
Type Theories and Object-Oriented Programming

SCOTT DANFORTH and CHRIS TOMLINSON

Systems Technology Lab, Advanced Computer Architecture Program, MCC, 3500 West Balcones Center,
Austin, Texas 78759

Object-oriented programming is becoming a popular approach to the construction of
complex software systems. Benefits of object orientation include support for modular
design, code sharing, and extensibility. In order to make the most of these advantages, a
type theory for objects and their interactions should be developed to aid checking and
controlled derivation of programs and to support early binding of code bodies for
efficiency. As a step in this direction, this paper surveys a number of existing type
theories and examines the manner and extent to which these theories are able to
represent the ideas found in object-oriented programming. Of primary interest are the
models provided by type theories for abstract data types and inheritance, and the major
portion of this paper is devoted to these topics. Code fragments illustrative of the various
approaches are provided and discussed. The introduction provides an overview of object-
oriented programming and types in programming languages; the summary provides a
comparative evaluation of the reviewed typing systems, along with suggestions for future
work.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language
Constructs-abstract data types; data types and structures; F.3.3 [Logics and Meanings
of Programs]: Studies of Program Constructs-type structure; F.4.1 [Mathematical
Logic and Formal Languages]: Mathematical Logic--lambda calculus and related
systems

General Terms: Languages, Theory

Additional Key Words and Phrases: Data abstraction, inheritance, object-oriented
programming, polymorphism, type checking, type inference

INTRODUCTION

When implementing a system, an impor-
tant initial decision concerns how the sys-
tem should be perceived-What are its
parts and how do they interact? One point
of view shown to be successful in designing
and implementing complex software sys-
tems is suggested by object-oriented
programming (OOP) in which systems are
constructed from self-contained objects
that interact via messages.

Proponents of OOP suggest that it aids
design, implementation, and maintenance
of complex systems by supporting modular-
ity and that it aids code reuse and the
construction of easily extensible systems
by supporting inheritance. In addition to
these benefits, object orientation may allow
designs in which objects reflect opportuni-
ties for variable-grain parallelism and in
which decisions related to whether objects
are implemented in hardware or software
may be postponed or flexibly changed.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1966 ACM 0360-0300/36/0300-0029 $01.50

ACM Computing Surveys, Vol. 20, No. 1, March 1988

http://crossmark.crossref.org/dialog/?doi=10.1145%2F62058.62060&domain=pdf&date_stamp=1988-03-01

30 l S. Danforth and C. Tomlinson

CONTENTS

INTRODUCTION
What Is OOP
What Are Types
Potential Benefits of Typed OOP
Our Review Approach

1. ABSTRACT DATA TYPES
1.1 Algebraic (First-Order) Approaches
1.2 Higher Order Approaches

2. INHERITANCE
2.1 Ordering Relations on Types
2.2 Order-Sorted Algebras
2.3 Set-Inclusion Orderings
2.4 Term Orderings

3. TYPES AND EXISTING OOP LANGUAGES
3.1 Type Checking Smalltalk
3.2 Emerald
3.3 CommonLoops
3.4 OakLisp and CommonObjects
3.5 Exemplars versus Classes

4. SUMMARY
4.1 Desiderata for OOP
4.2 Evaluation

ACKNOWLEDGMENTS
REFERENCES

These are all powerful advantages, and they
may account for a recent upsurge of interest
in OOP as well as a number of new OOP
language implementations [Black et al.
1986; Cox 1984; Lang and Perlmutter
1986; Moon 1986; Schaffert et al. 1986;
Stroustrup 19861. In order to make the
most of these advantages, however, it is
necessary to develop a type theory for OOP
that is able to support checking and con-
trolled derivation of systems, while aiding
efficient implementations.

As a step in this direction, this paper
surveys a number of existing type theories,
examining the manner and extent to which
these theories are able to represent the
objects and object interactions that arise in
OOP. To introduce the characteristics of
OOP important to this objective, a cursory
review of OOP follows. Readers wishing a
more detailed introduction to OOP may
refer to Stefik and Bobrow [1986]. Also, a
collection of papers edited by Shriver and
Wegner [1987] provides a good overview of
current research directions in OOP and
includes papers describing various OOP

ACM Computing Surveys, Vol. 20, No. 1, March 1988

languages. Additionally, the proceedings of
the first two annual conferences on OOP
systems, languages, and applications [Mey-
rowitz 1986, 19871 provide a wealth of
information concerning the currently de-
veloping theory and practice of OOP.

What Is OOP

Many of the ideas associated with OOP
originated with the Simula language of
Dahl and Nygaard [19661. These ideas were
refined and extensively developed during
construction and standardization of Small-
talk [Goldberg and Robson 1983; Ingalls
1978; Kay 19721, the first substantial, in-
teractive, display-based OOP implementa-
tion. Of special interest in the context of
systems involving parallel or distributed
execution are the actor languages of Hewitt
[1985] and the various models of coopera-
tion among objects suggested by this work.
There are a number of recent efforts in the
area of parallel OOP [America 1986, 1987;
Dally 1986; Ishikawa and Tokoro 1986;
Yonezawa and Tokoro 1987; Yonezawa et
al. 19871.

Object-oriented programming, like func-
tional programming or logic programming,
incorporates a metaphor in which compu-
tation is viewed in terms divorced from the
details of actual computation. In the case
of OOP, this metaphor is rarely introduced
with the mathematical precision available
to the functional or logic programming
models. Rather, OOP is generally expressed
in philosophical terms, resulting in a nat-
ural proliferation of opinions concerning
exactly what OOP really is. The following
introduction also presents a view of OOP
that, by leaning to the philosophical side,
permits considerable latitude of interpre-
tation. Different interpretations represent
the potential for different OOP languages.

The heart of the OOP metaphor is
an anthropomorphic view of the objects
of computation. Simply stated, the term
“object oriented” is used to describe pro-
gramming languages in which the objects
of computation are (in a sense) like people.
In OOP, objects generally have an identity,
called the self, that persists over time in-
dependently of changes in the state of the
object. Objects are intelligent and respond

Type Theories and Object-Oriented Programming l 31

to requests addressed to them (generally
called messages), thus effecting computa-
tion. In terms of the model, an object’s
response to a message might be to change
its internal state, send messages to other
objects, reply with an answer, create new
objects, or all of these. A prescription for
handling a message is generally called a
method.

In order to compute with objects, they
must be brought into existence. There seem
to be essentially two ways of going about
this. One is to create new objects by using
objects already in existence as prototypes.
If this mechanism is used, it must also be
possible to create objects “from whole
cloth” by specifying a set of methods and
the variables that are used to hold the
object’s state. The more usual approach is
to specify the class of the new object. A
class may be thought of as a template that
identifies the methods and instance vari-
ables to be used by the new object for hand-
ling messages and storing object state,
respectively. Initialization of an object’s
state can be supported by providing a
method for this, but many class-based OOP
languages consider a class itself to be a kind
of object that can respond to a message
requesting a new object of its class. This
message is then used both to request crea-
tion of a new object and to specify the
desired initial state; the class’s response is
a reply containing or referencing the new
(initialized) object. In this view, classes are
similar to objects in that they respond to
messages. Thus they may also have a class,
called a metaclass. The desire to treat every-
thing as an object in OOP appears to be the
primary justification for such an approach.
Parsimony of mechanism is often a desir-
able goal in languages, but many ap-
proaches to OOP avoid metaclasses and
some, based on prototypes, avoid classes as
well [Lieberman 19861.

The two OOP concepts on which we
focus with respect to type theories are
abstract data types (ADTs) and inherit-
ance. Objects encapsulate a state, along
with methods for dealing with this state,
and thus provide data abstraction through
their message interface. An object may
therefore be viewed and used in a way en-
tirely analogous to an ADT in traditional

programming languages. In attempting to
provide a less philosophical statement of
the OOP metaphor, many researchers have
found this similarity between objects and
ADTs an obvious and important area for
careful attention. Indeed, ADTs as well as
OOP emerged from the Simula language.

If ADTs are so similar to objects, is it
not possible that OOP is simply a program-
ming model in which all data are abstract
and all data manipulation is implemented
via ADT operations? In fact, this is not an
unreasonable conjecture, since few lan-
guages outside OOP provide such compre-
hensive support for data abstraction. Even
in Ada, an advanced language incorporat-
ing extensive support for various forms of
abstraction, packages are not first-class cit-
izens that may be passed as parameters
[U.S. Department of Defense 19831. How-
ever, there is more to OOP than support of
ADTs as first-class citizens-in particular,
inheritance.

Inheritance in OOP may be based either
on the concept of subclass (in those OOP
languages with classes) or on default dele-
gation of responsibility (in those OOP lan-
guages based on prototypes). The essential
idea is enhancement of descriptive power
with respect to object creation, during
which the methods to be used by the new
object for handling various messages must
be somehow indicated. In class-based lan-
guages, inheritance allows the methods
used by objects of a given class to be spec-
ified in a modular and extensible fashion
by placing logically related methods in in-
dividual classes and relating these classes
within a subclass hierarchy. Then the
methods potentially available to an object
of a particular class are not only those
methods defined in the object’s class but
also those of all its class’s ancestors within
the class hierarchy. For instance, the class
of automobiles could be defined as a sub-
class of the class of vehicles, and an auto-
mobile object might then answer “yes” to
the message, “Are you a vehicle?” because
the vehicle class provides this method. The
implications for software maintainability
become clear when one considers adding a
new method for all vehicles-only the ve-
hicle class need be changed; the automobile
class (and any other classes inheriting

ACM Computing Surveys, Vol. 20, No. 1, March 1988

32 . S. Danforth and C. Tomlinson

directly or indirectly from vehicle) need not
be modified. Similar benefits may be ar-
ranged in prototype-based OOP languages
through use of delegation [Stein 19871.

Elaborations on the above occur in most
OOP languages. In some OOP models the
class of an object is allowed to change over
time. This appears to be useful in object-
oriented database systems [Skarra and
Stein 19871. In some OOP languages, mul-
tiple inheritance is allowed [Moon 1986;
Schaffert et al. 19861. In class-based OOP,
this takes the form of allowing a given class
to have more than one immediate ancestor
(called a superclass) within the class hi-
erarchy, which allows methods from a
number of otherwise unrelated classes to
be combined and used within a single ob-
ject. This facility can be useful in achieving
modularity and extendability. In prototype-
based OOP, multiple delegation paths can
achieve the same effect. Class-based OOP
languages generally allow inheritance to
be “defeated” by either forgetting or over-
riding methods that would otherwise be in-
herited from a superclass. A sendsuper
facility is often provided to allow invoking
a superclass method explicitly when inher-
itance has been defeated. This is useful
when the behavior provided by a superclass
method is to be enhanced incrementally by
addition of special behavior supplied by a
subclass.

Clearly, a wide variety of OOP languages
is possible within the general framework
described above. Although attempts at pro-
viding a formal type system for OOP may
currently fail to address all the require-
ments of any particular OOP language,
focusing on integrating type models for
ADTs and inheritance addresses an impor-
tant intersection of capabilities.

What Are Types

Types in programming are generally used
and thought of as a means of characterizing
values that arise dynamically in the course
of a computation. For instance, a value that
is to be computed by a program may be
represented by a name or an expression,
and although the particular value to which
this expression refers may not be known in

advance, other information concerning the
value might be available. This information
could be an indication of the meaning of
the expression in an “approximation” se-
mantics, or it might be considered a con-
straint describing a property that the value
must have . Given the latter view, it is a
natural step to conceptualize the set of all
values satisfying the constraint and then to
think of the type constraint as simply re-
quiring membership in this set.

Viewing types as constraints leads natu-
rally to the idea of types characterized by
logical formulas. This is the approach taken
in work directed toward supporting poly-
morphism with universal quantification
[MacQueen et al. 19841 and supporting
abstract data types with existential quan-
tification [Mitchell and Plotkin 19851. Re-
cently, Cardelli and Wegner [1985] used
these ideas as the base for a polymorphi-
tally typed lambda calculus language with
support for both abstract data types and
inheritance [Cardelli and Wegner 19851.
Also recently, a great deal of interest has
been shown in dependent types, which
use this “formulas-as-types” philosophy
[Constable and Zlatin 1984; Hook 1984;
MacQueen 1986]-the formulas in this case
being borrowed from constructive logic
[Martin-Lof 1982; Turner 19841.

The algebraic approach to types is set
oriented; in an algebra, a type (or sort) is a
set of individual elements upon which
operations of the algebra are defined. Other
set-oriented approaches are possible,
though. Matthews [19831 considers types
to be represented by a set of operations
rather than a set of values. Thus, in Mat-
thews’ language, Poly, the type boolean is
not characterized by a set of possible val-
ues, such as (T, F1, nor by constraints that
define this set but rather by the fact that
the operations in the set (and, or] are
guaranteed to be available for operating on
values of the type. Donahue and Demers
pioneered this approach in their language,
Russell [Demers and Donahue 1983;
Donahue and Demers 19851. In .Russell, a
data type is a collection of named opera-
tions that provides a consistent interpre-
tation of a single, universal value space. In
spite of the similarity of this approach with

ACM Computing Surveys, Vol. 20, No. 1, March 1988

Type Theories and Object-Oriented Programming 33

OOP, Poly and Russell do not currently
support inheritance.

The typing systems of interest in this
paper may be divided into two general cat-
egories: those based on an algebraic model
of computation, in which there is a strong
distinction maintained between values and
operations, and typing systems based on
higher order models within which functions
and even types themselves may be viewed
as values (which have types). The algebraic
approach has been traditionally used to
represent ADTs [Guttag 19801, but it is
only within the last few years that higher
order theories have been used for this
purpose.

Potential Benefits of Typed OOP

There are many potential advantages to be
derived from successfully embedding the
essence of OOP into a well-grounded type
theory. Both types and objects provide a
uniform framework within which to under-
stand the entities of a programming lan-
guage, but a typing theory can be useful in
other ways. Especially within declarative
languages, where denotations are the
means of guiding computation, it is advan-
tageous to have a powerful theory capable
of explaining and representing the mean-
ings of program expressions. Such a theory
can guide equivalence-preserving program
transformations and assist in the program
development process.

In general, the objective of high-level
programming languages should be to pro-
vide programmers with as much descriptive
power as possible in order to aid construc-
tion of useful and understandable software,
while allowing the efficient utilization of
underlying hardware. Regarding efficiency,
information concerning which objects com-
municate with other objects can be invalu-
able in achieving locality of access in
parallel systems and can also be useful in
load balancing. Optimizations made possi-
ble by typing include folding multiple levels
of data hierarchy into a single structure
[Scherlis 19861 and integration of operation
invocations in order to avoid procedure
calls [Johnson 19861. A typing system can
help support efficiency objectives, provide

a language framework capable of guiding a
system designer’s conceptualizations, and
verify (often statically, before execution)
the consistency of the descriptive informa-
tion provided explicitly and implicitly by a
program.

Also possible is a natural connection be-
tween the formal, extensional objects rep-
resented by a program and their concrete,
intensional representations within memory
or a tile system. This connection provides
opportunities for type-secure separate com-
pilation, an important aid to the software
engineering of large systems [MacQueen
19861, and opens the way for persistent
objects capable of independent existence
between program executions [Cardelli and
MacQueen 19851.

Perhaps all these things could be accom-
plished in an ad hoc fashion through the
use of special annotation and supporting
mechanisms. However, such an approach
might result in unexpected interactions be-
tween solutions to separate problems and
conceptual complications for system de-
signers and language designers alike.
Certainly, the simplicity of a single typing
theory that provides a consistent and flex-
ible framework for system descriptions at
the outset is preferable-assuming that the
theory is able to provide straightforward
representations for the objects, behaviors,
and computations of interest. Such a theory
should aid the construction of an integrated
environment especially tailored for the de-
scription and construction of systems.

Our Review Approach

This paper reviews a number of typing sys-
tems that have been recently proposed by
researchers in the area of type theory.
These researchers have been concerned
with formal rigor and with capturing,
within accepted logical/mathematical sys-
tems, their basic intuitions concerning
types in programming languages. Unfortu-
nately, there seems to be almost no limit to
the variety and mathematical sophistica-
tion of these theories-ideas from universal
algebra, second-order lambda calculus, and
constructive mathematics have all been
used to represent and formalize these

ACM Computing Surveys, Vol. 20, No. 1, March 1988

34 9 S. Danforth and C. Tomlinson

intuitions. We do not attempt to provide
deep insight into these formal systems, but
restrict ourselves in our review to the es-
sential nature and practical implications of
these typing systems, with the primary goal
of determining how well they support ADTs
and inheritance, two capabilities that are
central to OOP.

It is interesting to note the tension be-
tween the two foci of interest identified
above. Data abstraction attempts to pro-
vide an opaque barrier behind which meth-
ods and state are hidden; inheritance
requires opening this interface to some
extent and may allow state as well as
methods to be accessed without abstraction
[Snyder 19871. OOP languages (and the
type theories we review) take various
stands on this issue, both with respect to
its importance and its resolution.

1. ABSTRACT DATA TYPES

In the Introduction types were presented
as characterizing values that arise in the
course of a computation. Types in this in-
formal sense have been used since the first
FORTRAN compilers, in which type infor-
mation supported decisions concerning
whether to emit floating-point or integer
operation codes for arithmetic computa-
tions. Types thus originated because the
information they provided was useful to the
compiler. The development of abstract data
types, on the other hand, was due to differ-
ent pressures.

Concern with programming methodology
and the need for reliable and maintainable
software resulted in awareness of the
importance of abstraction in program de-
sign and construction. Two results of this
awareness were the introduction of various
control abstraction.+ and the introduction
of data abstractions, or abstract data types.
ADTs were thus an important step in the
development of programming methodology.

