
Rasterizing Curves of Constant--Width

JOHN D. HOBBY

AT&T Bell Laboralories, Murray Hill. New Jersey

Abstract. This paper gives a fast, linear-time algorithm for generating high-quality pixel representations
of curved lines. The results are similar to what is achieved by selecting a circle whose diameter is the
desired line width, and turning on all pixels covered by the circle as it moves along the desired curve.
However, the circle is replaced by a carefully chosen polygon whose deviations from the circle represent
subpixel corrections designed to improve the aesthetic qualities of the rasterized curve. For nonsquare
pixels, equally good results are obtained when an ellipse is used in place of the circle. The class of
polygons involved is introduced, an algorithm for generating them is given, and how to construct the
set of pixels covered when such a polygon moves along a curve is shown. The results are analyzed in
terms of a mathematical model for the uniformity and accuracy of line width in the rasterized image.

Categories and Subject Descriptors: 1.3.3 [Computer Graphics]: Picture/Image Generation--+&lay
algorithms

General Terms: Algorithms, Verification

Additional Key Words and Phrases: Curve generation, scan conversion

1. Introduction

A basic problem in raster graphics is that of rendering straight and curved lines as
sequences of black and white pixels. The problem is best understood in the case
where the line width is the minimum possible value: one pixel unit. The method
illustrated in Figure la was discussed by Freeman as early as 196 1 [3,4]. Freeman’s
rule is based on a cross-shaped region

R = ((x, y)] (X = 0 and -t 5 y < +) or (y = 0 and -+ 5 x < i)].

If we set up our coordinate system so that pixel centers lie in the set Z* of points
with integer coordinates, Freeman’s rendering of a curve C contains exactly the
pixels centered at points (m, n) E ?I*, where C intersects the region

R + (m, n) = ((x + m, y + n)) (x, y) E R).

In other words, we place a copy of w at each grid point and select the copies of a
that intersect C.

A common variation is to replace i? by its convex hull H(R) as in Knuth’s
“diamond rule” [9]. This rule illustrated in Figure lb is almost equivalent to
Freeman’s rule because it is difficult for the curve C to intersect the diamond H(B)
+ (WI, n) without intersecting i? + (m, n). Differences can occur only at endpoints
of C or when the slope passes f 1 as shown in Figure 1 c.

Author’s address: AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1989 ACM 0004-54 1 l/89/0400-0209 $0 I .50

Journal of the Assocntion For Computing Machinery. Vol. 36. No. 2, April 1989. pp. 209-229.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F62044.62045&domain=pdf&date_stamp=1989-04-01

210 JOHN D. HOBBY

-

-

(4 0) (cl

FIG. 1. (a) Freeman’s rule for rendering one-pixel-wide lines. (b)
The diamond rule. (c) A case where the diamond rule plots an
additional pixel.

Freeman’s rule and the diamond rule both generate one pixel in every column
for curves with slope bounded between - 1 and 1, and one pixel in every row for
curves with slope greater than 1 in absolute value. Well-known implementations
of Freeman’s rule include Bresenham’s famous line algorithm [1] and Pitteway’s
algorithm for conic sections [111.

There is less of a consensus on how to render curved lines that are more than
one pixel wide, but one natural approach is used by Tung [131: To render a curve
C with width d, let Rd be a circle of diameter d centered on the origin (including
the interior), and take all pixels whose centers lie in C f Rd, where C + Rd is the
set of all points (X f x’, y + y’) where (x, y) E C and (x’, y’) E Rd. Thus C + Rd
is a continuous version of the desired line, and we rasterize this region by taking
the set of pixels whose centers it contains.

Tung’s approach is well known, and generalizations of it are often used for color
graphics [14, 161, but other sources usually restrict C to be a straight line. This
avoids difficulties in rasterizing C + Rd due to the complexity of its boundary
curve; for example, the boundary is an algebraic curve of degree six in the general
case of the circle Rrl and a parabola C. Even when the complexity of rasterizing
C + Rd is tolerable, Figure 2 illustrates that there is poor control over the width of
the rasterized curves, even when d E Z.

Let R, be a circle of diameter one centered on the origin, and compare Freeman’s
rule for generating a one-pixel-wide rendering of a curve C with the process of
rasterizing C + R, as shown in Figure 3c. Freeman’s rule is widely used because it
is relatively easy to find (C + R) rl Z2 and the “one pixel in every row or column”
property tends to produce more uniform line width.

A well-known way to achieve better control over line width for d > 1 is to use
Freeman’s rule or the diamond rule, but turn on more than one pixel at a time as
suggested by Knuth [9] and Fishkin and Barsky [2]. The main idea is to construct
a set of pixels Bd and turn on all pixels covered when a copy of Bd is placed on top
of each pixel in Freeman’s rendering of a curve C. For instance, we can let Bd =
Rd n Z* and take the union of all Bd + (m, n) where C intersects E + (m, n). When
d is close to an even integer it works better to let Bd = Rd n (Z* + (f, i))
and take Bd + (WI - +, n - i) for each pixel (m, n) in Freeman’s rendering of
C + (i, i). In any case, it can take a significant amount of time to turn on
all the required pixels for each (m, n).

A reformulation of Freeman’s rule and the generalization to d > 1 leads to an
algorithm that allows superior control of line width and is faster than any method
considered so far. Figures 3a and 3b illustrate the reformulation of Freeman’s rule:
The set i? + (m, n) intersects C if and only if there exist points Y E R and c E C
such that r + (m, n) = c. This happens exactly when (m, n) is contained in the set

C-R= (c-r]c~Candr~R).

Rasterizing Curves of Constant Width 211

(4 0)

FIG. 2. (a) The region C + R2 superimposed on its rasterization, where C is a U-shaped curve. (b) The
rasterization of C + R2, where C is a line of slope 0.935.

(4 (b) (cl

FIG. 3. (a) A reformulation of Figure la as the rasterization of a region.
(b) A similar reformulation of Figure 1 b. (c) The rasterization of C + R, for
the same curve C.

Since C - a and C + R differ only in the type of tie breaking used, Freeman’s rule
is equivalent to taking pixels whose centers lie in C + R instead of in C + Rd.

The union of all Bd + (m, n) for (m, n) E C + R or all Bd + (m - f, n - $) for
(m - f, n - t) E C + R is just the set of all b + c + r for b E B,,, c E C, r E a,
and b + c + r E Z*. Thus the generalization to d > 1 is equivalent to rasterizing
the region Bd + C + R = C + (R + Bd) by taking the set of pixels whose centers lie
inside. In other words, Knuth’s method achieves better control over rasterized line
width by using regions like i? + Bd instead of Rd as shown in Figure 4.

Instead of using R + Bd, it seems natural to consider replacing i? + BJ by its
convex hull as shown in Figure 4c. The result is analogous to replacing Freeman’s
rule by the diamond rule: We occasionally pick up an extra pixel when the curve
direction passes certain rational slopes, but such changes have little effect on
rasterized line width.

Polygons of the form H(R -I- Bd) belong to a special class of pen polygons
introduced by Hobby [6]. Since not all pen polygons can be expressed as the convex
hull of a set i? + B for B C Z*, the following idea is almost a strict generalization
of Freeman’s rule and of Knuth’s method: Given a curve C and a positive real
width d, we render C + RJ by approximating Rd with a pen polygon 9(Rrl) and
then rasterizing C + 9(Rd) by finding (C + 9(&)) fl Z*. The added flexibility of
pen polygons leads to superior control of rasterized line widths, and the properties
of pen polygons lead to fast rasterization algorithms.

