
ALGORITHM 671
FARB-E-2D: Fill Area with Bicubics on
Rectangles -A Contour Plot Program

ALBRECHT PREUSSER
Max-Planck-Gesellschaft

An algorithm plotting contour lines for discrete values zi, given at the nodes of a rectangular mesh is
described. A bicubic Hermite polynomial f(x, y) is determined for every rectangle of the mesh,
interpolating the zij and the derivatives z,, .z,, and z,. The derivatives are optionally computed by the
algorithm. The contours found are normally smooth curves. They consist of polygons approximating
intersections with the bicubics. It is possible to fill the areas between them with certain colors or
patterns. This is done with a piecewise technique rectangle by rectangle. The method for finding the
points of the polygons is shortly reviewed, and some numerical problems are pointed out. The
algorithm has a flexible, easy-to-use interface and is easily installed with all plotting systems, provided
that a fill-area command is available. A GKS interface may be used.

Categories and Subject Descriptors: G.l.l [Numerical Analysis]: Interpolation-spline and piece-
wise polynomial interpolation; G.m [Mathematics of Computing]: Miscellaneous-FORTRAN;
1.3.5 [Computer Graphics]: Computational Geometry and Object Modelling-curue, surface, solid,
and object representations

General Terms: Algorithms, Design

Additional Key Words and Phrases: Bicubic Hermite surfaces, bivariate interpolation, contour
plotting, fill area polygons

1. INTRODUCTION

The algorithm we are presenting can be regarded as a comfortable contouring
program. More precisely, it handles the graphical display of curves, which are
solutions of the equation f (x, y) - c = 0, where f (x, y) are bicubic polynomials
defined over rectangles, and c the contour levels. The bicubics can be determined
in a way that they fit values z, and derivatives z,, z,, z, at the nodes of a
rectangular mesh formed by the rectangles. Then they have smooth and contin-
uous interfaces to their neighbors.

Different contouring methods are reviewed in [13]. Our work differs signifi-
cantly from other programs in this field because

-it is based on nonlinear bivariate interpolation functions (the bicubics), and
-the areas between the contour lines may be filled with different colors or

patterns by a device-independent method.

Author’s address: Fritz-Haber-Institut, Faradayweg 4-6, D-1000 Berlin 33, West Germany.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1989 ACM 0098-3500/89/0300-0079 $01.50

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989, Pages 79-89.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F62038.69651&domain=pdf&date_stamp=1989-03-01

80 * Albrecht Preusser

FIRE!=6 LEVELS

5.000000

4.130149

3.766413

3.501350

3.200000

3.050000

Fig. 1. Sample output computed by FARB-E-2D. The function displayed is taken from [14].

We believe that, for the moment, no other program which is capable of both is
available.

Producing filled areas is very useful, since it allows one to avoid a pointwise
(pixelwise) evaluation of the nonlinear functions. Especially when using high-
resolution raster devices, it is often not feasible to evaluate the bicubics at every
raster pixel because the computing time needed would be immense.

To give a visual impression of the results that can be achieved with this
nonlinear area-filling algorithm, Figure 1 was prepared. It shows the contours of
a function taken from [14]. The tick marks at the border indicate the 26 x 26
mesh. A bicubic patch is used for every rectangle of the mesh. The alternative to
a nonlinear method, smoothing the lines resulting from a linear method, yields
less accurate results, and may sometimes even lead to overlapping lines if
smoothing is done without care (Figure 2). Figures l-4 demonstrate the superi-
ority of the bicubic interpolation, a very well-known fact. For many applications,
it is important that wider meshes be used.

In the next section, we give a review of the methods our algorithm is based on.
In Section 3, we discuss some numerical problems that may occur in praxi. When
the algorithm was developed, the study of such numerical phenomena was very
time consuming. We hope that our efforts resulted in a robust program coping
with most situations. Finally, we give a description of the user interface in Section
4 and hints for the installation with local plot systems in Section 5. The plot
interface is kept simple, and the user interface is designed to be “easy to use” but
also flexible enough to meet the needs of a wide range of users.
ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989

ALGORITHM 671: FARB-E-2D . 81

Fig. 2. Same function values as in Figure 1, but linear interpolation
as computed by algorithm GCONTR (141. No smoothing.

