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An algorithm plotting contour lines for discrete values zi, given at the nodes of a rectangular mesh is 
described. A bicubic Hermite polynomial f(x, y) is determined for every rectangle of the mesh, 
interpolating the zij and the derivatives z,, .z,, and z,. The derivatives are optionally computed by the 
algorithm. The contours found are normally smooth curves. They consist of polygons approximating 
intersections with the bicubics. It is possible to fill the areas between them with certain colors or 
patterns. This is done with a piecewise technique rectangle by rectangle. The method for finding the 
points of the polygons is shortly reviewed, and some numerical problems are pointed out. The 
algorithm has a flexible, easy-to-use interface and is easily installed with all plotting systems, provided 
that a fill-area command is available. A GKS interface may be used. 

Categories and Subject Descriptors: G.l.l [Numerical Analysis]: Interpolation-spline and piece- 
wise polynomial interpolation; G.m [Mathematics of Computing]: Miscellaneous-FORTRAN; 
1.3.5 [Computer Graphics]: Computational Geometry and Object Modelling-curue, surface, solid, 
and object representations 

General Terms: Algorithms, Design 

Additional Key Words and Phrases: Bicubic Hermite surfaces, bivariate interpolation, contour 
plotting, fill area polygons 

1. INTRODUCTION 

The algorithm we are presenting can be regarded as a comfortable contouring 
program. More precisely, it handles the graphical display of curves, which are 
solutions of the equation f (x, y) - c = 0, where f (x, y) are bicubic polynomials 
defined over rectangles, and c the contour levels. The bicubics can be determined 
in a way that they fit values z, and derivatives z,, z,, z, at the nodes of a 
rectangular mesh formed by the rectangles. Then they have smooth and contin- 
uous interfaces to their neighbors. 

Different contouring methods are reviewed in [13]. Our work differs signifi- 
cantly from other programs in this field because 

-it is based on nonlinear bivariate interpolation functions (the bicubics), and 
-the areas between the contour lines may be filled with different colors or 

patterns by a device-independent method. 
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FIRE!=6 LEVELS 

5.000000 

4.130149 

3.766413 

3.501350 

3.200000 

3.050000 

Fig. 1. Sample output computed by FARB-E-2D. The function displayed is taken from [14]. 

We believe that, for the moment, no other program which is capable of both is 
available. 

Producing filled areas is very useful, since it allows one to avoid a pointwise 
(pixelwise) evaluation of the nonlinear functions. Especially when using high- 
resolution raster devices, it is often not feasible to evaluate the bicubics at every 
raster pixel because the computing time needed would be immense. 

To give a visual impression of the results that can be achieved with this 
nonlinear area-filling algorithm, Figure 1 was prepared. It shows the contours of 
a function taken from [14]. The tick marks at the border indicate the 26 x 26 
mesh. A bicubic patch is used for every rectangle of the mesh. The alternative to 
a nonlinear method, smoothing the lines resulting from a linear method, yields 
less accurate results, and may sometimes even lead to overlapping lines if 
smoothing is done without care (Figure 2). Figures l-4 demonstrate the superi- 
ority of the bicubic interpolation, a very well-known fact. For many applications, 
it is important that wider meshes be used. 

In the next section, we give a review of the methods our algorithm is based on. 
In Section 3, we discuss some numerical problems that may occur in praxi. When 
the algorithm was developed, the study of such numerical phenomena was very 
time consuming. We hope that our efforts resulted in a robust program coping 
with most situations. Finally, we give a description of the user interface in Section 
4 and hints for the installation with local plot systems in Section 5. The plot 
interface is kept simple, and the user interface is designed to be “easy to use” but 
also flexible enough to meet the needs of a wide range of users. 
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Fig. 2. Same function values as in Figure 1, but linear interpolation 
as computed by algorithm GCONTR (141. No smoothing. 

Fig. 3. Linear interpolation of GCONTR (Figure 2) smoothed with 
the method of [I]. 
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Fig. 4. “Exact” results for Figures 1-3 computed by a 151-x-151 mesh 
and linear interpolation. 