An ADT encapsulates information that
provides a representation of a complex data

1 Control abstractions initially included subroutines
and procedures and, later, with the introduction of
structured programming, constructs such as if-then-
else and while.

object, such as a stack, and provides oper-
ations that implement the manipulations
of which the object is capable. The internal
representation of the object represented by
an ADT is completely hidden from its
users, and only the operations that imple-
ment manipulations of this representation
are made available to the object’s user. An
ADT’s user need not know how the object
it represents is implemented, just as the
user of a control abstraction such as a
square-root routine need not know how the
square root is calculated. In addition to the
intellectual leverage for programmers, who
can take bigger strides in their thoughts, it
provides flexibility in modifying the ADT
implementation. As long as the external
interface remains the same, any code that
uses the ADT should continue to work
unchanged.

The kind of abstraction provided by
ADTs can be supported by any language
with a procedure call mechanism, given
that appropriate protocols are developed
and observed by programmers. Because of
the importance placed on maintainable and
modifiable software, however, many lan-
guages have attempted to enforce such pro-
tocols by making them part of the language
definition. Violations of ADT security are
then made impossible, and the use of ADTs
is made easier because the language directly
supports them. Such languages include
Concurrent Pascal [Brinch-Hansen 19771,
CLU [Liskov et al. 19771, and Ada [De-
partment of Defense 19831.

Type checking in these languages has not
been based on any foundational theory giv-
ing meaning to ADTs-thus the challenge
to researchers in programming language
semantics, who seek to put programming
on a firm foundation with useful semantic
theories. To these researchers, a program
and the objects represented therein should
have unambiguous values in some semantic
domain. Types provide a way of represent-
ing such meanings. If we characterize the
traditional objects of computation (num-
bers, characters, etc.) as elements of some
semantic domain (or type), what is the
corresponding explanation of ADTs? There
are a number of possibilities.

ACM Computing Surveys, Vol. 20, No. 1, March 1988

Type Theories and Object-Oriented Programming l 35

1.1 Algebraic (First-Order) Approaches

In the last 10 years, various algebraic ideas
have been useful in the areas of compiler
correctness, specification, and abstract
data types [Burstall and Goguen 19821.
Among others, Goguen has helped develop
this connection between theory and prac-
tice; he has put forth both substantive lan-
guage suggestions and a variety of results
concerning the theoretical support that al-
gebras can provide for various aspects of
programming. A recent paper describing
OBJ2, a language showcase for these ideas,
cites many references in which this work
appears [Futatsugi et al. 19851.

An algebra is a formal, mathematical en-
tity, essentially composed of sets of values

* (called the carriers of the algebra) and op-
erations for manipulating these values. As
can be seen, this formal entity corresponds
closely to the concept of an ADT. In defin-
ing an algebra, one begins with a signature,
which is a declaration of the types, con-
stants, and operations of interest. In terms
of programming languages, a signature can
be viewed as an interface specification.

Figure 1 is an example of the kind of
information provided by a signature. As
shown, constants are represented as con-
stant functions (i.e., they have no argu-
ments and evaluate to the desired value).

A signature, therefore, introduces the
names that will be used to refer to types
(also called sorts), values, and operations
of the algebra. These are only names, how-
ever, and the remaining task is to give the
names meanings. This is done in the follow-
ing way: Types are associated with carrier
sets (i.e., value domains are defined), and
operators are associated with functions
(i.e., the functions that implement the op-
erators are defined). Defining these sets
and functions can be an interesting theo-
retical exercise when the sets involved are
infinite, but this need not concern us here;
we merely wish to introduce the algebraic
approach to ADTs. Figure 2 therefore
presents a simple algebra of numbers
modulo 2.

Note that although MOD2 successfully
represents an abstraction of numbers mod-

number, boo]: type;

zero, one: function0 result number;
plus, times: function(number, number) result number;

true, false: function0 result boo];
and, or: function(boo1, boo]): result bool;

Figure 1. A signature for an algebra.

ulo 2 and operations on these numbers, it
cannot directly encapsulate a mod2 num-
ber; that is, there is no concept of state.
The style of programming that results is
one in which the implementation of an
ADT does not store data but is used to
manipulate data. Thus, the user of a stack
ADT might ask an ADT interface for a new
stack, and the representation of an empty
stack would be returned to the user as an
abstract, atomic value, instead of being held
behind the ADT interface as in OOP. When
the user wants to put something on the
stack, the data item and the stack represen-
tation are passed to the ADT interface,
which will return the appropriate resulting
stack state, again to be held by the user.
Thus, the user holds ADT objects but
makes calls on the ADT implementation in
order to use them.

One can take the viewpoint that the es-
sential concept supported by ADTs is not
support of state itself but abstraction of
data representation and operations. If this
is so, then algebras directly support ADTs.
If, on the other hand, one takes the view
that ADTs are closer in concept to abstract
machines that embody a state as well
[Parnas 19721, then the above algebraic
approach to ADTs is only partially satis-
factory in supporting ADTs. The practical
advantages of data abstraction are obtained
in either case, as long as the state held by
the user of the ADT interface is always
treated as being abstract by the ADT user.

Goguen has developed an interesting ap-
proach to supporting state within ADTs
[Goguen and Meseguer 1987; Meseguer and
Goguen 19831. He suggests the use of re-
flective programming, in which OBJ2 is
used to define itself and a hidden type is
used to represent the necessary internal

ACM Computing Surveys, Vol. 20, No. 1, March 1988

36 . S. Danforth and C. Tom&son

MOD2 Signature:
number: type;
zero, one: function0 result number;
plus, times: function(number, number) result number;

Figure 2. MOD2: A simple algebra. MOD2 Semantics:
number == (0, l}
zero0 == 0
one0 == 1
plus(x,y) == if (x=0) then y; else if (y=O) then x; else 0.
times(x,y) == if (x=0 or y=O) then 0; else 1.

state space. The basic idea he develops is
that the underlying algebraic theory being
used can be modified as a result of expres-
sion evaluation. In the above example of
MOD2 numbers, for instance, a constant
called my-number might be used to hold a
number within an ADT. When this number
needs to be changed, the underlying algebra
is modified so my-number represents the
new value. This may seem overly elaborate,
but perhaps it is a reasonable approach if
one wishes to stay within an entirely alge-
braic framework. The approach is analo-
gous to the use of behavioral replacement
to model state in Actor languages [Agha
19861.

The main restriction of the algebraic ap-
proach is that it is first order; that is, func-
tions (and also ADTs) are not first-class
values-they cannot be passed as input to
other functions, returned from functions,
or stored within data structures such as
records. Goguen does not consider this a
problem and claims that the absence of
higher order capabilities in OBJ2 enhances
opportunities for efficient implementation.
We do not necessarily agree with this and
feel that higher order capabilities can be
efficiently supported while providing a
greatly enhanced degree of expressive
power within the language. The ability to
create and manipulate ADTs as data at run
time appears to us to be an extremely im-
portant ability within a program develop-
ment environment, and within systems in
general.

1.2 Higher Order Approaches

MacQueen [1986] gives a good review of
the origins of type theories germane to this

ACM Computing Surveys, Vol. 20, No. 1, March 1988

section. Historically, they are based on the
“formulas-as-types” notion that evolved
through the work of Curry and Feys [1958]
in which a close correspondence between
axioms of propositional logic and basic
combinators was observed. The notion was
used by Girard [1971], who introduced a
form of second-order typed lambda calculus
as a tool in his proof-theoretic work, and
by Reynolds [19741, who independently in-
vented a programming language that has
come to be called the second-order lambda
calculus.

1.2.1 Mitchell and Plotkin’s Existential Types

Mitchell and Plotkin [1985] used an ex-
tended version of the second-order lambda
calculus, called SOL, to represent ADTs.
The primary focus of this work was ex-
pressing the type of ADTs. This can be
contrasted with a purely algebraic charac-
terization, in which types (i.e., sets of value
domains) remain on a completely different
semantic plane from ADTs (i.e., algebras).

Mitchell and Plotkin [1985] begin by ac-
knowledging the algebraic model of ADTs
and consider the concrete representation
(i.e., implementation) of an ADT to be a
data algebra of the kind described in Sec-
tion 1.1. Their next step, however, is to
show how data algebras can be considered
typed values within SOL. The result is that
data algebras may then be considered first-
class values that can be passed as parame-
ters to functions or returned as results.
Practical implications of this include the
ability to examine data at run time in order
to choose an appropriate ADT representa-
tion (e.g., a sparse matrix) and then call a
data processing function with the desired

Type Theories and Object-Oriented Programming l 37

abstype point with

is

create: function(rea1, real) result point;
plus: function(point, point) result point;
xgal: function(point) result real;
yyal: function(point) result real;

representation real X real
create(x,y) == cons(x,y);

Figure 3. A SOL ADT for points.

in

plus(cl,c2) == cons(car(cl)+car(c2), cdr(cl)+cdr(c2));
xyal(c) == car(c);
y-val(c) == cdr(c);

point.x~val(point,plus(point.create(l,4),point.create(2,3)));

ADT representation as a parameter. A con-
ditional statement may be used to return
one of two different ADT representations
as its result.

The central idea of SOL that supports
this ability is that of existential types. Ex-
istential types provide an appropriate
mechanism for expressing the types of data
algebra expressions; they tell about the
available operations and how they may be
used, without describing the implementa-
tions of the operations or the type used as
the carrier of the algebra. Figure 3 shows a
SOL expression in which an ADT imple-
menting geometric points is used. The
value of the overall expression is 3.

The expression in Figure 3 was built from
an interface specification, a data algebra
expression, and a body within whose scope
the abstype point is visible. Basic data al-
gebra expressions in SOL have the form

representation 7Ml . - - Ad,,

where 7 is a type expression (representing
the carrier of the algebra) and MI . . . M,
are function definitions (representing the
operations of the algebra). The interface
specification can be viewed as an expres-
sion of the fact that there is a type named
point with operations create, plus, x-val,
and y-vu1 (and the types of these functions
depend on point). This informal reading of
the interface specification corresponds ex-
actly to the type of the data algebra. The
types of data algebras are therefore ex-
pressed using the form

37.u1(7) and ~(7) and ... u,(7),

where T is the name of the ADT, and the
vi(~) are the types of the operations pro-
vided for dealing with 7.’

As indicated above, one feature of SOL
is that a program may select from among
several different ADT implementations at
run time. A parser that uses a symbol table,
for instance, may be parameterized by the
representation of the type sym-tab and can
then be passed different implementations,
such as a hash table or a binary tree. Even
though multiple ADT implementations
may be manipulated directly by a program
and passed around at run time, SOL pro-
grams are statically type checked at com-
pile time.

1.2.2 Cardelli and Wegner ‘s Existential Types

Cardelli and Wegner [1985] have designed
a language similar to SOL, in which exis-
tential types are used to support ADTs.~
Although many of the ideas are unchanged,
the syntax is considerably more flexible,
and records provide a powerful and useful
structuring tool. This language was used as
a tool for tutorial exposition by Cardelli
and Wegner and was given the name FUN.
As in SOL, the base language for FUN
is lambda calculus, and the introduction
of support for ADTs appears as a natural
consequence of allowing existential type
quantification.

’ The notation U(T) is used to emphasize that T may
appear free in the type expression (I.

’ FUN supports inheritance as well, which is discussed
in Section 2.

ACM Computing Surveys, Vol. 20, No. 1, March 1988

38 l S. Danforth and C. Tom&son

In FUN, type specifications for variables
of existentially quantified type have the
form

37.texp(7),

where texp is a type expression that may
contain free occurrences of the type vari-
able T. If some variable p has an existential
type of this form, then we interpret this as
meaning that for some type T, the type of p
is texp(~). Because FUN includes records,
no special syntax is needed for representing
signatures; texp(~) can simply be the type
of a record whose components will be the
named operations made available by an
ADT.

Within this typing system, one can work
up to the idea of ADTs slowly by first
examining simple uses of the ideas behind
existential types. Thus, for instance, the
type of the pair (3, 4) can be represented
by either of the following expressions:

37.7 x 7 or 37.7.

In the first case, T = integer; in the second
T = integer x integer. This highlights the
important fact that the same object can
have different existential types. Because of
this, and as an aid to type checking, FUN
requires that special syntax be used to cre-
ate objects whose types are to be existential
and that the particular existential type de-
sired by the user be explicitly indicated.

The syntax provided within FUN for cre-
ating objects of existential type is based on
the idea of packaging so that internal struc-
ture is hidden. Thus, for instance, we might
want to represent the pair (3, addl) as an
object having the existential type

3 T. (val: T, op: T + integer),

which uses a record type as the type expres-
sion within which T appears free. To denote
the desired object, we use the syntax

obj

=pack[~ = integer in(va1: 7, op: T + integer)]

(3, addl).

This syntax achieves the above-mentioned
goal of explicit indication of the desired
existential type and suggests (because of
the keyword pack) a hiding of information.

Indeed, to use obj, its components may be
referred to by name. The expression,
obj.op(obj.val) thus evaluates to 4.

A special (optional) syntax is also pro-
vided for the use of existential objects.
Staying with the packaging analogy, the
keyword available for using a (packaged)
object is open. To apply the operation pack-
aged within obj to the packaged value, we
could use the syntax

open obj as id[t] in id.op(id.val),

which evaluates to 4, as desired. Use of this
syntax allows the introduction of a local
name (in this example, id) for obj within
the expression to be evaluated and another
local name (in this example, t) for the
otherwise hidden representation type.

Representation type is another name for
what was called the carrier in connection
with algebras; it is also sometimes called
the witness type. The local name for this
type (within the opening of a package) is
treated as a new atomic type within the
scope of its use, and the type of the result
of the open expression (i.e., the type of the
expression following the keyword in) is not
allowed to depend on this type. This pre-
vents the representation type from escap-
ing its scope, so that it remains hidden
within the package. It is this restriction
that is at the heart of the fact that existen-
tial types are just ordinary types in FUN
(and SOL) and that packages are ordinary
values that can be manipulated in all the
usual ways.

For all practical purposes, the above
value obj is an ADT representation pack-
aged with its set of operations. Its user
knows (from obj ‘s type specification) that
obj.op may be applied to obj.val and that
the result will be an integer. Another
expression with the same existential type
as obj is (list(12 3), length). The fact that
the similarity between these very different
objects can be captured by existential types
is interesting: Since they are of the same
type, they could be put on the same typed
list. The availability of existential types
considerably increases the flexibility of a
strongly typed language.

A representation of points similar to that
displayed for SOL is now given. Figure 4

ACM Computing Surveys, Vol. 20, No. 1, March 1988

Definitions:

Type Theories and Object-Oriented Programming l 39

type point-ADT = 3 p-rep point-wrt[p-rep]

type point-wrt[p-rep] =
<create: function(real,real) result p-rep;
plus: function(p-rep,p-rep) result p-rep;
xyal: function(p-rep) result real;
y-val: function(p-rep) result real;>,

value cart-point:point-ADT =
pack [p-rep = (real X real) in point-wrt[p-rep]]

<create = fun(x,y) cons(x,y);
plus = fun(pl,p2) cons(car(pl)+car(p2), cdr(pl)+cdr(p2));
x-val = fun (p) car(p);
y-val = fun (p) cdr(p);>

Legal Use:
value result = open cart-point as p in

p.x-val(p.plus(p.create(l,4),p.create(2,3)));

Illegal Use:
value result = open cart-point as pl in open cart-point as p2 in

pl.x_val(pl.plus(pl.create(l,4),p2.create(2,3)));

Figure 4. FUN ADT for points.

contains an appropriate FUN definition of
the types and an expression involving their
use that, as in the SOL example, evaluates
to 3. The keywords value and type are used
to emphasize the nature of the entities
being defined. Types do not exist at run
time in FUN; values do.

As indicated, the type of the value cart-
point (in Figure 4) is point_ADT, an exis-
tential type. The package prefix “cart” was
chosen to indicate that a Cartesian repre-
sentation is provided by the package. A
polar representation is also possible, and
the type system will prevent the manipu-
lation functions in two different packages
from interacting. In fact, as the example of
illegal use indicates, the type system will
even prevent interaction between manipu-
lation functions obtained by separate open-
ings of the same package. Because pl and
p2 are both cart-points, the representation
types returned by p 1. create and p 2. create
must be the same, but the typing system
can neither recognize nor make use of this

fact. P 1 .plus can only be applied to points
that originate from the p 1 package.

The reason for this strange state of af-
fairs is that in SOL and FUN the represen-
tation type incorporated within a package
is hypothetical,* which means that there is
essentially no access to the representation
type (it is not even recognized to exist!)
outside of its package. Even within an open
statement, the most that can be done in
FUN is to provide this type with a local
name, which is treated as a new atomic
type (even though the witness type may
actually be a constructed type, such as a
pair or a record). This means that the rep-
resentation type has no meaningful per-
manent identity and can never be related
to any other type except within the scope
of an open expression (where it can only

‘This terminology was introduced by Cardelli and
MacQueen [1985]. They speak of three alternative
ways of treating the representation type component
of a package and characterize these with the terms
transparent, hypothetical, and abstract.

ACM Computing Surveys, Vol. 20, No. 1, March 1986

40 l S. Danforth and C. Tomlinson

match itself). This is an even stronger kind
of information hiding than that normally
implied by an ADT, where the representa-
tion type normally retains its identity even
though its structure is hidden. This is a
serious restriction because it makes it very
difficult to provide implementation effi-
ciency within a collection of interacting
ADTs by making use of knowledge con-
cerning representation types.

Since there is really nothing wrong with
the second example of Figure 4, one’s first
impulse is simply to allow such behavior
(by making the necessary changes to the
type checker). Doing this is tantamount
to electing to use what Cardelli and
MacQueen call the abstract witness model.
Their comments concerning this model are
as follows:

If we want to continue to view packages as values
and existential types as ordinary types in this model,
the distinction between types and values becomes
blurred and we have to impose some rather ad hoc
constraints to preserve static type checking. For
instance, if A and B are of type ~T.u(T), and we
define

C = if p then A else B

then we will probably require that the witness type
of C does not match either the witness of A or B.
[Cardelli and MacQueen 1985, p. 2341

These comments seem reasonable if we
want static typing because the witness
types of A and B can be different, and p
will in general depend on data available
only at run time. Such an approach does
not seem to be a serious restriction given
the benefits. Within the abstract witness
model, then, both examples in Figure 4 are
acceptable. Of course, there will be other
meaningful programs that are unacceptable
within the abstract witness model owing to
the desire to preserve static type checking
in the presence of conditionals.