212 JOHN D. HOBBY

FIG. 4. (a) R, and &. (b) The
region R + B2 with points in Bz
marked by dots. (c) The convex hull
H(R + &) superimposed on a unit
grid. Note that j? + B? is composed
of four copies of i? and has no
interior.

This work builds on ideas from [6] and applies them to the important practical
problem of rasterizing curved lines with constant width. New contributions include
a better algorithm for generating pen polygons of practical importance, techniques
for generating the pixel output, and extensions to the case of devices with nonsquare
pixels.

In Section 2, we define pen polygons and give an algorithm for computing the
function 9 that finds a pen polygon appropriate for a given line width. We also
show how to extend the algorithm so that pen polygons can approximate ellipses
as required for generating constant-width lines on devices with nonsquare pixels.

In Section 3, we give an algorithm for rasterizing the region C + P given a curve
C and a pen polygon P. To avoid reiterating known results, we assume the existence
of a routine that takes a curve C’ that is monotonic in y, and determines
for consecutive scanlines y = i, the pair of pixel centers that C’ passes between.
We rasterize C + P by applying this routine to portions of curves of the form C +
(Ax, Ay). Note that [6] defines the set of pixels required but gives no algorithm to
compute it.

Finally, in Section 4 we get bounds on the running time, and we extend the
mathematical models from [6] to analyze the accuracy and uniformity of width for
the resulting rasterized curves.

2. Constructing Pen Polygons
The critical property of the region i? defined in the introduction is that parallel
supporting lines always have a vertical separation of one pixel or a horizontal
separation of one pixel; that is, if C is a straight line ax - by = c, the region C +
i? is bounded by supporting lines ax - by = c + d, where 2d = max(] a], 1 b 1).

Pen polygons are based on a generalization of this idea where opposite supporting
lines have separation vectors in Z2. Thus a convex region P is a pen polygon if for
any two parallel supporting lines Y, and p2 with P between them, there exist points
Q, E !, and Q2 E ~9, such that Q, - Q2 E Z2. The convex hull of a is a pen polygon
where the difference vector is always either (0, f 1) or (+ 1, 0).

It is shown in [6] that for a straight line C of some fixed rational slope, the
integral separation property ensures that the width of the rasterization of C + P is
independent of where C falls on the pixel grid. For instance when C is a line of
slope one and P is a hexagon with vertices (&$, &l) and (+- 1, 0) as shown in
Figure 5, we can choose Q, and Q2 to be opposite corners of P so that Q, - Q2 =
(1, -2). Thus if the supporting line containing Q, is x - y = c, then the other
supporting line will be x - y = c - 3. Repositioning C changes c, but with
appropriate tie-breaking, there are always three integers k for which the line
x - y = k is between the supporting lines. Since the pixel centers are spaced
& units apart along lines x - y = k, we always include a total of 3/d pixels per
unit length along C. This avoids the problem illustrated in Figure 2 where one arm
of the “U” has + as many pixels per unit length.

Rasterizing Curves of Constant Width 213

FIG. 5. Pixel centers fall on equally spaced dashed lines, and solid lines
show a pen polygon and the area swept out as it moves along a line of
slope one. With appropriate tie-breaking rules, the area swept out by the
pen will always contain exactly three dashed lines regardless of how the
pen track is positioned on the pixel grid.

The primary motivation behind pen polygons is a desire to produce a uniform
number of pixels per unit length for straight lines of rational slope, but as we see
in Section 4.2, pen polygons also do a good job of controlling rasterized stroke
width in the general case. Thus computing a pen polygon 9(Rd) amounts to
making sub-pixel corrections to the ideal shape Rd in order to achieve better control
over the rasterized stroke width.

The pen polygons of interest to us are all symmetrical about the origin in the
sense that z E P if and only if--z E P. It is shown in [6] that such symmetricalpen
polygons are convex polygons with vertices of the form

ZI, z2, . . .) zx, -z1, -z2, . . .) -zk,

where each z, belongs to the set +?I2 of points of the form (m/2, m/2) for m,
n E Z. A few of the simplest symmetrical pen polygons are shown in Figure 6.

A supporting line of a symmetrical pen polygon with some rational slope v/u
will pass through some vertex (m/2, n/2). Hence it has an equation of the form
vx - uy = c, where U, v E Z and c = t(vm - un) E +?I. In other words, there are
a countable number of possible locations for the supportin line, and they are
separated from one another by multiples of the distance l/(2

Q--
u2 + v2 . This means

that opposite supporting lines are separated by multiples of l/ u2 + v2.
As shown in [6], there are discrete possibilities for the width of rational-slope

rasterized lines, and they correspond to the discrete possibilities for the separation
between opposite supporting lines of the pen polygon. For instance, in the example
of Fi
3/ 2

ure 5, the supporting lines x - y = c and x - y = c - 3 are separated by
2, and there are 3/& pixels per unit length in the rasterization.

2.1 PEN POLYGONS THAT APPROXIMATE CIRCLES. In order to draw lines of
some width d, we need to generate a pen polygon 9(Rd) that approximates the
circle R,, of diameter d centered on the origin. For simple applications where only
a small range of line widths are needed, it is possible to precompute the necessary
polygons by hand. In fact, Figure 6 may contain all the required information. The
purpose of this section is to explain how to compute 9’(Rd) when necessary.

The algorithm presented here is a simplified version of Algorithm 1 from [6]
with some optimizations and some new data structures. The version presented in
[6] is somewhat impractical because of its extreme generality.

Since the supporting line positions are most tightly constrained for simple
rational slopes, we define the function 9(R,,) so that such supporting lines will be
as close as possible to their ideal positions. This forces the rasterized stroke width
to be as close as possible to d at simple rational slopes.

Figure 6 shows the effects of this strategy of placing rational-slope supporting
lines independently. For instance since 2.49 = 3.52/A, the separation of opposite
supporting lines for 9(R2.49) is rounded up to 4/J? = 2.83 at slope one, and down
to two at slope zero. Instead of making the pen polygons as circular as possible, we
try to make them as close as possible to the desired circles.

214 JOHN D. HOBBY

(0.5-1.06) (1.07-1.5) (1.5-1.76) (1.77-2.01) (2.02-2.47) (2.48-2.5) (2.5-2.91)

FIG. 6. The pen polygons Pi(&) for d in the indicated ranges. (Each pen polygon is
superimposed on an integer grid.)

We construct 9(R4) by starting with a square of size four as shown in Figure 7a
and successively cutting corners off of it. In Figure 7b, we have added edges of
slope + 1, each 3/&! units away from the origin. The completed pen polygon in
Figure 7c is formed by adding edges of slope +3 and t-2, each 4.5/A units away
from the origin. Since all supporting lines of a circle of diameter four are two units
away from the ori in,
of 3/A and 4.51 2. 2

the ideal values were 2.828/d and 4.472/A instead

To make the corner-cutting process more precise, consider the case of a pen
polygon based on RI,, and note that we can construct one quadrant of the pen
polygon and allow the rest of the polygon to be dictated by symmetry constraints.
Figure 8 shows how we might maintain one quadrant of the tentative pen polygon,
always considering the vertices in counterclockwise order when looking for a corner
to cut off. Figure 8a shows one quadrant of the initial 1 l-unit square,
and Figure 8b shows the corner at (5.5, -5.5) replaced by an edge of slope one.
Figure 8c is obtained by adding an edge of slope + to cut off the corner at
(2.5, -5.5); in Figure 8d, we remove (1.5, -5.5) and add an edge of slope $; in
Figure 8e, the new edge has slope f. Since the desired supporting line of slope +
passes through the point (0.5, -5.5) that vertex is preserved and we move on
to the vertex at (2.5, -5) in Figure 8e. This vertex also cannot be cut off because
we have already decided that the supporting line of slope i should pass through it.
Thus, we obtain Figure 8f by adding an edge of slope $ to replace the vertex at
(3.5, -4.5). We then add edges of slopes $ and ; as shown in Figures 8g and 8h.
The vertex at (5, -3) in Figure 8h is retained because the desired supporting line
of slope 2 passes through it.