Fig. 3. Linear interpolation of GCONTR (Figure 2) smoothed with
the method of [I].

ACM Transactions on Mathematical Software, Vol. 15, No. I, March 1989.

Albrecht Preusser

Fig. 4. “Exact” results for Figures 1-3 computed by a 151-x-151 mesh
and linear interpolation.

2. METHODS

Bicubics of the Hermite type are well known and widely used for the definition
of surfaces over rectangular meshes. Some references are given in [8]. Sixteen
values at the vertices of every rectangle uniquely define 16 coefficients of a
bivariate Hermite polynomial. These values are the coordinate z, the two partial
derivatives z,, z,, and the twist z,,,. The polynomial is third order on lines parallel
to the Cartesian coordinates x and y and sixth order in all other directions.

For the estimation of the partials z,, z,., and z, we chose the method of Akima
[2] mainly because we think his algorithm is widely in use, and we could rely on
existing code [3]. We recognize, however, that there is an ongoing discussion
about the best method for the computation of the partials [4], and especially of
the twist [7, 91. Therefore, we designed the third level of the user interface in a
way that a user may supply personal derivative values.

The basic ideas for finding the points of the fill-area polygons have been
published in [12]. We repeat shortly the main principles of the Trip Algorithm.
It describes how the points, defining areas of different colors or patterns between
two contour levels, can be found for nonlinear interpolation functions within a
domain restricted by linear boundaries. In FARB-E-BD, the function is bicubic,
and the domain a rectangle.

First, the intersection points S of the contours and the sides of a rectangle are
determined as zeros of the cubic functions f - c,, where f is the cubic interpolation
function on the mesh lines and ci the contour levels. These zeros are called
ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

ALGORITHM 671: FARB-E-2D l 83

0 Stations S

+ Zeros P

ImI
Rrea filled

by round trip

Fig. 5. The Trip Algorithm computes fill-area polygons for nonlinear interpolation functions. This
is a typical situation in a rectangle formed by the mesh lines.

stations S. Instead of computing them level by level for every side, they are
generated in a topological sequence. They are ordered counterclockwise on the
sides. The contour level ci and the first derivative off in the counterclockwise
direction of the sides are stored for each station. The sign of this derivative and
the contour level define the two different colors to be given to the areas on the
two sides of a station. Now nonlinear rides (Figure 5) are carried out by computing
successive zeros P of the function f - c; on the contour line, where f is now the
bicubic, bivariate interpolation function inside the rectangle. We call this process
a “ride” because it connects two stations of the same level. The zeros P are
searched with the regula falsi on lines normal to the tangent vector of the arising
curve. The deviation from the tangent and other local parameters control the
step size. The step size is represented by the distance, where the next search line
is laid. Unlike in Algorithm 626 [ll] we ensure that the normal derivative
(perpendicular to the curve) does not change its sign during a ride. This inhibits
crossing of curves near saddle points.

After reaching an end station of a ride, a transfer along the sides is made to
the next station, where a new ride begins until a round trip is complete and the
start station of the trip has been reached. A transfer is carried out in counter-
clockwise direction on the sides. The vertices of the rectangle are added to the
polygon during a transfer, if necessary. The trips will cover the whole area of the
rectangle when all stations are used twice, once as the start and once as the end
of a ride. We keep the points P of every first ride of a trip in a stack because
they often represent a ride in the following, neighboring trip. However, the points
will be needed in reverse order. Figure 5 illustrates the Trip Algorithm.

