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Object-oriented programming is becoming a popular approach to the construction of 
complex software systems. Benefits of object orientation include support for modular 
design, code sharing, and extensibility. In order to make the most of these advantages, a 
type theory for objects and their interactions should be developed to aid checking and 
controlled derivation of programs and to support early binding of code bodies for 
efficiency. As a step in this direction, this paper surveys a number of existing type 
theories and examines the manner and extent to which these theories are able to 
represent the ideas found in object-oriented programming. Of primary interest are the 
models provided by type theories for abstract data types and inheritance, and the major 
portion of this paper is devoted to these topics. Code fragments illustrative of the various 
approaches are provided and discussed. The introduction provides an overview of object- 
oriented programming and types in programming languages; the summary provides a 
comparative evaluation of the reviewed typing systems, along with suggestions for future 
work. 

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language 
Constructs-abstract data types; data types and structures; F.3.3 [Logics and Meanings 
of Programs]: Studies of Program Constructs-type structure; F.4.1 [Mathematical 
Logic and Formal Languages]: Mathematical Logic--lambda calculus and related 
systems 
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INTRODUCTION 

When implementing a system, an impor- 
tant initial decision concerns how the sys- 
tem should be perceived-What are its 
parts and how do they interact? One point 
of view shown to be successful in designing 
and implementing complex software sys- 
tems is suggested by object-oriented 
programming (OOP) in which systems are 
constructed from self-contained objects 
that interact via messages. 

Proponents of OOP suggest that it aids 
design, implementation, and maintenance 
of complex systems by supporting modular- 
ity and that it aids code reuse and the 
construction of easily extensible systems 
by supporting inheritance. In addition to 
these benefits, object orientation may allow 
designs in which objects reflect opportuni- 
ties for variable-grain parallelism and in 
which decisions related to whether objects 
are implemented in hardware or software 
may be postponed or flexibly changed. 
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These are all powerful advantages, and they 
may account for a recent upsurge of interest 
in OOP as well as a number of new OOP 
language implementations [Black et al. 
1986; Cox 1984; Lang and Perlmutter 
1986; Moon 1986; Schaffert et al. 1986; 
Stroustrup 19861. In order to make the 
most of these advantages, however, it is 
necessary to develop a type theory for OOP 
that is able to support checking and con- 
trolled derivation of systems, while aiding 
efficient implementations. 

As a step in this direction, this paper 
surveys a number of existing type theories, 
examining the manner and extent to which 
these theories are able to represent the 
objects and object interactions that arise in 
OOP. To introduce the characteristics of 
OOP important to this objective, a cursory 
review of OOP follows. Readers wishing a 
more detailed introduction to OOP may 
refer to Stefik and Bobrow [1986]. Also, a 
collection of papers edited by Shriver and 
Wegner [1987] provides a good overview of 
current research directions in OOP and 
includes papers describing various OOP 
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languages. Additionally, the proceedings of 
the first two annual conferences on OOP 
systems, languages, and applications [Mey- 
rowitz 1986, 19871 provide a wealth of 
information concerning the currently de- 
veloping theory and practice of OOP. 

What Is OOP 

Many of the ideas associated with OOP 
originated with the Simula language of 
Dahl and Nygaard [ 19661. These ideas were 
refined and extensively developed during 
construction and standardization of Small- 
talk [Goldberg and Robson 1983; Ingalls 
1978; Kay 19721, the first substantial, in- 
teractive, display-based OOP implementa- 
tion. Of special interest in the context of 
systems involving parallel or distributed 
execution are the actor languages of Hewitt 
[1985] and the various models of coopera- 
tion among objects suggested by this work. 
There are a number of recent efforts in the 
area of parallel OOP [America 1986, 1987; 
Dally 1986; Ishikawa and Tokoro 1986; 
Yonezawa and Tokoro 1987; Yonezawa et 
al. 19871. 

Object-oriented programming, like func- 
tional programming or logic programming, 
incorporates a metaphor in which compu- 
tation is viewed in terms divorced from the 
details of actual computation. In the case 
of OOP, this metaphor is rarely introduced 
with the mathematical precision available 
to the functional or logic programming 
models. Rather, OOP is generally expressed 
in philosophical terms, resulting in a nat- 
ural proliferation of opinions concerning 
exactly what OOP really is. The following 
introduction also presents a view of OOP 
that, by leaning to the philosophical side, 
permits considerable latitude of interpre- 
tation. Different interpretations represent 
the potential for different OOP languages. 

The heart of the OOP metaphor is 
an anthropomorphic view of the objects 
of computation. Simply stated, the term 
“object oriented” is used to describe pro- 
gramming languages in which the objects 
of computation are (in a sense) like people. 
In OOP, objects generally have an identity, 
called the self, that persists over time in- 
dependently of changes in the state of the 
object. Objects are intelligent and respond 
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to requests addressed to them (generally 
called messages), thus effecting computa- 
tion. In terms of the model, an object’s 
response to a message might be to change 
its internal state, send messages to other 
objects, reply with an answer, create new 
objects, or all of these. A prescription for 
handling a message is generally called a 
method. 

In order to compute with objects, they 
must be brought into existence. There seem 
to be essentially two ways of going about 
this. One is to create new objects by using 
objects already in existence as prototypes. 
If this mechanism is used, it must also be 
possible to create objects “from whole 
cloth” by specifying a set of methods and 
the variables that are used to hold the 
object’s state. The more usual approach is 
to specify the class of the new object. A 
class may be thought of as a template that 
identifies the methods and instance vari- 
ables to be used by the new object for hand- 
ling messages and storing object state, 
respectively. Initialization of an object’s 
state can be supported by providing a 
method for this, but many class-based OOP 
languages consider a class itself to be a kind 
of object that can respond to a message 
requesting a new object of its class. This 
message is then used both to request crea- 
tion of a new object and to specify the 
desired initial state; the class’s response is 
a reply containing or referencing the new 
(initialized) object. In this view, classes are 
similar to objects in that they respond to 
messages. Thus they may also have a class, 
called a metaclass. The desire to treat every- 
thing as an object in OOP appears to be the 
primary justification for such an approach. 
Parsimony of mechanism is often a desir- 
able goal in languages, but many ap- 
proaches to OOP avoid metaclasses and 
some, based on prototypes, avoid classes as 
well [Lieberman 19861. 

The two OOP concepts on which we 
focus with respect to type theories are 
abstract data types (ADTs) and inherit- 
ance. Objects encapsulate a state, along 
with methods for dealing with this state, 
and thus provide data abstraction through 
their message interface. An object may 
therefore be viewed and used in a way en- 
tirely analogous to an ADT in traditional 

programming languages. In attempting to 
provide a less philosophical statement of 
the OOP metaphor, many researchers have 
found this similarity between objects and 
ADTs an obvious and important area for 
careful attention. Indeed, ADTs as well as 
OOP emerged from the Simula language. 

If ADTs are so similar to objects, is it 
not possible that OOP is simply a program- 
ming model in which all data are abstract 
and all data manipulation is implemented 
via ADT operations? In fact, this is not an 
unreasonable conjecture, since few lan- 
guages outside OOP provide such compre- 
hensive support for data abstraction. Even 
in Ada, an advanced language incorporat- 
ing extensive support for various forms of 
abstraction, packages are not first-class cit- 
izens that may be passed as parameters 
[U.S. Department of Defense 19831. How- 
ever, there is more to OOP than support of 
ADTs as first-class citizens-in particular, 
inheritance. 

Inheritance in OOP may be based either 
on the concept of subclass (in those OOP 
languages with classes) or on default dele- 
gation of responsibility (in those OOP lan- 
guages based on prototypes). The essential 
idea is enhancement of descriptive power 
with respect to object creation, during 
which the methods to be used by the new 
object for handling various messages must 
be somehow indicated. In class-based lan- 
guages, inheritance allows the methods 
used by objects of a given class to be spec- 
ified in a modular and extensible fashion 
by placing logically related methods in in- 
dividual classes and relating these classes 
within a subclass hierarchy. Then the 
methods potentially available to an object 
of a particular class are not only those 
methods defined in the object’s class but 
also those of all its class’s ancestors within 
the class hierarchy. For instance, the class 
of automobiles could be defined as a sub- 
class of the class of vehicles, and an auto- 
mobile object might then answer “yes” to 
the message, “Are you a vehicle?” because 
the vehicle class provides this method. The 
implications for software maintainability 
become clear when one considers adding a 
new method for all vehicles-only the ve- 
hicle class need be changed; the automobile 
class (and any other classes inheriting 
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directly or indirectly from vehicle) need not 
be modified. Similar benefits may be ar- 
ranged in prototype-based OOP languages 
through use of delegation [Stein 19871. 

Elaborations on the above occur in most 
OOP languages. In some OOP models the 
class of an object is allowed to change over 
time. This appears to be useful in object- 
oriented database systems [Skarra and 
Stein 19871. In some OOP languages, mul- 
tiple inheritance is allowed [Moon 1986; 
Schaffert et al. 19861. In class-based OOP, 
this takes the form of allowing a given class 
to have more than one immediate ancestor 
(called a superclass) within the class hi- 
erarchy, which allows methods from a 
number of otherwise unrelated classes to 
be combined and used within a single ob- 
ject. This facility can be useful in achieving 
modularity and extendability. In prototype- 
based OOP, multiple delegation paths can 
achieve the same effect. Class-based OOP 
languages generally allow inheritance to 
be “defeated” by either forgetting or over- 
riding methods that would otherwise be in- 
herited from a superclass. A sendsuper 
facility is often provided to allow invoking 
a superclass method explicitly when inher- 
itance has been defeated. This is useful 
when the behavior provided by a superclass 
method is to be enhanced incrementally by 
addition of special behavior supplied by a 
subclass. 

Clearly, a wide variety of OOP languages 
is possible within the general framework 
described above. Although attempts at pro- 
viding a formal type system for OOP may 
currently fail to address all the require- 
ments of any particular OOP language, 
focusing on integrating type models for 
ADTs and inheritance addresses an impor- 
tant intersection of capabilities. 

What Are Types 

Types in programming are generally used 
and thought of as a means of characterizing 
values that arise dynamically in the course 
of a computation. For instance, a value that 
is to be computed by a program may be 
represented by a name or an expression, 
and although the particular value to which 
this expression refers may not be known in 

advance, other information concerning the 
value might be available. This information 
could be an indication of the meaning of 
the expression in an “approximation” se- 
mantics, or it might be considered a con- 
straint describing a property that the value 
must have . Given the latter view, it is a 
natural step to conceptualize the set of all 
values satisfying the constraint and then to 
think of the type constraint as simply re- 
quiring membership in this set. 

Viewing types as constraints leads natu- 
rally to the idea of types characterized by 
logical formulas. This is the approach taken 
in work directed toward supporting poly- 
morphism with universal quantification 
[MacQueen et al. 19841 and supporting 
abstract data types with existential quan- 
tification [Mitchell and Plotkin 19851. Re- 
cently, Cardelli and Wegner [1985] used 
these ideas as the base for a polymorphi- 
tally typed lambda calculus language with 
support for both abstract data types and 
inheritance [Cardelli and Wegner 19851. 
Also recently, a great deal of interest has 
been shown in dependent types, which 
use this “formulas-as-types” philosophy 
[Constable and Zlatin 1984; Hook 1984; 
MacQueen 1986]-the formulas in this case 
being borrowed from constructive logic 
[Martin-Lof 1982; Turner 19841. 

The algebraic approach to types is set 
oriented; in an algebra, a type (or sort) is a 
set of individual elements upon which 
operations of the algebra are defined. Other 
set-oriented approaches are possible, 
though. Matthews [ 19831 considers types 
to be represented by a set of operations 
rather than a set of values. Thus, in Mat- 
thews’ language, Poly, the type boolean is 
not characterized by a set of possible val- 
ues, such as (T, F1, nor by constraints that 
define this set but rather by the fact that 
the operations in the set (and, or] are 
guaranteed to be available for operating on 
values of the type. Donahue and Demers 
pioneered this approach in their language, 
Russell [Demers and Donahue 1983; 
Donahue and Demers 19851. In .Russell, a 
data type is a collection of named opera- 
tions that provides a consistent interpre- 
tation of a single, universal value space. In 
spite of the similarity of this approach with 
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OOP, Poly and Russell do not currently 
support inheritance. 

The typing systems of interest in this 
paper may be divided into two general cat- 
egories: those based on an algebraic model 
of computation, in which there is a strong 
distinction maintained between values and 
operations, and typing systems based on 
higher order models within which functions 
and even types themselves may be viewed 
as values (which have types). The algebraic 
approach has been traditionally used to 
represent ADTs [Guttag 19801, but it is 
only within the last few years that higher 
order theories have been used for this 
purpose. 

Potential Benefits of Typed OOP 

There are many potential advantages to be 
derived from successfully embedding the 
essence of OOP into a well-grounded type 
theory. Both types and objects provide a 
uniform framework within which to under- 
stand the entities of a programming lan- 
guage, but a typing theory can be useful in 
other ways. Especially within declarative 
languages, where denotations are the 
means of guiding computation, it is advan- 
tageous to have a powerful theory capable 
of explaining and representing the mean- 
ings of program expressions. Such a theory 
can guide equivalence-preserving program 
transformations and assist in the program 
development process. 

In general, the objective of high-level 
programming languages should be to pro- 
vide programmers with as much descriptive 
power as possible in order to aid construc- 
tion of useful and understandable software, 
while allowing the efficient utilization of 
underlying hardware. Regarding efficiency, 
information concerning which objects com- 
municate with other objects can be invalu- 
able in achieving locality of access in 
parallel systems and can also be useful in 
load balancing. Optimizations made possi- 
ble by typing include folding multiple levels 
of data hierarchy into a single structure 
[ Scherlis 19861 and integration of operation 
invocations in order to avoid procedure 
calls [Johnson 19861. A typing system can 
help support efficiency objectives, provide 

a language framework capable of guiding a 
system designer’s conceptualizations, and 
verify (often statically, before execution) 
the consistency of the descriptive informa- 
tion provided explicitly and implicitly by a 
program. 

Also possible is a natural connection be- 
tween the formal, extensional objects rep- 
resented by a program and their concrete, 
intensional representations within memory 
or a tile system. This connection provides 
opportunities for type-secure separate com- 
pilation, an important aid to the software 
engineering of large systems [MacQueen 
19861, and opens the way for persistent 
objects capable of independent existence 
between program executions [ Cardelli and 
MacQueen 19851. 