If dynamic type checking were to be used,
propagating the abstract witness types of
packages through conditionals at run time
would provide sufficient information on
which to base run-time checks, as long as
type comparison is identity based rather
than structure based (i.e., witness types
must remain abstract when compared).

This is because the use of representation
or witness types in FUN is simply a way of
getting a handle on the fact that two objects
with the same existential type can have
different implementations. The actual
structure of the representation type may or
may not be part of this difference-a fact
that is highlighted by our examples, in
which the representation types of the polar
and Cartesian point packages are structur-
ally identical.

1.2.2.1 Adding in Universal Quuntifica-
tion. In addition to supporting inheritance
(discussed in Section 3), FUN also provides
universal type quantification, which sup-
ports generic function types. When the two
notions of existential and universal quan-
tification are combined, it is possible to
represent parametric data abstractions.
These could be quite useful in the modular
construction of software and can be
thought of as providing functions over
existential types (although no run-time
computations are involved). It is interest-
ing to note the similarity between inherit-
ance and parametric data abstractions-
both approaches provide a mechanism for
incremental construction of software based
on previously defined modules.

Suppose, for example, that we want to
build on top of point_ADT by providing an
ADT for lines. For every representation of
points, there could be a corresponding rep-
resentation of lines. Therefore, we might
want to parameterize a line ADT with re-
spect to the point ADT upon which it is
based. Figure 5 shows how this can be done.

Because of the hypothetical witness of
FUN ADTs, we must explicitly provide a
point package within the line package to
provide access to point operations that op-
erate on the same representation as the line
operations. Generic&w is therefore de-
fined to be the type of a polymorphic func-
tion that (once specialized to a particular
point representation) takes a point package
representation (e.g., cart-point) and re-
turns an object of type line_ADT with re-
spect to that point representation. As
shown in Figure 5, once the polymorphic
function named line is defined, we can
make a Cartesian line package, cart-line,

ACM Computing Surveys, Vol. 20, No. 1, March 1988

Type Theories and Object-Oriented Programming l 41

Definitions:
type generic-line = v p-rep function(point-wrt[p-rep]) result line-ADT;

type line-ADT = 3 p-rep line-ADT-wrt[p-rep];

type line-ADT-wrt[p-rep] = 3 I-rep line_ADT_wrt2[l_rep,p_rep];

type line_ADT_wrt2[l_rep,p_rep] =
<points: point-wrt[p-rep];
create: function(p-rep,p-rep) result l-rep;
length: function(l-rep) result real;>

value line[p-rep]:generic-line = fun(p:point-wrt[p-rep])
pack[l-rep = (p-rep x p-rep) in line-ADT_wrt2[I_rep,p_rep]]

<points = p;
create = fun(pl,p2) cons(pl,p2);
length = fun(pl,p2) ((p.x-val(pl)-p.x-val(p2))2 +

(p.y-val(pl)-p.ysa1(p2)2)1’2;>

value cart-line:line-ADT =
open cart-point as p[p-rep] in

pack [rep = p-rep in line-ADT-wrtjrep]] line(p-rep](p)

Use:
result = open cart-line a.5 1 in

l.length(l.create(l.points.create(O,O),l.points.create(O,1)));

Figure 5. Combined universal and existential quantification.

by first opening the Cartesian point pack-
age and then packaging up the desired line
and point operations using the representa-
tion type and manipulation functions of
cart-point. Note that line [p-rep] is actually
applied to the point package p in order to
produce the cart&ze package; and espe-
cially note that in creating a line in the use
example, the point package that was placed
within the line package must be used to
create the endpoints of the line.

As with the SOL example, the packages
in Figures 4 and 5 do not hold a state for
the abstractions they support but simply
pro V ide the operations for creating and ma-
nipulating them. A technique that Cardelli
developed for Amber [Cardelli 1984a], how-
ever, allows maintaining a hidden state
within an ADT as well. This technique,
which makes use of recursive type and
structure expressions, also provides a way
of getting around the problem of interac-

tion between packages of the same existen-
tial type, as Figure 6 shows.

In the example ADTs in Figure 6 (cart-
point and polar-point), the tuple field la-
beled value holds the state of a point, either
in Ca;uesian or polar representation, while
the other tuple fields hold functions for
manipulating this value. The overall ap-
proach in this example is still essentially
functional; the plus operation returns a new
ADT encapsulating a new state, rather
than modifying an existing state via assign-
ment. Given an assignment statement,
side-effecting state modification would also
be possible. This example helps highlight
an important distinction between a pack-
aged function returning an instance of the
package’s representation type (a violation
of information hiding and, therefore, ille-
gal) and returning an instance of the pack-
age’s existential type (legal and done in this
example by plus). Note how both Cartesian

ACM Computing Surveys, Vol. 20, No. 1, March 1988

42 l S. Danforth and C. Tomlinson

Definitions:

type point_ADT = 3 p-rep point-wrt(p-rep);

type point-wrt(p-rep) =

<value: p-rep;
x-val: function0 result real;
y-val: function0 result real;
plus: function(point-ADT) result point_ADT; >

ret value cart-point(x,y):point-ADT =

ret self. pack [p-rep = (real x real) in point-wrt(p-rep)]
<value = cons(x,y);
x-val() = car(self.value);
y-val() = cdr(self.value);
plus(p) = cart-point(

self.x-val + p.x-val,
self.y-val + p.y-val);>

ret value polar-point(x,y):point-ADT =
ret self pack [p-rep = (real X real) in point-wrt(p-rep)]

<value = cons((x 2 2 1/2,...); +y)
x-val() = car(self.value)*cos(cdr(self.value));
y-val() = car(self.value)*sin(cdr(self.value));
plus(p) = polar-point(

self.x-val + p.x-val,

self.ygal + p.y-val);>

Use:
value result = (cartgoint(l,4).plus(polar~point(2,4))).x~val()

Figure 6. ADTs with state.

and polar representations are allowed to
interact. Smalltalk programmers should
notice a very real and intriguing similarity
between their style of programming and the
style displayed in Figure 6. Assuming that
appropriate Smalltalk classes for Cartesian
and polar points have been defined, their
use in Smalltalk code corresponding to the
above example would look like the follow-
ing:

result t ((cart-point new: (1,411

plus: (polar-point new: (2,4))) x-val,

which is exactly the form appearing in Fig-
ure 6, aside from the syntactic details of
function invocation and argument passing.

1.2.3 MacQueen’s Use of Dependent Types

The Introduction mentioned that the “for-
mulas-as-types” notion has been a useful
one for language theoreticians. SOL and
FUN borrow their type formulas from
second-order lambda calculus. Recently,
there has been a great deal of interest in
the formulas of constructive logic [Martin-
Lof 19821, and MacQueen [19861 has shown
how these can be applied to the description
of ADTs.

Since the formulas of constructive logic
are more expressive than the formulas of
second-order lambda calculus, there is rea-
son to hope that the resulting type theory
will be more expressive. The main problem
to be addressed concerns the drawbacks of

ACM Computing Surveys, Vol. 20, No. 1, March 1988

Type Theories and Object-Oriented Programming l 43

the formally based hypothetical witness
model of existential types versus the infor-
mally based but more expressive abstract
witness model. In particular, MacQueen
takes issue with the requirement that
ADTs based on Cartesian points (lines, for
instance, as in Figure 5) must be defined
within the scope of a single opening of the
cart-point package:

In general, we must anticipate all abstractions that
use the point structure and might possibly interact
in terms of points and define them within a single
expression. It appears that when building a collec-
tion of interrelated abstractions, the lower the level
of the abstraction, the wider the scope in which it
must be opened. We thus have the traditional dis-
advantages of block structured languages where low-
level facilities must be given the widest visibility.
[MacQueen 1986, p. 2791

1.2.3.1 Dependent Types. To continue
our discussion, we must introduce depen-
dent types. The concepts behind these are
not difficult to grasp, but our presentation
will of necessity only scratch the surface.
As an aid to further study of the ideas
behind dependent types, we can recom-
mend a number of references [Bates and
Constable 1985; Constable and Zlatin 1984;
MacQueen 1986; Turner 19841.

Type expressions in programming lan-
guages generally have a syntax that is bor-
rowed (or adapted) from a syntax used in
logic. From early experience with mathe-
matics, this syntax has become almost sec-
ond nature, so that the notation f :A + B,
meaning f is a function that maps elements
of domain A to elements of the range B,
seems natural to us. The type constructor
in this case, +, is used with the two type
identifiers, A and B, to build a new, con-
structed type that we automatically identify
as a “function” type. But we should be
careful to separate the idea represented by
A --j B from the idea of a function; there
are functions this representation does not
adequately describe. An example will be
given presently.

Another idea we pick up from our early
experience is that of a Cartesian product
between two domains. The usual notation
is z: A x B, meaning z is a pair whose
components are, respectively, composed of

elements from domain A and elements of
B. In this case, the type constructor, X, is
used with two type identifiers to build a
new, constructed type that we automati-
cally identify as the type of a pair. But
again, there are pairs that this type repre-
sentation does not adequately describe (the
type of the second element might depend
on the value of the first).

It is possible to generalize our notions
concerning functions and Cartesian prod-
ucts, but our syntax must also change. Con-
structive logic provides generalizations for
our intuitions concerning functions and
Cartesian products and also provides a
syntax.

IIx:A.B(x) is the notation used to rep-
resent a new idea of function: It is the type
of a function that will map an element x
from a domain A to a range B(x); that is,
the range depends on x (the element of A
to which we apply the function) with B
specifying the dependence.5 B itself can be
viewed as a type-valued function. Objects
of this new function type, general product,
are still created with lambda abstraction,
for example. It is just that our new way of
describing function types is more flexible;
we can be more expressive and provide
more information about the function. A
good example is the division function. We
can now express the fact that if we divide
x/y (x, y reals), the range of the result will
depend on y: If y is nonzero, the range is
the set of real numbers; if y is zero, the
range is the set containing the single value
undefined. Of course, the old notation,
f: A + B is still useful when the range off
does not depend on the value to which f is
applied.

Zx:A.B(x) is the notation used to rep-
resent a new idea of Cartesian product; it
is the type of a pair in which the value of
the first component x (which is of type A)
determines the type of the second compo-
nent-again, with B specifying the depen-
dence.‘j Objects of this new type, general

5 Another syntax that has been used is n: A + B Lx)
[Constable and Zlatin 19841.
’ An alternative syntax that has been used is X: A XX
B(x) [Burstall and Lampson 19841.

ACM Computing Surveys, Vol. 20, No. 1, March 1988

44 l S. Danforth and C. Tomlinson

sum, are created by a pairing function (sim-
ilar to cons, for instance) called inject, or
inj, and are inspected by two projection
functions, called witness and out (similar
to car and cdr, for instance).

The function witness takes an object
whose type is a general sum Zx:A.B(x)
and returns x, the witness for the object
(i.e., the first component of the pair). The
type of witness is (Zx:A.B(x)) +A, using
the syntax for expressing the type of a
function whose range does not depend on
the value of its argument. The function out
takes a pair p, whose type is a general sum
Zx:A.B(x), and returns the second com-
ponent of the pair. The type of out is
IIp: (Zx:A.B(x)). B(witness(p)), a gen-
eral product type, because the range of the
result depends on the value of its argument.

in the typing theory investigated by
MacQueen [1986], types are restricted to
those that can be constructed with the II
and Z type constructors.7 We therefore
need to explain how the types of structures
are represented in this theory. This is done
in two steps.

One can use general products to repre-
sent generic or polymorphic functions, and
general sums to represent existential types.
The availability of the above projection
functions on general sums, however, make
the resulting objects (which MacQueen
calls structures) “open,” in contrast to the
packages of FUN. Such an approach cor-
responds to the transparent witness model
for existential types described by Cardelli
and MacQueen [19851.

First, we look at the set of all the types
that can be constructed, starting from
primitive types (such as int and bool) and
our type constructors Z and II. This set is
closed with respect to Z and II construc-
tions and is called the set of small types.
Since we have agreed that we can think of
a set as representing a type, we can call this
set TypeI. Now Type1 is, itself, not a small
type-it cannot be constructed from Z and
II and any of the small types. We therefore
let Type1 be a member of (i.e., a value of
type) Typep, which we define by starting
with Type, and again closing with respect
to Z and II.

This process of defining types and the
type of types (and the type of types of types
. . .) could go on forever. Luckily, though,
we do not need to go any further; the exis-
tential types of SOL and FUN correspond
to values in Typez. In particular,

~T.u(T) = 27: Typel.a(T).

1.2.3.2 Are Structures Values? In FUN,
existential types (the types of packages) are
represented by starting with a type expres-
sion of the “usual” sort (i.e., composed from
the available type constructors, primitive
types, and variables representing types)
and then abstracting with respect to the
desired representation type variable. Thus,
when a package is created by supplying a
value for the representation type (bound by
existential quantification) and values for
the components of the object described by
the overall type expression, the result is
a value of the “usual” sort. Thus, pack-
ages are first-class citizens in SOL and
FUN-they are simply data values. Unfor-
tunately, this is not the case for Mac-
Queen’s structures.

The types of structures (structures being
the dependent-type analog of packages) are
not created with existential abstraction of
a type variable in a type expression. Rather,

Although the type of the left expression
above is of the same class as, for example,
integer in FUN or Type1 in the DL system
(carrying on the analogy), the type of the
expression on the right is Typea. Since the
types of structures in this new system are
of Typez, the values of structures are found
in TypeI. In this typing system structures
are therefore types (i.e., at the level of
“integer” as opposed to the level of “1”).
MacQueen [19861 suggests a special syntax
for building structures, which may be
thought of as a module definition and in-
terconnection language. Within this lan-
guage, called DL, a signature is used to
indicate the type of a structure, and func-
tions that produce structures (such as line,
the generic function in Figure 5) are called
functors.

’ Other constructors useful for representing the types
of records, for instance, are made available, but 3 is
not available.

ACM Computing Surveys, Vol. 20, No. 1, March 1988

Type Theories and Object-Oriented Programming l 45

Definitions:
signature point-ADT = C p-rep:Typel <

create: function(real,real) result p-rep;
plus: function(p-rep,p-rep) result p-rep;
xgal: function(p-rep) result real;
y-val: function(p-rep) result real;>

structure cart-point:point-ADT = inj(real~real, <

create = fun(x,y) cons(x,y);
plus = fun(pl,p2) cons(car(pl)+car(p2),cdr(pl)+cdr(p2));
xgal = fun(p) car(p);

y-val = fun(p) cdr(p);>)

structure polar-point:point-ADT = inj(real><real, <
create = fun(x,y) cons(.._, ,.,)

. ..>)

signature line-ADT-wrt(p:point-ADT) = C I-rep:Typel <
create: function(lpl,lpl) result l-rep;
length: function(l-rep) result real;>

structure cartJne:line-ADT-wrt(cart_point) = inj(lcart-point1 x Icart-pointl, <
create = fun(pl,p2) cons(pl,p2);
length = fun(l) let pl = carp, p2=cdr(l) in

((pl.x-val-p2.xgal) +(pl.y-val-pl.y-val)2)112;>)

Use:
value result = open cart-point as pl in

open cart-point as p2 in
open cart-line as I in

I.length(l.create(pl.create(O,O),p2.create(O,l)));

Figure 7. DL ADTs for point and line.

In DL, if we agree that we will only
compute with values (i.e., not types) during
run time, as MacQueen suggests, then we
can no longer select structures at run time
through the use of conditionals or create
structures dynamically on an as-needed ba-
sis, as is possible in SOL and FUN. Nor
can we use the technique illustrated in
Figure 6 for Smalltalk-like state-based
interaction between ADTs of the same
existential type; structures cannot be
passed or returned at run time. Instead,
structures must be statically defined and
connected before execution. It is interesting
that this is essentially the same restric-
tion seen in OBJ2, a first-order language
[Futatsugi et al. 19851.

What may not be immediately clear is
what has been gained. Let us therefore
build up point and line abstract data types
in DL, as done in Figures 4 and 5 for FUN,
and compare the way in which this is
accomplished. We should see a differ-
ence in the way the line ADT is able to
access the point ADT and its operations.
Figure 7 shows this. We use the notation
1 structure 1 to represent the expression
“witness(structure).”

The benefit of the above approach is to
allow points created through any use of
cart-point to be used in construction of a
cart-line. As can be seen in this example, it
is no longer necessary to explicitly open a
package (e.g., cart-point) in order to obtain

ACM Computing Surveys, Vol. 20, No. 1, March 1988

46 l S. Danforth and C. Tomlinson

a scope within which a higher level abstrac-
tion (e.g., cart-line) may be defined. This
ease of expression of structures based on
other structures and their respective types
is an improvement over the approach
required by existential types under the
hypothetical witness model. Nevertheless,
the line-ADT above requires a point struc-
ture as its argument, preventing lines from
being constructed from points with differ-
ent representation structures. This restric-
tion was also seen in FUN (Figure 5) owing
to the need to explicitly provide a point
package required for creation of end points
within the line package. As seen in the next
section, this restriction is not found in
Russell.

MacQueen [19861 provides numerous ex-
amples of the increased flexibility of DL
and shows how various approaches to defin-
ing structures are possible within this lan-
guage. He believes that the module system
developed for ML [MacQueen 19851 has
this dependent-type model as it most nat-
ural generalization (as opposed to that pro-
vided by existential types).