3. SPECIAL SITUATIONS

In this section, we would like to draw attention to some numerical problems
arising in this algorithm. One class of problems is common to all algorithms,

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

84 l Albrecht Preusser

which try to find the course of an algebraic curve by numerical methods alone,
without the help of symbolic computations 151. When tracing the curve, discrete
points are determined with a limited accuracy. This is carried out without
determining the topological structure [5] of the curve in advance. So it may
theoretically happen that the tracing process “switches” to another branch of the
curve, which may even be a closed line or a part already encountered in a trip.
In this way, horror trips may take place, that is, trips which cannot be completed.
Such undesirable events cannot be completely inhibited, but their occurrence
can be made unlikely by a careful selection of the local parameters in the search
process. In FARB-E-BD, this is done automatically; the user does not need to
be concerned about it.

Another problem on the same level is that we implicitly assume that the curve
of a ride is continuous and smooth. For contouring problems, this assumption is
allowed in all situations but one: at a saddle point, if the contour line with the
function value of the saddle point is to be plotted (Figure 8g). At such a point,
where contour lines of the same level cross, a ride has to change its direction
discontinuously in order to avoid self-crossing trips that would leave some areas
unfilled if we assume our strategy for area filling. In this situation our postulation
of a constant sign for the normal derivative of a ride is helpful: The ride will not
continue in the same direction to the other side of the saddle point. It will stop
or take a correct way. If it stops, the direction of the search line is deliberately
changed by 90 degrees, and the search for a correct continuation is repeated.

The determination of the stations S may also be ill conditioned. A contour line
may be fully or partly identical with a side of a rectangle. In such cases, the
position of S is undefined, and different procedures may yield different results.
So it may be impossible for a ride to find its correct end, or it may even fail to
start.

We tried to improve the reliability of the algorithm in such situations by
adding some extensions to the basic procedure described in [12]. We mention
some of them, which seem to be unnecessary or redundant at first glance. For
instance, we allow a ride to end between two stations near a side. And, more
important, if trips cannot be ended successfully, they will be started again from
other stations. If stations, which have been used only once, are finally left, trips
will be also started in the clockwise direction. In addition, differences are used
for determining the sign of derivatives instead of evaluating a polynomial when
values near zero are expected. This should eliminate the effect of rounding errors
on the sign.

Such instability problems are unlikely to occur in drawings resulting from
numerical simulations of problems arising in theoretical physics and engineering,
for instance, the solution of partial differential equations. However, in modelled
surfaces (Figure 6) or when the mesh values consist of integer values (Figure 7),
such situations can easily be produced if certain singular values for the contour
levels are chosen. Figure 8 shows a selection of examples with increasing com-
plexity, which we ran successfully on several computer systems with different
data formats and arithmetic (see Section 5). “Successfully” in this context means
that the whole area of all rectangles is filled.

We feel that pure numerical treatment of our subject must lead to solutions
that are safe only up to a certain extent. We believe that the algorithm presented
ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

ALGORITHM 671: FARB-E-2D l 85

t FFIRB-E-20
RRER5 LEVELS

6.25

Fig. 6. Image of a modeled surface.

I11111 1 III III III Ill I II

I 1 III 1 I I I Ii I I I I I1 I I III

1144411242111111111111

114 11114 I4 I I I I II 1 I I I I I

1144111444111111111111

I I4 II 1 I4 I4 I I III I I II I II

114 III14 I4 III1 I I I I I I I I

II

lll1llillilll1lll444ll

1111111111l11111142111

1111111111111881144111

1114441114431111142111

1114141114241111144411

1114421114411111111111

1114241114241111111 I I I

1114141114431111111111

I I I I I I I I I I I I I II 1 I I I I I I

I I I I I II I I II II I I I I I I I I I

I II I I I I I I II I I II II I 1 I I I

II 11 I II I I I I I I I I I I I I I I I

Fig. 7. Input values for the modeled surface of Figure 6.

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

86 l Albrecht Preusser

(a) (b) (4

(9 (h) (i)

(3 (k) (1)

Fig. 8. Examples for special cases. (a)-(d): Contour lines cross vertices or are identical to a side.
(e)-(j): Saddle points on sides, inside the rectangle, and at vertices. (k)-(l): Multiple zeros at vertices
and on sides.

is a well-balanced mixture between robustness and efficiency, and that it will be
helpful in most problem fields.