The algorithm just suggested has been implemented by Knuth [lo]. It performs
satisfactorily, but as Figure 8 illustrates, the results are not always ideal: The edge
of slope one in Figure 8h gets replaced by edges of slopes two, three, four, and then
five, but the final polygon in Figure 81 still has a vertex at (5, -3). We must require
the final polygon to retain some point on the edge from (2.5, -5.5) to (5.5, -2.5)
in Figure 8b, but it is hard to justify choosing (5, -3) instead of (4, -4). Thus as
in [6], whenever we add a new edge to the tentative pen polygon, we select some
point of +Z’ on that edge to be retained during subsequent processing.

New edges are placed as close as possible to supporting lines for R,,, and new
retention points are placed as close as possible to the point of support; that is, for
an edge of slope v/u, we select the point of $Z’ closest to ux + vy = 0. Thus we
compute 9(R,,) by starting as in Figure 8a, but with retention points at (0, -5.5)
and (5.5, 0). The new retention points in Figures 8b and 8c are (4, -4) and
(2.5, -5) respectively. No new retention points are created in Figures 8d and 8e
because we have already decided to retain (2.5, -5). Similarly in Figure Sf, both
(2.5, -5) and (4, -4) are existing retention points.

The retention point at (4, -4) prevents the creation of an edge of slope i, so
we create an edge of slope two with a retention point at (5, -2.5) as shown in

Rasterizing Curves of Constant Width 215

FIG. 7. Three steps in the computation ofP(R,).
At each stage, the tentative pen polygon is shown
superimposed on a unit grid with the origin
marked by a dot.

(4 (b)

k) (h) (9 (3 W (1)

FIG. 8. The computation of a pen polygon based on R,, At each stage, one quarter of the tentative
pen polygon is shown superimposed on a unit grid with the origin marked by a bold dot. Smaller dots
mark the vertices of the tentative pen polygons.

Figure 9g. New edges of slopes $, 3, and 4 are added in Figures 9h-j, but no new
retention points are needed.

We output vertices of the linished polygon in counterclockwise order and
improve on [6] by keeping the unfinished portion in a sequence of cells s[t],
s[t - 11, . . .) s[l] maintained as a stack. Each s[i] contains a vertex location
s[i].z and the counterclockwise adjacent edge s[i].r. There is also an edge node I
for the edge clockwise adjacent to s[t].z.

Each edge node contains a direction vector w, integers I, and I1 that locate the
retention point, and an integer c that locates the line containing the edge. Thus if
(u, v) = s[i].r.w, the retention point on s[i].r is

s[i].z + s[i].r.l,(u, v) = s[i - l].z - s[i].r&(u, v),

and s[i].r. lies on the line vx - uy = s[i].r.c. It is convenient to maintain the
polygon scaled up by a factor of two so that the z, c, I,, and I, fields have integer
values.

The algorithm of Figures 10 and 11 maintains some invariants that can be
expressed in terms of the turn-amt function defined on line 33 of Figure 11: If 1
5 i I t and e is the edge clockwise adjacent to s[i].r, then either turn-amt(e, s[i].r)
= 1, or s[i].z is the sole remaining point on some previously chosen supporting
line. When turn-amt(l, s[t].r) = I and (a, i’) = I.w. + s[t].w, we have for all 6 that
the points.

s[t].z - 61.w and s[t].z + Gs[t].r.w

lie on the line Cx - fiy = f.c + s[t].r.c - 6. Thus 6 measures how much is to be
sliced off, and line 10 computes the maximum slice that retains the retention points
on I and s[t].r.

216 JOHN D. HOBBY

(h) (9 (j)

FIG. 9. The final stages in the computation of 9(R, I) using retention
points. The initial stages are as shown in Figures 8a-f.

1
2
3
4
5
6
I
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

procedure make-pen(d);
I+- I;
l.m- (I, 0);
s[1l.r.w +- (0, I);
1.c c s[I].r./, - s[l].v.& c round(d);
s[1l.r.c + 1.1, c I.& + round(d);
s[l].z t (I.h, - Ix);
while f > 0
do (if tum~amt(l.w, s[t].r.w) > 1 then {pop; goto top of loop;)

6 c min(l.h, s[t].r.l,);
if 6 > 0 then [(ic. C) c I.w + s[t].r.w;

2 + I.c + s[t].r.c;
d t min(b, E - round(dJr? + ?‘)):1

if d 5 0 then {pop; got; top of loop;j
if 6 = 1.1, f 1.1,

then if s[f].r./, + s[t].r.l, = 6
then {t-f - 1; I.w. t (ic. C);]
else {i-chop(t);

eset(/);l
else (if s[/].r./, + s[t].r./, = 6

then lchop
else {t t I + I;

s[t].z c s[t - l].z;
/chop;
rchop(t - 1);
set-rp;l

esef(s[t].r);)};

FIG. 10. A routine for constructing one quadrant of the pen
polygon 9(Rd).

Lines 2 through 7 set up one quadrant of the initial square as in Figure 8a, and
lines 9 through 27 form the body of a loop that tries to replace the vertex s[t].z
with an edge in direction (0, a). If this operation fails, we use pop to output s[l].z
and go on to the next vertex. At this point the edge assigned to I has been “passed
over” so line 32 throws away the unneeded retention point.

When lines lo-14 can find a positive integer 6, lines 15-27 create a new
edge with w = (II, C) and c = C - 6. Line 15 tests if the new edge causes I to dis-
appear, and lines 16 and 20 test if s[t].r disappears. Normally the tests fail and
lines 22-27 push the new edge onto the stack. Otherwise, the update process is
simplified by allowing the new edge to replace an existing edge. For d < 40,
this simplified update happens about 32.7% of the time we reach line 15:
Line 17 gets executed 1.8% ofthe time; lines 18-19, 20.7%; and line 21, 10.2%.

Rasterizing Curves of Constant Width

28 procedure pop;
29 Output the vertex f(s[l].z);
30 I+ s[t].r;
31 tf-t- 1;
32 I.12 c 1.1, + 1.1,; 1.1, + 0;

33 function turn-amt(a, b); return ax * b.y - b.x * a.y;

34 procedure /chop;
35 LIZ +- I.12 - 6;
36 s[t].z + s[t].z - 6 * I.w;

37 procedure rchop(i);
38 s[i].r.L, +- s[i].r./, - 6;
39 s[i].z + s[i].z + d * s[i].r.w;

40 procedure set-rp;
41 if s[/ - I].r./, = 0 then s[t].r.!, c 0
42 else if 1.1, = 0 then S[t].r./, + 6
43 else (s[t].r./, + round((ir, C) s[t - 1].z/(ir’ + P’));
44 s[t].r.l, + max(O, min(s[t].r.&, S));j
45 s[t].r./, + 6 - s[t].r./,;

46 procedure act(e);
47 e.w c (ti, 9);
48 e.c c C - 6;

217

FIG. II. Support routines for con-
structing pen polygons.