Perhaps all these things could be accom- 
plished in an ad hoc fashion through the 
use of special annotation and supporting 
mechanisms. However, such an approach 
might result in unexpected interactions be- 
tween solutions to separate problems and 
conceptual complications for system de- 
signers and language designers alike. 
Certainly, the simplicity of a single typing 
theory that provides a consistent and flex- 
ible framework for system descriptions at 
the outset is preferable-assuming that the 
theory is able to provide straightforward 
representations for the objects, behaviors, 
and computations of interest. Such a theory 
should aid the construction of an integrated 
environment especially tailored for the de- 
scription and construction of systems. 

Our Review Approach 

This paper reviews a number of typing sys- 
tems that have been recently proposed by 
researchers in the area of type theory. 
These researchers have been concerned 
with formal rigor and with capturing, 
within accepted logical/mathematical sys- 
tems, their basic intuitions concerning 
types in programming languages. Unfortu- 
nately, there seems to be almost no limit to 
the variety and mathematical sophistica- 
tion of these theories-ideas from universal 
algebra, second-order lambda calculus, and 
constructive mathematics have all been 
used to represent and formalize these 
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intuitions. We do not attempt to provide 
deep insight into these formal systems, but 
restrict ourselves in our review to the es- 
sential nature and practical implications of 
these typing systems, with the primary goal 
of determining how well they support ADTs 
and inheritance, two capabilities that are 
central to OOP. 

It is interesting to note the tension be- 
tween the two foci of interest identified 
above. Data abstraction attempts to pro- 
vide an opaque barrier behind which meth- 
ods and state are hidden; inheritance 
requires opening this interface to some 
extent and may allow state as well as 
methods to be accessed without abstraction 
[Snyder 19871. OOP languages (and the 
type theories we review) take various 
stands on this issue, both with respect to 
its importance and its resolution. 

1. ABSTRACT DATA TYPES 

In the Introduction types were presented 
as characterizing values that arise in the 
course of a computation. Types in this in- 
formal sense have been used since the first 
FORTRAN compilers, in which type infor- 
mation supported decisions concerning 
whether to emit floating-point or integer 
operation codes for arithmetic computa- 
tions. Types thus originated because the 
information they provided was useful to the 
compiler. The development of abstract data 
types, on the other hand, was due to differ- 
ent pressures. 

Concern with programming methodology 
and the need for reliable and maintainable 
software resulted in awareness of the 
importance of abstraction in program de- 
sign and construction. Two results of this 
awareness were the introduction of various 
control abstraction.+ and the introduction 
of data abstractions, or abstract data types. 
ADTs were thus an important step in the 
development of programming methodology. 

An ADT encapsulates information that 
provides a representation of a complex data 

1 Control abstractions initially included subroutines 
and procedures and, later, with the introduction of 
structured programming, constructs such as if-then- 
else and while. 

object, such as a stack, and provides oper- 
ations that implement the manipulations 
of which the object is capable. The internal 
representation of the object represented by 
an ADT is completely hidden from its 
users, and only the operations that imple- 
ment manipulations of this representation 
are made available to the object’s user. An 
ADT’s user need not know how the object 
it represents is implemented, just as the 
user of a control abstraction such as a 
square-root routine need not know how the 
square root is calculated. In addition to the 
intellectual leverage for programmers, who 
can take bigger strides in their thoughts, it 
provides flexibility in modifying the ADT 
implementation. As long as the external 
interface remains the same, any code that 
uses the ADT should continue to work 
unchanged. 

The kind of abstraction provided by 
ADTs can be supported by any language 
with a procedure call mechanism, given 
that appropriate protocols are developed 
and observed by programmers. Because of 
the importance placed on maintainable and 
modifiable software, however, many lan- 
guages have attempted to enforce such pro- 
tocols by making them part of the language 
definition. Violations of ADT security are 
then made impossible, and the use of ADTs 
is made easier because the language directly 
supports them. Such languages include 
Concurrent Pascal [Brinch-Hansen 19771, 
CLU [Liskov et al. 19771, and Ada [De- 
partment of Defense 19831. 

Type checking in these languages has not 
been based on any foundational theory giv- 
ing meaning to ADTs-thus the challenge 
to researchers in programming language 
semantics, who seek to put programming 
on a firm foundation with useful semantic 
theories. To these researchers, a program 
and the objects represented therein should 
have unambiguous values in some semantic 
domain. Types provide a way of represent- 
ing such meanings. If we characterize the 
traditional objects of computation (num- 
bers, characters, etc.) as elements of some 
semantic domain (or type), what is the 
corresponding explanation of ADTs? There 
are a number of possibilities. 
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1.1 Algebraic (First-Order) Approaches 

In the last 10 years, various algebraic ideas 
have been useful in the areas of compiler 
correctness, specification, and abstract 
data types [Burstall and Goguen 19821. 
Among others, Goguen has helped develop 
this connection between theory and prac- 
tice; he has put forth both substantive lan- 
guage suggestions and a variety of results 
concerning the theoretical support that al- 
gebras can provide for various aspects of 
programming. A recent paper describing 
OBJ2, a language showcase for these ideas, 
cites many references in which this work 
appears [Futatsugi et al. 19851. 

An algebra is a formal, mathematical en- 
tity, essentially composed of sets of values 

* (called the carriers of the algebra) and op- 
erations for manipulating these values. As 
can be seen, this formal entity corresponds 
closely to the concept of an ADT. In defin- 
ing an algebra, one begins with a signature, 
which is a declaration of the types, con- 
stants, and operations of interest. In terms 
of programming languages, a signature can 
be viewed as an interface specification. 

Figure 1 is an example of the kind of 
information provided by a signature. As 
shown, constants are represented as con- 
stant functions (i.e., they have no argu- 
ments and evaluate to the desired value). 

A signature, therefore, introduces the 
names that will be used to refer to types 
(also called sorts), values, and operations 
of the algebra. These are only names, how- 
ever, and the remaining task is to give the 
names meanings. This is done in the follow- 
ing way: Types are associated with carrier 
sets (i.e., value domains are defined), and 
operators are associated with functions 
(i.e., the functions that implement the op- 
erators are defined). Defining these sets 
and functions can be an interesting theo- 
retical exercise when the sets involved are 
infinite, but this need not concern us here; 
we merely wish to introduce the algebraic 
approach to ADTs. Figure 2 therefore 
presents a simple algebra of numbers 
modulo 2. 

Note that although MOD2 successfully 
represents an abstraction of numbers mod- 

number, boo]: type; 

zero, one: function0 result number; 
plus, times: function(number, number) result number; 

true, false: function0 result boo]; 
and, or: function(boo1, boo]): result bool; 

Figure 1. A signature for an algebra. 

ulo 2 and operations on these numbers, it 
cannot directly encapsulate a mod2 num- 
ber; that is, there is no concept of state. 
The style of programming that results is 
one in which the implementation of an 
ADT does not store data but is used to 
manipulate data. Thus, the user of a stack 
ADT might ask an ADT interface for a new 
stack, and the representation of an empty 
stack would be returned to the user as an 
abstract, atomic value, instead of being held 
behind the ADT interface as in OOP. When 
the user wants to put something on the 
stack, the data item and the stack represen- 
tation are passed to the ADT interface, 
which will return the appropriate resulting 
stack state, again to be held by the user. 
Thus, the user holds ADT objects but 
makes calls on the ADT implementation in 
order to use them. 

One can take the viewpoint that the es- 
sential concept supported by ADTs is not 
support of state itself but abstraction of 
data representation and operations. If this 
is so, then algebras directly support ADTs. 
If, on the other hand, one takes the view 
that ADTs are closer in concept to abstract 
machines that embody a state as well 
[Parnas 19721, then the above algebraic 
approach to ADTs is only partially satis- 
factory in supporting ADTs. The practical 
advantages of data abstraction are obtained 
in either case, as long as the state held by 
the user of the ADT interface is always 
treated as being abstract by the ADT user. 

Goguen has developed an interesting ap- 
proach to supporting state within ADTs 
[Goguen and Meseguer 1987; Meseguer and 
Goguen 19831. He suggests the use of re- 
flective programming, in which OBJ2 is 
used to define itself and a hidden type is 
used to represent the necessary internal 
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MOD2 Signature: 
number: type; 
zero, one: function0 result number; 
plus, times: function(number, number) result number; 

Figure 2. MOD2: A simple algebra. MOD2 Semantics: 
number == (0, l} 
zero0 == 0 
one0 == 1 
plus(x,y) == if (x=0) then y; else if (y=O) then x; else 0. 
times(x,y) == if (x=0 or y=O) then 0; else 1. 

state space. The basic idea he develops is 
that the underlying algebraic theory being 
used can be modified as a result of expres- 
sion evaluation. In the above example of 
MOD2 numbers, for instance, a constant 
called my-number might be used to hold a 
number within an ADT. When this number 
needs to be changed, the underlying algebra 
is modified so my-number represents the 
new value. This may seem overly elaborate, 
but perhaps it is a reasonable approach if 
one wishes to stay within an entirely alge- 
braic framework. The approach is analo- 
gous to the use of behavioral replacement 
to model state in Actor languages [Agha 
19861. 

The main restriction of the algebraic ap- 
proach is that it is first order; that is, func- 
tions (and also ADTs) are not first-class 
values-they cannot be passed as input to 
other functions, returned from functions, 
or stored within data structures such as 
records. Goguen does not consider this a 
problem and claims that the absence of 
higher order capabilities in OBJ2 enhances 
opportunities for efficient implementation. 
We do not necessarily agree with this and 
feel that higher order capabilities can be 
efficiently supported while providing a 
greatly enhanced degree of expressive 
power within the language. The ability to 
create and manipulate ADTs as data at run 
time appears to us to be an extremely im- 
portant ability within a program develop- 
ment environment, and within systems in 
general. 

1.2 Higher Order Approaches 

MacQueen [1986] gives a good review of 
the origins of type theories germane to this 
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section. Historically, they are based on the 
“formulas-as-types” notion that evolved 
through the work of Curry and Feys [1958] 
in which a close correspondence between 
axioms of propositional logic and basic 
combinators was observed. The notion was 
used by Girard [1971], who introduced a 
form of second-order typed lambda calculus 
as a tool in his proof-theoretic work, and 
by Reynolds [ 19741, who independently in- 
vented a programming language that has 
come to be called the second-order lambda 
calculus. 

1.2.1 Mitchell and Plotkin’s Existential Types 

Mitchell and Plotkin [1985] used an ex- 
tended version of the second-order lambda 
calculus, called SOL, to represent ADTs. 
The primary focus of this work was ex- 
pressing the type of ADTs. This can be 
contrasted with a purely algebraic charac- 
terization, in which types (i.e., sets of value 
domains) remain on a completely different 
semantic plane from ADTs (i.e., algebras). 

Mitchell and Plotkin [1985] begin by ac- 
knowledging the algebraic model of ADTs 
and consider the concrete representation 
(i.e., implementation) of an ADT to be a 
data algebra of the kind described in Sec- 
tion 1.1. Their next step, however, is to 
show how data algebras can be considered 
typed values within SOL. The result is that 
data algebras may then be considered first- 
class values that can be passed as parame- 
ters to functions or returned as results. 
Practical implications of this include the 
ability to examine data at run time in order 
to choose an appropriate ADT representa- 
tion (e.g., a sparse matrix) and then call a 
data processing function with the desired 
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abstype point with 

is 

create: function(rea1, real) result point; 
plus: function(point, point) result point; 
xgal: function(point) result real; 
yyal: function(point) result real; 

representation real X real 
create(x,y) == cons(x,y); 

Figure 3. A SOL ADT for points. 

in 

plus(cl,c2) == cons(car(cl)+car(c2), cdr(cl)+cdr(c2)); 
xyal(c) == car(c); 
y-val(c) == cdr(c); 

point.x~val(point,plus(point.create(l,4),point.create(2,3))); 

ADT representation as a parameter. A con- 
ditional statement may be used to return 
one of two different ADT representations 
as its result. 

The central idea of SOL that supports 
this ability is that of existential types. Ex- 
istential types provide an appropriate 
mechanism for expressing the types of data 
algebra expressions; they tell about the 
available operations and how they may be 
used, without describing the implementa- 
tions of the operations or the type used as 
the carrier of the algebra. Figure 3 shows a 
SOL expression in which an ADT imple- 
menting geometric points is used. The 
value of the overall expression is 3. 

The expression in Figure 3 was built from 
an interface specification, a data algebra 
expression, and a body within whose scope 
the abstype point is visible. Basic data al- 
gebra expressions in SOL have the form 

representation 7Ml . - - Ad,, 

where 7 is a type expression (representing 
the carrier of the algebra) and MI . . . M, 
are function definitions (representing the 
operations of the algebra). The interface 
specification can be viewed as an expres- 
sion of the fact that there is a type named 
point with operations create, plus, x-val, 
and y-vu1 (and the types of these functions 
depend on point ). This informal reading of 
the interface specification corresponds ex- 
actly to the type of the data algebra. The 
types of data algebras are therefore ex- 
pressed using the form 

37.u1(7) and ~(7) and ... u,(7), 

where T is the name of the ADT, and the 
vi(~) are the types of the operations pro- 
vided for dealing with 7.’ 

As indicated above, one feature of SOL 
is that a program may select from among 
several different ADT implementations at 
run time. A parser that uses a symbol table, 
for instance, may be parameterized by the 
representation of the type sym-tab and can 
then be passed different implementations, 
such as a hash table or a binary tree. Even 
though multiple ADT implementations 
may be manipulated directly by a program 
and passed around at run time, SOL pro- 
grams are statically type checked at com- 
pile time. 

1.2.2 Cardelli and Wegner ‘s Existential Types 

Cardelli and Wegner [1985] have designed 
a language similar to SOL, in which exis- 
tential types are used to support ADTs.~ 
Although many of the ideas are unchanged, 
the syntax is considerably more flexible, 
and records provide a powerful and useful 
structuring tool. This language was used as 
a tool for tutorial exposition by Cardelli 
and Wegner and was given the name FUN. 
As in SOL, the base language for FUN 
is lambda calculus, and the introduction 
of support for ADTs appears as a natural 
consequence of allowing existential type 
quantification. 

’ The notation U(T) is used to emphasize that T may 
appear free in the type expression (I. 