2. METHODS 

Bicubics of the Hermite type are well known and widely used for the definition 
of surfaces over rectangular meshes. Some references are given in [8]. Sixteen 
values at the vertices of every rectangle uniquely define 16 coefficients of a 
bivariate Hermite polynomial. These values are the coordinate z, the two partial 
derivatives z,, z,, and the twist z,,,. The polynomial is third order on lines parallel 
to the Cartesian coordinates x and y and sixth order in all other directions. 

For the estimation of the partials z,, z,., and z, we chose the method of Akima 
[2] mainly because we think his algorithm is widely in use, and we could rely on 
existing code [3]. We recognize, however, that there is an ongoing discussion 
about the best method for the computation of the partials [4], and especially of 
the twist [7, 91. Therefore, we designed the third level of the user interface in a 
way that a user may supply personal derivative values. 

The basic ideas for finding the points of the fill-area polygons have been 
published in [12]. We repeat shortly the main principles of the Trip Algorithm. 
It describes how the points, defining areas of different colors or patterns between 
two contour levels, can be found for nonlinear interpolation functions within a 
domain restricted by linear boundaries. In FARB-E-BD, the function is bicubic, 
and the domain a rectangle. 

First, the intersection points S of the contours and the sides of a rectangle are 
determined as zeros of the cubic functions f - c,, where f is the cubic interpolation 
function on the mesh lines and ci the contour levels. These zeros are called 
ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989. 
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Fig. 5. The Trip Algorithm computes fill-area polygons for nonlinear interpolation functions. This 
is a typical situation in a rectangle formed by the mesh lines. 

stations S. Instead of computing them level by level for every side, they are 
generated in a topological sequence. They are ordered counterclockwise on the 
sides. The contour level ci and the first derivative off in the counterclockwise 
direction of the sides are stored for each station. The sign of this derivative and 
the contour level define the two different colors to be given to the areas on the 
two sides of a station. Now nonlinear rides (Figure 5) are carried out by computing 
successive zeros P of the function f - c; on the contour line, where f is now the 
bicubic, bivariate interpolation function inside the rectangle. We call this process 
a “ride” because it connects two stations of the same level. The zeros P are 
searched with the regula falsi on lines normal to the tangent vector of the arising 
curve. The deviation from the tangent and other local parameters control the 
step size. The step size is represented by the distance, where the next search line 
is laid. Unlike in Algorithm 626 [ll] we ensure that the normal derivative 
(perpendicular to the curve) does not change its sign during a ride. This inhibits 
crossing of curves near saddle points. 

After reaching an end station of a ride, a transfer along the sides is made to 
the next station, where a new ride begins until a round trip is complete and the 
start station of the trip has been reached. A transfer is carried out in counter- 
clockwise direction on the sides. The vertices of the rectangle are added to the 
polygon during a transfer, if necessary. The trips will cover the whole area of the 
rectangle when all stations are used twice, once as the start and once as the end 
of a ride. We keep the points P of every first ride of a trip in a stack because 
they often represent a ride in the following, neighboring trip. However, the points 
will be needed in reverse order. Figure 5 illustrates the Trip Algorithm. 

3. SPECIAL SITUATIONS 

In this section, we would like to draw attention to some numerical problems 
arising in this algorithm. One class of problems is common to all algorithms, 
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which try to find the course of an algebraic curve by numerical methods alone, 
without the help of symbolic computations 151. When tracing the curve, discrete 
points are determined with a limited accuracy. This is carried out without 
determining the topological structure [5] of the curve in advance. So it may 
theoretically happen that the tracing process “switches” to another branch of the 
curve, which may even be a closed line or a part already encountered in a trip. 
In this way, horror trips may take place, that is, trips which cannot be completed. 
Such undesirable events cannot be completely inhibited, but their occurrence 
can be made unlikely by a careful selection of the local parameters in the search 
process. In FARB-E-BD, this is done automatically; the user does not need to 
be concerned about it. 