We can reach line 14 with 6 < 0 in cases such as when d = 2.47 and (U, 0) =
(1, 2). Then the ideal supporting line is 2x - y = 3, but 2x - y is only 2.5 at
$s[t].z = (1, -0.5).

A more unusual case occurs in the set-rp routine of lines 40-45. Lines 41 and
42 ensure that the new retention point will be coincident with an existing one on
edge I or edge s[t - l].r, if this is possible. Otherwise, line 43 uses the dot product
(a, V) * s[t - l].z to locate the retention point as close as possible to the line
ilx + cy = 0. Ordinarily line 44 does not change s[t].r./?, but sometimes it is
necessary to prevent s[t].r./? from being out of range. This never happens when
d 5 58.54, but it does happen at the slope live edge when d = 58.55.

2.2 APPROXIMATING ELLIPSES. In order to deal with devices where the vertical
spacing between pixels differs from the horizontal spacing by some constant factor
a, we need to construct a pen polygon whose height is approximately d pixels and
whose width is roughly ad pixels. In other words, we need to define 9’(Rc~,c,), where
R,,,,, is an ellipse with height d and aspect ratio l/a. To represent on such a device
a curve C with a width of d vertical pixels, we work with the curve X,,(C) obtained
by applying the operator X, that scales x-coordinates by a. The appropriate pixel
image is then obtained by rasterizing the region X,,(C) + 9(Rc,,c,) in the usual
manner.

We now give changes to the code in Figures 10 and 11 that cause make-pen to
compute P(R,,.,,). The initial square is turned into an initial rectangle by replacing
“round(d)” by “round(ad)” on line 6. After scaling by two, the supporting line for
the desired ellipse is

vx - zty = dJlr’ + a’? (1)

instead ofjust V,Y - z[y = dm, so we change line 13 to read

6 c min(6, (; - round(ddil’ + a’?)).

218 JOHN D. HOBBY

Since the retention point on the (z?, V) edge should be as close as possible to Rd
after x-coordinates are scaled by l/a, we replace line 43 with

s[tl /,i2 t round (W’> F) * s[f - l1.z . .
(iWa2 + p2 1 ’

3. Rasterizing Pen Polygon Envelopes

Since line widths are often relatively small, the time and space requirements of the
pen polygon construction algorithm tend to be quite modest. Thus the overall time
and space requirements of the line-drawing algorithm are usually dominated by
the process of finding the pixel centers covered by a pen polygon P as it moves
along the given curve C. The purpose of this section is to show that this rasterization
process is not much more difficult to implement than the well-known algorithms
for rasterizing thin curved lines.

There are many different formulations for the problem of rasterizing thin curved
lines. For our purposes, we shall assume the existence of a subroutine plot that
takes a description of a curve C’ and generates for consecutive integersj, the value
of LxJ, where (x, j) is the unique intersection of C’ and the line y = j. In other
words if C’ is monotonic in y, plot(C’) finds for each scanline y = j the pixels
(i, j) and (i + 1, j) that C’ passes between. Pratt gives an algorithm that solves this
problem for conic sections [121; Knuth solves a similar problem for parametric
cubic curves [lo]; Hobby also solves a similar problem for various class of algebraic
curves. In fact, we may use any of the well-known algorithms for rasterizing thin
lines according to Freeman’s rule [8, 11, 151: Apply Freeman’s rule to C’ + (0, t),
C’ - (0, i), or C’ - (t, 0), depending on whether C’ has slope between in the
interval [0, 11, in [- 1, 01, or outside [-1, 11. If S is the resulting pixel image,
plot(C’) just finds pixels (i, j) E S where (i + 1, j) 4 S.

The relationship between thin lines and the region C + P covered by P as it
moves along C can be explained in terms of the theory of tracings and convolutions
introduced by Guibas et al. [5]. They give a procedure for deriving from C and P
a convolution tracing that describes the boundary of the region C f P. The theory
in [5] only applies directly when C is polygonal, but it is not hard to make the
necessary generalizations [6]. In fact, the entire theory generalizes naturally to
algebraic curves (L. Ramshaw, private communication). (See also Shapira [12a].)

The convolution tracing derived from a curve C and a pen polygon P can be
thought of as a closed curve that divides the plane into regions according to the
number of times P passes over each point as P moves along C. In other words, if
P were a paint brush, the convolution tracing would break up the plane according
to the number of coats of paint received. For example, in Figure 12, the entire
region enclosed by the convolution tracing is painted once, except for a small
region just left of center that gets painted by two different corners of zF(R~.~).

The convolution tracing for a symmetrical pen polygon P and a curve C consists
of curve segments and connecting segments as delimited by the dots in Figure 12b.
The curve segments are of the form C’ + zi, where C’ is a segment of C and zi is
a vertex of P; the connecting segments are straight lines of the form e + c where e
is an edge of P and c is a point on C where the tangent direction is parallel to e.

The rule for choosing a vertex z, for a curve segment C’ is to let D be the tangent
direction for some point on C’, and go around P counterclockwise until finding
three adjacent vertices zi- , , z;, and z,+, , where the direction D is between zi - zi- ,
and z,+, - zi (inclusive). Thus the line through zi with direction D is a supporting

Rasterizing Curves of Constant Width 219

c2
\

\
\

\

I

y\

FIG. 12. (a) The pen polygon .S@(RZ.2). (b) The convolution
*Cl
I

tracing that describes the region C + 9(R&, where C is an 85”

I arc of a circle of diameter 6 as indicated by the dotted line.
/

/
/

co

(4 (b)

line for P and an observer facing in direction D would find P on the left side of the
line. Let V(P, D) be a function that computes such a vertex zi.

To form the convolution tracing in Figure 12b, let P = 9(Rz.,) as shown in
Figure 12a, and break C into a segment C, from co to cl, and a segment C, from
cl to c2. For i = 0, 1, 2, let D, be the direction of C at ci so that Do = (1, 1. l), D, =
(0, 1) and D2 = (-1, 1.1). If zi, z;+~, . . . , z, are counterclockwise adjacent vertices
of P where z; = V(P, (1, 0)) and zj = V(P, Do), we start with the polygonal line
obtained by connecting the points co + z;, co + z;+, , . . . , co + z,. In this case zj =
(2, -OS), so we then take the curve C, + (2, -0.5) up to cl + (2, -0.5). Since
V(P, D) = (2, 0.5) for directions D between D, and D2, we add a connecting
segment from cl + (2, -0.5) to cl + (2, 0.5) and continue with C2 + (2, 0.5).
Finally, we complete the right side of the convolution tracing by adding a polygonal
line from c2 + (2, 0.5) to c2 + V(P, (-1, 0)).

Instead of constructing the other half of the convolution tracing by starting at
c2 + V(P, (-1, 0)) and going down to co + V(P, (1, 0)), it is more convenient
to start from the bottom and use -Di in place of D; for i = 0, 1, 2: We start
with the polygonal line from co + V(P, (1, 0)) to co + V(P, -Do), taking the
intermediate vertices of P in clockwise order. Next comes C, + V(P, -Do),
then a connecting segment from cl + V(P, -Do) to c, + V(P, -D2), followed
by C2 + V(P, -D2) and another polygonal line to c2 + V(P, (-1, 0)).