’ FUN supports inheritance as well, which is discussed 
in Section 2. 
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In FUN, type specifications for variables 
of existentially quantified type have the 
form 

37.texp(7), 

where texp is a type expression that may 
contain free occurrences of the type vari- 
able T. If some variable p has an existential 
type of this form, then we interpret this as 
meaning that for some type T, the type of p 
is texp(~). Because FUN includes records, 
no special syntax is needed for representing 
signatures; texp(~) can simply be the type 
of a record whose components will be the 
named operations made available by an 
ADT. 

Within this typing system, one can work 
up to the idea of ADTs slowly by first 
examining simple uses of the ideas behind 
existential types. Thus, for instance, the 
type of the pair (3, 4) can be represented 
by either of the following expressions: 

37.7 x 7 or 37.7. 

In the first case, T = integer; in the second 
T = integer x integer. This highlights the 
important fact that the same object can 
have different existential types. Because of 
this, and as an aid to type checking, FUN 
requires that special syntax be used to cre- 
ate objects whose types are to be existential 
and that the particular existential type de- 
sired by the user be explicitly indicated. 

The syntax provided within FUN for cre- 
ating objects of existential type is based on 
the idea of packaging so that internal struc- 
ture is hidden. Thus, for instance, we might 
want to represent the pair (3, addl) as an 
object having the existential type 

3 T. (val: T, op: T + integer), 

which uses a record type as the type expres- 
sion within which T appears free. To denote 
the desired object, we use the syntax 

obj 

=pack[~ = integer in(va1: 7, op: T + integer)] 

(3, addl). 

This syntax achieves the above-mentioned 
goal of explicit indication of the desired 
existential type and suggests (because of 
the keyword pack) a hiding of information. 

Indeed, to use obj, its components may be 
referred to by name. The expression, 
obj.op(obj.val) thus evaluates to 4. 

A special (optional) syntax is also pro- 
vided for the use of existential objects. 
Staying with the packaging analogy, the 
keyword available for using a (packaged) 
object is open. To apply the operation pack- 
aged within obj to the packaged value, we 
could use the syntax 

open obj as id[t] in id.op(id.val), 

which evaluates to 4, as desired. Use of this 
syntax allows the introduction of a local 
name (in this example, id) for obj within 
the expression to be evaluated and another 
local name (in this example, t ) for the 
otherwise hidden representation type. 

Representation type is another name for 
what was called the carrier in connection 
with algebras; it is also sometimes called 
the witness type. The local name for this 
type (within the opening of a package) is 
treated as a new atomic type within the 
scope of its use, and the type of the result 
of the open expression (i.e., the type of the 
expression following the keyword in) is not 
allowed to depend on this type. This pre- 
vents the representation type from escap- 
ing its scope, so that it remains hidden 
within the package. It is this restriction 
that is at the heart of the fact that existen- 
tial types are just ordinary types in FUN 
(and SOL) and that packages are ordinary 
values that can be manipulated in all the 
usual ways. 

For all practical purposes, the above 
value obj is an ADT representation pack- 
aged with its set of operations. Its user 
knows ( from obj ‘s type specification) that 
obj.op may be applied to obj.val and that 
the result will be an integer. Another 
expression with the same existential type 
as obj is (list(12 3), length). The fact that 
the similarity between these very different 
objects can be captured by existential types 
is interesting: Since they are of the same 
type, they could be put on the same typed 
list. The availability of existential types 
considerably increases the flexibility of a 
strongly typed language. 

A representation of points similar to that 
displayed for SOL is now given. Figure 4 
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type point-ADT = 3 p-rep point-wrt[p-rep] 

type point-wrt[p-rep] = 
<create: function(real,real) result p-rep; 
plus: function(p-rep,p-rep) result p-rep; 
xyal: function(p-rep) result real; 
y-val: function(p-rep) result real;>, 

value cart-point:point-ADT = 
pack [p-rep = (real X real) in point-wrt[p-rep]] 

<create = fun(x,y) cons(x,y); 
plus = fun(pl,p2) cons(car(pl)+car(p2), cdr(pl)+cdr(p2)); 
x-val = fun (p) car(p); 
y-val = fun (p) cdr(p);> 

Legal Use: 
value result = open cart-point as p in 

p.x-val(p.plus(p.create(l,4),p.create(2,3))); 

Illegal Use: 
value result = open cart-point as pl in open cart-point as p2 in 

pl.x_val(pl.plus(pl.create(l,4),p2.create(2,3))); 

Figure 4. FUN ADT for points. 

contains an appropriate FUN definition of 
the types and an expression involving their 
use that, as in the SOL example, evaluates 
to 3. The keywords value and type are used 
to emphasize the nature of the entities 
being defined. Types do not exist at run 
time in FUN; values do. 

As indicated, the type of the value cart- 
point (in Figure 4) is point_ADT, an exis- 
tential type. The package prefix “cart” was 
chosen to indicate that a Cartesian repre- 
sentation is provided by the package. A 
polar representation is also possible, and 
the type system will prevent the manipu- 
lation functions in two different packages 
from interacting. In fact, as the example of 
illegal use indicates, the type system will 
even prevent interaction between manipu- 
lation functions obtained by separate open- 
ings of the same package. Because pl and 
p2 are both cart-points, the representation 
types returned by p 1. create and p 2. create 
must be the same, but the typing system 
can neither recognize nor make use of this 

fact. P 1 .plus can only be applied to points 
that originate from the p 1 package. 

The reason for this strange state of af- 
fairs is that in SOL and FUN the represen- 
tation type incorporated within a package 
is hypothetical,* which means that there is 
essentially no access to the representation 
type (it is not even recognized to exist!) 
outside of its package. Even within an open 
statement, the most that can be done in 
FUN is to provide this type with a local 
name, which is treated as a new atomic 
type (even though the witness type may 
actually be a constructed type, such as a 
pair or a record). This means that the rep- 
resentation type has no meaningful per- 
manent identity and can never be related 
to any other type except within the scope 
of an open expression (where it can only 

‘This terminology was introduced by Cardelli and 
MacQueen [1985]. They speak of three alternative 
ways of treating the representation type component 
of a package and characterize these with the terms 
transparent, hypothetical, and abstract. 
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match itself). This is an even stronger kind 
of information hiding than that normally 
implied by an ADT, where the representa- 
tion type normally retains its identity even 
though its structure is hidden. This is a 
serious restriction because it makes it very 
difficult to provide implementation effi- 
ciency within a collection of interacting 
ADTs by making use of knowledge con- 
cerning representation types. 

Since there is really nothing wrong with 
the second example of Figure 4, one’s first 
impulse is simply to allow such behavior 
(by making the necessary changes to the 
type checker). Doing this is tantamount 
to electing to use what Cardelli and 
MacQueen call the abstract witness model. 
Their comments concerning this model are 
as follows: 

If we want to continue to view packages as values 
and existential types as ordinary types in this model, 
the distinction between types and values becomes 
blurred and we have to impose some rather ad hoc 
constraints to preserve static type checking. For 
instance, if A and B are of type ~T.u(T), and we 
define 

C = if p then A else B 

then we will probably require that the witness type 
of C does not match either the witness of A or B. 
[Cardelli and MacQueen 1985, p. 2341 

These comments seem reasonable if we 
want static typing because the witness 
types of A and B can be different, and p 
will in general depend on data available 
only at run time. Such an approach does 
not seem to be a serious restriction given 
the benefits. Within the abstract witness 
model, then, both examples in Figure 4 are 
acceptable. Of course, there will be other 
meaningful programs that are unacceptable 
within the abstract witness model owing to 
the desire to preserve static type checking 
in the presence of conditionals. 

If dynamic type checking were to be used, 
propagating the abstract witness types of 
packages through conditionals at run time 
would provide sufficient information on 
which to base run-time checks, as long as 
type comparison is identity based rather 
than structure based (i.e., witness types 
must remain abstract when compared). 

This is because the use of representation 
or witness types in FUN is simply a way of 
getting a handle on the fact that two objects 
with the same existential type can have 
different implementations. The actual 
structure of the representation type may or 
may not be part of this difference-a fact 
that is highlighted by our examples, in 
which the representation types of the polar 
and Cartesian point packages are structur- 
ally identical. 

1.2.2.1 Adding in Universal Quuntifica- 
tion. In addition to supporting inheritance 
(discussed in Section 3), FUN also provides 
universal type quantification, which sup- 
ports generic function types. When the two 
notions of existential and universal quan- 
tification are combined, it is possible to 
represent parametric data abstractions. 
These could be quite useful in the modular 
construction of software and can be 
thought of as providing functions over 
existential types (although no run-time 
computations are involved). It is interest- 
ing to note the similarity between inherit- 
ance and parametric data abstractions- 
both approaches provide a mechanism for 
incremental construction of software based 
on previously defined modules. 

Suppose, for example, that we want to 
build on top of point_ADT by providing an 
ADT for lines. For every representation of 
points, there could be a corresponding rep- 
resentation of lines. Therefore, we might 
want to parameterize a line ADT with re- 
spect to the point ADT upon which it is 
based. Figure 5 shows how this can be done. 

Because of the hypothetical witness of 
FUN ADTs, we must explicitly provide a 
point package within the line package to 
provide access to point operations that op- 
erate on the same representation as the line 
operations. Generic&w is therefore de- 
fined to be the type of a polymorphic func- 
tion that (once specialized to a particular 
point representation) takes a point package 
representation (e.g., cart-point) and re- 
turns an object of type line_ADT with re- 
spect to that point representation. As 
shown in Figure 5, once the polymorphic 
function named line is defined, we can 
make a Cartesian line package, cart-line, 
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Definitions: 
type generic-line = v p-rep function(point-wrt[p-rep]) result line-ADT; 

type line-ADT = 3 p-rep line-ADT-wrt[p-rep]; 

type line-ADT-wrt[p-rep] = 3 I-rep line_ADT_wrt2[l_rep,p_rep]; 

type line_ADT_wrt2[l_rep,p_rep] = 
<points: point-wrt[p-rep]; 
create: function(p-rep,p-rep) result l-rep; 
length: function(l-rep) result real;> 

value line[p-rep]:generic-line = fun(p:point-wrt[p-rep]) 
pack[l-rep = (p-rep x p-rep) in line-ADT_wrt2[I_rep,p_rep]] 

<points = p; 
create = fun(pl,p2) cons(pl,p2); 
length = fun(pl,p2) ((p.x-val(pl)-p.x-val(p2))2 + 

(p.y-val(pl)-p.ysa1(p2)2)1’2;> 

value cart-line:line-ADT = 
open cart-point as p[p-rep] in 

pack [rep = p-rep in line-ADT-wrtjrep]] line(p-rep](p) 

Use: 
result = open cart-line a.5 1 in 

l.length(l.create(l.points.create(O,O),l.points.create(O,1))); 

Figure 5. Combined universal and existential quantification. 

by first opening the Cartesian point pack- 
age and then packaging up the desired line 
and point operations using the representa- 
tion type and manipulation functions of 
cart-point. Note that line [ p-rep] is actually 
applied to the point package p in order to 
produce the cart&ze package; and espe- 
cially note that in creating a line in the use 
example, the point package that was placed 
within the line package must be used to 
create the endpoints of the line. 

As with the SOL example, the packages 
in Figures 4 and 5 do not hold a state for 
the abstractions they support but simply 
pro V ide the operations for creating and ma- 
nipulating them. A technique that Cardelli 
developed for Amber [Cardelli 1984a], how- 
ever, allows maintaining a hidden state 
within an ADT as well. This technique, 
which makes use of recursive type and 
structure expressions, also provides a way 
of getting around the problem of interac- 

tion between packages of the same existen- 
tial type, as Figure 6 shows. 

In the example ADTs in Figure 6 (cart- 
point and polar-point ), the tuple field la- 
beled value holds the state of a point, either 
in Ca;uesian or polar representation, while 
the other tuple fields hold functions for 
manipulating this value. The overall ap- 
proach in this example is still essentially 
functional; the plus operation returns a new 
ADT encapsulating a new state, rather 
than modifying an existing state via assign- 
ment. Given an assignment statement, 
side-effecting state modification would also 
be possible. This example helps highlight 
an important distinction between a pack- 
aged function returning an instance of the 
package’s representation type (a violation 
of information hiding and, therefore, ille- 
gal) and returning an instance of the pack- 
age’s existential type (legal and done in this 
example by plus). Note how both Cartesian 
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Definitions: 

type point_ADT = 3 p-rep point-wrt(p-rep); 

type point-wrt(p-rep) = 

<value: p-rep; 
x-val: function0 result real; 
y-val: function0 result real; 
plus: function( point-ADT) result point_ADT; > 

ret value cart-point(x,y):point-ADT = 

ret self. pack [p-rep = (real x real) in point-wrt(p-rep)] 
<value = cons(x,y); 
x-val() = car(self.value); 
y-val() = cdr(self.value); 
plus(p) = cart-point( 

self.x-val + p.x-val, 
self.y-val + p.y-val);> 

ret value polar-point(x,y):point-ADT = 
ret self pack [p-rep = (real X real) in point-wrt(p-rep)] 

<value = cons((x 2 2 1/2,...); +y ) 
x-val() = car(self.value)*cos(cdr(self.value)); 
y-val() = car(self.value)*sin(cdr(self.value)); 
plus(p) = polar-point( 

self.x-val + p.x-val, 

self.ygal + p.y-val);> 

Use: 
value result = (cartgoint(l,4).plus(polar~point(2,4))).x~val() 

Figure 6. ADTs with state. 

and polar representations are allowed to 
interact. Smalltalk programmers should 
notice a very real and intriguing similarity 
between their style of programming and the 
style displayed in Figure 6. Assuming that 
appropriate Smalltalk classes for Cartesian 
and polar points have been defined, their 
use in Smalltalk code corresponding to the 
above example would look like the follow- 
ing: 

result t ((cart-point new: (1,411 

plus: (polar-point new: (2,4))) x-val, 

which is exactly the form appearing in Fig- 
ure 6, aside from the syntactic details of 
function invocation and argument passing. 

1.2.3 MacQueen’s Use of Dependent Types 

The Introduction mentioned that the “for- 
mulas-as-types” notion has been a useful 
one for language theoreticians. SOL and 
FUN borrow their type formulas from 
second-order lambda calculus. Recently, 
there has been a great deal of interest in 
the formulas of constructive logic [Martin- 
Lof 19821, and MacQueen [ 19861 has shown 
how these can be applied to the description 
of ADTs. 