The DL model of types is a stratified
model, in which there are different levels
of types, each level being constructed from
those below it, but there are also unstrati-
fied models, in which there is a “type of all
types.” Cardelli [1986] has recently devel-
oped a type system, in which framework
the dependent types we have discussed in
this section may be placed. This system has
the promise of providing packages as val-
ues, with transparent witness types. It
appears that static type checking within
this system is in general undecidable, but
whether this is actually a problem for
realistic programs remains a question for
further research.

1.2.4 Russell and Poly

The FUN and DL typing systems have as
their overall aim an understanding of pro-
gramming in terms of the type domains
from which denotable values are drawn.
One result of this has been expressing the
type domains from which ADTs (i.e., ob-
jects whose behavior corresponds to our
intuitions concerning ADTs) are drawn.
Rules for type checking ADTs arise natu-

rally from the coupling of abstract syntax
to semantics that such a denotational
approach provides.

The heart of this approach seems to be
the view that the types from which values
are drawn are somehow fundamental and
that values must be explained in terms of
these types. Type checking is then the act
of verifying that denoted values are indeed
members of the type from which they are
claimed to be drawn and that these values
are used in ways consistent with the prop-
erties common to values of this type.

But one can also take an opposing view-
that values are the fundamental reality and
that a type is just a set of operations (i.e.,
procedures and functions) that provide a
consistent interpretation of values. Under
this regime, type checking is the act of
verifying that values will not be misinter-
preted by operations in which they are used.
Values in such a language do not have
types, themselves, but are interpreted by
the operations of types. We hope the con-
nection with ADTs here is clear: In this
view, all types (even such primitive types
as integer and Boolean, for instance) sup-
port data abstraction in much the same way
as data algebras, packages, and structures
do-by providing the necessary operations
for manipulating the representation of data
for which they were designed.

This approach should make sense to pro-
grammers, who are generally aware that the
same value stored in a memory location can
be thought of as an integer, a boolean, a
machine instruction, a pointer, a floating-
point number, or any one of a number of
different possibilities, depending on the op-

erations in which it takes part. In the
course of an integer add operation, for in-
stance, it is not the data values that hold
or define “integerness”-it is the add op-
eration itself (or, indeed, the entire collec-
tion of integer operations, all of which agree
on a consistent interpretation of a universal
untyped value space). The first program-
ming language to make uniform use of this
point of view toward types was Russell
[Demers and Donahue 19791. Although this
may seem a major change of view, Hook
has defined a language based on dependent
types called Kernel Russell into which

ACM Computing Surveys, Vol. 20, No. 1, March 1988

Type Theories and Object-Oriented Programming l 47

Russell programs may be naturally trans-
lated [Hook 19841. Thus, it is possible to
relate these two viewpoints.

Russell supports the principle of decla-
ration correspondence [Landin 1966]-
anything that can be declared can be passed
as a parameter, and vice versa. In Russell,
therefore, one can parameterize any con-
struction within the language with respect
to any free identifier appearing in it. Since
types are constructible values in Russell
(they are, after all, just sets of operations),
this allows parameterization with respect
to types. Thus, parametric polymorphism
(of the kind used in the generic-line
example in Figure 5) is available from first
principles.

Another principle of Russell is that all
type checking be done statically, at compile
time. As might be expected, static type
checking in a language in which types may
be created and passed as values is a prob-
lematic objective. Although it is difficult to
take issue with any of Russell’s principles
or with its view of types (which is a useful
approach, as is shown presently), the par-
ticular syntactic restrictions placed upon
the language to guarantee static type check-
ing may be questioned.

In order to support static type checking
in Russell, no function or type expression
may use a free identifier bound to a variable
in the surrounding scope.8 This require-
ment is a result of two facts: First, functions
can return types as their results; second,
types match in Russell if and only if they
are syntactically equal or can be converted
through renaming, reordering, or forgetting
so that they are syntactically equal. As a
result of this restriction, called the import
rule, syntactically equal type expressions in
Russell always denote the same type.

Another language based on the same
principles as Russell, but with different
restrictions to guarantee static typing, is
called Poly [Matthews 19831. Poly does
type matching by name, which is a simpler
approach than that taken by Russell.

a The term uariaL& has a special meaning in Russell,
indicating that a side-effecting assignment may be
used to change its contents. Variables are distin-
guished from constants, which are called ualues.

Matthews, the designer of Poly, has sug-
gested that Russell might recognize two
different kinds of functions: those that do
not use free identifiers bound to variables
in a containing scope and those that do.
The first class could be safely allowed in
type expressions, whereas the second could
not. This would be less restrictive than the
current import rule, which prohibits all
functions from importing variables.
Matthews believes that this would be the
most desirable approach for future lan-
guages similar to Russell or Poly.

An example of Russell code is now given
in Figure 8. In it, the capabilities demon-
strated in Figure 6 (multiple ADT represen-
tations) and in Figure 7 (transparent wit-
ness) are combined. As mentioned earlier,
it is not clear how to do this in either FUN
or DL.’

In Russell, the keyword with corresponds
to the keyword ret in the FUN example of
Figure 6-it introduces a local name for the
structure being defined (in this case, a
Cartesian product structure defined using
the Russell prod constructor) that can be
referred to the in the definitions for the
operations on this structure. The Mk op-
eration referred to in the operation defini-
tions is provided by prod and is analogous
to an n-ary cons.

In Russell, the problem with the hypo-
thetical witnesses of existential types is not
present; the problem with dependent types,
that structures are not first-class values, is
also not present. Of all the example typing
systems reviewed so far, the Russell system
seems the most satisfactory in terms of its
expressive power and flexibility. As can be
seen by the above example (in which a new
line is created without explicitly mention-
ing the types of the point arguments), a
certain amount of type inferencing is per-
formed by the Russell compiler. This has
the benefit of making the language less
verbose and easier to use.

Unfortunately, there is currently no for-
mal base for type inferencing in Russell, so

‘We are indebted to Professor Hans Boehm of Rice
University for his assistance in developing this ex-
ample. A Russell compiler developed by Professor
Boehm, A. Demers, P. Matthews, and J. Hook is
available to the general public.

ACM Computing Surveys, Vol. 20, No. 1, March 1989

48 ’ S. Danforth and C. Tomlinson

Definitions:

#define Point-type type P {
new: func [x,y:val Float] val P;
xval,yval: func[val P] val Float;
+ : func[pl,p2: val P] val P }

cart-point == prod { x, y: val Float } with cp {
new == func [x,y: val Float] {cp$Mk};
xval == func [val P] { cp$x };
yval == func [val P] { cp$y };
+ == func [pl,p2:val cp] {new[xval[pl]+xval[p2], yval[pl]+yval[p2]]}
} export {new; xval; yval; +};

polar-point == prod { r, theta: val Float } with pp {
new == func [x, y: val Float] { pp$Mk(sqrt(x*x + y*y), arctan(y/x)) };
xval == func [val P] { pp$r * cos(pp$theta) };
yval == func [val P] { pp$r 1: sin(pp$theta) };
+ == func [pl,p2:val pp] {new[xval[pl]+xvaljp2], yval[pl]+yval[p2]]}
} export {new; xval; yval; +};

line == prod {pl: val tl; p2: val t2; tl,t2: Point-type} with 1 {
new == l$Mk;
length == func [line: val l] {

let
dx == xval[pl[line]] - xval[p2[line]];
dy == yval[pl[line]] - yval[p2[hne]]

in sqrt[dx*dx + dy*dy] ni

>
} export {new; length}

Use:

let
pl == cartqoint$new[l.0,2.0];
p2 == polar-point$new[2.0,3.0];
1 == line$new[pl,p2]

in
line$length[l];

ni

Figure 8. Point and line ADTs in Russell.

the programmer often has to guess whether
an explicit signature will be required. In
many cases, types need to be given explic-
itly even though it seems reasonable for the
compiler to be able to infer them. In the
cart-point example in Figure 8, for in-
stance, it seems strange to have to state
explicitly xval== func[val P]{cp$x], rather
than simply state xval = = func[val P](x)
when x clearly belongs to the cart-point
structure.

The kind of type inferencing done by ML
language compilers [Cardelli 1987; Milner

19781, for which no types at all need be
explicitly mentioned by the programmer, is
not possible in Russell as it now stands.
Nor, for that matter, does it seem likely for
FUN. The ML typing system is consider-
ably less expressive than that of Russell or
FUN (and in any case it does not deal with
modules); this seems to be a necessary
trade-off. The question as to just how much
explicit typing is necessary in these lan-
guages remains for future research. There
is current interest in addressing these foun-
dational issues for Russell, and we hope

ACM Computing Surveys, Vol. 20, No. 1, March 1988

Type Theories and Object-Oriented Programming l 49

that in addition to elucidating a formal base
for type inference in Russell, future work
will result in an extension of Russell types
to handle inheritance, the other necessary
component of OOP.

2. INHERITANCE

We now turn to inheritance, the other half
of the OOP = ADTs + Inheritance equa-
tion. To inherit is to receive properties or
characteristics of another, normally as a
result of some special relationship between
the giver and the receiver. The resulting
properties of the receiver in such an act are
not necessarily limited to those that are
inherited, nor, in general, are all of the
properties and characteristics of the giver
necessarily inherited. This is certainly true
for the usual kind of inheritance that takes
place in human society, wherein the receiv-
ers and givers are people and the relation-
ships are typically based on marriage or
birth.

In view of the above reasoning, it might
be thought that there is no a priori reason
for restricting or imposing a discipline on
the use of inheritance in defining objects.
If one wants to build a new object that
includes a capability already available in
some other object, why not simply use in-
heritance to obtain the desired capability,
while ignoring those that are not desired?
Certainly it is possible to use inheritance
in such an ad hoc fashion; in fact, most
OOP languages expressly provide the
means of doing so. However, as indicated
above, inheritance is normally closely tied
to some relationship between the giver and
receiver. Ideally, such a relation (e.g., is-a
relationship) should support formal reason-
ing about the behavior of objects defined
using inheritance and at least be helpful to
a programmer’s informal reasoning. In the
case of the is-a relationship, the consist-
ency of reasoning about objects based on
inheritance of properties may require all
properties to be inherited [Brachman
19851. Thus, there is a need to be disci-
plined in the use of inheritance in defining
objects so that the implicit relationships
between objects that arise from the use of
inheritance are not violated or contradicted

by the behaviors of these objects. In at-
tempting to provide a formal model for
inheritance, this tension between what is
reasonable on the basis of an anthropo-
morphic analogy and what is reasonable in
terms of formal logic becomes an important
factor.

In Smalltalk, there are no type-checking
means or other tools to help a designer
ensure that a proposed addition to the class
hierarchy makes sense in terms of these
implicit relationships. In fact, there are
numerous examples in the Smalltalk-
system in which the expected relationship
between objects defined using inheritance
is violated [LaLonde et al. 19861. In Small-
talk, it is quite easy to give a definition
of a subclass that includes a method that
overrides one of the same name higher
up in the class hierarchy, giving the objects
of the subclass an inconsistent behavior
with respect to objects of an ancestor
class. Although overriding is usually used
in a principled fashion to provide an ex-
tended and consistent behavior to objects
of a subclass, there is currently no well-
defined notion of such an extension that
formally distinguishes it from a situation
in which the use of overriding produces
inconsistent behavior.

A primary motivation for the use of in-
heritance in programming is that it pro-
vides both a specificational structuring
mechanism and a means of reusing speci-
fications that is based on common sense
notions that are natural to our way of
thinking. When using inheritance in the
definition of an object, a designer need only
specify what is new about the object in
comparison with the objects from which it
inherits properties. In this sense, we might
view inheritance as an ADT constructor. In
Smalltalk, a subclass inherits and may
extend both the state representation (in-
stance variables) and the operations (meth-
ods) of the superclass. Thus, a programmer
need only specify any additional instance
variables or methods that characterize the
new class of object being defined. On the
other hand, CommonObjects [Snyder 19871
expressly forbids inheritance of instance
variables on the grounds of preserving
strong encapsulation of data representa-

ACM Computing Surveys, Vol. 20, No. 1, March 1988

50 l S. Danforth and C. Tomlinson

tions. This approach attempts to preserve
as much as possible the connection between
ADTs and objects, while still supporting a
useful form of inheritance.

The following issues therefore seem im-
portant in trying to model OOP inherit-
ance: First, what is the formal relationship
between objects that inheritance is in-
tended to reflect and to what extent should
violations of this relationship be controlled
or allowed? Second, to what extent should
inheritance be allowed to violate principles
of data abstraction? Additionally, the au-
thors believe that the first of these issues
begs an important question-namely,
whether there should be but a single inher-
itance hierarchy and corresponding rela-
tionship. We believe that there should be
separate inheritance hierarchies and mod-
ule relationships corresponding to the reuse
of behavioral specification and implemen-
tation specification, respectively. Taking
such an approach should alleviate the prob-
lem of creating inconsistent behaviors
when overriding methods and, in many
cases, remove the need to perform over-
riding at all.

The following sections focus on these
issues while reviewing recent work aimed
at addressing inheritance within a formal
framework. Following this, we review a
number of OOP languages, considering how
they address these issues and how they
relate to the formal frameworks that have
been suggested.

2.1 Ordering Relations on Types

Key to a formal basis for type inheritance
is the definition of an order relation on the
set of type expressions. Ordering the set of
types expressible within a type system has
been used in several different aspects of
programming language design

(1) to organize application of coercions in
compilers [Hext 1967; Mitchell 1984a],

(2) to support resolution of overloading
[Jones and Muchnick 1976; Kaplan
and Ullman 19801,

(3) to support type checking and infer-
encing [Mitchell 1984b], and

(4) to support inheritance [Ait-Kaci and
Nasr 1986; Cardelli 1984b; Cardelli and

ACM Computing Surveys, Vol. 20, No. 1, March 1988

Wegner 1985; Dahl and Nygaard 1966;
Futatusugi et al. 1985; Goguen and
Meseguer 1987; Ingalls 19781.

Although it is not the purpose of this sec-
tion to discuss topics (l)-(3) in detail, we
mention them since they are often closely
intertwined with inheritance. In Smalltalk,
for instance, overloading and polymorphism
are integrated via the class hierarchy.

2.1.1 Overloading

Overloading refers to the use of a single
syntactic identifier to refer to several dif-
ferent operations (methods in Smalltalk),
discriminated by the types of the argu-
ments to the operations. Overloading, along
with coercion, is considered a form of ad
hoc polymorphism [Cardelli 19861, thus
suggesting an unprincipled and incoherent
syntactic mechanism. An example of over-
loading is the use of “+” for the addition
operation over integers, rationals, and reals
(not to mention vectors and matrices). It
is hard to see what is unprincipled or in-
coherent here, since the operation of addi-
tion is common to all these cases; but in
the absence of a coherent framework, we
could also imagine “+” being used to indi-
cate the set union operator. The use of a
well-founded class hierarchy based on in-
heritance can provide a framework for the
principled use of overloading. In the above
example, integers, rationals, and reals are
considered successive specializations of one
another. Thus, the various operations as-
sociated with “+” are defined over succes-
sively restricted domains.

2.1.2 Polymorphism

A polymorphic operation is one that can be
applied to different types of arguments. We
use the term functional polymorphism to
refer to the situation in which a single,
specific function can be applied uniformly
and independently of (some aspects of) the
types of its arguments. An example is the
length operation, which takes a list com-
posed of elements of any type and returns
the number of elements in the list. This
operation can be naturally defined so that
it is independent of the type of elements
contained in its argument list. Another ex-

Type Theories and Object-Oriented Programming l 51

ample of such an operation is the identity
operation, which maps an argument of any
type to itself. Many researchers, including
Cardelli and Wegner [19851, call this notion
parametric polymorphism. This is because
the types of the arguments for such func-
tions appear as implicit (in ML) or even
explicit (in FUN) type parameters in
the polymorphic function definition. The
generic-line example of Figure 5 shows
this. We prefer not to call this parametric
polymorphism for the following reasons.

There are actually two different ap-
proaches to polymorphism. The style intro-
duced by Milner [19781 and popularized by
the ML language is the one we refer to as
functional polymorphism. It is character-
ized by the uniform behavior of a single
function over a range of types. Type quan-
tification to define this range may be either
implicit or explicit (as required for type
checking in FUN), but types are not sup-
plied as explicit parameters to functions,
and functions do not make reference to or
use the types of the arguments in any op-
erational fashion. The other style of
polymorphism has its roots in Reynolds
[19741, involves explicit quantification over
types, and is obtained by supplying types
as explicit parameters to functions. The
Russell language supports polymorphism in
this way. Calling both approaches “para-
metric” seems to be asking for confusion,
since they seem different, both operation-
ally and semantically. We therefore recog-
nize this distinction (when appropriate) by
using either functional or parametric as a
qualifier. When the distinction is not im-
portant, we omit the qualifier.

A natural refinement of polymorphism is
inclusion, or bounded polymorphism, in
which “an operation may be applied to ob-
jects of different types related by inclusion”
[Cardelli and Wegner 19851. Inclusion
polymorphism provides a means of char-
acterizing restricted applicability of a
polymorphic function. The form of inclu-
sion polymorphism normally seen in cur-
rent OOP languages is functional polymor-
phism that relies on a common represen-
tation among different types related by
inclusion.

In Amber [Cardelli 1984a] and FUN
[Cardelli and Wegner 19851, for instance,

inclusion is defined over record types, and
bounded polymorphic operations operate
on such records by using fields that are
common to the record types involved.
Examples of this approach are given in
Section 2.3. In Smalltalk, inheritance of
methods from a superclass may be viewed
as inclusion polymorphism. In this case,
commonality of representation arises from
the fact that the instance variables upon
which the inherited operation depends are
inherited also. The set of subclasses of the
class defining the method represents the
set of legal classes that the bounded poly-
morphic method applies to. Thus, a method
defined within the class Object can be
viewed as a universally polymorphic oper-
ation (i.e., it may be applied to all objects).