Given a curve C that is strictly monotone in y, we can find the pixel centers in
C + P by using the convolution tracing to locate the left and right boundaries of
C + P. After applying the plot routine to each of the segments in the right side
of the convolution tracing, we can easily locate for each scanline y = j, the
maximum integer i such that (i, j) is on or to the left of the right edge of C + P at
y = j. If more than one segment cuts y = j, the desired i is the maximum over all
relevant calls to plot. The left side of C + P is obtained similarly except that we
take the minimum instead of the maximum.

In the example of Figure 12, the right side of the convolution tracing is monotone
in y, so no two segments can cut the same scanline; that is, the dots that denote
segment boundaries are encountered in order of increasing y. This is not true for
the left side of the convolution tracing because of the connecting segment from
c, + V(P, -Do) to c, + V(P, -D2). Such connecting segments whose vertical
orientation is opposite that of the surrounding curve segments are what Guibas et
al. [5] call backward edges. Their theory implies that backward edges cannot be
necessary in order to describe the boundary of C + P because they have an inverse
effect in the rule that determines the correspondence between the convolution

220 JOHN D. HOBBY

tracing and the number of “coats of paint” received: Ordinarily, when a scanline
crosses a segment of the left side of the convolution tracing, the region to the right
of the intersection gets one more coat of paint; for right-side segments, the region
to the left of the intersection gets one more coat of paint. Since backward edges
have the reverse effect, they cannot be necessary to delimit the boundary of C + P
because the number of coats of paint is zero to the left of the left edge of C + P,
zero to the right of the right edge, and positive in between.

When C is monotone in y, we rasterize C + P by looking at the convolution
tracing and applying plot to each curve segment and each connecting segment that
is not a backward edge. For each scanline, we fill between the leftmost pixel that is
to the right of some left-side segment and the rightmost pixel that is on or to the
left of some right-side segment.

When C is not monotone in y, we can break it at vertical extrema to yield fulls
F,, F,, . . . , F,,. Figure 13 shows how to process each fall separately, using a pen
polygon stored in a global array F. Let k denote the number of vertices on or to
the right of a vertical line through the middle of the pen polygon, and let these
vertices be P[11, P[2], . . . , P[k]. For i 5 rk/21, P[i] is the ith vertex in the output
of make-pen; for i > [k/21, P[i] is the result of negating the y-component of
P[k + 1 - i].

Figure 13 assumes that each fall is broken into segments by cutting whenever
the curve direction passes the direction of one of the edges of the pen polygon.
Thus for each segment S, there is an integer oindex(S) such that we may take
V(P, D) = +P[oindex(S)] whenever D is the tangent direction for some point on
S and P is the pen polygon represented by i! The first and last segments in a fall
Fare denotedfirst-seg(F) and lust-seg(F); the successor to a segment S is denoted
next-seg(S); and the endpoints of S are denoted first-pt(S) and last-pt(S).
Naturally first -pt (F) for a fall F refers to Jirst -pt (first -seg(F)), etc.

The L and R arrays keep track of the leftmost and rightmost pixels in each
scanline, and fill-rows turns on the appropriate pixels. The ochange procedure
draws right-side connecting edges between c + P[j] and c + P[j’], or left-side
edges between c - P[j] and c - P[j’]. Since right-side and left-side edges have
opposite vertical orientations, one side is omitted because it yields only backward
edges. Lines 9 and 10 use ochange to start out the rasterization by drawing all
necessary edges of c + P; lines 18 and 19 use ochatige to finish the rasterization by
drawing edges of c’ + P.

The code assumes that plot has a procedure parameter and that plot(S, j’)
executesf(txl, j) for each point (x, j) on the curve segment S where j E Z. In an
actual implementation, the desired actions would be executed directly by the
plotting routine and there would be a special purpose plotting routine for short
line segments with rational slopes. An example of such a routine is the variant of
Bresenham’s algorithm shown in Figure 14. It handles segments that start or stop
at integer y-coordinates by treating them as though they contain the upper endpoint
but not the lower. The loop invariant is that the segment contains a point (4, j),
wherei+r/nst<i+(v+ l)/nandOsr<n.

Note that if P is the pen polygon and A is the vertical extreme between falls F
and F’, do-fall(F) and do,jdl(F’) each draw k - 1 connecting segments from
A + P. A substantial saving can be achieved if we omit edges of A + P known to
be interior to the region C + P that is being rasterized. This is especially important
in the common case shown in Figure 15b where C is a smooth curve and F and
F’ are almost horizontal near A so that there is no nonhorizontal edge of A + P
on the boundary of C + P.

Rasterizing Curves of Constant Width 221

1 procedure ~uAwv~(C):
2 n t ZP[k].y;
3 for each fall F of C do do-fill(F);

4 procedure do,/k/l(F);
5 c cfirst-p/(F); c’ c luster;
6 j s--- oindrx(lirst_sc~g(F));
7 f t Lc.y + n/21; t’ ‘L Lc’.y + n/21;
8 if f’ > t then c/cur(t + 1 - n, I’) else c/ear(t’ + I - n, t);
9 ochange(c, I, j. c’.y > c.y);

10 ochange(c, k, j, c’.y > c.y);
11 for each segment S in F
12 do ((dx, dy) c 2$[j];
13 p/ot(S + P[j], trunsifion);
14 if S # lust-seg(F)
15 then {j’ - oindex(nexf-seg(S));
16 ochunge(lust-pt(S), j, j’, c’.y > c.y);
17 j+-j’ll
18 ochange(c’. j, I, c’.y > c.y);
19 ochunge(c’. j, k, c’.y > c.y);
20 if I’ > t thenfill-rows(t + I - n, t’) elsefZ/-row(t + 1 - n, t);
2 1 procedure c/eur(y, , yz);
22 for j c y,, yI + 1, . . , y, do (L[j] c m; R[j] c -a;)

23 procedureJLmws(y,, yz);
24 forjcy,,y,+l,...,yz
25 do Turn on all pixels (x, j), where L[j] < x =S R[j];

26 procedure transition(x, y);
27 R[yl +-- maxW[yl. x1;
28 L[y - dy] + min(l[y - dy], x - dx);

29 procedure rfrans(x, y); R[y] t max(R[y], x);

30 procedure Itrans(x, y): L[y] t min(l[y], x);

3 1 procedure ochange(c, j, j’, up);
32 ifj<j’thenforitj+l,j+2,...,j’
33 do if up then p/ot(line-seg(c + P[i - 11, c + P[i]), mans)
34 else plot(line-seg(c - P[i - I], c - P[i]), fruns);
35 ifj>j’thenforitj,j- l,...,j’+ 1
36 do if up then p/ot(line-seg(c - P[i - 11, c - P[i]), /tram)
37 else p/ot(line-seg(c + P[i - I], c + P[i]), rtrans):

FIG. 13. Routines for rasterizing curves. Variables n, dx, and dy are
assumed to be global.

procedure plot-seg(x, y, m, n, f);
je- 1 + LyJ;
r c Lm(j - y) + nxJ;
i+Lr/nJ;rcr-in:
a + Lm/nJ; b c m - an;
while j 5 Ly + n/21
do If& A;

rtr+b;iti+a;

FIG. 14. A version ofplor that plots a line segment from
(x, y) to (x + m/2, y + n/2) as required by ochange.

ifr?nthen{rcr-n;ici+ l;j
j+-j+ l;}

If there is a sharp corner at the vertical extreme, the curve should be thought of
as reaching A with some direction D, then turning either right or left to some
new direction D’. Turning right corresponds to executing line 18 of do-fall(F)
and then line 10 of do-,jX(F’); turning left corresponds to line 19 of do-fall(F)
and line 9 of doJkN(F’). For example, suppose we use 9(R4) with k = 6 and