Since the formulas of constructive logic 
are more expressive than the formulas of 
second-order lambda calculus, there is rea- 
son to hope that the resulting type theory 
will be more expressive. The main problem 
to be addressed concerns the drawbacks of 
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the formally based hypothetical witness 
model of existential types versus the infor- 
mally based but more expressive abstract 
witness model. In particular, MacQueen 
takes issue with the requirement that 
ADTs based on Cartesian points (lines, for 
instance, as in Figure 5) must be defined 
within the scope of a single opening of the 
cart-point package: 

In general, we must anticipate all abstractions that 
use the point structure and might possibly interact 
in terms of points and define them within a single 
expression. It appears that when building a collec- 
tion of interrelated abstractions, the lower the level 
of the abstraction, the wider the scope in which it 
must be opened. We thus have the traditional dis- 
advantages of block structured languages where low- 
level facilities must be given the widest visibility. 
[MacQueen 1986, p. 2791 

1.2.3.1 Dependent Types. To continue 
our discussion, we must introduce depen- 
dent types. The concepts behind these are 
not difficult to grasp, but our presentation 
will of necessity only scratch the surface. 
As an aid to further study of the ideas 
behind dependent types, we can recom- 
mend a number of references [Bates and 
Constable 1985; Constable and Zlatin 1984; 
MacQueen 1986; Turner 19841. 

Type expressions in programming lan- 
guages generally have a syntax that is bor- 
rowed (or adapted) from a syntax used in 
logic. From early experience with mathe- 
matics, this syntax has become almost sec- 
ond nature, so that the notation f :A + B, 
meaning f is a function that maps elements 
of domain A to elements of the range B, 
seems natural to us. The type constructor 
in this case, +, is used with the two type 
identifiers, A and B, to build a new, con- 
structed type that we automatically identify 
as a “function” type. But we should be 
careful to separate the idea represented by 
A --j B from the idea of a function; there 
are functions this representation does not 
adequately describe. An example will be 
given presently. 

Another idea we pick up from our early 
experience is that of a Cartesian product 
between two domains. The usual notation 
is z: A x B, meaning z is a pair whose 
components are, respectively, composed of 

elements from domain A and elements of 
B. In this case, the type constructor, X, is 
used with two type identifiers to build a 
new, constructed type that we automati- 
cally identify as the type of a pair. But 
again, there are pairs that this type repre- 
sentation does not adequately describe (the 
type of the second element might depend 
on the value of the first). 

It is possible to generalize our notions 
concerning functions and Cartesian prod- 
ucts, but our syntax must also change. Con- 
structive logic provides generalizations for 
our intuitions concerning functions and 
Cartesian products and also provides a 
syntax. 

IIx:A.B(x) is the notation used to rep- 
resent a new idea of function: It is the type 
of a function that will map an element x 
from a domain A to a range B(x); that is, 
the range depends on x (the element of A 
to which we apply the function) with B 
specifying the dependence.5 B itself can be 
viewed as a type-valued function. Objects 
of this new function type, general product, 
are still created with lambda abstraction, 
for example. It is just that our new way of 
describing function types is more flexible; 
we can be more expressive and provide 
more information about the function. A 
good example is the division function. We 
can now express the fact that if we divide 
x/y (x, y reals), the range of the result will 
depend on y: If y is nonzero, the range is 
the set of real numbers; if y is zero, the 
range is the set containing the single value 
undefined. Of course, the old notation, 
f: A + B is still useful when the range off 
does not depend on the value to which f is 
applied. 

Zx:A.B(x) is the notation used to rep- 
resent a new idea of Cartesian product; it 
is the type of a pair in which the value of 
the first component x (which is of type A) 
determines the type of the second compo- 
nent-again, with B specifying the depen- 
dence.‘j Objects of this new type, general 

5 Another syntax that has been used is n: A + B Lx) 
[Constable and Zlatin 19841. 
’ An alternative syntax that has been used is X: A XX 
B(x) [Burstall and Lampson 19841. 
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sum, are created by a pairing function (sim- 
ilar to cons, for instance) called inject, or 
inj, and are inspected by two projection 
functions, called witness and out (similar 
to car and cdr, for instance). 

The function witness takes an object 
whose type is a general sum Zx:A.B(x) 
and returns x, the witness for the object 
(i.e., the first component of the pair). The 
type of witness is (Zx:A.B(x)) +A, using 
the syntax for expressing the type of a 
function whose range does not depend on 
the value of its argument. The function out 
takes a pair p, whose type is a general sum 
Zx:A.B(x), and returns the second com- 
ponent of the pair. The type of out is 
IIp: (Zx:A.B(x)). B(witness(p)), a gen- 
eral product type, because the range of the 
result depends on the value of its argument. 

in the typing theory investigated by 
MacQueen [1986], types are restricted to 
those that can be constructed with the II 
and Z type constructors.7 We therefore 
need to explain how the types of structures 
are represented in this theory. This is done 
in two steps. 

One can use general products to repre- 
sent generic or polymorphic functions, and 
general sums to represent existential types. 
The availability of the above projection 
functions on general sums, however, make 
the resulting objects (which MacQueen 
calls structures) “open,” in contrast to the 
packages of FUN. Such an approach cor- 
responds to the transparent witness model 
for existential types described by Cardelli 
and MacQueen [ 19851. 

First, we look at the set of all the types 
that can be constructed, starting from 
primitive types (such as int and bool) and 
our type constructors Z and II. This set is 
closed with respect to Z and II construc- 
tions and is called the set of small types. 
Since we have agreed that we can think of 
a set as representing a type, we can call this 
set TypeI. Now Type1 is, itself, not a small 
type-it cannot be constructed from Z and 
II and any of the small types. We therefore 
let Type1 be a member of (i.e., a value of 
type) Typep, which we define by starting 
with Type, and again closing with respect 
to Z and II. 

This process of defining types and the 
type of types (and the type of types of types 
. . . ) could go on forever. Luckily, though, 
we do not need to go any further; the exis- 
tential types of SOL and FUN correspond 
to values in Typez. In particular, 

~T.u(T) = 27: Typel.a(T). 

1.2.3.2 Are Structures Values? In FUN, 
existential types (the types of packages) are 
represented by starting with a type expres- 
sion of the “usual” sort (i.e., composed from 
the available type constructors, primitive 
types, and variables representing types) 
and then abstracting with respect to the 
desired representation type variable. Thus, 
when a package is created by supplying a 
value for the representation type (bound by 
existential quantification) and values for 
the components of the object described by 
the overall type expression, the result is 
a value of the “usual” sort. Thus, pack- 
ages are first-class citizens in SOL and 
FUN-they are simply data values. Unfor- 
tunately, this is not the case for Mac- 
Queen’s structures. 

The types of structures (structures being 
the dependent-type analog of packages) are 
not created with existential abstraction of 
a type variable in a type expression. Rather, 

Although the type of the left expression 
above is of the same class as, for example, 
integer in FUN or Type1 in the DL system 
(carrying on the analogy), the type of the 
expression on the right is Typea. Since the 
types of structures in this new system are 
of Typez, the values of structures are found 
in TypeI. In this typing system structures 
are therefore types (i.e., at the level of 
“integer” as opposed to the level of “1”). 
MacQueen [ 19861 suggests a special syntax 
for building structures, which may be 
thought of as a module definition and in- 
terconnection language. Within this lan- 
guage, called DL, a signature is used to 
indicate the type of a structure, and func- 
tions that produce structures (such as line, 
the generic function in Figure 5) are called 
functors. 

’ Other constructors useful for representing the types 
of records, for instance, are made available, but 3 is 
not available. 
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Definitions: 
signature point-ADT = C p-rep:Typel < 

create: function(real,real) result p-rep; 
plus: function(p-rep,p-rep) result p-rep; 
xgal: function(p-rep) result real; 
y-val: function(p-rep) result real;> 

structure cart-point:point-ADT = inj(real~real, < 

create = fun(x,y) cons(x,y); 
plus = fun(pl,p2) cons(car(pl)+car(p2),cdr(pl)+cdr(p2)); 
xgal = fun(p) car(p); 

y-val = fun(p) cdr(p);>) 

structure polar-point:point-ADT = inj(real><real, < 
create = fun(x,y) cons( .._, ,.,) 

. ..>) 

signature line-ADT-wrt(p:point-ADT) = C I-rep:Typel < 
create: function(lpl,lpl) result l-rep; 
length: function(l-rep) result real;> 

structure cartJne:line-ADT-wrt(cart_point) = inj(lcart-point1 x Icart-pointl, < 
create = fun(pl,p2) cons(pl,p2); 
length = fun(l) let pl = carp, p2=cdr(l) in 

((pl.x-val-p2.xgal) +(pl.y-val-pl.y-val)2)112;>) 

Use: 
value result = open cart-point as pl in 

open cart-point as p2 in 
open cart-line as I in 

I.length(l.create(pl.create(O,O),p2.create(O,l))); 

Figure 7. DL ADTs for point and line. 

In DL, if we agree that we will only 
compute with values (i.e., not types) during 
run time, as MacQueen suggests, then we 
can no longer select structures at run time 
through the use of conditionals or create 
structures dynamically on an as-needed ba- 
sis, as is possible in SOL and FUN. Nor 
can we use the technique illustrated in 
Figure 6 for Smalltalk-like state-based 
interaction between ADTs of the same 
existential type; structures cannot be 
passed or returned at run time. Instead, 
structures must be statically defined and 
connected before execution. It is interesting 
that this is essentially the same restric- 
tion seen in OBJ2, a first-order language 
[Futatsugi et al. 19851. 

What may not be immediately clear is 
what has been gained. Let us therefore 
build up point and line abstract data types 
in DL, as done in Figures 4 and 5 for FUN, 
and compare the way in which this is 
accomplished. We should see a differ- 
ence in the way the line ADT is able to 
access the point ADT and its operations. 
Figure 7 shows this. We use the notation 
1 structure 1 to represent the expression 
“witness(structure).” 

The benefit of the above approach is to 
allow points created through any use of 
cart-point to be used in construction of a 
cart-line. As can be seen in this example, it 
is no longer necessary to explicitly open a 
package (e.g., cart-point) in order to obtain 
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a scope within which a higher level abstrac- 
tion (e.g., cart-line) may be defined. This 
ease of expression of structures based on 
other structures and their respective types 
is an improvement over the approach 
required by existential types under the 
hypothetical witness model. Nevertheless, 
the line-ADT above requires a point struc- 
ture as its argument, preventing lines from 
being constructed from points with differ- 
ent representation structures. This restric- 
tion was also seen in FUN (Figure 5) owing 
to the need to explicitly provide a point 
package required for creation of end points 
within the line package. As seen in the next 
section, this restriction is not found in 
Russell. 

MacQueen [ 19861 provides numerous ex- 
amples of the increased flexibility of DL 
and shows how various approaches to defin- 
ing structures are possible within this lan- 
guage. He believes that the module system 
developed for ML [MacQueen 19851 has 
this dependent-type model as it most nat- 
ural generalization (as opposed to that pro- 
vided by existential types). 

The DL model of types is a stratified 
model, in which there are different levels 
of types, each level being constructed from 
those below it, but there are also unstrati- 
fied models, in which there is a “type of all 
types.” Cardelli [1986] has recently devel- 
oped a type system, in which framework 
the dependent types we have discussed in 
this section may be placed. This system has 
the promise of providing packages as val- 
ues, with transparent witness types. It 
appears that static type checking within 
this system is in general undecidable, but 
whether this is actually a problem for 
realistic programs remains a question for 
further research. 

1.2.4 Russell and Poly 

The FUN and DL typing systems have as 
their overall aim an understanding of pro- 
gramming in terms of the type domains 
from which denotable values are drawn. 
One result of this has been expressing the 
type domains from which ADTs (i.e., ob- 
jects whose behavior corresponds to our 
intuitions concerning ADTs) are drawn. 
Rules for type checking ADTs arise natu- 

rally from the coupling of abstract syntax 
to semantics that such a denotational 
approach provides. 

The heart of this approach seems to be 
the view that the types from which values 
are drawn are somehow fundamental and 
that values must be explained in terms of 
these types. Type checking is then the act 
of verifying that denoted values are indeed 
members of the type from which they are 
claimed to be drawn and that these values 
are used in ways consistent with the prop- 
erties common to values of this type. 

But one can also take an opposing view- 
that values are the fundamental reality and 
that a type is just a set of operations (i.e., 
procedures and functions) that provide a 
consistent interpretation of values. Under 
this regime, type checking is the act of 
verifying that values will not be misinter- 
preted by operations in which they are used. 
Values in such a language do not have 
types, themselves, but are interpreted by 
the operations of types. We hope the con- 
nection with ADTs here is clear: In this 
view, all types (even such primitive types 
as integer and Boolean, for instance) sup- 
port data abstraction in much the same way 
as data algebras, packages, and structures 
do-by providing the necessary operations 
for manipulating the representation of data 
for which they were designed. 

This approach should make sense to pro- 
grammers, who are generally aware that the 
same value stored in a memory location can 
be thought of as an integer, a boolean, a 
machine instruction, a pointer, a floating- 
point number, or any one of a number of 
different possibilities, depending on the op- 

erations in which it takes part. In the 
course of an integer add operation, for in- 
stance, it is not the data values that hold 
or define “integerness”-it is the add op- 
eration itself (or, indeed, the entire collec- 
tion of integer operations, all of which agree 
on a consistent interpretation of a universal 
untyped value space). The first program- 
ming language to make uniform use of this 
point of view toward types was Russell 
[Demers and Donahue 19791. Although this 
may seem a major change of view, Hook 
has defined a language based on dependent 
types called Kernel Russell into which 
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Russell programs may be naturally trans- 
lated [Hook 19841. Thus, it is possible to 
relate these two viewpoints. 

Russell supports the principle of decla- 
ration correspondence [Landin 1966]- 
anything that can be declared can be passed 
as a parameter, and vice versa. In Russell, 
therefore, one can parameterize any con- 
struction within the language with respect 
to any free identifier appearing in it. Since 
types are constructible values in Russell 
(they are, after all, just sets of operations), 
this allows parameterization with respect 
to types. Thus, parametric polymorphism 
(of the kind used in the generic-line 
example in Figure 5) is available from first 
principles. 