We now discuss in more detail the ap-
proaches to inheritance and ordering of
types that we see in the work of Goguen,
Cardelli, and Ait-Kaci. These approaches
are based on order-sorted algebras, record
orderings, and term orderings, respectively.

2.2 Order-Sorted Algebras

This section discusses the work of Goguen
and others [Futatsugi et al. 1985; Goguen
and Meseguer 1986, 19871. Each of the
references just given includes extensive ci-
tations and discusses a system intended to
highlight a particular cluster of features:
OBJ2 [Futatsugi et al. 19851 is a functional
system based on equations; EQLog [Go-
guen and Meseguer 19861 is a full logic
programming system based on the Horn
logic with equality; and FOOP [Goguen and
Meseguer 19871 is based on an approach to
supporting objects with local state (as in
Smalltalk) in a functional setting. In the
following discussion, we use OBJ to refer
in a generic fashion to all of this work-
not just the system described in Futatsugi
et al. [19851.

OBJ uses two interrelated methods of
subtyping: subsorts and relations on mod-
ules. An OBJ module provides a packaging
of one or more abstract data type defini-
tions. The definition of an abstract data
type will involve a set of equations, possibly
with conditions, that mention one or more
sorts: In Section 1.1 on algebraic ap-
proaches, the notion of a data algebra was

ACM Computing Surveys, Vol. 20, No. 1, March 1988

52 l S. Danforth and C. Tomlinson

module LIST[Object::Trivial] is
using NAT
sorts NeList List
subsorts NeList < List
o Ps

nil : -> List ,
cons : Object List -> List [associative with identity = nil] ,
hd : NeList -> Elt ,
tl : NeList -> List ,
size : List -> Nat

van
X : Object ,
L; L’ : List

axioms
hd(cons(X,L)) = X
tl(cons(X,L)) = L
size(ni1) = 0
size(cons(X,L)) = 1 + size(L).

endmod LIST

Figure 9. AN OBJ2 module.

introduced. In the work of Goguen, there is
a standard method of obtaining an algebra
from the definition of an ADT. In particu-
lar, one can think of a sort (e.g., Boolean)
in an ADT definition as an uninterpreted
identifier that has a corresponding carrier
in the standard (initial) algebra.

Figure 9 shows an example of an OBJ2
module. It declares a signature and set of
operations for lists of objects. The module
parameter makes explicit the assumptions
made for objects-namely, they satisfy the
theory named Trivial. This theory is de-
clared within another module (not shown)
and has no axioms. Because Trivial has no
axioms, any object satisfies this theory, and
any object may be put on a list. The sub-
sorts declaration defines an ordering to
hold on the sorts List and NeList. In par-
ticular, the operators cons and size will be
inherited by the sort of NeList of nonempty
lists. Initial algebras will correspond to
each of the two sorts introduced by this
module. The set corresponding to the sort
NeList will be a subset of the one for List,
and the algebra for NeList will be a sub-
algebra of the one for List. The using
clause indicates that the definition of this
module depends on some of the properties
defined in the module NAT. In this case
the sort named Nat is the codomain of the
operator size.

In OBJ, another form of inheritance is
achieved via a hierarchy of modules. The

ACM Computing Surveys, Vol. 20, No. 1, March 1988

schematic module definition shown in Fig-
ure 10 illustrates this. It defines a subclass
of LISTS that can be sorted by virtue of a
partial order being defined over the ele-
ments of the LISTS. This is indicated by
the module parameter type being restricted
to POSET. POSET is the theory of par-
tially ordered sorts. Just as in Smalltalk, a
subclass may add new message selectors
and methods that do not occur in the su-
perclass; here the module defines two new
operators over the sort List of the module
LIST. Note also that because of the subsort
relation defined in LIST, the sort NeList
inherits the two new operators also.

All of the mechanisms involved in sub-
sorts and the module hierarchy can be given
a semantics in terms of order-sorted alge-
bras, which in turn may be mapped into
many-sorted algebras, which are well
understood. In this sense, all of the OBJ2
inheritance mechanisms can be considered
a form of syntactic sugar that does not
increase the expressiveness of the resulting
language. In practice, however, the nota-
tional and conceptual economies gained are
considerable.

2.3 Set-Inclusion Orderings

The foundation for Cardelli’s work with
inheritance [Cardelli 1984b; Cardelli and
Wegner 19851 is provided by the “types-as-

Type Theories and Object-Oriented Programming l 53

module SORTABLELISTS[X::POSET] is
using BOOL
extending LISTIX]

OPS
sorted : List -> Boo1 ,
sort : List -> List

end SORTABLE-LISTS

Figure 10. Module hierarchies in OBJ.

ideals” approach, developed by MacQueen,
Sethi, and Plotkin [MacQueen and Sethi
1982; MacQueen et al. 19841. It seems ser-
endipitous that a theory originally devel-
oped as a semantic foundation for type
checking functionally polymorphic lan-
guages should also provide a foundation for
understanding inheritance. As we show
here, however, the FUN typing system de-
scribed in Section 1.2.2 can be extended in
a natural way to support inclusion poly-
morphism and, thereby, a form of inherit-
ance.

2.3.1 Types as Ideals

We have explained the reasoning behind
viewing types as sets. Even though all types
may be viewed as sets of values, viewing all
possible sets of values as types is not so
reasonable. Since values of the same type
normally have a common structure (such
as being pairs, functions, or integers) as-
sociated with them, a first step in develop-
ing a semantics for a typed language is to
be precise about the nature of the sets that
make reasonable types.

In the theory of types as ideals, a set is a
type if (and only if) the set is an ideal.
Ideals are nonempty sets that satisfy two
properties: They are (1) downward closed
and (2) consistently closed under a com-
plete partial ordering (cpo) on the domain
of possible values, V. The set V and the
cpo are the usual mathematical constructs
used to present the denotational seman-
tics of a lambda-calculus-based language.
V is the set of all denotable values, and

the cpo is an ordering based on information
content.”

The two properties given above that de-
fine ideals reflect intuitive ideas concerning
types and the way in which the elements of
V are built up from approximations involv-
ing primitives such as Boo1 and I, the least
element of V, called Bottom. Requiring a
type (set) to be downward closed means
that the approximations of individual ele-
ments of the type are also in the type.
Requiring a type (set) to be consistently
closed means, roughly, that the least upper
bound of an approximation (subset) of the
type is itself in the type.

There are two important results that de-
rive from restricting types to ideals in this
way. First, the set of all types (i.e., the set
of all the ideals of V) becomes a complete
lattice under the set inclusion ordering G
[MacQueen and Sethi 19821. This is an
important result because it makes it easy
to reason about subtypes. Second, given
some minor restrictions, recursive type
equations have solutions [MacQueen et al.
19841. This is of crucial importance because
many useful functions have recursive types.
For instance, in order to express the type
of x in the expression X(X), the type equa-
tion s = s ---, t must have a solution (this
solution is the type of x). The example in
Figure 6 used recursive types.

For future reference, we identify the set
of all types (the set of all ideals of V) as
TYPE. As we have mentioned, TYPE is a
complete lattice when ordered according
to C. At the top of this lattice is the type
called TOP, whose elements are exactly
those of V.

2.3.2 Functional Polymorphism in the Ideal
Model

Functional polymorphism has been char-
acterized as the ability of a function to
operate uniformly and independently of
(some aspects of) the types of its argu-
ments. The identity function Id is a classic

lo Two excellent sources of information concerning the
denotational approach to language semantics may be
found in the work of Dana Scott [1976] and Joseph
Stay [1977]. In these semantics, the domain V is
required to satisfy a recursive domain equation, such
asV=BOOL+INT+[VxV]+[V+V].

ACM Computing Surveys, Vol. 20, No. 1, March 1988

54 l S. Danforth and C. Tomlinson

example of such a function, as is the length
function Ln, which returns the number of
elements in a list. The fact that Ln cannot
be applied to all types of arguments (only
lists) is the reason for use of the phrase
“some aspects of” in the characterization.
Universal and bounded universal quantifi-
cation let us express exactly what aspects
these are for polymorphic functions.

Universal quantification of type vari-
ables was introduced in Section 1.2.2.1 and
used in Figure 5. We now explain why the
ideal model allows us to represent func-
tional polymorphism using universal quan-
tification and inclusion polymorphism (a
form of inheritance) as bounded universal
quantification. We begin by using the iden-
tity function as an example.

Id is a member of the type TOP + TOP,
but this fails to capture the essence of Id.
A function of this type could map integers
to booleans, for instance. To be more pre-
cise, note that Id maps integers to integers,
booleans to booleans, and so on, for any
type t. Therefore, it is quite natural to
use universal quantification and say that
Id has the type expressed by the formula
V t.t + t. Although this seems reasonable,
what does it mean? If types are ideals, such
a formula must have an interpretation in
terms of ideals.

In the ideal model, according to Mac-
Queen et al. [1984], universal quantifica-
tion corresponds to taking intersections of
ideals containing certain total functions.
Let D - E be the set of total functions in
V that map elements of the ideal D to
elements of the ideal E. Stated more pre-
cisely,

D-E={~ETOP-+TOP

1 x E D + f(x) E El.

For any D and E that are ideals, this set is
an ideal and is therefore a valid type in the
ideal model.

There is an ideal (a type) in V that con-
tains all total functions that map Booleans
to Booleans, represented as Boo1 - Bool.
We do not care what these functions do to
other values, but they always map Booleans
to Booleans. Id is in this ideal, so we write

ACM Computing Surveys, Vol. 20, No. 1, March 1988

Id E Boo1 - Bool. But we can also write
Id E Int - Int. In fact, for any type T,
Id E T - T. Because Id is in all of these
ideals, it is in their intersection, so we can
write Id E flTETYPET o-+ T. This, then, is
the meaning of the expression Id: V t.t ---) t.
A similar interpretation provides the mean-
ing of Ln: t/ t.LIST(t) + INT, namely
Ln E fl TETyp,yLIST(T) - INT.

Because of the lattice structure of TYPE,
an equivalent representation of the type of
Id is Id E nTaTOPT - T. The ordering 5
is that generated by c on TYPE. General-
izing over syntax, then, we write Id: V t 5
T0P.t + t. It is this more general form that
suggests bounded quantification in which
the type TOP in this expression is replaced
by some other type in the TYPE lattice.
Thus, the general form for representing
bounded universal quantification becomes
V t 5 T.texp(t), where T is some type in
TYPE, and texp (t) is a type expression that
can depend on the type variable t.

To summarize, the two important results
of this approach with respect to inheritance
are

(1) TYPE (the set of all types) is a com-
plete lattice ordered by set inclusion;

(2) both universal and bounded universal
quantification have natural interpre-
tations in terms of the ordering defined
by this lattice.

2.3.3 Examples of Inheritance

Inclusion polymorphism captures a form of
inheritance used in OOP. The use of inclu-
sion polymorphism for this purpose, how-
ever, requires that the hierarchy normally
expressed in terms of superclass/subclass
relationships be reflected in type/subtype
relationships. For this purpose, Cardelli
[1984a] has introduced records and their
types. Records are then used to model class
instances, and functional record compo-
nents are used to model methods [Cardelli
and Wegner 19851.

A record is a finite association of values
to labels, for example: (age = 5; speed =
20). The type of this record is indicated by

Type Theories and Object-Oriented Programming l 55

the expression, (age, speed : int). The or-
dering of labels is not important (i.e., for
all practical purposes, (age = 5; speed =
20) = (speed = 20; age = 5)) because the
only way fields can be accessed is via their
label. The examples in Section 1.2.2 used
records to store ADT functions and values,
so they could be referenced by name (as
opposed to position within the record).

The aspect of records that is new to this
discussion concerns the way in which their
types may be related. By definition [Car-
delli 1984133, a record type R’ is a subtype
of type R (written R’ I R) if (and only if)
R ’ has all the fields of R (possibly more)
and the common fields of R’ and R are in
the subtype relation. This definition of sub-
typing for records is motivated by (1) the
desire to represent objects using records
and (2) the desire that inclusion polymor-
phism provide results on records that
correspond with our intuitions concerning
object descriptions. The essential intuition
embodied in this ordering is that if, for
instance, every car is a thing (i.e., the type
containing all cars is itself contained in the
type containing all things), then when one
describes a car, one describes a thing. When
descriptions are given via the fields of rec-
ord types, this ordering does, in fact, model
some of our intuitions concerning OOP-
namely, the relationship between instance
variables of classes in a subtype/supertype
relationship. Unfortunately, as we show,
this ordering seems the inverse of the cor-
rect ordering for methods.

Figure 11 shows some example record
types and the subtype relationships that
arise from this definition. The first two
type declarations can be read as “all things
have an age” and “all vehicles are things
that have a speed.” Note that in this ex-
ample, vehicle-type and machine-type are
not related by 5 (because of the way in
which the types were defined). This illus-
trates the fact that in this typing system,
subtypes arise solely from implementation
decisions concerning the representation of
objects, not from observed or intended be-
havioral relationships between objects in
an application. In FUN, one never declares
one type to be a subtype of another. Thus,

Types:

thingtype = <age: int>
vehicle-type = <age: int; speed: int>
machine-type = <age: int; fuel: int>
car-type = <age: int; fuel: int; speed: int>

Type Relationships:

car-type 5 vehicle-type 5 thing-type
car-type 2 machine-type 5 thing-type

VOlUtX

thing = <age = 5>
vehicle = <speed = 10; age = 5>
car = <fuel = 20; age = 10; speed = SO>

Figure 11. Some example record types.

the types of objects that are not related in
an application domain may be related in a
corresponding FUN program, simply as a
result of coincidental representations. Sim-
ilarly, the types of objects in an application
domain that are perceived to be related will
not be so related in a FUN program unless
their representations are appropriately
designed. This focus on implementation
representations for defining subtype rela-
tionships is understandable; static type
checking (and the absence of run-time type
errors) is a primary objective of the FUN
type system. The above observation does,
however, underscore a need to use separate
behavioral and implementation hierar-
chies. These could be used as a database
for a system development environment,
whose purpose would be the controlled gen-
eration of FUN programs.

Let us now ask what benefit can be
derived from the valid conclusion that
car-type 5 thing-type. We first define a
function called mk-thing-older that will
make a thing older. To help us express this
function, we introduce a syntax for dealing
with records. The expression record with
((lubell, valuel), (Zabel2, vaZue2), . . .) will
be taken to denote a new record value
whose fields are identical to those of record,

ACM Computing Surveys, Vol. 20, No. 1, March 1988

56 . S. Danforth and C. Tom&son

except for those fields whose labels are
label 1, lubel2, and so on, which fields con-
tain, respectively, value 1, value2, and so
on. Figure 12 shows two possible mk-older
functions and their use on the values de-
fined in Figure 11. Note that the types of
the parameters for these functions are in-
dicated using “ZZ” instead of “:“, a natural
extension of parameter type declaration in
polymorphic function definitions.

As seen in Figure 12, the typing system
will allow mk-thing-older(car), because
car-type 5 thing-type, and mk-thing-older
is a polymorphic function that operates on
any type 5 thing-type. This shows the exact
sense in which inclusion polymorphism
models inheritance. In Smalltalk, for
instance, the function mk-thing-older
could be placed in the thing class as. the
mk-older method, along with the instance
variable, age. The mk-thing-older function
could be inherited as the mk-older method
by subclasses of thing such as car (which
subclasses also inherit the instance vari-
able, age). Or the car subclass might over-
ride this “default” method by providing the
mk-car-older function as the mk-older
method for instances of car and its sub-
classes.

Also, as shown in Figure 12, the typing
system correctly prevents an application of
mk-car-older to thing. This is certainly a
desirable result, since thing does not have
the speed field assumed by mk-car-older.
Thus, the typing system prevents an appli-
cation of a polymorphic function to an ar-
gument for which it is unsuited. This is a
necessary result in a useful typing system.

But is what we have shown so far really
sufficient for capturing the essence of
OOP? To answer this question, we pursue
the consequences of the claimed corre-
spondence of records to class instances and
methods to record fields. We attempt to
construct a record that corresponds to an
instance of the thing class, as described
above, and construct another record that
corresponds to an instance of the car class.
Some unexpected problems arise.

Figure 13 shows the types that result if
the records of Figure 11 are extended to
include the functions of Figure 12. The

label names are motivated by our above
description of the corresponding Smalltalk
classes and mk-older methods. Note that
these type expressions are recursive.

Unfortunately, the types in Figure 13 are
not related as we had expected. If we as-
sume that car-type 5 thing-type, this leads
to a contradiction. In particular,

(car- type 5 thing-type)

+ (t/o 5 thingLype.o + o

5 VC 5 car-type.c + c)ll

violates the conditions for car-type 5
thing-type (in particular, that typeof (car-
type.mk-older) I typeof (thingAype.mk-
older)). This contradiction indicates the
falsity of assuming car-type I thing-type
in this case.

This difficulty of placing polymorphic
methods within records while maintaining
the ordering of the record types is surpris-
ing, but there is an explanation. Recall that
the ordering defined for record types was
chosen to support the intuition that (for
instance), if car-type 5 thing-type, a de-
scription of a car can (by ignoring fields
not found within things) be seen as a de-
scription of a thing. But should a poly-
morphic method designed for operation on
cars necessarily be a method for a thing?
We think not. The mk-car-older method
provides a concrete counterexample, and
this is exactly what the ordering on poly-
morphic types expressed using bounded
universal quantification tells us.

Thus, if we locate polymorphic car meth-
ods within a record representing a car, we
would not expect these methods to be valid
for things in general, as required by
Cardelli’s ordering on record types. In fact,
we should expect just the opposite-that
there will be many functions on cars that
are not functions on things because cars

” It is straightforward to verify this relationship by
recalling the meaning of universal quantification in
terms of intersected ideals. If car-type 5
thing-type, then every intersection done for VC I
car-type.c + c is done for Vo 5 thing-type.0 -+ o
and more besides. Thus (Vo 5 thing-type.0 + o) s
(VC 5 car2ype.c --, c).