222 JOHN D. HOBBY

6
5/y

0

4 A ,.....+...,
3 :. .

1 2 -

(4 (b)

LA 3.. : . . : : .’ Q x . . :
(cl (4

FIG. 15. (a) The pen 9(&) with P[I], P[2], . , P[6]
marked. (b) A smooth curve where no connecting seg-
ments are required for the vertical extreme at A. (c) and
(d) Two ways to plot connecting segments when there is
a sharp corner at A. In (b)-(d) the curve C is indicated
by the dotted line, and solid lines give a portion of a
convolution tracing that corresponds to C + .P(&); the
heavier lines are edges of A + 9(R4) that are actually
plotted.

vertices P[l], P[2], . . . , P[6] as shown in Figure 15a. In Figure 15c, we turn right
from D = (5, 4) to D’ = (5, -4) while line 18 draws a connecting segment from
A - B[2] to A - P[l] and line 10 draws a segment from A + P[6] to A + P[S].
If we go the long way around from (5, 4) to (5, -4) via (-1, 0) as shown in
Figure 15d, line 19 draws four segments from A + P[2] to A + P[6] and line 9
draws four segments from A - P[l] to A - p[5].

Thus we can optimize do-fall by introducing a global variable I and replacing
lines 18-20 with

if2j<k+ 1 thenlt I elselck;
ochange(c’, j, I, c’.y > c.y);
if t’ > t thenfill-rows(f + 1 - n, t’ - n) elsefill-rows(t’ + 1, t);

and lines 8- 10 with

if t ’ > t then c/eur(t + 1, t ‘) else dear(t ’ + 1 - n, t - n);
ochange(c, k + 1 - I, j, c’.y > c.y);

The effect of the line “if 2j < k + 1 . . . “is to decide to turn right if the fall ends at
a positive slope. This simple test finds the best way to turn in common cases such
as those shown in Figures 15b and 1%.

The other effects of these changes to do-fall are that we avoid applyingfill-rows
to scanlines occupied by c’ + P, and we avoid applying clear to scanlines occupied
by c + P. In other words for each scanline y = j, we continue collecting minima
and maxima in L[j] and R[j] as long as the pen polygon intersects the scanline.
This is necessary because, in the optimized program, a row of pixels can begin at
a connecting segment from one fall and end at a connecting segment from the next
fall.

Rasterizing Curves of Constant Width 223

Since the clear and ochange operations deleted from lines 8- 10 are still needed
before the first fall, these operations must be done just before line 3 in do-curve:

c *first-pt(C); c’ + last-pt(Jirst-fall(C));
t c 1c.y + $zJ;
c/ear(t + 1 - n, t);
Fha;ge(c, 1, oindex(jirst-seg(C)), c’.y > c.y);
+ ;

Similarly, operations removed from lines 18-20 need to be done just after line 3.
The following code uses values of c, c’, and t’ computed by do-fall:

for each fall F of C do doJaN(
ochange(last-pt(C), oindex(last-seg(C)), k + 1 - I, c’.y > c.y);
fill-rows(t’ + 1 - n, t’);

4. Analysis

We now analyze the time requirements of the actual rasterization algorithm and
prove some theorems that reflect on the aesthetic qualities of the results. The
rasterization algorithm works for any symmetrical pen polygon, but it is important
to analyze the results of the pen polygon construction algorithm since time bounds
and aesthetic qualities both depend on the pen polygon.

Suppose we wish to represent a curve C with width d on a device whose pixels
are one unit high and have aspect ratio a. This involves applying do-curve to
X,(C) and the pen T(R,,,,), where X, scales x-coordinates by a. The running time
depends on the time required for plot to process the necessary segments of C. This
depends on the plotting algorithm and the family of curves involved, but it is at
least linear in A,, where A,, is the total change in y along C; that is, A,,, is the arc
length of X,(C).

Procedures clear,fill-rows, and transition do work proportional to A), + A, where
A,, + A is the total number of timesfill-rows processes a scanline. If we can show
that A,. dominates A and the overhead incurred elsewhere in the algorithm, it will
be apparent that the overall running time is little more than that for rendering a
one-pixel-wide version of X,(C). (The O(A), + A) time bound forfill-rows depends
on the output being given as run lengths. For bitmap output there is a term
proportional to the number of pixels to be turned on, but this term is usually small
in practice.)

The size of A and the number of operations counted as overhead are bounded
by the number of segments into which X,(C) must be broken, the number of
connecting segments plotted by ochange, and the total change in y along these
segments. There is at most one breakpoint between segments of X,(C) for each
time the direction of X,(C) passes the horizontal or passes parallel to an edge of
9(Rd.(,). Let us write this as S’V(a, d), where N(a, d) is the number of vertices
of P(R,,,,) and 01 depends on a, d and C. In this notation the number of connecting
segments is at most (CY + l)N(a, d), and we can define 01’ so that the total change
in y along them is (LY’ + 1)d.

Although they depend on a and d, the parameters (Y and cy ’ are primarily
measures of the complexity of C. They are typically on the order of unity and
nearly equal. They can both be bounded in terms of the total curvature and number
of inflections in C.

As is shown in the next section, d dominates N(a, d). Thus the total overhead is
O((1 + (Y -t a’)d), and the main part of the algorithm requires O(A?.). In other
words, the main part predominates when the vertical extent is significantly greater

224 JOHN D.HOBBY

than the desired width. If the running time for plot really depends on A,. instead of
the true arc length, the algorithm is especially fast for nearly horizontal curves.

4.1 PROPERTIES OF PEN POLYGONS. How well does P(Rd.u) approximate R,,,,,
and how many vertices does LF(R~.~) have? The accuracy question is best studied
in device space where pixels are one unit high and l/a units wide as in Figure 16b.
Since the algorithms of Sections 2 and 3 work in pixel space where pixels are one
unit square as shown in Figure 16a, the pen polygon is based on the ellipse Rd.a
instead of the disk Rd. In order to produce lines d units wide in device space, the
pen should approximate Rd when mapped back into device space. Thus we are
interested in E(X,,,(LF(R~.~)), Rd), where X1,, scales x-coordinates by l/a and

W’, &) = max Id - 2Jx* + y*l.
(.x..v)EboundaryV)

Since LF’O;(R~,~) must have integer height and width, E(X,I,(9(Rdo)), Rd) must be
at least 3 when d = t modulo one and the error must be at least 1/2a when
ad = +. Thus 3 max(1, l/u) is the best error bound we can hope for. A proof
would be rather tedious, but this bound appears to hold for almost all a and d:
(Note that we exclude small d because the error approaches (6 - 1)/2 when
d = i and ad = n + $ - t for small 6 and large integer n.)

CONJECTURE 1. Zf 6 = f mux(1, l/u) and d 2 26, then E(X,,,(B(Rd,U)), Rd)
5 6.

We can verify the conjecture experimentally by computing all possible 9(Rd.o)
for some range of a and d. We do this by running make-pen and keeping track of
the range a and d values that would yield the same rounding decisions. In this way,
it has been determined that the conjecture holds for each of the 346,509 potentially
different 9J(Rd.LI) where d < 30 and ad < 30.