Another principle of Russell is that all 
type checking be done statically, at compile 
time. As might be expected, static type 
checking in a language in which types may 
be created and passed as values is a prob- 
lematic objective. Although it is difficult to 
take issue with any of Russell’s principles 
or with its view of types (which is a useful 
approach, as is shown presently), the par- 
ticular syntactic restrictions placed upon 
the language to guarantee static type check- 
ing may be questioned. 

In order to support static type checking 
in Russell, no function or type expression 
may use a free identifier bound to a variable 
in the surrounding scope.8 This require- 
ment is a result of two facts: First, functions 
can return types as their results; second, 
types match in Russell if and only if they 
are syntactically equal or can be converted 
through renaming, reordering, or forgetting 
so that they are syntactically equal. As a 
result of this restriction, called the import 
rule, syntactically equal type expressions in 
Russell always denote the same type. 

Another language based on the same 
principles as Russell, but with different 
restrictions to guarantee static typing, is 
called Poly [Matthews 19831. Poly does 
type matching by name, which is a simpler 
approach than that taken by Russell. 

a The term uariaL& has a special meaning in Russell, 
indicating that a side-effecting assignment may be 
used to change its contents. Variables are distin- 
guished from constants, which are called ualues. 

Matthews, the designer of Poly, has sug- 
gested that Russell might recognize two 
different kinds of functions: those that do 
not use free identifiers bound to variables 
in a containing scope and those that do. 
The first class could be safely allowed in 
type expressions, whereas the second could 
not. This would be less restrictive than the 
current import rule, which prohibits all 
functions from importing variables. 
Matthews believes that this would be the 
most desirable approach for future lan- 
guages similar to Russell or Poly. 

An example of Russell code is now given 
in Figure 8. In it, the capabilities demon- 
strated in Figure 6 (multiple ADT represen- 
tations) and in Figure 7 (transparent wit- 
ness) are combined. As mentioned earlier, 
it is not clear how to do this in either FUN 
or DL.’ 

In Russell, the keyword with corresponds 
to the keyword ret in the FUN example of 
Figure 6-it introduces a local name for the 
structure being defined (in this case, a 
Cartesian product structure defined using 
the Russell prod constructor) that can be 
referred to the in the definitions for the 
operations on this structure. The Mk op- 
eration referred to in the operation defini- 
tions is provided by prod and is analogous 
to an n-ary cons. 

In Russell, the problem with the hypo- 
thetical witnesses of existential types is not 
present; the problem with dependent types, 
that structures are not first-class values, is 
also not present. Of all the example typing 
systems reviewed so far, the Russell system 
seems the most satisfactory in terms of its 
expressive power and flexibility. As can be 
seen by the above example (in which a new 
line is created without explicitly mention- 
ing the types of the point arguments), a 
certain amount of type inferencing is per- 
formed by the Russell compiler. This has 
the benefit of making the language less 
verbose and easier to use. 

Unfortunately, there is currently no for- 
mal base for type inferencing in Russell, so 

‘We are indebted to Professor Hans Boehm of Rice 
University for his assistance in developing this ex- 
ample. A Russell compiler developed by Professor 
Boehm, A. Demers, P. Matthews, and J. Hook is 
available to the general public. 
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Definitions: 

#define Point-type type P { 
new: func [x,y:val Float] val P; 
xval,yval: func[val P] val Float; 
+ : func[pl,p2: val P] val P } 

cart-point == prod { x, y: val Float } with cp { 
new == func [x,y: val Float] {cp$Mk}; 
xval == func [val P] { cp$x }; 
yval == func [val P] { cp$y }; 
+ == func [pl,p2:val cp] {new[xval[pl]+xval[p2], yval[pl]+yval[p2]]} 
} export {new; xval; yval; +}; 

polar-point == prod { r, theta: val Float } with pp { 
new == func [x, y: val Float] { pp$Mk(sqrt(x*x + y*y), arctan(y/x)) }; 
xval == func [val P] { pp$r * cos(pp$theta) }; 
yval == func [val P] { pp$r 1: sin(pp$theta) }; 
+ == func [pl,p2:val pp] {new[xval[pl]+xvaljp2], yval[pl]+yval[p2]]} 
} export {new; xval; yval; +}; 

line == prod {pl: val tl; p2: val t2; tl,t2: Point-type} with 1 { 
new == l$Mk; 
length == func [line: val l] { 

let 
dx == xval[pl[line]] - xval[p2[line]]; 
dy == yval[pl[line]] - yval[p2[hne]] 

in sqrt[dx*dx + dy*dy] ni 

> 
} export {new; length} 

Use: 

let 
pl == cartqoint$new[l.0,2.0]; 
p2 == polar-point$new[2.0,3.0]; 
1 == line$new[pl,p2] 

in 
line$length[l]; 

ni 

Figure 8. Point and line ADTs in Russell. 

the programmer often has to guess whether 
an explicit signature will be required. In 
many cases, types need to be given explic- 
itly even though it seems reasonable for the 
compiler to be able to infer them. In the 
cart-point example in Figure 8, for in- 
stance, it seems strange to have to state 
explicitly xval== func[val P]{cp$x], rather 
than simply state xval = = func[val P](x) 
when x clearly belongs to the cart-point 
structure. 

The kind of type inferencing done by ML 
language compilers [Cardelli 1987; Milner 

19781, for which no types at all need be 
explicitly mentioned by the programmer, is 
not possible in Russell as it now stands. 
Nor, for that matter, does it seem likely for 
FUN. The ML typing system is consider- 
ably less expressive than that of Russell or 
FUN (and in any case it does not deal with 
modules); this seems to be a necessary 
trade-off. The question as to just how much 
explicit typing is necessary in these lan- 
guages remains for future research. There 
is current interest in addressing these foun- 
dational issues for Russell, and we hope 
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that in addition to elucidating a formal base 
for type inference in Russell, future work 
will result in an extension of Russell types 
to handle inheritance, the other necessary 
component of OOP. 

2. INHERITANCE 

We now turn to inheritance, the other half 
of the OOP = ADTs + Inheritance equa- 
tion. To inherit is to receive properties or 
characteristics of another, normally as a 
result of some special relationship between 
the giver and the receiver. The resulting 
properties of the receiver in such an act are 
not necessarily limited to those that are 
inherited, nor, in general, are all of the 
properties and characteristics of the giver 
necessarily inherited. This is certainly true 
for the usual kind of inheritance that takes 
place in human society, wherein the receiv- 
ers and givers are people and the relation- 
ships are typically based on marriage or 
birth. 

In view of the above reasoning, it might 
be thought that there is no a priori reason 
for restricting or imposing a discipline on 
the use of inheritance in defining objects. 
If one wants to build a new object that 
includes a capability already available in 
some other object, why not simply use in- 
heritance to obtain the desired capability, 
while ignoring those that are not desired? 
Certainly it is possible to use inheritance 
in such an ad hoc fashion; in fact, most 
OOP languages expressly provide the 
means of doing so. However, as indicated 
above, inheritance is normally closely tied 
to some relationship between the giver and 
receiver. Ideally, such a relation (e.g., is-a 
relationship) should support formal reason- 
ing about the behavior of objects defined 
using inheritance and at least be helpful to 
a programmer’s informal reasoning. In the 
case of the is-a relationship, the consist- 
ency of reasoning about objects based on 
inheritance of properties may require all 
properties to be inherited [Brachman 
19851. Thus, there is a need to be disci- 
plined in the use of inheritance in defining 
objects so that the implicit relationships 
between objects that arise from the use of 
inheritance are not violated or contradicted 

by the behaviors of these objects. In at- 
tempting to provide a formal model for 
inheritance, this tension between what is 
reasonable on the basis of an anthropo- 
morphic analogy and what is reasonable in 
terms of formal logic becomes an important 
factor. 

In Smalltalk, there are no type-checking 
means or other tools to help a designer 
ensure that a proposed addition to the class 
hierarchy makes sense in terms of these 
implicit relationships. In fact, there are 
numerous examples in the Smalltalk- 
system in which the expected relationship 
between objects defined using inheritance 
is violated [LaLonde et al. 19861. In Small- 
talk, it is quite easy to give a definition 
of a subclass that includes a method that 
overrides one of the same name higher 
up in the class hierarchy, giving the objects 
of the subclass an inconsistent behavior 
with respect to objects of an ancestor 
class. Although overriding is usually used 
in a principled fashion to provide an ex- 
tended and consistent behavior to objects 
of a subclass, there is currently no well- 
defined notion of such an extension that 
formally distinguishes it from a situation 
in which the use of overriding produces 
inconsistent behavior. 

A primary motivation for the use of in- 
heritance in programming is that it pro- 
vides both a specificational structuring 
mechanism and a means of reusing speci- 
fications that is based on common sense 
notions that are natural to our way of 
thinking. When using inheritance in the 
definition of an object, a designer need only 
specify what is new about the object in 
comparison with the objects from which it 
inherits properties. In this sense, we might 
view inheritance as an ADT constructor. In 
Smalltalk, a subclass inherits and may 
extend both the state representation (in- 
stance variables) and the operations (meth- 
ods) of the superclass. Thus, a programmer 
need only specify any additional instance 
variables or methods that characterize the 
new class of object being defined. On the 
other hand, CommonObjects [Snyder 19871 
expressly forbids inheritance of instance 
variables on the grounds of preserving 
strong encapsulation of data representa- 
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tions. This approach attempts to preserve 
as much as possible the connection between 
ADTs and objects, while still supporting a 
useful form of inheritance. 

The following issues therefore seem im- 
portant in trying to model OOP inherit- 
ance: First, what is the formal relationship 
between objects that inheritance is in- 
tended to reflect and to what extent should 
violations of this relationship be controlled 
or allowed? Second, to what extent should 
inheritance be allowed to violate principles 
of data abstraction? Additionally, the au- 
thors believe that the first of these issues 
begs an important question-namely, 
whether there should be but a single inher- 
itance hierarchy and corresponding rela- 
tionship. We believe that there should be 
separate inheritance hierarchies and mod- 
ule relationships corresponding to the reuse 
of behavioral specification and implemen- 
tation specification, respectively. Taking 
such an approach should alleviate the prob- 
lem of creating inconsistent behaviors 
when overriding methods and, in many 
cases, remove the need to perform over- 
riding at all. 

The following sections focus on these 
issues while reviewing recent work aimed 
at addressing inheritance within a formal 
framework. Following this, we review a 
number of OOP languages, considering how 
they address these issues and how they 
relate to the formal frameworks that have 
been suggested. 

2.1 Ordering Relations on Types 

Key to a formal basis for type inheritance 
is the definition of an order relation on the 
set of type expressions. Ordering the set of 
types expressible within a type system has 
been used in several different aspects of 
programming language design 

(1) to organize application of coercions in 
compilers [Hext 1967; Mitchell 1984a], 

(2) to support resolution of overloading 
[Jones and Muchnick 1976; Kaplan 
and Ullman 19801, 

(3) to support type checking and infer- 
encing [Mitchell 1984b], and 

(4) to support inheritance [Ait-Kaci and 
Nasr 1986; Cardelli 1984b; Cardelli and 
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Wegner 1985; Dahl and Nygaard 1966; 
Futatusugi et al. 1985; Goguen and 
Meseguer 1987; Ingalls 19781. 

Although it is not the purpose of this sec- 
tion to discuss topics (l)-(3) in detail, we 
mention them since they are often closely 
intertwined with inheritance. In Smalltalk, 
for instance, overloading and polymorphism 
are integrated via the class hierarchy. 

2.1.1 Overloading 

Overloading refers to the use of a single 
syntactic identifier to refer to several dif- 
ferent operations (methods in Smalltalk), 
discriminated by the types of the argu- 
ments to the operations. Overloading, along 
with coercion, is considered a form of ad 
hoc polymorphism [Cardelli 19861, thus 
suggesting an unprincipled and incoherent 
syntactic mechanism. An example of over- 
loading is the use of “+” for the addition 
operation over integers, rationals, and reals 
(not to mention vectors and matrices). It 
is hard to see what is unprincipled or in- 
coherent here, since the operation of addi- 
tion is common to all these cases; but in 
the absence of a coherent framework, we 
could also imagine “+” being used to indi- 
cate the set union operator. The use of a 
well-founded class hierarchy based on in- 
heritance can provide a framework for the 
principled use of overloading. In the above 
example, integers, rationals, and reals are 
considered successive specializations of one 
another. Thus, the various operations as- 
sociated with “+” are defined over succes- 
sively restricted domains. 

2.1.2 Polymorphism 

A polymorphic operation is one that can be 
applied to different types of arguments. We 
use the term functional polymorphism to 
refer to the situation in which a single, 
specific function can be applied uniformly 
and independently of (some aspects of) the 
types of its arguments. An example is the 
length operation, which takes a list com- 
posed of elements of any type and returns 
the number of elements in the list. This 
operation can be naturally defined so that 
it is independent of the type of elements 
contained in its argument list. Another ex- 
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ample of such an operation is the identity 
operation, which maps an argument of any 
type to itself. Many researchers, including 
Cardelli and Wegner [ 19851, call this notion 
parametric polymorphism. This is because 
the types of the arguments for such func- 
tions appear as implicit (in ML) or even 
explicit (in FUN) type parameters in 
the polymorphic function definition. The 
generic-line example of Figure 5 shows 
this. We prefer not to call this parametric 
polymorphism for the following reasons. 

There are actually two different ap- 
proaches to polymorphism. The style intro- 
duced by Milner [ 19781 and popularized by 
the ML language is the one we refer to as 
functional polymorphism. It is character- 
ized by the uniform behavior of a single 
function over a range of types. Type quan- 
tification to define this range may be either 
implicit or explicit (as required for type 
checking in FUN), but types are not sup- 
plied as explicit parameters to functions, 
and functions do not make reference to or 
use the types of the arguments in any op- 
erational fashion. The other style of 
polymorphism has its roots in Reynolds 
[ 19741, involves explicit quantification over 
types, and is obtained by supplying types 
as explicit parameters to functions. The 
Russell language supports polymorphism in 
this way. Calling both approaches “para- 
metric” seems to be asking for confusion, 
since they seem different, both operation- 
ally and semantically. We therefore recog- 
nize this distinction (when appropriate) by 
using either functional or parametric as a 
qualifier. When the distinction is not im- 
portant, we omit the qualifier. 