A user should also be aware of the fact that closed contour lines within a
rectangle will not be detected because only the sides of the rectangles are searched
for starting points S.

4. USER INTERFACE

As is indicated by the trinomial FARB-E-ZD, a three-level user interface was
designed for the algorithm. For getting access to the first and highest level, a
user only needs to pass the two-dimensional array Z, containing the values Zij at
the mesh points, the dimension of its first index NXDIM, and the limits NX and
NY of the two indices to a subroutine with name FARBE (i = 1, NX; j = 1, NY).
The E in FARBE stands for “Easy to use.” Such a call may look like

CALL FARBE (Z, NXDIM, NX, NY, MODE)

As a default, MODE should be set to zero. The program takes care of all scaling,
including the selection of suitable contour levels at round values. The result will
be a complete contour plot with area-filling contours. The different colors or
patterns used for the areas between the contour levels are identified by a legend
which will be automatically plotted. When calling FARBE, the result will always
be a mesh in the form of a square, even if NX # NY. The two indices of the
ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

ALGORITHM 671: FARB-E9D . 87

array determine the position of the z values at the intersections of the mesh lines
in the x and y direction, respectively. The mesh lines are displayed by tick marks
(Figures 1 and 6).

If the shape of the sketch should be a rectangle or the user wants to specify
the mesh lines explicitly, then the entry with name FARBBD has to be called
(the second level). Scaling of the x and y coordinates has to be carried out by the
user and also the values for the contour levels have to be passed. A call to
FARBBD looks like

CALL FARB2D (X, NX, Y, NY, Z, NXDIM, CN, ICOL, NC, MODE),

where the arrays X and Y with length NX and NY, respectively, give the
coordinates for the mesh lines, CN are the values of the contour levels in
ascending order, and the integer values of ICOL characterize the selected colors
or patterns for the NC-l different areas between the contour levels (NC =
number of contour levels). The first value ICOL(1) of array ICOL with length
NC + 1 is used for the areas below and up to the first contour level CN(l), the
last, ICOL(NC + l), for the areas above the highest level CN(NC). Parameter
MODE indicates whether pure line drawing, or area filling, or both is requested.

When choosing the third level as entry, a user receives control over a single
rectangle that is normally formed by mesh lines. So the user can specify all values
at the vertices of the rectangle that are needed to form the bicubic. In principle,
all calculations for all rectangles could be executed in parallel because there are
no dependencies between them, when all nodal values have been computed in
advance. However, we implemented an option which saves computing time in a
sequential calculation: If the next rectangle in the queue is the right neighbor of
the last, the position of the stations S on the common side may be copied. We
also installed a fill-area buffer, that will be increased as long as successive
rectangles completely receive the same color. This reduces the output of fill-area
polygons. For more details, see the documentation part of subroutine FARBRC
in the source code.

5. PORTABILITY

The algorithm is written in conformity with the American National Standard
FORTRAN, X3.9-1978. However, most of the language constructs used are
compatible with earlier versions of FORTRAN, so that only relatively simple
modifications have to be made if a compiler of the latest standard is not available.

The plotting interface has been kept very simple. From level two (FARBBD)
and below, all plotting is carried out in a single subroutine with name USRPLT,
which is responsible for line plotting as well as filling areas. The parameters of
USRPLT are all explained within the source code, and an example USRPLT
with Graphical Kernal System (GKS) calls [6, lo] is supplied. Mainly, two arrays
with the coordinates to be plotted and an index value for the array ICOL have
to be passed to USRPLT. At some installations, there may be restrictions
concerning the number of points allowed for a fill-area polygon. This presents
no problem for our algorithm because the number of points is kept small by the
piecewise strategy for area filling (typically not more than 50 points).

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

88 l Aibrecht Preusser

When using the highest level FARBE, two additional adaptions to the local
plot system may be necessary for the legend and the frame with the tick marks:
The calls to GPL for plotting of polygons and to GTEXT for the graphical output
of text may have to be modified. GTEXT is called like the CALCOMP routine
SYMBOL. GKS calls [6, lo] are supplied for all routines of the graphical
interface.