ACM Computing Surveys, Vol. 20, No. 1, March 1988

Type Theories and Object-Oriented Programming l 51

Function Definitions:

mk-thing-older : vo<thing-type.o+o
= Xolthing-type o with ((age,age+l))

mk-car-older : vclcar-type.c-+c
= Xc<car-type c with ((age,age+l), (speed,speed-1))

Ezample Usage

mk-thing-older(thing) = <age=6>
mk-thing-older(car) = <fuel=20; age=ll; speed=SO>

mk-car-older(thing) = WRONG (Type error)
mk-car-older(car) = <fuel=20; age=ll; speed=79>

Figure 12. Aging functions.

Types:

thing-type = <age: int; mk-older: volthing-type.o+o>

car-type = <age,fuel,speed: int; mkglder :‘fc<car-type.c+c>

Subtype Relations:

none -- thing-type and car-type are not related

Figure 13. Problems using record types as classes.

are more special than things. For this rea-
son, Cardelli’s ordering on record types
does not allow us to place polymorphic
methods within records describing objects
while maintaining the desired ordering on
these records.

Irrespective of this situation, we want to
emphasize that bounded universal quanti-
fication is a powerful and useful framework
within which to represent the types of func-
tions that exhibit inclusion polymorphism.
Bounded universal types provide a distinct
improvement in ordering the types of
polymorphic functions, and this can be use-
ful when requiring strong type checking of
programs that make use of inheritance. As
an example of this, we compare the order-
ing of the types of mk-thing-older and

mk-car-older, as given in Figure 12, with
the results that would obtain without rec-
ognition of the polymorphic nature of these
functions.

Using the basic definitions and orderings
of Figure 11, if we were not to avail our-
selves of bounded universal quantification,
as in Figure 12 where mk-thing-older and
mk-car-older were defined, we would prob-
ably represent the types of mk-thing-older
and mk-car-older as shown now in Fig-
ure 14.

Whereas the bounded universal typings
given in Figure 12 correctly show that
the type of mk-thing-older is included in
the type of mk-car-older (thus allowing
us to apply mk-thing-older to a car), the
above characterization of the types of these

ACM Computing Surveys, Vol. 20, No. 1, March 1988

58 l S. Danforth and C. Tomlinson

mk-thing-older’ : thing-type + thing-type The other approach is reminiscent of the
mk-car-older’ : car-type -+ car-type example in Figure 6 and uses the recursive

Figure 14. Alternative typings. record definitions developed for Amber. By
using a recursive definition (in which the
thing defined is made available within the
scope of the definition), fields of a record
are available to functions located within
the record. Of course, the resulting method
types are no longer polymorphic. Figure 15
shows the result of using this approach.

functions results in no ordering at all
between these types. This is because the
function constructor in the ideal model is
antimonotonic in its first argument.” Thus
if some function, say g, requires as an ar-
gument a function of type car + car, we
cannot pass mk-thing-older ’ to g, since its
type is not included in car + car. This
points out the fact that for functions that
support inclusion polymorphism, it would
be a mistake not to attempt to express and
use this information in their typings. Luck-
ily, bounded universal quantification allows
us to express this information for poly-
morphic functions and achieve the order-
ings we intuitively expect.

Cardelli’s ordering on records is an ex-
pedient device for providing useful relation-
ships between record types in Amber
[Cardelli 1984a], a language that does not
include bounded universal types. As we
have shown, this ordering does not extend
to supporting class instances with poly-
morphic methods. There are two ap-
proaches toward this “problem” that
appear to make sense. First, one might
simply give up associating polymorphic
methods closely with the instance variables
that describe an object (by not placing both
within a record). This approach is sug-
gested by the successful examples of Fig-
ures 11 and 12, and finds additional support
in the work of Ait-Kaci [Ait-Kaci 1984; Ait-
Kaci and Nasr 19861, which is reviewed in
the next section.

I2 That is to say, if domains are related as A 5 B and
C s D, then B + C 5 A + D [MacQueen and Sethi
19821. Although initially perplexing, this rule is correct
in the ideal model, given that nothing else is known
about the behavior of the functions involved. As an
example, if a function requires for its argument a
function of type NAT + INT and NAT C INT, then
supplying a function of type INT + NAT should be
acceptable, since a function of type INT -P NAT will
certainly map NATs to INTs. On the other hand, if
an NAT + NAT is reauired. an INT + INT will not

. do, or vice versa.

This seems to be a reasonable approach.
There is a straightforward mapping from
the situation in which polymorphic meth-
ods are maintained separately from the rec-
ords describing objects, and the situation
illustrated in this example, in which such a
polymorphic function has been moved in-
side the record by transforming it to make
use of the recursive record definition. Per-
haps method inheritance in Smalltalk could
be viewed as making use of such transfor-
mations under the assumption of common
(i.e., inherited) instance variable represen-
tations.

Since the approach shown in Figure 15
maintains the desired ordering on record
types, FUN can make use of polymorphic
functions defined over bounded ranges of
these types. Records can thus be used to
represent useful objects and associated
nonpolymorphic methods for these objects,
and the types of these records can be or-
dered to allow such records as arguments
to polymorphic functions. This is a prom-
ising result, but it requires choosing the
appropriate (most specific) polymorphic
function for a given set of arguments. Al-
though the inheritance hierarchy of Small-
talk supports this automatically, it could
also be done explicitly by the programmer
or be supported with the concept of dis-
criminators as in CommonLoops (discussed
in Section 3.3). This approach was not con-
sidered in FUN owing to the belief that
bounded universal quantification combined
with functional record fields provided all
that was necessary for modeling inherit-
ance in OOP. As shown, however, the
claimed correspondence between records
and objects fails when attempting to in-
clude inherited polymorphic methods in the
analogy.

ACM Computing Surveys, Vol. 20, No. 1, March 1988

Types:

Type Theories and Object-Oriented Programming l 59

thing-type = <age: int; mk-older: + thing-type>
car-type = <age,speed: int; mk-older: + car-type>

Type Relationships:

car-type 5 thing-type

Values:

thing = ret self
<age=5; mk-older()=self with ((age, age+l))>

car = ret self
<age=lO; specd=80; mk-older()=self with ((age, age+l) (speed, speed-l))>

Figure 15. A final example of records.

2.4 Term Orderings

In Ait-Kaci’s dissertation [1984] and sub-
sequent work [Ait-Kaci 1985; Ait-Kaci and
Nasr 19861, an alternative approach toward
OOP is based on generalizing and ordering
first-order terms. Although these terms are
used to represent objects, there is no at-
tempt to hold methods within these terms;
the functions and Prolog-like relations that
perform or guide computations are kept
separate from the first-order terms manip-
ulated and created by these computations.

Ait-Kaci’s approach replaces Cardelli’s
records with generalized first-order terms
called Q-terms. These terms are structured
data types consisting of the following:

(1)

(2)

(3)

a head symbol that determines a class
of objects (namely, all those objects in
some chosen domain of interpretation
whose description begins with the head
symbol),
optional attributes or fields that de-
scribe particular features possessed by
the class of objects being described
(these fields are identified by labels and
are themselves given by q-terms),
optional coreference constraints that
are used to signify equality constraints
between attributes that are satisfied by

the class of objects being described
(this is a source of increased expressive
power over records).

Aside from coreference constraints,
which offer a useful and important mecha-
nism for describing constraints on objects,
q-terms are different from first-order
terms primarily because a q-term with a
given head symbol may have any number
of fields (normally, the head symbol of a
first-order term determines the arity of the
term).

One difference between Cardelli’s ap-
proach and that of Ait-Kaci (aside from the
availability of coreference constraints in \k-
terms and the ability to place functional
fields in records) is the fact that the order-
ing relationship in Cardelli is on the types
of records (not the records themselves),
whereas Ait-Kaci’s ordering is on Q-terms,
which are actual objects of computation.
Ait-Kaci’s approach can be thought of as
computing with types. Alternatively, it
could be viewed as being somewhat similar
to the use of prototypes, since in that ap-
proach objects themselves may be viewed
as classes [Stein 19871.

Figure 16 shows some q-terms. The last
example shows a more complex structure

ACM Computing Surveys, Vol. 20, No. 1, March 1988

60 . S. Danforth and C. Tomlinson

person
A term with a head and no attributes. Intuitively, this could
represent the set of all persons (sic) -- that is, persons with any
attributes whatsoever.

person(name => Jim)
A term with a head and a single attribute with the label “name”.
This could represent the set of people named Jim.

student(name => Alex; sex => male)
The set of all students named Alex that are male.

person(id => name(1ast => X: string)
father => person(id => name(last => X)))

Figure 16. Example P terms.

that expresses the constraint that the last
name of a person and that of the person’s
father must be the same.

The use of arrows is intended to be
suggestive; q-term labels may be consid-
ered to be functions that return a q-term
value for the indicated field.

The type symbols used for *-term heads
(e.g., person, student) are chosen from a
partially ordered signature, where this or-
dering is intended to reflect set inclusion
within the interpretation universe of ob-
jects described by the type symbols. The
signature ordering is not based on represen-
tation-an important difference between
this approach and Cardelli’s record type
ordering. An ordering on Q-terms is then
defined in a manner similar to that used
for records, in this case by reference to the
ordering on the head symbols from which
q-terms are created. The resulting inclu-
sion ordering on q-terms supports the
same intuitions concerning object descrip-
tions as that for Cardelli’s records. Figure
17 shows an example of type inclusion.

The expressive power of q-terms with
respect to objects is similar to that of rec-
ords-the head symbols in Q-terms could
be placed in record fields whose types are
related according to the original relation-
ship among head symbols. Although the
ordering relationships would be between
the resulting record types (as opposed to
the records themselves), this need not re-

sult in practical differences in how the
relationship is used (or could be used) in
supporting inheritance.

2.4.1 A Calculus of *-Terms

The ordering on the signature of type sym-
bols can be very useful if the signature is a
lattice. That is, if least upper bounds and
greatest lower bounds are defined for any
subsets of the type symbol signature, the
set of Q-terms will also be a lattice and
there will be a least upper bound (lub) and
greatest lower bound (glb) for any pair of
q-terms. Most interestingly, the lub and
glb operations on Q-terms turn out to be
the natural extensions of generalization
[Reynolds 19701 and unification [Robinson
19651 on first-order terms. Figure 18 pre-
sents an example signature that is a lattice
and two types represented as q-terms built
from this signature. Because the signature
is a lattice, these two types have a lub
(generalization) and glb (unification) that
are themselves types, and these are also
presented.

The correspondence of +-terms with
first-order terms and of q-term unification
(i.e., the glb operation on q-terms) with
unification on first-order terms naturally
suggests an extension of Prolog that makes
use of Q-terms. The resulting language pro-
vides an excellent example of straightfor-
ward and theoretically sound integration of

ACM Computing Surveys, Vol. 20, No. 1, March 1988

Type Theories and Object-Oriented Programming

Type Symbol Orderings:

l 61

student 5 person
Austin 5 cityname
Dallas 5 cityname
“abc” < string
“einstein” 5 string

q-terms:

t1 =
student(

id => name(last => X:string);
lives-at => Y:address(city=>Austin);
father => person(id => name(last => X);

lives-at ==> Y));

t2 =
person(

id => name;
lives-at => address(city => cityname);
father => person);

Resulting Q-term Ordering:

t1 5 t2

Figure 17. q-term inclusion.

inheritance with logic programming [Ait-
Kaci and Nasr 19861. Because polymorphic
functions may also be defined over domains
denoted by q-terms (by using techniques
similar to those employed on records), it
seems that Q-terms may provide a pleasing
base for integrating both logical and func-
tional object-oriented computing. This di-
rection of investigation is currently being
pursued [Ait-Kaci et al. 19871 and appears
very promising.

3. TYPES AND EXISTING OOP
LANGUAGES

In this section we quickly review a few
approaches and ideas relevant to type
checking OOP for LISP-like and other lan-
guages. Our primary focus is the interesting
connections between ad hoc suggestions

that have been put forth for types in OOP
and the ideas developed and implied by the
models reviewed in this paper. By ad hoc,
we mean type checking rules or language
ideas put forth without an underlying
model. Ad hoc rules are not necessarily less
desirable for the lack of a model; it seems
to us that if such rules lead to a consistent
and useful programming methodology,
there probably is a satisfactory model. Cer-
tainly LISP-like languages have been use-
ful and important independently of the
question of their model.

3.1 Type Checking Smalltalk

In the proposal of Johnson [19861, a num-
ber of alternatives to type checking Small-
talk programs are reviewed. Reasons why
static checking would lead to important

ACM Computing Surveys, Vol. 20, No. 1, March 1988

62 . S. Danforth and C. Tomlinson

A Signature:
T

a wit h mojarch

c

queen

Two Types:

child
(knows => X:person(knows => queen; hates => Y:monarch);
hates => child(knows => Y; likes => wicked-queen);
likes => X);

adult
(knows => adult(knows => witch);
hates => person(knows => X:monarch; likes => X));

Their Generalization and Unification:

person
(knows => person;
hates => person(knows => monarch; likes => monarch));

teenager
(knows => X:adult(knows => wicked-queen; hates => Y:wicked-queen);
hates => child(knows => Y; likes => Y);
iikes => X);

Figure 18. A lattice signature and four types.

increases in program efficiency are out-
lined. The connection with this paper that
we wish to highlight concerns the antimon-
otonic rule for function type inclusion de-
scribed in Section 2.3.3.

Borning and Ingalls [1982] have sug-
gested a natural characterization of the
type of a variable in Smalltalk: the nearest
common superclass of the objects that can
be stored in that variable. Johnson rules
this approach out because, among other
reasons, it violates the antimonotonicity
rule. Johnson’s reasoning is as follows:
Arrayof:Integer cannot be a subtype of
Arrayof: Object, since a procedure that is
given an Arrayof: Object can store any ob-

ject in it, whereas only integers can be
stored in an Arrayof: Integer. Therefore, a
procedure that requires an Arrayof: Object
as a parameter cannot accept an Ar-
rayof: Integer. To see why antimonotonic-
ity gives this result, we assume that Integer
5 Object, and then examine the two re-
spective array storage operations that we
expect to find within Arrayof: Integer and
Arrayof: Object, namely,

store-int : Integer x Arrayof: Integer

+ Arrayof: Integer,

store-obj: Object x Arrayof: Object

+ Arrayof: Object.

ACM Computing Surveys, Vol. 20, No. 1, March 1988

Type Theories and Object-Oriented Programming l 63

Now, if Arrayof: Integer 5 Arrayof: Object,
the types of store-obj and of store-int are
incomparable because of the antimonotonic
ordering on function types.13

3.2 Emerald

Another language effort oriented toward
typing OOP is described by Black et al.
[19861. Here again, antimonotonicity plays
a major role in type checking. In a manner
similar to Russell, an abstract type in
Emerald defines a collection of operation
signatures-operation names and the types
of their arguments and results. All identi-
fiers in Emerald are typed: The program-
mer must declare the abstract type of the
objects that an identifier can name, and
type checking amounts to verifying that
assignments to identifiers conform to their
types. In Emerald, a type S (read subtype)
conforms to a type T if

(1) S provides at least the operations of T,
(2) for each operation in T, the corre-

sponding operation in S has the same
number of arguments and results,

(3) the abstract types of the results of S’s
operations conform to those of T’s op-
erations,

(4) the abstract types of the arguments to
T’s operations conform to those of S’s
operations.

Rules 1 and 2 correspond to Cardelli’s
ordering on record types, whereas rules 3
and 4 express the antimonotonicity of func-
tion types in terms of the Emerald pro-
gramming metaphor.

As we have indicated in our examples,
antimonotonicity can be a double-edged
sword. There is no question that this rule
prevents erroneous application of higher
order functions to arguments for which
they are unsuited. At the same time, how-
ever, we cannot help but feel that it is

I3 As before, one way around this problem might be to
“separate” the methods from the class definition, as
done in CommonLoops and as suggested by Ait-Kaci’s
approach. If this is done, there is the possibility of
using a polymorphic storage function, store: Vt 5
Obiect. t x Arrayof: t + Arrayof: t. Of course, this
approach must be consistent with the way in which
the programmer wishes to use the array.

sometimes too restrictive and prevents a
monotonic ordering when this would be
both natural and useful. For example, it
seems useful to consider natural numbers
as conforming (in the above sense) to inte-
gers; yet if the addition operation on INT
is types as INT X INT + INT, and
the analogous, homogeneous operation on
NAT is typed as NAT x NAT + NAT,
then rule 4 is violated.14

Black does a nice job of clarifying the
essential difference between type conform-
ity in Emerald and subclasses of Smalltalk:

In Emerald, the relationship between an object and
the abstract type(s) that it implements is one of
shared interface. An object supports a superset of
the operations defined by its abstract type and each
of the supported operations must conform to the
corresponding operations in the abstract types. In
Smalltalk, the relationship between a subclass and
its superclass is one of shared implementation. A
subclass is free to redefine the signatures of the
messages that it receives, but it necessarily shares
the superclass’s representation (instance variables)
and typically shares many methods as well. [Black
et al. 1986, p. 801

An aspect of Emerald that is appealing
is the way in which the functions of
Smalltalk classes have been unbundled.
Smalltalk classes perform at least four
functions: They express a specification hi-
erarchy; they generate instances (the new
method is available for all subclasses of
Object); they act as a repository for the
methods of an instance; and they express
an implementation hierarchy. In Emerald,
although there is no direct support for
the specification hierarchy, the other func-
tions are all mediated through separate
mechanisms.

3.3 CommonLoops

The CommonLoops proposal [Bobrow et
al. 19861 represents an attempt at merging
the OOP style with the procedure-oriented

I4 In some sense, we are almost disappointed that OOP
systems that are not forced into the use of antimono-
tonicity (by an underlying model that requires it) have
not come up with a better characterization of what
constitutes type checking for OOP. We have a few
thoughts on how one might relax the requirement for
antimonotonicity, and these are mentioned in the
conclusion.