A natural refinement of polymorphism is 
inclusion, or bounded polymorphism, in 
which “an operation may be applied to ob- 
jects of different types related by inclusion” 
[Cardelli and Wegner 19851. Inclusion 
polymorphism provides a means of char- 
acterizing restricted applicability of a 
polymorphic function. The form of inclu- 
sion polymorphism normally seen in cur- 
rent OOP languages is functional polymor- 
phism that relies on a common represen- 
tation among different types related by 
inclusion. 

In Amber [Cardelli 1984a] and FUN 
[Cardelli and Wegner 19851, for instance, 

inclusion is defined over record types, and 
bounded polymorphic operations operate 
on such records by using fields that are 
common to the record types involved. 
Examples of this approach are given in 
Section 2.3. In Smalltalk, inheritance of 
methods from a superclass may be viewed 
as inclusion polymorphism. In this case, 
commonality of representation arises from 
the fact that the instance variables upon 
which the inherited operation depends are 
inherited also. The set of subclasses of the 
class defining the method represents the 
set of legal classes that the bounded poly- 
morphic method applies to. Thus, a method 
defined within the class Object can be 
viewed as a universally polymorphic oper- 
ation (i.e., it may be applied to all objects). 

We now discuss in more detail the ap- 
proaches to inheritance and ordering of 
types that we see in the work of Goguen, 
Cardelli, and Ait-Kaci. These approaches 
are based on order-sorted algebras, record 
orderings, and term orderings, respectively. 

2.2 Order-Sorted Algebras 

This section discusses the work of Goguen 
and others [Futatsugi et al. 1985; Goguen 
and Meseguer 1986, 19871. Each of the 
references just given includes extensive ci- 
tations and discusses a system intended to 
highlight a particular cluster of features: 
OBJ2 [Futatsugi et al. 19851 is a functional 
system based on equations; EQLog [Go- 
guen and Meseguer 19861 is a full logic 
programming system based on the Horn 
logic with equality; and FOOP [Goguen and 
Meseguer 19871 is based on an approach to 
supporting objects with local state (as in 
Smalltalk) in a functional setting. In the 
following discussion, we use OBJ to refer 
in a generic fashion to all of this work- 
not just the system described in Futatsugi 
et al. [ 19851. 

OBJ uses two interrelated methods of 
subtyping: subsorts and relations on mod- 
ules. An OBJ module provides a packaging 
of one or more abstract data type defini- 
tions. The definition of an abstract data 
type will involve a set of equations, possibly 
with conditions, that mention one or more 
sorts: In Section 1.1 on algebraic ap- 
proaches, the notion of a data algebra was 
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module LIST[Object::Trivial] is 
using NAT 
sorts NeList List 
subsorts NeList < List 
o Ps 

nil : -> List , 
cons : Object List -> List [associative with identity = nil] , 
hd : NeList -> Elt , 
tl : NeList -> List , 
size : List -> Nat 

van 
X : Object , 
L; L’ : List 

axioms 
hd(cons(X,L)) = X 
tl(cons(X,L)) = L 
size(ni1) = 0 
size(cons(X,L)) = 1 + size(L). 

endmod LIST 

Figure 9. AN OBJ2 module. 

introduced. In the work of Goguen, there is 
a standard method of obtaining an algebra 
from the definition of an ADT. In particu- 
lar, one can think of a sort (e.g., Boolean) 
in an ADT definition as an uninterpreted 
identifier that has a corresponding carrier 
in the standard (initial) algebra. 

Figure 9 shows an example of an OBJ2 
module. It declares a signature and set of 
operations for lists of objects. The module 
parameter makes explicit the assumptions 
made for objects-namely, they satisfy the 
theory named Trivial. This theory is de- 
clared within another module (not shown) 
and has no axioms. Because Trivial has no 
axioms, any object satisfies this theory, and 
any object may be put on a list. The sub- 
sorts declaration defines an ordering to 
hold on the sorts List and NeList. In par- 
ticular, the operators cons and size will be 
inherited by the sort of NeList of nonempty 
lists. Initial algebras will correspond to 
each of the two sorts introduced by this 
module. The set corresponding to the sort 
NeList will be a subset of the one for List, 
and the algebra for NeList will be a sub- 
algebra of the one for List. The using 
clause indicates that the definition of this 
module depends on some of the properties 
defined in the module NAT. In this case 
the sort named Nat is the codomain of the 
operator size. 

In OBJ, another form of inheritance is 
achieved via a hierarchy of modules. The 

ACM Computing Surveys, Vol. 20, No. 1, March 1988 

schematic module definition shown in Fig- 
ure 10 illustrates this. It defines a subclass 
of LISTS that can be sorted by virtue of a 
partial order being defined over the ele- 
ments of the LISTS. This is indicated by 
the module parameter type being restricted 
to POSET. POSET is the theory of par- 
tially ordered sorts. Just as in Smalltalk, a 
subclass may add new message selectors 
and methods that do not occur in the su- 
perclass; here the module defines two new 
operators over the sort List of the module 
LIST. Note also that because of the subsort 
relation defined in LIST, the sort NeList 
inherits the two new operators also. 

All of the mechanisms involved in sub- 
sorts and the module hierarchy can be given 
a semantics in terms of order-sorted alge- 
bras, which in turn may be mapped into 
many-sorted algebras, which are well 
understood. In this sense, all of the OBJ2 
inheritance mechanisms can be considered 
a form of syntactic sugar that does not 
increase the expressiveness of the resulting 
language. In practice, however, the nota- 
tional and conceptual economies gained are 
considerable. 

2.3 Set-Inclusion Orderings 

The foundation for Cardelli’s work with 
inheritance [Cardelli 1984b; Cardelli and 
Wegner 19851 is provided by the “types-as- 
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module SORTABLELISTS[X::POSET] is 
using BOOL 
extending LISTIX] 

OPS 
sorted : List -> Boo1 , 
sort : List -> List 

end SORTABLE-LISTS 

Figure 10. Module hierarchies in OBJ. 

ideals” approach, developed by MacQueen, 
Sethi, and Plotkin [MacQueen and Sethi 
1982; MacQueen et al. 19841. It seems ser- 
endipitous that a theory originally devel- 
oped as a semantic foundation for type 
checking functionally polymorphic lan- 
guages should also provide a foundation for 
understanding inheritance. As we show 
here, however, the FUN typing system de- 
scribed in Section 1.2.2 can be extended in 
a natural way to support inclusion poly- 
morphism and, thereby, a form of inherit- 
ance. 

2.3.1 Types as Ideals 

We have explained the reasoning behind 
viewing types as sets. Even though all types 
may be viewed as sets of values, viewing all 
possible sets of values as types is not so 
reasonable. Since values of the same type 
normally have a common structure (such 
as being pairs, functions, or integers) as- 
sociated with them, a first step in develop- 
ing a semantics for a typed language is to 
be precise about the nature of the sets that 
make reasonable types. 

In the theory of types as ideals, a set is a 
type if (and only if) the set is an ideal. 
Ideals are nonempty sets that satisfy two 
properties: They are (1) downward closed 
and (2) consistently closed under a com- 
plete partial ordering (cpo) on the domain 
of possible values, V. The set V and the 
cpo are the usual mathematical constructs 
used to present the denotational seman- 
tics of a lambda-calculus-based language. 
V is the set of all denotable values, and 

the cpo is an ordering based on information 
content.” 

The two properties given above that de- 
fine ideals reflect intuitive ideas concerning 
types and the way in which the elements of 
V are built up from approximations involv- 
ing primitives such as Boo1 and I, the least 
element of V, called Bottom. Requiring a 
type (set) to be downward closed means 
that the approximations of individual ele- 
ments of the type are also in the type. 
Requiring a type (set) to be consistently 
closed means, roughly, that the least upper 
bound of an approximation (subset) of the 
type is itself in the type. 

There are two important results that de- 
rive from restricting types to ideals in this 
way. First, the set of all types (i.e., the set 
of all the ideals of V) becomes a complete 
lattice under the set inclusion ordering G 
[MacQueen and Sethi 19821. This is an 
important result because it makes it easy 
to reason about subtypes. Second, given 
some minor restrictions, recursive type 
equations have solutions [MacQueen et al. 
19841. This is of crucial importance because 
many useful functions have recursive types. 
For instance, in order to express the type 
of x in the expression X(X), the type equa- 
tion s = s ---, t must have a solution (this 
solution is the type of x). The example in 
Figure 6 used recursive types. 

For future reference, we identify the set 
of all types (the set of all ideals of V) as 
TYPE. As we have mentioned, TYPE is a 
complete lattice when ordered according 
to C. At the top of this lattice is the type 
called TOP, whose elements are exactly 
those of V. 

2.3.2 Functional Polymorphism in the Ideal 
Model 

Functional polymorphism has been char- 
acterized as the ability of a function to 
operate uniformly and independently of 
(some aspects of) the types of its argu- 
ments. The identity function Id is a classic 

lo Two excellent sources of information concerning the 
denotational approach to language semantics may be 
found in the work of Dana Scott [1976] and Joseph 
Stay [1977]. In these semantics, the domain V is 
required to satisfy a recursive domain equation, such 
asV=BOOL+INT+[VxV]+[V+V]. 
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example of such a function, as is the length 
function Ln, which returns the number of 
elements in a list. The fact that Ln cannot 
be applied to all types of arguments (only 
lists) is the reason for use of the phrase 
“some aspects of” in the characterization. 
Universal and bounded universal quantifi- 
cation let us express exactly what aspects 
these are for polymorphic functions. 

Universal quantification of type vari- 
ables was introduced in Section 1.2.2.1 and 
used in Figure 5. We now explain why the 
ideal model allows us to represent func- 
tional polymorphism using universal quan- 
tification and inclusion polymorphism (a 
form of inheritance) as bounded universal 
quantification. We begin by using the iden- 
tity function as an example. 

Id is a member of the type TOP + TOP, 
but this fails to capture the essence of Id. 
A function of this type could map integers 
to booleans, for instance. To be more pre- 
cise, note that Id maps integers to integers, 
booleans to booleans, and so on, for any 
type t. Therefore, it is quite natural to 
use universal quantification and say that 
Id has the type expressed by the formula 
V t.t + t. Although this seems reasonable, 
what does it mean? If types are ideals, such 
a formula must have an interpretation in 
terms of ideals. 

In the ideal model, according to Mac- 
Queen et al. [1984], universal quantifica- 
tion corresponds to taking intersections of 
ideals containing certain total functions. 
Let D - E be the set of total functions in 
V that map elements of the ideal D to 
elements of the ideal E. Stated more pre- 
cisely, 

D-E={~ETOP-+TOP 

1 x E D + f(x) E El. 

For any D and E that are ideals, this set is 
an ideal and is therefore a valid type in the 
ideal model. 

There is an ideal (a type) in V that con- 
tains all total functions that map Booleans 
to Booleans, represented as Boo1 - Bool. 
We do not care what these functions do to 
other values, but they always map Booleans 
to Booleans. Id is in this ideal, so we write 
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Id E Boo1 - Bool. But we can also write 
Id E Int - Int. In fact, for any type T, 
Id E T - T. Because Id is in all of these 
ideals, it is in their intersection, so we can 
write Id E flTETYPET o-+ T. This, then, is 
the meaning of the expression Id: V t.t ---) t. 
A similar interpretation provides the mean- 
ing of Ln: t/ t.LIST(t ) + INT, namely 
Ln E fl TETyp,yLIST(T) - INT. 

Because of the lattice structure of TYPE, 
an equivalent representation of the type of 
Id is Id E nTaTOPT - T. The ordering 5 
is that generated by c on TYPE. General- 
izing over syntax, then, we write Id: V t 5 
T0P.t + t. It is this more general form that 
suggests bounded quantification in which 
the type TOP in this expression is replaced 
by some other type in the TYPE lattice. 
Thus, the general form for representing 
bounded universal quantification becomes 
V t 5 T.texp(t), where T is some type in 
TYPE, and texp (t ) is a type expression that 
can depend on the type variable t. 

To summarize, the two important results 
of this approach with respect to inheritance 
are 

(1) TYPE (the set of all types) is a com- 
plete lattice ordered by set inclusion; 

(2) both universal and bounded universal 
quantification have natural interpre- 
tations in terms of the ordering defined 
by this lattice. 

2.3.3 Examples of Inheritance 

Inclusion polymorphism captures a form of 
inheritance used in OOP. The use of inclu- 
sion polymorphism for this purpose, how- 
ever, requires that the hierarchy normally 
expressed in terms of superclass/subclass 
relationships be reflected in type/subtype 
relationships. For this purpose, Cardelli 
[1984a] has introduced records and their 
types. Records are then used to model class 
instances, and functional record compo- 
nents are used to model methods [Cardelli 
and Wegner 19851. 

A record is a finite association of values 
to labels, for example: (age = 5; speed = 
20). The type of this record is indicated by 
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the expression, (age, speed : int ). The or- 
dering of labels is not important (i.e., for 
all practical purposes, (age = 5; speed = 
20 ) = ( speed = 20; age = 5 ) ) because the 
only way fields can be accessed is via their 
label. The examples in Section 1.2.2 used 
records to store ADT functions and values, 
so they could be referenced by name (as 
opposed to position within the record). 

The aspect of records that is new to this 
discussion concerns the way in which their 
types may be related. By definition [Car- 
delli 1984133, a record type R’ is a subtype 
of type R (written R’ I R) if (and only if) 
R ’ has all the fields of R (possibly more) 
and the common fields of R’ and R are in 
the subtype relation. This definition of sub- 
typing for records is motivated by (1) the 
desire to represent objects using records 
and (2) the desire that inclusion polymor- 
phism provide results on records that 
correspond with our intuitions concerning 
object descriptions. The essential intuition 
embodied in this ordering is that if, for 
instance, every car is a thing (i.e., the type 
containing all cars is itself contained in the 
type containing all things), then when one 
describes a car, one describes a thing. When 
descriptions are given via the fields of rec- 
ord types, this ordering does, in fact, model 
some of our intuitions concerning OOP- 
namely, the relationship between instance 
variables of classes in a subtype/supertype 
relationship. Unfortunately, as we show, 
this ordering seems the inverse of the cor- 
rect ordering for methods. 