Consider the function N(u, d) that gives the number of vertices in 9(R&.
Since [6] proves that any pen polygon with perimeterp has at most O(p213) vertices,
it follows immediately that N(a, d) = O(d2’“) for fixed a. The basic idea is that
each edge has a direction vector (u, v) E iZ* with the greatest common denominator
gcd(tl, v) = 1, and the length of that edge is a multiple of 3 m. To minimize
the perimeter for a given number of edges, the set of edge directions should be of
the form

S, = ((u, v) E Z*] gcd(u, v) = 1 and U* + v* c r*)

for some Y. It is not hard to see that S, has 0(r’) edge directions and their total
length is 8(r3), hence the 5 power relationship.

Getting lower bounds on N(u, d) and the dependence on a requires new results
not found in [6]. Let us look at some rough arguments for what asymptotic
behavior to expect and then compare this with the actual behavior. For a pen P
with a given number of edges, we minimize the perimeter of X,,,(P) by selecting
edge directions of the form

-

S,.,, = (u, v) E Z’ 1 gcd(u, v) = 1 and u’ + v2 < r2
U2

.

Since S,.,, contains 0(ar’) directions (21, v) and the sum of all Jlr'/u' + v' < Y' is
@(a?), it appears that if X,,,,(P) has perimeter p then it has O(u”‘p”“) edges. This
gives an O(u”“d”‘) bound on N(u, d).

Rasterizing Curves of Constant Width 225

FIG. 16. (a) The pen polygon 9(Rb.z,0.5) super-
imposed on a unit grid. (b) The same diagram
in device space where the pixels are l/a = 2
units wide with R6.2 superimposed for compari-
son.

Since a pen polygon can have no more than two vertices with the same x
coordinate or the same y coordinate, N(a, d) also has upper bounds of O(ad) and
O(d) for an overall upper bound of O(N(a, d)), where

n(a, d) = min(d ad a”3d”‘). 2 >

Rather than attempt to prove matching lower bounds, let us see how the actual
vertex count N(a, d) behaves for practical ranges of a and d. By checking all
P(R,,,,,) for d and ad both less than 30, we find that the ratio

Na, 4
m(a, 4

is bounded between 1.964 and 12. If we further restrict min(d, ad) 2 1, the ratio
varies in a seemingly random fashion over the interval [1.964, 6.3251. For a = 1
and 1 % d < 500 the range is [2.102, 5.5451.

The time required to compute 9’(RLl,c,) is clearly Q(N(a, d)) but this bound may
be on the low side because we cannot be sure when an edge is created that it
will be part of the final polygon. For instance we may have N(a, d) = O(l) for
arbitrarily large a, but make-pen requires at least k iterations to achieve edge
slopes 3/z? I k or a/G I l/k. This gives runtime O(max(a, l/a)) if .Y(R,,.,,) has
an edge slope near l/a. Thus it seems reasonable to expect runtime at least on
the order of

T(a, d) = max(a, a-‘, a’/3d”3).

Let T(a, d) is the actual number of iterations in the main loop of make-pen.
By evaluating all P(a, d) for 1.5 < d < 30 and 1.5 < ad < 30, we find that
T(a, d)/T(a, d) varies in a pseudorandom fashion over the range [0.542, 3.8531.
For a = 1 and 1 I d < 500 the range is [0.542, 3.3311. Thus we conjecture that
$(a, d) is the correct asymptotic time bound when d > 1.5 and ad > 1.5.

If we don’t want to depend on conjecture we can obtain a simple 0((1 + a)d)
upper bound on the runtime of make-pen by looking at the sum of c./, + c.lZ
for each edge e in the data structures. This sum is initially 2 . round(d) +
2 . round(ad), and it gets reduced by at least one during each iteration of the while
loop: one edge is deleted by pop if 6 < 1; otherwise the net effect of /chop, rchop,
and the new edge is to reduce the sum by 6.

4.2 AESTHETIC CONSEQUENCES OF PEN POLYGONS. As explained in Section 2,
pen polygons are designed to produce a uniform number of pixels per unit length
when rasterizing a straight line of rational slope. It is natural to ask whether the
rasterizations of curved lines have any similar properties.

226 JOHN D.HOBBY

If we have a curve C and a desired width d, we take the corresponding curve
C’ = X(,(C) in pixel space and rasterize the region C’ + 9(&,) as shown in
Figure 17a. The goal is for the rasterization to have a uniform width when viewed
in device space as shown in Figure 17b.

Figure 17a illustrates an integer offset property described in [6]: The region C’ +
P(R,,.,) is bounded by curves C’ + z and C’ - z where z is a vertex of .9(&,)
selected as explained in Section 3. The rasterization R is bounded by curves R+
and R’ - 22 shown in bold, and the integer offset property is that these curves are
identical except shifted by the integer vector 22. The idea is that this gives
predictable results if we measure the width at a point A’ on C’ by intersecting R
with a line K,, of direction z through A ‘.

More formally, assume that the pen polygon P = 9(R,,.,) has vertices

ZI) 22, . . .) Zk, -z1, -z2, . . .) -z/,,

and the curve C’ can be broken into segments Ch, C: , . . . , C,‘,, so that the region
C’ + P is bounded by curve segments

CA + Zjo, CA - Zjo, CI + ZJ,) Cl - Zj, > f . . 2 C,:t + Zj,,, CL - zjj,,, (2)

where j, = oindex(C,’) for i = 0, 1, . . . , m. Let points A’ and B’ lie on the
same segment C,! so that none of the curve segments (2) other than C,’ + Zj,
and C: - zj,, intersect the lines Y~, and !,, through A ’ and B’ with direction Zj,.
Under these conditions we say that C’ + P has integer offset vector 2z,,, between
A’ and B’.

The following uniformity theorem defines the width of a region R’ at a point
Q E R ’ in some direction D to be the length of the segment containing Q formed
by intersecting R ’ with a line of direction D through Q. Note that the width
depends strongly on D so we must make sure that the choice of D is reasonable.

THEOREM 1. Suppose X, maps points A and B on curve C to points A ’ and B’
on C’. If C’ + 9(Rdu) has rasterization R and integer offset 22 between A’ and
B’, then for any point Q E C between A and B, the width of X,,,(R) at Q in
direction X,,,(z) is the length ofX,,,(2z).

PROOF. Since X,,,(R) has boundaries Xljo(R+) and XIlc,(R+) - X,,,(~Z), it only
remains to show that they each intersect the line of direction X,,,(z) through Q
exactly once. It sufftces to show that such a line intersects C exactly once.

Since second and fourth quadrant edges of L@‘(R~,~) cannot have negative slopes
and first and third quadrant edges cannot have positive slopes, the slopes of z and
C’ cannot have the same sign. Thus a line of direction z can cross C’ only once
and therefore a line of direction X,,,(z) can cross C only once. 0

Roughly speaking, the theorem claims that the width is perfectly uniform and
always equal to what one would expect by looking at X,,,(9(Rd,0)); that is, the
width is always the length of a diagonal of X,&Y(R~.~)) and conjecture 1 claims
that this is close to d. In fact the theorem is not as strong as it appears to be because
it says nothing about the direction in which the width is measured.

A more realistic way to measure the width of the rasterization is to choose two
points on C and measure the average width in the direction of their perpendicular
bisector. Since it turns out that Y, and fB are almost perpendicular to the line AB
in Figure 17b, the average width is essentially the area of X,,,(R) between lines !,,
and Yu and divided by the distance from A to B.

Rasterizing Curves of Constant Width 227

(4 (b)

FIG. 17. (a) The rasterization of a region C’ + 9(Re,l.o.s). (b) The same figure in
device space based on aspect ratio a = 0.5. The rasterization is filled with pixel
squares and has boundaries shown in bold.