ACM Computing Surveys, Vol. 20, No. 1, March 1988

64 l S. Danforth and C. Tomlinson

philosophy of LISP. The objective is not so 3.4 OakLisp and CommonObjects
much to support type checking as to pro-
vide a consistent framework within which
“types” may be used to choose the correct
method for operating on a set of arguments.
The important ideas introduced include
multimethods and discriminators.

CommonLoops provides a define-
method operation for defining a function
applicable to specific types or “classes” of
arguments. Classes, in turn, are defined
using an extension of the Common LISP
defstruct command. Thus, a class instance
is similar to a record. Modifications to
defstruct allow explicit importation of
attributes from other classes, which are
then treated as superclasses of the class
being defined.

The define-method operation allows
the programmer to indicate the intended
types for all of its arguments. Therefore,
unlike most other object-oriented schemes,
CommonLoops allows method lookup to be
based on more than the class of a single
object. Such methods are called multimeth-
ods. Ultimately, many methods of the same
name might be defined for manipulation of
different classes of arguments. This set can
be thought of as representing a generic
function.

Associated with each generic function is
a discriminator function whose purpose,
given a generic function application, is to
choose the most specific method suitable
for operating on the given arguments, de-
pending on their types. Often, a single
method for each such set is defined without
any type restrictions. This method then
serves as a default method for its generic
function.

Although the “types” of arguments
passed to a generic function are used to
determine the appropriate function to be
applied, this facility is provided in an
ad hoc manner, and no theory is used for
determining (or checking) the result types
of applications. If a theory providing a for-
mal lattice-based ordering on types were
available for this, our feeling is that the
work of Ait-Kaci suggests a foundation
for automatically determining the most
specific method.

Other interesting extensions of LISP dia-
lects to support OOP include OakLisp and
CommonObjects. OakLisp [Lang and Perl-
mutter 19861 is distinguished by its treat-
ment of operations and object classes as
first-class entities (objects) within the lan-
guage. Types in OakLisp are regarded as
sets of objects, and these types are them-
selves objects. OakLisp’s designers have ax-
iomatized the resulting type system and
have shown that Russell’s paradox (which
can arise when dealing with a system whose
elements may be members of sets repre-
sented by other elements) is not a problem.
The key to this result is the existence of a
total function GetType, which returns the
smallest type containing the object to
which it is applied. Such a smallest nontri-
vial type exists for every possible object in
an OakLisp program. Like CommonLoops,
OakLisp supports a general method lookup
mechanism.

CommonObjects [Snyder 19871 is of spe-
cific interest here because of its concern
with the tension resulting from supporting
both encapsulation and inheritance in
OOP. Inheritance in most OOP languages
can inadvertently expose details of an ob-
ject’s implementation to its clients. This
occurs in Smalltalk, for instance, when in-
stance variables are inherited. In most OOP
languages, it is not possible to define a data
abstraction so that the internal variables of
the implementation may be renamed with-
out potentially affecting clients. In contrast
with these languages, CommonObjects pro-
vides for full support of encapsulation with
inheritance. The key to CommonObject’s
approach is that only methods may be in-
herited, and the language allows a designer
to specify the type hierarchy independently
of the inheritance hierarchy.

3.5 Exemplars versus Classes

The approach taken by CommonObjects
highlights the potential for conflict be-
tween inheritance and information hiding.
Others have perceived an equally important
distinction between two ways of using in-
heritance. Inheritance in a system may be

ACM Computing Surveys, Vol. 20, No. 1, March 1988

Type Theories and Object-Oriented Programming 65

used both for specification of common be-
havioral characteristics and for expressing
common implementation representations.
An interesting paper by LaLonde et al.
[1986] suggests that the hierarchies for
these separate purposes be expressed and
maintained separately-as opposed to the
situation for Smalltalk, in which they are
indistinguishable. The result can be a sys-
tem based on prototypical objects and be-
havioral specifications, or examplars, as
LaLonde terms them.

Inheritance in FUN was based on inclu-
sion polymorphism, and this in turn was
based on an ordering on records. The ob-
jective and result were to allow functions
to make use of shared representations be-
tween packages in an efficient and type-
secure fashion. But there are other advan-
tages to be achieved from the ability to
express common (or inherited) behaviors
even when the representations used to pro-
duce these behaviors are not shared. Pri-
mary among these include the ability to
deal with the logical structure of a system
independently of its implementation.

In Smalltalk, the fact that the relation-
ships between classes and instances are
reflected in the same hierarchy results in
the following:

(1)

(2)

(3)

All instances of a class must have iden-
tical representations and methods. In-
stances cannot have specialized meth-
ods, and multiple representations for
instances are not supported.
Specializations of classes with individ-
ualized representations are not allowed.
Subclasses must have a representation
that includes the superclass represen-
tation.
Since the class hierarchy and instance
hierarchy are intertwined, either the
class hierarchy must be made to con-
form to the instance hierarchy, or vice
versa.

A programming technique of using “ab-
stract classes” that have no instance vari-
ables (such classes are intended solely for
use as superclasses of other classes, i.e.,
never for direct instantiation) is common

in Smalltalk and Flavors [Moon 19861 and
addresses points (1) and (2). The exemplar-
based system described by LaLonde et al.
[1986] deals with all the above points and
introduces a new form of inheritance
(called OR-inheritance) as well.

4. SUMMARY

This paper has reviewed a variety of formal
approaches to types that support in one
way or another the notions of ADTs and
inheritance. The last section highlighted
some OOP systems that provide the prac-
tical benefits offered by these ideas, without
necessarily providing an associated formal
basis for their application to the checking
and controlled derivation of system de-
scriptions. Our indirect objective through-
out has been to determine to what extent
current research in the area of type theories
can be utilized to provide such a basis, by
providing straightforward representations
for the objects and behaviors observed in
OOP. Unfortunately, none of the currently
available type theories appear perfectly
suited to this task.

Although there are exciting areas of cor-
respondence between currently available
type theories and OOP languages, there are
also mismatches. Although the theories re-
viewed produced languages with capabili-
ties similar to those seen in OOP languages,
none of these languages provides a com-
plete set of capabilities directly equivalent
in power to the OOP languages currently
in use.

The algebraic approach supports inher-
itance in a direct fashion, but it is first
order. Although record and Q-terms struc-
tures may be used to represent objects,
polymorphic methods may not be included
in these structures without destroying the
desired subtype relationship between the
structures. The appropriate response to
this in the case of both record and term
orderings was to avoid storing polymorphic
methods in these structures, leaving only
instance variables to be inherited.

The OOP language most closely resem-
bling this approach is CommonLoops, in
which methods are defined separately from

ACM Computing Surveys, Vol. 20, No. 1, March 1988

66 l S. Danforth and C. Tomlinson

representational data structures and dis-
criminators are used to select the most
appropriate methods for performing appli-
cation of generic functions. Although the
record-based approach to subtyping in
FUN could support an approach to inher-
itance similar to that seen in Common-
Loops, this was never suggested in FUN,
the language used to showcase that theory.
On the other hand, it is expected that
languages developed on top of the term-
ordering model will make use of automatic
compile-time discrimination for method se-
lection. Operationally, this approach can
provide the same advantages as method
inheritance; but the CommonLoops ap-
proach does not assume inheritance of
instance variables, whereas both the
record- and term-oriented models of sub-
typing do.

CommonObjects, which is closer to the
usual OOP model, expressly forbids inher-
itance of instance variables in the interest
of strong data abstraction. It focuses in-
stead on method inheritance as a central
capability of OOP. Not discussed in this
paper was the use of bounded existential
quantification, which may be used to ex-
press partially abstract types [Cardelli and
Wegner 19851. This ability is interesting in
this context because it allows limited
knowledge concerning the representation
type of packages to be made available. Al-
though at first glance this capability might
appear to be useful in providing a spectrum
of possibilities with respect to data ab-
straction in the presence of inheritance-
from completely open (as in the case of
Smalltalk) to completely closed (as in
CommonObjects)-in fact this is not
the case. This is because inheritance based
on ordering the types of records requires
that these types not be abstract (i.e., inher-
itance in FUN is based entirely on repre-
sentation) and therefore requires an open
interface: thus, to the extent that existen-
tials are used to hide the representation of
object state in FUN, inheritance is not
available.

None of the type theories reviewed
consider the possibility of overriding in-
heritance. Although the use of separate
hierarchies for behavioral and implemen-

tational description may alleviate the need
for unprincipled use of this technique, over-
riding seems a natural approach to incre-
mental enhancement of behavior when
performed in a principled fashion. In the
case of record or term type orderings, a
discriminator-based approach to method
selection could be used to achieve the de-
sired effect-if the discriminators for ge-
neric functions can themselves be defined
by the programmer (as in CommonLoops).
The algebraic approach could be considered
to support the same objectives as principled
overriding through the device of theory
extension.

All of the theories reviewed provide sat-
isfactory models for ADTs. Although the
approach of Russell toward support of
ADTs seems more flexible and natural than
the others reviewed, Russell’s type system
does not support inheritance. On a positive
note, however, if Russell were to support
subtyping, the result could bear a very
strong resemblance to the method inherit-
ance provided by CommonObjects, since
types in Russell are sets of operations. Ex-
tending Russell in this way therefore seems
a fruitful direction for research.

Almost all of the work to date on
object-oriented languages and typing sys-
tems uses a single hierarchy for organizing
specifications. On the one hand, this hier-
archy is intended to capture generalization
and specialization from a behavioral per-
spective; on the other, it is used to support
composition of imperative implementa-
tions. That these two forms of hierarchy
should not in general be equated follows
from the following observations.

First, a given data structure and associ-
ated procedures that represent an ab-
straction are often extended by adding
additional methods in order to represent
another abstraction that is not behaviorally
related to the first in a reasonable way. An
example of this sort of anomaly has been
identified in the Smalltalk- implemen-
tation [LaLonde et al. 19861: In practice
the class Dictionary is a subclass of Set
owing to the intent to share the implemen-
tation of Set with Dictionary, but the Dic-
tionary abstraction is not behaviorally a
subclass of Set.

ACM Computing Surveys, Vol. 20, No. 1, March 1988

Type Theories and Object-Oriented Programming l 67

Second, composing fragments of im-
perative specification as is done with
sendsuper does not in general preserve
notions of behavioral equivalence or more
general notions of behavioral ordering.
This is especially true with respect to weak
encapsulation under inheritance as dis-
cussed by Snyder [1987 1. The use of a single
hierarchy for two conceptually distinct re-
lationships among specifications when cou-
pled with the early binding implied by static
typing leads to type systems that are very
conservative when compared with the prac-
tice of Smalltalk or the various LISP ob-
ject-oriented extensions.

It therefore seems necessary to acknowl-
edge these hierarchies as independent
means of organizing specifications. It is not
adequate to make ,use of multiple inherit-
ance. To see this, consider a subhierarchy
rooted in the class Matrix. It is common in
the literature to cite Full-Matrix and
Sparse-Matrix as examples of the use of
inheritance; so these are designed as sub-
classes of Matrix. (The examples in this
paper of Point with subclasses Cart-Point
and Polar-Point are similar.) Now, in ac-
tual problems involving matrices, such sub-
classes as Positive-Matrix and Orthogonal-
Matrix are also relevant. Indeed, it may
even be useful to restrict some algorithm to
Positive-Orthogonal-Matrix. These notions
are behavioral, and should be independent
of the choice of implementation, that is,
full or sparse. Using multiple inheritance
within a single hierarchy that combines
behavioral and implementation aspects
means that the client of the class library
must navigate through a class population
that includes FuU-Positive-Orthogonal-
Matrix and Sparse-Positive-Orthogonal-
Matrix when in fact the decision about full
or sparse implementation should be made
independently, possibly at a later time in
the design and possibly even during execu-
tion of a program.

It is not farfetched to consider that there
may be a variety of representations of full
or sparse matrices, depending on the kinds
of numbers and types of operations that
will be performed. These issues must be
addressed as object-oriented languages sup-
ported by type systems seek to bridge the

gap between rapid prototyping and produc-
tion quality implementations.

4.1 Desiderata for OOP

This paper generally assumes that OOP
represents a positive step toward the design
and implementation of complex software
systems. In terms of this goal, our desider-
ata include the following.

(1) We want to support an object-
oriented approach to the description of sys-
tem components so that in the context of
parallel and distributed computational sys-
tems we have a means of packaging, in a
coherent manner, the elements of data that
“go together” in a variety of computations.

(2) We want to support a more flexible
and symmetric style of associating opera-
tions with objects than that exhibited
by, say, Smalltalk so that we can define
operations that make use of knowledge con-
cerning the representations of all objects
involved in a computation. Then, for in-
stance, methods could be written that
handle two argument vectors composed of
different element types. On a parallel ar-
chitecture, we could perform pairwise op-
erations on respective vector elements
followed by O(log n) reduction of the
results.

(3) We want to support inheritance of
description components in a systems
description environment. This will pro-
vide a means of (a) enhancing produc-
tivity through reuse of description and
(b) enhancing understandability through
person-oriented classification techniques-
generalization and specialization.

(4) We want to support the idea that one
notion may have a variety of implementa-
tions because performance-oriented system
description requires a means of specifying
and selecting representations and algo-
rithms (possibly instantiated in hardware)
that are most appropriate in a given con-
text. For example, whether to attempt an
O(log n) reduction on a particular under-
lying architecture depends on the scale of
the individual operations with respect to
the scaie of the allocation and control op-
erations on that architecture.

ACM Computing Surveys, Vol. 20, No. 1, March 1988

68 . S. Danforth and C. Tomlinson

(5) We want to incorporate an explicit
typing system that can support but not
require static typing of descriptions because
flexibility in system description is closely
related to the ability to control the time at
which components are bound and the
strength of such bindings. A typing system
can provide much of the information
needed to effect binding decisions properly.

4.2 Evaluation

Several systems address aspects of objec-
tives (l)-(3) and even some of (4). Exam-
ples are CommonLoops [Bobrow et al.
19861 and OakLisp [Lang and Perlmutter
19861. These systems are for the most part
dynamically typed, offering little support
(in a formal way) for control over the degree
of binding that can be obtained from well-
informed compilation. The metaclasses and
generic functions of CommonLoops do pro-
vide a framework for addressing this issue.
Most systems employing a formal type sys-
tem do not support dynamic typing. An
exception in this regard is Emerald. The
type system that Emerald uses, however,
does not appear to support objective (3).
This is because Emerald views the in-
stances of objects as incorporating the
operations valid on those objects via the
notion of a signature and further uses an-
timonotonic ordering on operation types.
This prohibits such situations as passing a
natural (number) to a routine that types its
argument as an integer.

In many cases, an operation that is valid
on an operand of type T should be valid on
an object whose type is a subtype of T,
although the method chosen to implement
that operation might be a specialization of
the generic method. This suggests that a
different treatment of the association of
operations of a type with objects of the type
is needed in order to provide the appropri-
ate expressiveness. Although the anti-
monotonic order is a valid order in some
contexts, it is not appropriate when trying
to capture the operational use of inherit-
ance that is exhibited by Smalltalk and
more generally CommonLoops and Oak-
Lisp. In these cases, we want to have a
notion of being able to select the “most

specific” instance of an operation for the
given types of the arguments. This is essen-
tially a mixture of inclusion polymorphism
and operator overloading.

To capture the notion of the most spe-
cific operation applicable, we want to use a
monotonic order so that, given S 5 T, op-
erations that apply to objects of type S are
more specific than those for T. This is
essentially what the method lookup proce-
dures of CommonLoops and OakLisp are
able to accomplish. On the other hand,
when considering a situation such as rep-
resentation of an individual that incorpo-
rates an instance variable that is required
to be of some function type, the antimon-
otonic order should apply to determine type
correctness. Higher order function appli-
cations also require use of the antimono-
tonic ordering.

None of the approaches really address
multiple implementations of the same ab-
straction in a fully effective manner. We
basically contend that it is necessary to
provide for a behavioral description sepa-
rate from the (several) implementation
descriptions of a notion. This provides a
common yardstick against which to mea-
sure the implementations. This is not a new
view, but one that seems to have fallen into
disfavor as the focus has shifted to direct
implementations of pure or nonimperative
descriptive notations (e.g., OBJ). The need
for such a separation has been recognized
recently by others [LaLonde et al. 1986;
Snyder 19871 and has been discussed
above.

It is worth noting that the notion of
multiple implementations actually has two
dimensions: first, that there are separate
representations and mechanisms for ac-
complishing the same thing and, second,
that there may be different versions of the
same approach (usually differing in time)
that involve different compatibility re-
quirements. The Cedar system provides ad-
vanced support for the second notion
through the device of “configurations”
[Swinehart et al. 19861.

The notion of existential types is in-
tended to address such ideas, but it is not
yet well integrated with inclusion poly-
morphism and overloading, nor is there

ACM Computing Surveys, Vol. 20, No. 1, March 1988

Type Theories and Object-Oriented Programming l 69

provision for behavioral description. The
basic approach is one of representing an
abstraction via a signature much as in Em-
erald. There are still technical difficulties
regarding the status of the representation
type.

The OBJ work is most advanced as a
behavioral notation, and we believe that
many of the techniques that are developed
there can be fruitfully integrated with an
operational notation that is used to give
implementation descriptions and behav-
ioral descriptions in separate hierarchies
that are connected via pragma modules.
These would describe the intensional ap-
plicability of the available implementations
of a notion. The behavioral hierarchy could
be oriented toward classifying notions in
terms of common behavioral characteris-
tics; the hierarchy of implementations
would allow reuse of common representa-
tion and implementation mechanisms.