Another problem on the same level is that we implicitly assume that the curve 
of a ride is continuous and smooth. For contouring problems, this assumption is 
allowed in all situations but one: at a saddle point, if the contour line with the 
function value of the saddle point is to be plotted (Figure 8g). At such a point, 
where contour lines of the same level cross, a ride has to change its direction 
discontinuously in order to avoid self-crossing trips that would leave some areas 
unfilled if we assume our strategy for area filling. In this situation our postulation 
of a constant sign for the normal derivative of a ride is helpful: The ride will not 
continue in the same direction to the other side of the saddle point. It will stop 
or take a correct way. If it stops, the direction of the search line is deliberately 
changed by 90 degrees, and the search for a correct continuation is repeated. 

The determination of the stations S may also be ill conditioned. A contour line 
may be fully or partly identical with a side of a rectangle. In such cases, the 
position of S is undefined, and different procedures may yield different results. 
So it may be impossible for a ride to find its correct end, or it may even fail to 
start. 

We tried to improve the reliability of the algorithm in such situations by 
adding some extensions to the basic procedure described in [12]. We mention 
some of them, which seem to be unnecessary or redundant at first glance. For 
instance, we allow a ride to end between two stations near a side. And, more 
important, if trips cannot be ended successfully, they will be started again from 
other stations. If stations, which have been used only once, are finally left, trips 
will be also started in the clockwise direction. In addition, differences are used 
for determining the sign of derivatives instead of evaluating a polynomial when 
values near zero are expected. This should eliminate the effect of rounding errors 
on the sign. 

Such instability problems are unlikely to occur in drawings resulting from 
numerical simulations of problems arising in theoretical physics and engineering, 
for instance, the solution of partial differential equations. However, in modelled 
surfaces (Figure 6) or when the mesh values consist of integer values (Figure 7), 
such situations can easily be produced if certain singular values for the contour 
levels are chosen. Figure 8 shows a selection of examples with increasing com- 
plexity, which we ran successfully on several computer systems with different 
data formats and arithmetic (see Section 5). “Successfully” in this context means 
that the whole area of all rectangles is filled. 

We feel that pure numerical treatment of our subject must lead to solutions 
that are safe only up to a certain extent. We believe that the algorithm presented 
ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989. 
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Fig. 6. Image of a modeled surface. 
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Fig. 7. Input values for the modeled surface of Figure 6. 
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(a) (b) (4 

(9 (h) (i) 

(3 (k) (1) 

Fig. 8. Examples for special cases. (a)-(d): Contour lines cross vertices or are identical to a side. 
(e)-(j): Saddle points on sides, inside the rectangle, and at vertices. (k)-(l): Multiple zeros at vertices 
and on sides. 

is a well-balanced mixture between robustness and efficiency, and that it will be 
helpful in most problem fields. 

A user should also be aware of the fact that closed contour lines within a 
rectangle will not be detected because only the sides of the rectangles are searched 
for starting points S. 

4. USER INTERFACE 

As is indicated by the trinomial FARB-E-ZD, a three-level user interface was 
designed for the algorithm. For getting access to the first and highest level, a 
user only needs to pass the two-dimensional array Z, containing the values Zij at 
the mesh points, the dimension of its first index NXDIM, and the limits NX and 
NY of the two indices to a subroutine with name FARBE (i = 1, NX; j = 1, NY). 
The E in FARBE stands for “Easy to use.” Such a call may look like 

CALL FARBE (Z, NXDIM, NX, NY, MODE) 

As a default, MODE should be set to zero. The program takes care of all scaling, 
including the selection of suitable contour levels at round values. The result will 
be a complete contour plot with area-filling contours. The different colors or 
patterns used for the areas between the contour levels are identified by a legend 
which will be automatically plotted. When calling FARBE, the result will always 
be a mesh in the form of a square, even if NX # NY. The two indices of the 
ACM Transactions on Mathematical Software, Vol. 15, No. 1, March 1989. 
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array determine the position of the z values at the intersections of the mesh lines 
in the x and y direction, respectively. The mesh lines are displayed by tick marks 
(Figures 1 and 6). 