With this formulation it is possible to measure the error produced by the
deviation of YA and !’ from perpendicular to AB. The effect is inversely proportional
to the distance between A and B and at most linear in the tangent of the deviation
angle.

Figure 18 gives an example of a rasterization not based on a pen polygon where
there is an integer offset vector of (3, - 1) but this is 62” away from perpendicular.
The area of the rasterization between !, and !, is 5.91; dividing by the distance
3.04 gives an average width of 1.94. The average width of 1.01 between & and 4
reflects large variations in width allowed by the 62” deviation angle and the
moderate distance over which the average is taken.

The angle of deviation from perpendicular is limited by the fact that P’ =
X,,,(ZY(R~,~)) approximates the circle Rd. This is because P’ determines the
function 2V(P’, D) that gives the integer offset vector in terms of the curve
direction. Enumeration of small pen polygons shows that the deviation angle is
never more than 45” when a = 1. The theorem below shows that it is asymptotically
0(((1 + a)/d) ‘I’) if conjecture 1 holds.

THEOREM 2. Let P’ = X,,,(9(Rd,U)), where d is greater than some constant E.
If opposite vertices of P’ are separated by at most d + E and opposite edges are
separated by at least d - t, then the maximum offset angle for P’ satisfies

(3)

PROOF. Figure 19 illustrates the construction. Let Q, Q2 be an edge of P’, and
let Q2 be the point on that edge closest to the origin 0. Similarly, let QzQ3 be the
other edge incident on (22 and let (2~~ be the point of closest approach as shown in
the figure. When V(P’, D) = Q2, the angle of deviation from perpendicular is at
most Q20Q12 or Q20Q13, whichever is greater. Since the length of OQ2 is at most
$(d + t) and the lengths of OQ,l and OQZ are at least i(d - c), the lengths of
Q2Q12 and Q2QZ3 are at most iJ(d + t)’ - (d - t)’ = a. Dividing by t(d - t)
yields (3). Cl

228 JOHN D. HOBBY

FIG. 18. Computations for the width in
direction (1, -6) of the rasterization of
C + R1.48 with aspect a = 1, where C is a
line of slope +.

Q+-JJfL
FIG. 19. A construction for obtaining bounds on tan 0.

QZ

Although the deviation angle 13 can approach the bound implied by Conjec-
ture 1 and the above theorem, the typical values are much better. When d = 6.2
and a = 0.5, the upper bound is 0 5 44.4”. When P’ = X2(9(R6.2,0.5)) as shown in
Figure 16b the maximum B is 18.4” which occurs when D is horizontal and
V(P’, 0) = (1, -3). When V(P’, D) = (2, - 5) as shown in Figure 17b, 8 can be
at most about 17.7” and the actual deviation from perpendicular to the line AB in
Figure 17b is only about 2”.

5. Conclusion
The two main algorithms discussed here are largely independent of one another.
The make-pen routine discussed in Section 2 generates pen polygons that are
appropriate for rendering lines of constant width, while the actual drawing routines
in Section 3 work for any symmetrical pen polygon. Substituting one of the more
complex pen polygon construction algorithms described in [6] would allow for
calligraphic effects that generate lines of varying width. Alternatively, it is possible
to avoid the pen construction algorithm for simple applications where the range of
desired line widths is not too great and we can choose from a small repertoire of
precomputed pen polygons such as those shown at the start of Section 2.

The algorithm can also be simplified when it is known in advance that the curve
C will be a straight line. It then becomes unnecessary to use an externally defined
routine plot because everything can be done by plot-seg or a slight generalization
thereof. In addition, the transition routine could write its results directly into the
L and R arrays without taking maxima or minima. The discussion of convolution
tracings in Section 3 becomes unnecessary because the region X,(C) + 9(R& is
a simple convex polygon.

In the general case of curved lines, the plot routine is likely to be significantly
slower and more complicated than plot-seg. This routine has been left unspecified
here because it is equivalent to the well-studied problem of rasterizing thin curved
lines according to Freeman’s rule. The speed of our algorithm comes from the fact
that little time needs to be spent outside of the plot routine.

In addition to the speed advantages, we saw in Section 4.2 that we obtain better
control over line width by rasterizing X,(C) + B(R& instead of X,(C) + Rd,o.
We showed that there is a way of measuring the average width of a rasterized image
so that the width depends only on XIl,(9(Rq,)) and the slope of C. Thus when

Rasterizing Curves of Constant Width

the algorithm is asked to render a curve C with width d, the width of the resulting
image does not depend on where we look or where C falls relative to the pixel grid.
Further discussion of the aesthetic qualities of curves generated via pen polygons
appears in [6], and other relevant issues appear in [7].

REFERENCES

1. BKESENHAM, J. E. Algorithm for computer control of a digital plotter. IBM S.vst. J. 4 (196.5),
2.5-30.

2. FISI-IKIN, K. P.. AND BARSKY, B. A. Algorithms for brush movement in paint systems. In Gruphics
lnferfice ‘84, Canadian Man-Computer Society, 1984, pp. 9- 16.

3. FREEMAN, H. On the encoding of arbitrary geometric configurations. IRE Truns. Electron.
Cwnpur. EC-IO (1961), 260-268.

4. FREEMAN. H. On the quantization of line-drawing data. IEEE Truns. Syst. Sci. Cybernet. 5, I
(Jan. 1969), 70-79.

5. GUIBAS, L., RAMSHAW. L., AND STOLFI, J. A kinetic framework for computational geometry. In
Proceedings of the 24th Anmral Symposium on Folrndations of Computer Science. IEEE, New York,
1983, pp. 100-l 1 I.

6. HOBBY, J. D. Digitized brush trajectories, PhD dissertation. Stanford Univ., Stanford, Calif., 1985.
7. HOBBY, J. D. Rasterization of nonparametric curves. Submitted for publication.
8. HORN, B. K. P. Circle generators for display devices. Comput. Graphics Image Process. 5 (1976),

280-288.
9. KNUTH, D. E. TM and METAFONT, New Directions in Typesetting. American Mathematical

Society and Digital Press, Providence, R.I., 1979.
10. KNUTH, D. E. Computers and Typesetting, vol. D. Addison-Wesley, Reading, Mass., 1986.
I 1. PITTEWAY, M. L. V. Algorithm for drawing ellipses or hyperboke with a digital plotter. Comput.

J. 10 (1967). 282-289.
12. PRATT, V. R. Techniques for conic splines. Comput. Graph. 19, 3 (July 1985), 151-159.
12a. SCHAPIRA, P. Operations on Constructible Functions. Prepublication Strie Mathematique 88-3.

DMI de Universiti de Paris-Nord, Villetaneuse, France, Mar. 1988.
13. TUNG YUN MEI. LCCD, a language for Chinese character design. Software-Practice and

Experience II (1981), 1273-1292.
14. TURKOWSKI, K. Anti-aliasing through the use of coordinate transformations. ACM Truns. Graph.

I, 3 (July 1982), 2 15-234.
15. VAN AKEN, J., AND NOVAK, M. Curve-drawing algorithms for raster displays. ACM Trans. Graph.

4,2 (Apr. 1985). 147-169.
16. WHITTED, J. T. Anti-aliased line drawing using brush extrusion. Comput. Graph. 17, 3 (1983),

151-156.

RECEIVED MARCH 1987; REVISED MAY 1988 AND SEPTEMBER 1988; ACCEPTED SEPTEMBER 1988

Journal ofthe Association for Computing Machinery, Vol. 36. No. 2. April 1989.