To conclude, we believe that both the
theory and practice of OOP may be im-
proved in substantial ways: More work is
required in the area of type systems to
provide the necessary basis for checking
and controlled derivation of efficiently im-
plemented systems using the OOP meta-
phor, and the practice of OOP itself, as
represented by currently available OOP
languages, should evolve by generalizing
inheritance in order to make use of separate
behavioral and implementation hierar-
chies. The OOP languages reviewed repre-
sent a variety of exciting departures from
the model provided by Smalltalk. There are
many inventive approaches to OOP that
were not covered here because of the
primary focus on type theories. With the
growing interest in OOP, this trend of lan-
guage development should continue. A fu-
ture synthesis of formal typing systems
with the powerful and flexible capabililties
of OOP represents a goal requiring coop-
eration between theorist and practitioner;
its attainment will be an important advance
for computer science.

ACKNOWLEDGMENTS

We would like to express our appreciation for the
supportive research environment provided by MCC-
specifically the MCC Parallel Processing Program and

its director, Steve Lundstrom, under whose direction
this work was performed. In addition, we wish to thank
the following researchers whose helpful comments
concerning their work aided substantially in our re-
view: Hassan Ait-Kaci, Hans Boehm, Luca Cardelli,
and Joseph Goguen.

REFERENCES

AGHA, G. 1986. Actors: A Model of Concurrent Com-
putation in Distributed Systems. MIT Press,
Cambridge, Mass.

AIT-KACI, H. 1984. A lattice-theoretic approach to
computations based on a calculus of partially-
ordered type structures. Ph.D. dissertation, Com-
puter and Information Science Dept., Univ. of
Pennsylvania, Philadelphia.

AIT-KACI, H. 1985. Integrating data type inheritance
into logic programming. In Persistence in Data
Types, Papers for the Appin Workshop (Aug.).
Dept. of Computational Science, Univ. of St.
Andrews, Scotland.

AIT-KACI, H., AND NASR, R. 1986. Logic and inher-
itance. In Proceedings of the 13th ACM Sympo-
sium on Principles of Programming Languages
(St. Petersburg, Fla., Jan.). ACM, New York,
pp. 219-228.

AIT-KACI, H., LINCOLN, P., AND NASR, R. 1987. A
logic of inheritance, functions, and equations.
Talk presented at joint U.S./Japan Workshop on
Logic of Programs, Honolulu, Hawaii.

AMERICA, P. 1986. Operational semantics of a par-
allel object-oriented language. In Proceedings of
the 13th ACM Symposium on Principles of Pro-
gramming Languages (St. Petersburg, Fla., Jan.).
ACM, New York, pp. 194-208.

AMERICA, P. 1987. POOL-T: A parallel object-
oriented language. In Object-Oriented Concurrent
Programming, A. Yonezawa and M. Tokoro, Eds.
MIT Press, Cambridge, Mass.

BATES, J. L., AND CONSTABLE, R. L. 1985. Proofs
as programs. ACM Trans. Program. Lang. Syst.
7, 1 (Jan.), 113-136.

BLACK, A., HUTCHINSON, N., JUL, E, AND LEVY, H.
1986. Object structure in the Emerald system.
In OOPSLA Conference Proceedings (Portland,
Oreg., Sept.). ACM SZGPLAN 21, 11 (Nov.).
ACM, New York, pp. 78-87.

BOBROW,D., KAHN, K., KICZALES, G., MASIUTER, L.,
STEFIK, M., AND ZDYBEL, F. 1986. Common
loops: Merging Lisp and object oriented program-
ming. In OOPSLA Conference Proceedings
(Portland, Oreg., Sept.). ACM SZGPLAN 21, 11
(Nov.). ACM, New York, pp. 17-29.

BORNING, A., AND INGALLS, D. 1982. A type decla-
ration and inference system for Smalltalk. In
Proceediws of the 9th ACM Symposium on Prin-
ciples of Programming Lang&&s (Albuquerque,
N. Mex., Jan.). ACM, New York, pp. 133-141.

BRACHMAN, R. 1985. I lied about the trees. AZ Mag-
azine (fall).

ACM Computing Surveys, Vol. 20, No. 1, March 1988

70 l S. Danforth and C. Tom&son

BRINCH-HANSEN, P. 1977. The Architecture of
Concurrent Proerams. Prentice-Hall. Enslewood
Cliffs, N.J. -

-

BURSTALL, R., AND GOGUEN, J. 1982. Algebras, the-
ories and freeness: An introduction for computer
scientists. CSR-101-82, Dept. of Computer Sci-
ence, Univ. of Edinburgh, Scotland.

BURSTALL, R., AND LAMPSON, B. 1984. A kernel
language for ADTs and modules. In Semantics of
Data Types, G. Kahn, D. MacQueen, and G. Plot-
kin, Eds. Springer-Verlag, New York.

CARDELLI, L. 1984a. Amber. Tech. Memo 11271-
840924-lOTM, AT&T Bell Labs, Murray Hill,
N.J.

CARDELLI, L. 1984b. A semantics of multiple inher-
itance. In Semantics of Data Types, G. Kahn,
D. MacQueen, and G. Plotkin, Eds. Springer-
Verlag, New York.

CARDELLI, L. 1986. A polymorphic lambda calculus
with type: Type. DEC Systems Research Center
Rep. No. 10, Digital Equipment Corp., Palo Alto,
Calif.

CARDELLI, L. 1987. Basic polymorphic typecheck-
ing. Sci. Comput. Program. 8, 147-172.

CARDELLI, L., AND WEGNER, P. 1985. On under-
standing types, data abstraction, and polymor-
phism. ACM Comput. Suru. 17,4 (Dec.), 471-522.

CARDELLI, L., AND MACQUEEN, D. 1985. Persistence
and type abstraction. In Persistence in Data
Types, Papers for the Appin Workshop (Aug.).
Res. Rep. 16, Dept. of Computational Science,
Univ. of St. Andrews, Scotland, pp. 231-240.

CONSTABLE, R., AND ZLATIN, D. 1984. The type
theory of PL/CV3. ACM Trans. Program. Lang.
Syst. 6, 1 (Jan.), 94-117.

COX, B. 1984. Message/object programming: An
evolutionary change in programming technology.
IEEE Software 1, 1 (Jan.).

CURRY, H., AND FEYS, R. 1958. Combinatory Logic.
North-Holland, Amsterdam.

DAHL, 0. J., AND NYGAARD, K. 1966. SIMULA-
An ALGOL-based simulation language. Commun.
ACM 9,9 (Sept.), 671-678.

DALLY, W. 1986. A VLSI architecture for concurrent
data struct lres. Ph.D. dissertation, Dept. of Com-
puter Science, California Institute of Technology,
Pasadena.

DEMERS, A., AND DONAHUE, J. 1979. Revised report
on Russell. TR79-389, Dept. of Computer Sci-
ence, Cornell Univ., Ithaca, N.Y.

DEMERS, A. J., AND DONAHUE, J. E. 1983. Making
variables abstract: An equational theory for Rus-
sell. In Proceedings of the 10th ACM Symposium
on Principles of Programming Languages.

DONAHUE, J., AND DEMERS, A. 1985. Data types are
values. ACM Trans. Program. Lang. Syst. 7, 3
(Jul.), 426-445.

FUTATSUGI, K., GOGUEN, J., JOUANNAUD, J-P., AND
MESEGUER, J. 1985. Princinles of OBJ2. In Pro-
ceedings of i2th Annual Symposium on Principles
of Programming Languages (New Orleans, La.,
Jan.). ACM, New York, pp. 52-66.

GIRARD, J. 1971. Une extension de l’interpretation de
Godel a l’analyse, et son application a l’elimina-
tion des coupures dans l’analyse et la theorie des
types. In Second Scandinavian Logic Symposium,
J. E. Fenstad, Ed. North-Holland, Amsterdam.

GOGUEN, J., AND MESEGUER, J. 1986. EQLog:
Equality, types, and generic modules for logic
programming. In Logic Programming, D. DeGroot
and G. Lindstrom, Eds. Prentice-Hall, Engle-
wood Cliffs, N.J.

GOGUEN, J., AND MESEGUER, J. 1987. Unifying
functional, object-oriented and relational pro-
gramming with logical semantics. In Research
Directions in Object-Oriented Programming, B.
Shriver and P. Wegner, Eds. MIT Press, Cam-
bridge, Mass.

GOLDBERG, A., AND ROBSON, D. 1983. Smalltalk-80:
The Language and Its Implementation. Addison-
Wesley, Reading, Mass.

GUTTAG, J. 1980. Notes on type abstraction. IEEE
Trans. Softw. Eng. SE-6 1 (Jan.), 13-23.

HEWITT, C. 1985. The challenge of open systems.
Byte (Apr.), 232-242.

HEXT, J. 1967. Compile time type-matching. Com-
put. J. 9, 365-369.

HOOK, J. 1984. Understanding Russell-A first at-
tempt. In Semantics of Data Types, G. Goos and
J. Hartmanis, Eds. Springer-Verlag, New York.

INGALLS, D. 1978. Smalltalk- programming sys-
tem design and implementation. In Proceedings
of 5th ACM Symposium on Principles of Program-
ming Languages (Tucson, Ariz., Jan.). ACM, New
York, pp. 9-15.

ISHIKAWA, Y., AND TOKORO, M. 1986. A concurrent
object-oriented knowledge representation lan-
guage Orient84/K: Its features and implementa-
tion. In OOPSLA Conference Proceedings (Port-
land, Oreg., Sept.). ACM SZGPLAN21,ll (Nov.),
ACM, New York, pp. 232-241.

JOHNSON, R. 1986. Type-checking Smalltalk. In
OOPSLA Conference Proceedings (Portland,
Oreg., Sept.). ACM SZGPLAN 2>, 11 (Nov.):
ACM, New York, pp. 315-321.

JONES, N., AND MUCHNICK, S. 1976. Binding time
optimization in programming languages. In Pro-
ceedings of 3rd ACM Symposium on Principles of
Programming Languages (Atlanta, Ga., Jan.).
ACM, New York, pp. 77-94.

KAPLAN, M., AND ULLMAN, J. 1980. A scheme for
the automatic inference of variable types. J. ACM
27, 1 (Jan.), 128-145.

KAY, A. 1972. Smalltalk- instruction manual.
Xerox PARC Rep. SSL-76-6, Xerox Palo Alto
Research Center, Palo Alto, Calif.

LALONDE, W., THOMAS, D. T., AND PUGH, J. 1986.
An exemplar based Smalltalk. In OOPSLA Con-
ference Proceedings (Portland, Oreg., Sept.).
ACM SZGPLAN 21,ll (Nov.), 322-330.

LANDIN, P. J. 1966. The next 700 programming lan-
guages. Commun. ACM 9, 3 (Mar.), 157-166.

LANG, K., AND PERLMU’ITER, B. 1986. OakLisp: An
object-oriented scheme with first class types. In

ACM Computing Surveys, Vol. 20, No. 1, March 1988

Type Theories and Object-Oriented Programming l 71

OOPSLA Conference Proceedings (Portland,
Oreg., Sept.). ACM SIGPLAN 21, 11 (Nov.),
30-37.

LIEBERMAN, H. 1986. Using prototypical objects to
implement shared behavior in object oriented sys-
tems. In OOPSLA Conference Proceedings (Port-
land, Oreg., Sept.). ACM SZGPLAN 21, 11 (NOV.),
214-223.

LISKOV, B., SNYDER, A., ATKINSON, R., AND SCHAF-
FERT, C. 1977. Abstraction mechanisms in CLU.
Commun. ACM 20,8 (Aug.), 564-576.

MACQUEEN, D. 1985. Modules for ML. Polymor-
phism Newsletter (Oct.).

MACQUEEN, D. 1986. Using dependent types to ex-
press modular structure. In Proceedings of 13th
Annual ACM Symposium on Principles of Pro-
gramming Languages (St. Petersburg Beach,
Fla., Jan.). ACM, New York, pp. 277-286.

MACQUEEN, D., AND SETHI, R. 1982. A higher order
polymorphic type system for applicative lan-
guages. In Proceedings of 1982 Symposium on Lisp
and Functional Programming. ACM, New York,
pp. 243-252.

MACQUEEN, D., PLOTKIN, G., AND SETHI, R. 1984.
An ideal model for recursive polymorphic types.
In Proceedings of 11th Annual ACM Symposium
on Principles of Programming Languages (Salt
Lake City, Utah, Jan.). ACM, New York, pp.
165-174.

MARTIN-L~F, P. 1982. Constructive logic and com-
puter programming. In Proceedings of 6th Inter-
national Congress for Logic, Methodology, and
Philosophy of Science. North-Holland, Amster-
dam.

MATTHEWS, D. 1983. Programming language design
with polymorphism. Ph.D. dissertation, Com-
puter Lab., Univ. of Cambridge, Cambridge, Eng-
land.

MESEGUER, J., AND GOGUEN, J. 1983. Initiality, in-
duction, and computability. Tech. Rep. CSL-140,
Comnuter Science Laboratory. SRI. Menlo Park.
CaliE

“ I I

MEYROWITZ, N., ED. 1986. Intermedia: The archi-
tecture and construction of an object-oriented
hypermedia system. In OOPSLA Conference Pro-
ceedings (Portland, Oreg., Sept.). ACM SIG-
PLAN 21,ll (Nov.), 186-201.

MEYROWITZ, N., ED. 1987. OOPSLA Conference
Proceedinas (Orlando. Fla.. Oct.). ACM SIG-
PLAN 22,~12 (Dec.).

MILNER, R. 1978. A theory of type polymorphism in
programming. J. Comput. Syst. Sci. 17,348-375.

MITCHELL, J. 1984a. Coercion and type inference
(Summary). In Proceedings of 11th Annual ACP
Symposium on Principles of Programming Lan-
guuges (Salt Lake City, Ut., Jan.). ACM, New
York, pp. 175-185.

MITCHELL, J. 1984b. Type inference and type con-
tainment. In Semantics of Data Types, Lecture
Notes in Computer Science, vol. 173. Springer-
Verlag, New York, pp. 51-67.

MITCHELL, J., AND PLOTKIN, G. 1985. Abstract
types have existential type. In Proceedings of 12th
Annual ACM Symposium on Principles of Pro-
gramming Languages (New Orleans, La., Jan.).
ACM, New York, pp. 37-51.

MOON, D. 1986. Object-oriented programming with
flavors. In OOPSLA Conference Proceedings
(Portland, Oreg., Sept.). ACM SIGPLAN 21, 11
(Nov.), l-8.

PARNAS, D. 1972. A technique for software module
specification. Commun. ACM 15, 5 (May), 330-
336.

REYNOLDS, J. 1970. Transformational systems and
the algebraic structure of atomic formulas. In
Machine Intelligence, D. Michie, Ed., vol. 5. Edin-
burgh University Press, Edinburgh, Scotland,
chap. 7.

REYNOLDS, J. 1974. Towards a theory of type struc-
ture. In Colloquium sur la Programnation,
Lecture Notes in Computer Science, vol. 19.
Springer-Veriag, New York.

ROBINSON, J. 1965. A machine-oriented logic based
on the resolution principle. J. ACM 12, 1 (Jan.),
23-41.

SCHAFFERT, C., COOPER, T., BULLIS, B., KILIAN, M.,
AND WILPOLT, C. 1986. An introduction to
Trellis/Owl. In OOPSLA Conference Proceed-
ings (Portland, Oreg., Sept.). ACM SZGPLAN 21,
11 (Nov.), 9-16.

SCHERLIS, W. 1986. Abstract data types, specializa-
tion, and program reuse. In Proceedings of the
International Workshop on Advanced Program-
ming Enuironments. Springer-Verlag, New York.

SCO’IT, D. 1976. Data types as lattices. SIAM J.
Comput. (Sept.), 522-587.

SHRIVER, B., AND WEGNER, P., EDS. 1987. Research
Directions in Object-Oriented Programming. MIT
Press, Cambridge, Mass.

SKARRA, A., AND STEIN, J. 1987. Type evolution in
an object-oriented database. In Research Direc-
tions in Object-Oriented Programming, B. Shriver
and P. Wegner, Eds. MIT Press, Cambridge,
Mass.

SNYDER, A. 1987. Inheritance and the development
of encapsulated software components. In Pro-
ceedings of the 20th Hawaiian International Con-
ference on Systems Sciences. Software Track,
Western Periodicals, North Hollywood, Calif., pp.
227-238.

STEFIK, M., AND BOBROW, D. 1986. Object-oriented
programming: Themes and variations. AZ Mag. 6,
4, 40-62.

STEIN, L. 1987. Delegation is inheritance. In
OOPSLA Conference Proceedings (Orlando, Fla.,
Oct.). ACM SZGPLAN 22, 12 (Dec.), 138-146.

STOY, J. 1977. Denotational Semantics: The Scott-
Strachey Approach to Programming Language
Theory. MIT Press, Cambridge, Mass.

STROUSTRUP, B. 1986. C++. Addison-Wesley,
Reading, Mass.

ACM Computing Surveys, Vol. 20, No. 1, March 1988

72 l S. Danforth and C. Tomlinson

SWINEHART, D., ZELLWEGER, P., AND BEACH, R.
1986. A structural view of the Cedar program-
ming environment. ACM Trans. Program. Lang.
Syst. 8, 4 (Oct.), 419-489.

TURNER, R. 1984. L.ogics for Artificial Intelligence.
Halsted Press, New York.

U.S. DEPARTMENT OF DEFENSE. 1983. Ada Refer-
ence Manual. ANSI/MIS-STD 1815, U.S. Print-
ing Office (Jan.), Washington, D.C.

Received February 1987; final revision accepted February 1988.

YONEZAWA, A., AND TOKORO, M., EDS. 1987.
Object-Oriented Concurrent Programming. MIT
Press, Cambridge, Mass.

YONEZAWA, A., SHIBAYAMA, E., TAKAKA, T., AND
HONDA, Y. 1987. Modelling and progrnmming
in an object oriented concurrent language
ABCL/l. In Object-Oriented Concurrent Pro-
gramming, A. Yonezawa and M. Tokoro, Eds.
MIT Press, Cambridge, Mass.

ACM Computing Surveys, Vol. 20, No. 1, March 1988