Figure 11 shows some example record 
types and the subtype relationships that 
arise from this definition. The first two 
type declarations can be read as “all things 
have an age” and “all vehicles are things 
that have a speed.” Note that in this ex- 
ample, vehicle-type and machine-type are 
not related by 5 (because of the way in 
which the types were defined). This illus- 
trates the fact that in this typing system, 
subtypes arise solely from implementation 
decisions concerning the representation of 
objects, not from observed or intended be- 
havioral relationships between objects in 
an application. In FUN, one never declares 
one type to be a subtype of another. Thus, 

Types: 

thingtype = <age: int> 
vehicle-type = <age: int; speed: int> 
machine-type = <age: int; fuel: int> 
car-type = <age: int; fuel: int; speed: int> 

Type Relationships: 

car-type 5 vehicle-type 5 thing-type 
car-type 2 machine-type 5 thing-type 

VOlUtX 

thing = <age = 5> 
vehicle = <speed = 10; age = 5> 
car = <fuel = 20; age = 10; speed = SO> 

Figure 11. Some example record types. 

the types of objects that are not related in 
an application domain may be related in a 
corresponding FUN program, simply as a 
result of coincidental representations. Sim- 
ilarly, the types of objects in an application 
domain that are perceived to be related will 
not be so related in a FUN program unless 
their representations are appropriately 
designed. This focus on implementation 
representations for defining subtype rela- 
tionships is understandable; static type 
checking (and the absence of run-time type 
errors) is a primary objective of the FUN 
type system. The above observation does, 
however, underscore a need to use separate 
behavioral and implementation hierar- 
chies. These could be used as a database 
for a system development environment, 
whose purpose would be the controlled gen- 
eration of FUN programs. 

Let us now ask what benefit can be 
derived from the valid conclusion that 
car-type 5 thing-type. We first define a 
function called mk-thing-older that will 
make a thing older. To help us express this 
function, we introduce a syntax for dealing 
with records. The expression record with 
((lubell, valuel), (Zabel2, vaZue2), . . . ) will 
be taken to denote a new record value 
whose fields are identical to those of record, 
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except for those fields whose labels are 
label 1, lubel2, and so on, which fields con- 
tain, respectively, value 1, value2, and so 
on. Figure 12 shows two possible mk-older 
functions and their use on the values de- 
fined in Figure 11. Note that the types of 
the parameters for these functions are in- 
dicated using “ZZ” instead of “:“, a natural 
extension of parameter type declaration in 
polymorphic function definitions. 

As seen in Figure 12, the typing system 
will allow mk-thing-older(car), because 
car-type 5 thing-type, and mk-thing-older 
is a polymorphic function that operates on 
any type 5 thing-type. This shows the exact 
sense in which inclusion polymorphism 
models inheritance. In Smalltalk, for 
instance, the function mk-thing-older 
could be placed in the thing class as. the 
mk-older method, along with the instance 
variable, age. The mk-thing-older function 
could be inherited as the mk-older method 
by subclasses of thing such as car (which 
subclasses also inherit the instance vari- 
able, age). Or the car subclass might over- 
ride this “default” method by providing the 
mk-car-older function as the mk-older 
method for instances of car and its sub- 
classes. 

Also, as shown in Figure 12, the typing 
system correctly prevents an application of 
mk-car-older to thing. This is certainly a 
desirable result, since thing does not have 
the speed field assumed by mk-car-older. 
Thus, the typing system prevents an appli- 
cation of a polymorphic function to an ar- 
gument for which it is unsuited. This is a 
necessary result in a useful typing system. 

But is what we have shown so far really 
sufficient for capturing the essence of 
OOP? To answer this question, we pursue 
the consequences of the claimed corre- 
spondence of records to class instances and 
methods to record fields. We attempt to 
construct a record that corresponds to an 
instance of the thing class, as described 
above, and construct another record that 
corresponds to an instance of the car class. 
Some unexpected problems arise. 

Figure 13 shows the types that result if 
the records of Figure 11 are extended to 
include the functions of Figure 12. The 

label names are motivated by our above 
description of the corresponding Smalltalk 
classes and mk-older methods. Note that 
these type expressions are recursive. 

Unfortunately, the types in Figure 13 are 
not related as we had expected. If we as- 
sume that car-type 5 thing-type, this leads 
to a contradiction. In particular, 

(car- type 5 thing-type) 

+ (t/o 5 thingLype.o + o 

5 VC 5 car-type.c + c)ll 

violates the conditions for car-type 5 
thing-type (in particular, that typeof (car- 
type.mk-older) I typeof (thingAype.mk- 
older)). This contradiction indicates the 
falsity of assuming car-type I thing-type 
in this case. 

This difficulty of placing polymorphic 
methods within records while maintaining 
the ordering of the record types is surpris- 
ing, but there is an explanation. Recall that 
the ordering defined for record types was 
chosen to support the intuition that (for 
instance), if car-type 5 thing-type, a de- 
scription of a car can (by ignoring fields 
not found within things) be seen as a de- 
scription of a thing. But should a poly- 
morphic method designed for operation on 
cars necessarily be a method for a thing? 
We think not. The mk-car-older method 
provides a concrete counterexample, and 
this is exactly what the ordering on poly- 
morphic types expressed using bounded 
universal quantification tells us. 

Thus, if we locate polymorphic car meth- 
ods within a record representing a car, we 
would not expect these methods to be valid 
for things in general, as required by 
Cardelli’s ordering on record types. In fact, 
we should expect just the opposite-that 
there will be many functions on cars that 
are not functions on things because cars 

” It is straightforward to verify this relationship by 
recalling the meaning of universal quantification in 
terms of intersected ideals. If car-type 5 
thing-type, then every intersection done for VC I 
car-type.c + c is done for Vo 5 thing-type.0 -+ o 
and more besides. Thus (Vo 5 thing-type.0 + o) s 
(VC 5 car2ype.c --, c). 
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Function Definitions: 

mk-thing-older : vo<thing-type.o+o 
= Xolthing-type o with ((age,age+l)) 

mk-car-older : vclcar-type.c-+c 
= Xc<car-type c with ((age,age+l), (speed,speed-1)) 

Ezample Usage 

mk-thing-older(thing) = <age=6> 
mk-thing-older(car) = <fuel=20; age=ll; speed=SO> 

mk-car-older(thing) = WRONG (Type error) 
mk-car-older(car) = <fuel=20; age=ll; speed=79> 

Figure 12. Aging functions. 

Types: 

thing-type = <age: int; mk-older: volthing-type.o+o> 

car-type = <age,fuel,speed: int; mkglder :‘fc<car-type.c+c> 

Subtype Relations: 

none -- thing-type and car-type are not related 

Figure 13. Problems using record types as classes. 

are more special than things. For this rea- 
son, Cardelli’s ordering on record types 
does not allow us to place polymorphic 
methods within records describing objects 
while maintaining the desired ordering on 
these records. 

Irrespective of this situation, we want to 
emphasize that bounded universal quanti- 
fication is a powerful and useful framework 
within which to represent the types of func- 
tions that exhibit inclusion polymorphism. 
Bounded universal types provide a distinct 
improvement in ordering the types of 
polymorphic functions, and this can be use- 
ful when requiring strong type checking of 
programs that make use of inheritance. As 
an example of this, we compare the order- 
ing of the types of mk-thing-older and 

mk-car-older, as given in Figure 12, with 
the results that would obtain without rec- 
ognition of the polymorphic nature of these 
functions. 

Using the basic definitions and orderings 
of Figure 11, if we were not to avail our- 
selves of bounded universal quantification, 
as in Figure 12 where mk-thing-older and 
mk-car-older were defined, we would prob- 
ably represent the types of mk-thing-older 
and mk-car-older as shown now in Fig- 
ure 14. 

Whereas the bounded universal typings 
given in Figure 12 correctly show that 
the type of mk-thing-older is included in 
the type of mk-car-older (thus allowing 
us to apply mk-thing-older to a car), the 
above characterization of the types of these 
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mk-thing-older’ : thing-type + thing-type The other approach is reminiscent of the 
mk-car-older’ : car-type -+ car-type example in Figure 6 and uses the recursive 

Figure 14. Alternative typings. record definitions developed for Amber. By 
using a recursive definition (in which the 
thing defined is made available within the 
scope of the definition), fields of a record 
are available to functions located within 
the record. Of course, the resulting method 
types are no longer polymorphic. Figure 15 
shows the result of using this approach. 

functions results in no ordering at all 
between these types. This is because the 
function constructor in the ideal model is 
antimonotonic in its first argument.” Thus 
if some function, say g, requires as an ar- 
gument a function of type car + car, we 
cannot pass mk-thing-older ’ to g, since its 
type is not included in car + car. This 
points out the fact that for functions that 
support inclusion polymorphism, it would 
be a mistake not to attempt to express and 
use this information in their typings. Luck- 
ily, bounded universal quantification allows 
us to express this information for poly- 
morphic functions and achieve the order- 
ings we intuitively expect. 

Cardelli’s ordering on records is an ex- 
pedient device for providing useful relation- 
ships between record types in Amber 
[Cardelli 1984a], a language that does not 
include bounded universal types. As we 
have shown, this ordering does not extend 
to supporting class instances with poly- 
morphic methods. There are two ap- 
proaches toward this “problem” that 
appear to make sense. First, one might 
simply give up associating polymorphic 
methods closely with the instance variables 
that describe an object (by not placing both 
within a record). This approach is sug- 
gested by the successful examples of Fig- 
ures 11 and 12, and finds additional support 
in the work of Ait-Kaci [Ait-Kaci 1984; Ait- 
Kaci and Nasr 19861, which is reviewed in 
the next section. 

I2 That is to say, if domains are related as A 5 B and 
C s D, then B + C 5 A + D [MacQueen and Sethi 
19821. Although initially perplexing, this rule is correct 
in the ideal model, given that nothing else is known 
about the behavior of the functions involved. As an 
example, if a function requires for its argument a 
function of type NAT + INT and NAT C INT, then 
supplying a function of type INT + NAT should be 
acceptable, since a function of type INT -P NAT will 
certainly map NATs to INTs. On the other hand, if 
an NAT + NAT is reauired. an INT + INT will not 

. do, or vice versa. 

This seems to be a reasonable approach. 
There is a straightforward mapping from 
the situation in which polymorphic meth- 
ods are maintained separately from the rec- 
ords describing objects, and the situation 
illustrated in this example, in which such a 
polymorphic function has been moved in- 
side the record by transforming it to make 
use of the recursive record definition. Per- 
haps method inheritance in Smalltalk could 
be viewed as making use of such transfor- 
mations under the assumption of common 
(i.e., inherited) instance variable represen- 
tations. 

Since the approach shown in Figure 15 
maintains the desired ordering on record 
types, FUN can make use of polymorphic 
functions defined over bounded ranges of 
these types. Records can thus be used to 
represent useful objects and associated 
nonpolymorphic methods for these objects, 
and the types of these records can be or- 
dered to allow such records as arguments 
to polymorphic functions. This is a prom- 
ising result, but it requires choosing the 
appropriate (most specific) polymorphic 
function for a given set of arguments. Al- 
though the inheritance hierarchy of Small- 
talk supports this automatically, it could 
also be done explicitly by the programmer 
or be supported with the concept of dis- 
criminators as in CommonLoops (discussed 
in Section 3.3). This approach was not con- 
sidered in FUN owing to the belief that 
bounded universal quantification combined 
with functional record fields provided all 
that was necessary for modeling inherit- 
ance in OOP. As shown, however, the 
claimed correspondence between records 
and objects fails when attempting to in- 
clude inherited polymorphic methods in the 
analogy. 
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thing-type = <age: int; mk-older: + thing-type> 
car-type = <age,speed: int; mk-older: + car-type> 

Type Relationships: 

car-type 5 thing-type 

Values: 

thing = ret self 
<age=5; mk-older()=self with ((age, age+l))> 

car = ret self 
<age=lO; specd=80; mk-older()=self with ((age, age+l) (speed, speed-l))> 

Figure 15. A final example of records. 

2.4 Term Orderings 

In Ait-Kaci’s dissertation [1984] and sub- 
sequent work [Ait-Kaci 1985; Ait-Kaci and 
Nasr 19861, an alternative approach toward 
OOP is based on generalizing and ordering 
first-order terms. Although these terms are 
used to represent objects, there is no at- 
tempt to hold methods within these terms; 
the functions and Prolog-like relations that 
perform or guide computations are kept 
separate from the first-order terms manip- 
ulated and created by these computations. 

Ait-Kaci’s approach replaces Cardelli’s 
records with generalized first-order terms 
called Q-terms. These terms are structured 
data types consisting of the following: 

(1) 

(2) 

(3) 

a head symbol that determines a class 
of objects (namely, all those objects in 
some chosen domain of interpretation 
whose description begins with the head 
symbol), 
optional attributes or fields that de- 
scribe particular features possessed by 
the class of objects being described 
(these fields are identified by labels and 
are themselves given by q-terms), 
optional coreference constraints that 
are used to signify equality constraints 
between attributes that are satisfied by 

the class of objects being described 
(this is a source of increased expressive 
power over records). 

Aside from coreference constraints, 
which offer a useful and important mecha- 
nism for describing constraints on objects, 
q-terms are different from first-order 
terms primarily because a q-term with a 
given head symbol may have any number 
of fields (normally, the head symbol of a 
first-order term determines the arity of the 
term). 

One difference between Cardelli’s ap- 
proach and that of Ait-Kaci (aside from the 
availability of coreference constraints in \k- 
terms and the ability to place functional 
fields in records) is the fact that the order- 
ing relationship in Cardelli is on the types 
of records (not the records themselves), 
whereas Ait-Kaci’s ordering is on Q-terms, 
which are actual objects of computation. 
Ait-Kaci’s approach can be thought of as 
computing with types. Alternatively, it 
could be viewed as being somewhat similar 
to the use of prototypes, since in that ap- 
proach objects themselves may be viewed 
as classes [Stein 19871. 

Figure 16 shows some q-terms. The last 
example shows a more complex structure 
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person 
A term with a head and no attributes. Intuitively, this could 
represent the set of all persons (sic) -- that is, persons with any 
attributes whatsoever. 

person(name => Jim) 
A term with a head and a single attribute with the label “name”. 
This could represent the set of people named Jim. 

student(name => Alex; sex => male) 
The set of all students named Alex that are male. 

person(id => name(1ast => X: string) 
father => person(id => name(last => X))) 

Figure 16. Example P terms. 

that expresses the constraint that the last 
name of a person and that of the person’s 
father must be the same. 

The use of arrows is intended to be 
suggestive; q-term labels may be consid- 
ered to be functions that return a q-term 
value for the indicated field. 