Please note that all x and y coordinates passed to FARB-E-2D have to be
scaled to centimeters or inches depending on the setting of the installation
parameter CMSCAL. The value of CMSCAL may have to be corrected in the
modules FARBE and FARBRC when installing the package. When calling
FARBE, all scaling is carried out by the program. However, when calling
FARB2D or FARBRC, scaling of the x and y coordinates by the user is essential
because different representations for the curves will be found depending on the
scale of the plot. Larger plots may require that more points with higher precision
must be computed. “Problem coordinates” or unscaled “GKS world coordinates”
should not be passed to FARBBD or FARBRC.

With the exception of CMSCAL for switching between centimeter and inch,
no other machine constant is used in the code. However, the execution of the
code, and thus the representation found for the curves, is in special situations
sensitive to the arithmetic of different machines. The differences should not be
visible, however. We tested the examples of Figure 8 on a CRAY X-MP, CDC
Cyber 170, VAX, and IBM AT, all in single precision and with different rounding
options. The data for these examples are included in the source code as a test
driver for FARBBD. The author would appreciate any feedback about the per-
formance of the algorithm in general, and especially of the results achieved with
this test data on other machines.

REFERENCES

1. AKIMA, H. A new method of interpolation and smooth curve fitting based on local procedures.
J. ACM 17, 4 (Oct. 1970), 589-602.

2. AKIMA, H. A method of bivariate interpolation and smooth surface fitting based on local
procedures. Comm. ACM 17, 1 (Jan. 1974), 18-20.

3. AKIMA, H. Algorithm 474: Bivariate interpolation and smooth surface fitting based on local
procedures. Coil. Alg. from CACM, (474-P 1-O to 474-P 7-O).

4. ALLISTER, D. F., AND ROULIER, J. A. An algorithm for computing a shape preserving osculatory
quadratic spline. ACM Trans. Math. Softw. 7,3 (Sept. 1981), 331-347.

5. ARNON, D. S. Topologically reliable display of algebraic curves. Comput. Graph. 17, 3 (July
1983), 219-227.

6. BECHLARS, J., AND BUHTZ, R. GKS in der Praxis, Springer-Verlag, New York, 1986.
7. BRUNET, P. Increasing the smoothness of bicubic spline surfaces. Comput. Aided Geom. Des. 2

(Sept. 1985), 157-164.
8. FOLEY, T. A. Scattered data interpolation and approximation with error bounds. Comput. Aided

Geom. Des. 3, 3 (Nov. 1986), 163-177.
9. FRITSCH, F. N., AND CARLSON, R. E. Monotonicity preserving bicubic interpolation: A progress

report. Comput. Aided Geom. Des. 2,2 (Sept. 1985), 117-121.
10. HOPGOOD, F. R. A. Introduction to the Graphical Kernel System (GKS), Academic Press,

Orlando, Fla., 1983.
11. PREUSSER, A. Computing contours by successive solution of quintic polynomial equations. ACM

Trans. Math. Softw. 10, 4 (Dec. 1984), 463-472; also, Algorithm 626, TRICP: A contour plot
program for triangular meshes. ACM Trans. Math. Softw. 10, 4 (Dec. 1984), 473-475.

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

ALGORITHM 671: FARB-E-2D . 89

12. PREUSSER, A. Computing area filling contours for surfaces defined by piecewise polynomials.
Comput. Aided Ceom. Des. 3, 4 (Dec. 1986), 267-279.

13. SABIN, M. A. Contouring-the state of the art. In Fundamental Algorithms for Computer
Graphics, R. A. Earnshaw, Ed., NATO ASI Series, Springer-Verlag, New York, 1985.

14. SNYDER, W. V. Algorithm 531, Contour plotting [J6]. ACM 2hm.s. Math. Softw. 4, 3 (Sept.
1978), 290-294.

Received June 1987; revised April 1988; accepted July 1988

ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989.