If the shape of the sketch should be a rectangle or the user wants to specify 
the mesh lines explicitly, then the entry with name FARBBD has to be called 
(the second level). Scaling of the x and y coordinates has to be carried out by the 
user and also the values for the contour levels have to be passed. A call to 
FARBBD looks like 

CALL FARB2D (X, NX, Y, NY, Z, NXDIM, CN, ICOL, NC, MODE), 

where the arrays X and Y with length NX and NY, respectively, give the 
coordinates for the mesh lines, CN are the values of the contour levels in 
ascending order, and the integer values of ICOL characterize the selected colors 
or patterns for the NC-l different areas between the contour levels (NC = 
number of contour levels). The first value ICOL(1) of array ICOL with length 
NC + 1 is used for the areas below and up to the first contour level CN(l), the 
last, ICOL(NC + l), for the areas above the highest level CN(NC). Parameter 
MODE indicates whether pure line drawing, or area filling, or both is requested. 

When choosing the third level as entry, a user receives control over a single 
rectangle that is normally formed by mesh lines. So the user can specify all values 
at the vertices of the rectangle that are needed to form the bicubic. In principle, 
all calculations for all rectangles could be executed in parallel because there are 
no dependencies between them, when all nodal values have been computed in 
advance. However, we implemented an option which saves computing time in a 
sequential calculation: If the next rectangle in the queue is the right neighbor of 
the last, the position of the stations S on the common side may be copied. We 
also installed a fill-area buffer, that will be increased as long as successive 
rectangles completely receive the same color. This reduces the output of fill-area 
polygons. For more details, see the documentation part of subroutine FARBRC 
in the source code. 

5. PORTABILITY 

The algorithm is written in conformity with the American National Standard 
FORTRAN, X3.9-1978. However, most of the language constructs used are 
compatible with earlier versions of FORTRAN, so that only relatively simple 
modifications have to be made if a compiler of the latest standard is not available. 

The plotting interface has been kept very simple. From level two (FARBBD) 
and below, all plotting is carried out in a single subroutine with name USRPLT, 
which is responsible for line plotting as well as filling areas. The parameters of 
USRPLT are all explained within the source code, and an example USRPLT 
with Graphical Kernal System (GKS) calls [6, lo] is supplied. Mainly, two arrays 
with the coordinates to be plotted and an index value for the array ICOL have 
to be passed to USRPLT. At some installations, there may be restrictions 
concerning the number of points allowed for a fill-area polygon. This presents 
no problem for our algorithm because the number of points is kept small by the 
piecewise strategy for area filling (typically not more than 50 points). 
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When using the highest level FARBE, two additional adaptions to the local 
plot system may be necessary for the legend and the frame with the tick marks: 
The calls to GPL for plotting of polygons and to GTEXT for the graphical output 
of text may have to be modified. GTEXT is called like the CALCOMP routine 
SYMBOL. GKS calls [6, lo] are supplied for all routines of the graphical 
interface. 

Please note that all x and y coordinates passed to FARB-E-2D have to be 
scaled to centimeters or inches depending on the setting of the installation 
parameter CMSCAL. The value of CMSCAL may have to be corrected in the 
modules FARBE and FARBRC when installing the package. When calling 
FARBE, all scaling is carried out by the program. However, when calling 
FARB2D or FARBRC, scaling of the x and y coordinates by the user is essential 
because different representations for the curves will be found depending on the 
scale of the plot. Larger plots may require that more points with higher precision 
must be computed. “Problem coordinates” or unscaled “GKS world coordinates” 
should not be passed to FARBBD or FARBRC. 

With the exception of CMSCAL for switching between centimeter and inch, 
no other machine constant is used in the code. However, the execution of the 
code, and thus the representation found for the curves, is in special situations 
sensitive to the arithmetic of different machines. The differences should not be 
visible, however. We tested the examples of Figure 8 on a CRAY X-MP, CDC 
Cyber 170, VAX, and IBM AT, all in single precision and with different rounding 
options. The data for these examples are included in the source code as a test 
driver for FARBBD. The author would appreciate any feedback about the per- 
formance of the algorithm in general, and especially of the results achieved with 
this test data on other machines. 
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