pivot times for the processing network code are
remarkably stable as p varies. Apparently, the tendency to a smaller number of
basic processing columns at optimality when p = 1.1 is offset by a smaller
percentage of pure network pivots. On the other hand, it seems that the larger
percentage of pure network pivots for PROCNET on problems 4, 8, . , . , 28
results in a somewhat smaller average pivot time.
ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

An Improved Primal Simplex Variant 77

Table IV. Performance Values versus Number of Processing Columns

Process PROCNET % PROCNET MPSX/370 MPSX/370 to PROCNET
columns pure network avg. pivot avg. pivot avg. pivot total time

Problems (23) Divots time time time ratio ratio

l-4 10 42.5 0.0105 0.0350 3.33 8.38
5-8,25-28 50 21.6 0.0278 0.0727 2.62 14.32

9-12 100 36.3 0.0172 0.0293 1.70 5.83
13-16 150 31.1 0.0263 0.0507 1.93 7.51
17-20 200 10.2 0.0401 0.0706 1.76 13.27
21-24 250 12.0 0.0411 0.0648 1.58 9.58

In Table IV, variation in code performance with the number of processing
columns p is given. Except for p = 50, average pivot times for PROCNET increase
with p while the percentage of pure network pivots is roughly decreasing. More
nonzeros per processing column is perhaps the major factor that makes the
problems with p = 50 difficult for MPSX/370. We note that for problems 5-8,
the MPSX/370 to PROCNET total time ratio is 20.7. The problems with
p = 100 and p = 150 are easier than problems with larger p values for both
codes, although MPSX/370 to PROCNET total time ratios are down. A possible
explanation is that the transportation subproblems have a somewhat different
structure. This consists of fewer origins, more destinations, and more arcs per
origin than those with larger p values. Also, when p equals 100, the number of
problem rows is lower. From the results of Table IV, we conclude that PROCNET
remains very efficient for problems with up to 250 processing columns.

6. CONCLUSIONS

The new version of our pure processing network code, PROCNET, derives part
of its efficiency from a working basis of variable dimension. An extension of the
LAO5 subroutines has been described, and this extension is used in PROCNET
to maintain the working basis. PROCNET substantially outperforms MPSX/370
in both time per pivot and total solution time on problems with up to 250
processing columns. The faster time per pivot of PROCNET indicates that it
will be useful as part of a mathematical programming system, while the faster
overall solution time shows that it can be used to advantage in stand-alone
fashion. Since PROCNET is an all-FORTRAN code, it is highly portable as well.

REFERENCES

1. BARTELS, R., AND GOLUB, G. The simplex method of linear programming using LU decompo-
sition. Commun. ACM 12, 5 (May 1969), 266-268.

2. BRADLEY, G., BROWN, G., AND GRAVES, G. Design and implementation of large scale primal
transshipment algorithms. Manage. Sci. 24, 1 (Sept. 1977), l-34.

3. CHARNES, A., COOPER, W., DIVINE, D., HINKEL, W., KONING, J., AND LOVEGREN, V. A sea-
shore rotation goal programming model for Navy use. Res. Rep. CCS 429, Center for Cybernetic
Studies, Univ. of Texas, Austin, 1982.

4. CHEN, C.-H., AND ENGQUIST, M. Computational comparison of two solution procedures for
allocation processing networks. Math. Program. Stud. 26 (1986), 218-220.

5. CHEN, C.-H., AND ENGQUIST, M. A primal simplex approach to pure processing networks.
Manage. Sci. 32, 12 (Dec. 1986), 1582-1598.

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

78 l M. D. Chang et al.

6. GLOVER, F., GLOVER, R., AND MARTINSON, F. A netform system for resource planning in the
U.S. Bureau of Land Management. J. Oper. Res. Sot. 35, 7 (July 1984), 605-616.

7. GLOVER, F., KARNEY, D., AND KLINGMAN, D. Implementation and computational comparisons
of primal, dual, and primal-dual computer codes for minimum cost network flow problems.
Networks 4, 3 (1974), 191-212.

8. GLOVER, F., KARNEY, D., KLINGMAN, D., AND NAPIER, A. A computational study on start
procedures, basis change criteria, and solution algorithms for transportation problems. Manage.
Sci. 20, 5 (Jan. 1974), 793-813.

9. GLOVER, F., AND KLINGMAN, D. Capsule view of future developments of large-scale network
and network-related problems. Res. Rep. CCS 238, Center for Cybernetic Studies, Univ. of Texas,
Austin, 1975.

10. GLOVER, F., AND KLINGMAN, D. The simplex SON algorithm for LP/embedded network
problems. Math. Program.. Stud. 25 (1981), 148-176.

11. GLOVER, F., AND KLINGMAN, D. Basis change characterizations for the simplex SON algorithm
for LP/embedded networks. Math. Program. Stud. 24 (1985), 141-157.

12. GLOVER, F., KLINGMAN, D., PHILLIPS, N., AND ROSS, G. Integrating modeling, algorithm
design, and computational implementation to solve a large-scale nonlinear mixed integer pro-
gramming problem. Ann. Oper. Res. 5 (1985/6), 395-411.

13. GLOVER, F., KLINGMAN, D., AND STUTZ, J. Augmented threaded index method for network
optimization. ZNFOR 12, 3 (Oct. 1974), 293-298.

14. IBM Mathematical Programming System Extended/370 (MPSX/370) Program Reference Manual,
4th Edition. IBM Corp., Technical Publications Dept., White Plains, N.Y., 1979.

15. KENNINGTON, J., AND HELGASON, R. Algorithms for Network Programming, John Wiley, New
York, 1980.

16. KOENE, J. Minimal cost flow in processing networks: A primal approach. Ph.D. dissertation,
Eindhoven Univ. of Technology, Eindhoven, The Netherlands, 1982.

17. MARSTEN, R. The design of the XMP linear programming library. ACM Trans. Math. Softw.
7,4 (Dec. 1981), 481-497.

18. MCBRIDE, R. Solving embedded generalized network problems. European J. Oper. Res. 21, 1
(July 1985), 82-92.

19. MULVEY, J. Pivot strategies for primal-simplex network codes. J. ACM 25, 2 (Apr. 1978),
266-270.

20. MURTAGH, B. Advanced Linear Programming: Computation and Practice. McGraw-Hill, New
York, 1981.

21. MURTAGH, B., AND SAUNDERS, M. Large scale linearly constrained optimization. Math.
Program. 14, 1 (Jan. 1978), 41-72.

22. ORCHARD-HAYS, W. Advanced Linear Programming Computing Techniques. McGraw-Hill, New
York, 1968.

23. REID, J. FORTRAN subroutines for handling sparse linear programming bases. Rep. AERE-
R8269, Computer Science and Systems Div., AERE Harwell, Oxfordshire, England, 1976.

24. REID, J. A sparsity-exploiting variant of the Bartels-Golub decomposition for linear program-
ming bases. Math. Program 24, 1 (Sept. 1982), 55-69.

25. TOMLIN, J., AND WELCH, J. Integration of a primal simplex network algorithm with a large-
scale mathematical programming system. ACM Trans. Math. Softw. 11, 1 (Mar. 1985), l-11.

Received November 1986; revised May 1988; accepted September 1988

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