The type symbols used for *-term heads 
(e.g., person, student) are chosen from a 
partially ordered signature, where this or- 
dering is intended to reflect set inclusion 
within the interpretation universe of ob- 
jects described by the type symbols. The 
signature ordering is not based on represen- 
tation-an important difference between 
this approach and Cardelli’s record type 
ordering. An ordering on Q-terms is then 
defined in a manner similar to that used 
for records, in this case by reference to the 
ordering on the head symbols from which 
q-terms are created. The resulting inclu- 
sion ordering on q-terms supports the 
same intuitions concerning object descrip- 
tions as that for Cardelli’s records. Figure 
17 shows an example of type inclusion. 

The expressive power of q-terms with 
respect to objects is similar to that of rec- 
ords-the head symbols in Q-terms could 
be placed in record fields whose types are 
related according to the original relation- 
ship among head symbols. Although the 
ordering relationships would be between 
the resulting record types (as opposed to 
the records themselves), this need not re- 

sult in practical differences in how the 
relationship is used (or could be used) in 
supporting inheritance. 

2.4.1 A Calculus of *-Terms 

The ordering on the signature of type sym- 
bols can be very useful if the signature is a 
lattice. That is, if least upper bounds and 
greatest lower bounds are defined for any 
subsets of the type symbol signature, the 
set of Q-terms will also be a lattice and 
there will be a least upper bound (lub) and 
greatest lower bound (glb) for any pair of 
q-terms. Most interestingly, the lub and 
glb operations on Q-terms turn out to be 
the natural extensions of generalization 
[Reynolds 19701 and unification [Robinson 
19651 on first-order terms. Figure 18 pre- 
sents an example signature that is a lattice 
and two types represented as q-terms built 
from this signature. Because the signature 
is a lattice, these two types have a lub 
(generalization) and glb (unification) that 
are themselves types, and these are also 
presented. 

The correspondence of +-terms with 
first-order terms and of q-term unification 
(i.e., the glb operation on q-terms) with 
unification on first-order terms naturally 
suggests an extension of Prolog that makes 
use of Q-terms. The resulting language pro- 
vides an excellent example of straightfor- 
ward and theoretically sound integration of 
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Type Symbol Orderings: 

l 61 

student 5 person 
Austin 5 cityname 
Dallas 5 cityname 
“abc” < string 
“einstein” 5 string 

q-terms: 

t1 = 
student( 

id => name(last => X:string); 
lives-at => Y:address(city=>Austin); 
father => person(id => name(last => X); 

lives-at ==> Y)); 

t2 = 
person( 

id => name; 
lives-at => address(city => cityname); 
father => person); 

Resulting Q-term Ordering: 

t1 5 t2 

Figure 17. q-term inclusion. 

inheritance with logic programming [Ait- 
Kaci and Nasr 19861. Because polymorphic 
functions may also be defined over domains 
denoted by q-terms (by using techniques 
similar to those employed on records), it 
seems that Q-terms may provide a pleasing 
base for integrating both logical and func- 
tional object-oriented computing. This di- 
rection of investigation is currently being 
pursued [Ait-Kaci et al. 19871 and appears 
very promising. 

3. TYPES AND EXISTING OOP 
LANGUAGES 

In this section we quickly review a few 
approaches and ideas relevant to type 
checking OOP for LISP-like and other lan- 
guages. Our primary focus is the interesting 
connections between ad hoc suggestions 

that have been put forth for types in OOP 
and the ideas developed and implied by the 
models reviewed in this paper. By ad hoc, 
we mean type checking rules or language 
ideas put forth without an underlying 
model. Ad hoc rules are not necessarily less 
desirable for the lack of a model; it seems 
to us that if such rules lead to a consistent 
and useful programming methodology, 
there probably is a satisfactory model. Cer- 
tainly LISP-like languages have been use- 
ful and important independently of the 
question of their model. 

3.1 Type Checking Smalltalk 

In the proposal of Johnson [ 19861, a num- 
ber of alternatives to type checking Small- 
talk programs are reviewed. Reasons why 
static checking would lead to important 
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A Signature: 
T 

a wit h mojarch 

c 

queen 

Two Types: 

child 
(knows => X:person(knows => queen; hates => Y:monarch); 
hates => child(knows => Y; likes => wicked-queen); 
likes => X); 

adult 
(knows => adult(knows => witch); 
hates => person(knows => X:monarch; likes => X)); 

Their Generalization and Unification: 

person 
(knows => person; 
hates => person(knows => monarch; likes => monarch)); 

teenager 
(knows => X:adult(knows => wicked-queen; hates => Y:wicked-queen); 
hates => child(knows => Y; likes => Y); 
iikes => X); 

Figure 18. A lattice signature and four types. 

increases in program efficiency are out- 
lined. The connection with this paper that 
we wish to highlight concerns the antimon- 
otonic rule for function type inclusion de- 
scribed in Section 2.3.3. 

Borning and Ingalls [1982] have sug- 
gested a natural characterization of the 
type of a variable in Smalltalk: the nearest 
common superclass of the objects that can 
be stored in that variable. Johnson rules 
this approach out because, among other 
reasons, it violates the antimonotonicity 
rule. Johnson’s reasoning is as follows: 
Arrayof:Integer cannot be a subtype of 
Arrayof: Object, since a procedure that is 
given an Arrayof: Object can store any ob- 

ject in it, whereas only integers can be 
stored in an Arrayof: Integer. Therefore, a 
procedure that requires an Arrayof: Object 
as a parameter cannot accept an Ar- 
rayof: Integer. To see why antimonotonic- 
ity gives this result, we assume that Integer 
5 Object, and then examine the two re- 
spective array storage operations that we 
expect to find within Arrayof: Integer and 
Arrayof: Object, namely, 

store-int : Integer x Arrayof: Integer 

+ Arrayof: Integer, 

store-obj: Object x Arrayof: Object 

+ Arrayof: Object. 
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Now, if Arrayof: Integer 5 Arrayof: Object, 
the types of store-obj and of store-int are 
incomparable because of the antimonotonic 
ordering on function types.13 

3.2 Emerald 

Another language effort oriented toward 
typing OOP is described by Black et al. 
[ 19861. Here again, antimonotonicity plays 
a major role in type checking. In a manner 
similar to Russell, an abstract type in 
Emerald defines a collection of operation 
signatures-operation names and the types 
of their arguments and results. All identi- 
fiers in Emerald are typed: The program- 
mer must declare the abstract type of the 
objects that an identifier can name, and 
type checking amounts to verifying that 
assignments to identifiers conform to their 
types. In Emerald, a type S (read subtype) 
conforms to a type T if 

(1) S provides at least the operations of T, 
(2) for each operation in T, the corre- 

sponding operation in S has the same 
number of arguments and results, 

(3) the abstract types of the results of S’s 
operations conform to those of T’s op- 
erations, 

(4) the abstract types of the arguments to 
T’s operations conform to those of S’s 
operations. 

Rules 1 and 2 correspond to Cardelli’s 
ordering on record types, whereas rules 3 
and 4 express the antimonotonicity of func- 
tion types in terms of the Emerald pro- 
gramming metaphor. 

As we have indicated in our examples, 
antimonotonicity can be a double-edged 
sword. There is no question that this rule 
prevents erroneous application of higher 
order functions to arguments for which 
they are unsuited. At the same time, how- 
ever, we cannot help but feel that it is 

I3 As before, one way around this problem might be to 
“separate” the methods from the class definition, as 
done in CommonLoops and as suggested by Ait-Kaci’s 
approach. If this is done, there is the possibility of 
using a polymorphic storage function, store: Vt 5 
Obiect. t x Arrayof: t + Arrayof: t. Of course, this 
approach must be consistent with the way in which 
the programmer wishes to use the array. 

sometimes too restrictive and prevents a 
monotonic ordering when this would be 
both natural and useful. For example, it 
seems useful to consider natural numbers 
as conforming (in the above sense) to inte- 
gers; yet if the addition operation on INT 
is types as INT X INT + INT, and 
the analogous, homogeneous operation on 
NAT is typed as NAT x NAT + NAT, 
then rule 4 is violated.14 

Black does a nice job of clarifying the 
essential difference between type conform- 
ity in Emerald and subclasses of Smalltalk: 

In Emerald, the relationship between an object and 
the abstract type(s) that it implements is one of 
shared interface. An object supports a superset of 
the operations defined by its abstract type and each 
of the supported operations must conform to the 
corresponding operations in the abstract types. In 
Smalltalk, the relationship between a subclass and 
its superclass is one of shared implementation. A 
subclass is free to redefine the signatures of the 
messages that it receives, but it necessarily shares 
the superclass’s representation (instance variables) 
and typically shares many methods as well. [Black 
et al. 1986, p. 801 

An aspect of Emerald that is appealing 
is the way in which the functions of 
Smalltalk classes have been unbundled. 
Smalltalk classes perform at least four 
functions: They express a specification hi- 
erarchy; they generate instances (the new 
method is available for all subclasses of 
Object); they act as a repository for the 
methods of an instance; and they express 
an implementation hierarchy. In Emerald, 
although there is no direct support for 
the specification hierarchy, the other func- 
tions are all mediated through separate 
mechanisms. 

3.3 CommonLoops 

The CommonLoops proposal [Bobrow et 
al. 19861 represents an attempt at merging 
the OOP style with the procedure-oriented 

I4 In some sense, we are almost disappointed that OOP 
systems that are not forced into the use of antimono- 
tonicity (by an underlying model that requires it) have 
not come up with a better characterization of what 
constitutes type checking for OOP. We have a few 
thoughts on how one might relax the requirement for 
antimonotonicity, and these are mentioned in the 
conclusion. 
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philosophy of LISP. The objective is not so 3.4 OakLisp and CommonObjects 
much to support type checking as to pro- 
vide a consistent framework within which 
“types” may be used to choose the correct 
method for operating on a set of arguments. 
The important ideas introduced include 
multimethods and discriminators. 

CommonLoops provides a define- 
method operation for defining a function 
applicable to specific types or “classes” of 
arguments. Classes, in turn, are defined 
using an extension of the Common LISP 
defstruct command. Thus, a class instance 
is similar to a record. Modifications to 
defstruct allow explicit importation of 
attributes from other classes, which are 
then treated as superclasses of the class 
being defined. 

The define-method operation allows 
the programmer to indicate the intended 
types for all of its arguments. Therefore, 
unlike most other object-oriented schemes, 
CommonLoops allows method lookup to be 
based on more than the class of a single 
object. Such methods are called multimeth- 
ods. Ultimately, many methods of the same 
name might be defined for manipulation of 
different classes of arguments. This set can 
be thought of as representing a generic 
function. 

Associated with each generic function is 
a discriminator function whose purpose, 
given a generic function application, is to 
choose the most specific method suitable 
for operating on the given arguments, de- 
pending on their types. Often, a single 
method for each such set is defined without 
any type restrictions. This method then 
serves as a default method for its generic 
function. 

Although the “types” of arguments 
passed to a generic function are used to 
determine the appropriate function to be 
applied, this facility is provided in an 
ad hoc manner, and no theory is used for 
determining (or checking) the result types 
of applications. If a theory providing a for- 
mal lattice-based ordering on types were 
available for this, our feeling is that the 
work of Ait-Kaci suggests a foundation 
for automatically determining the most 
specific method. 

Other interesting extensions of LISP dia- 
lects to support OOP include OakLisp and 
CommonObjects. OakLisp [Lang and Perl- 
mutter 19861 is distinguished by its treat- 
ment of operations and object classes as 
first-class entities (objects) within the lan- 
guage. Types in OakLisp are regarded as 
sets of objects, and these types are them- 
selves objects. OakLisp’s designers have ax- 
iomatized the resulting type system and 
have shown that Russell’s paradox (which 
can arise when dealing with a system whose 
elements may be members of sets repre- 
sented by other elements) is not a problem. 
The key to this result is the existence of a 
total function GetType, which returns the 
smallest type containing the object to 
which it is applied. Such a smallest nontri- 
vial type exists for every possible object in 
an OakLisp program. Like CommonLoops, 
OakLisp supports a general method lookup 
mechanism. 

CommonObjects [Snyder 19871 is of spe- 
cific interest here because of its concern 
with the tension resulting from supporting 
both encapsulation and inheritance in 
OOP. Inheritance in most OOP languages 
can inadvertently expose details of an ob- 
ject’s implementation to its clients. This 
occurs in Smalltalk, for instance, when in- 
stance variables are inherited. In most OOP 
languages, it is not possible to define a data 
abstraction so that the internal variables of 
the implementation may be renamed with- 
out potentially affecting clients. In contrast 
with these languages, CommonObjects pro- 
vides for full support of encapsulation with 
inheritance. The key to CommonObject’s 
approach is that only methods may be in- 
herited, and the language allows a designer 
to specify the type hierarchy independently 
of the inheritance hierarchy. 

3.5 Exemplars versus Classes 

The approach taken by CommonObjects 
highlights the potential for conflict be- 
tween inheritance and information hiding. 
Others have perceived an equally important 
distinction between two ways of using in- 
heritance. Inheritance in a system may be 
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used both for specification of common be- 
havioral characteristics and for expressing 
common implementation representations. 
An interesting paper by LaLonde et al. 
[1986] suggests that the hierarchies for 
these separate purposes be expressed and 
maintained separately-as opposed to the 
situation for Smalltalk, in which they are 
indistinguishable. The result can be a sys- 
tem based on prototypical objects and be- 
havioral specifications, or examplars, as 
LaLonde terms them. 

Inheritance in FUN was based on inclu- 
sion polymorphism, and this in turn was 
based on an ordering on records. The ob- 
jective and result were to allow functions 
to make use of shared representations be- 
tween packages in an efficient and type- 
secure fashion. But there are other advan- 
tages to be achieved from the ability to 
express common (or inherited) behaviors 
even when the representations used to pro- 
duce these behaviors are not shared. Pri- 
mary among these include the ability to 
deal with the logical structure of a system 
independently of its implementation. 

In Smalltalk, the fact that the relation- 
ships between classes and instances are 
reflected in the same hierarchy results in 
the following: 

(1) 

(2) 

(3) 

All instances of a class must have iden- 
tical representations and methods. In- 
stances cannot have specialized meth- 
ods, and multiple representations for 
instances are not supported. 
Specializations of classes with individ- 
ualized representations are not allowed. 
Subclasses must have a representation 
that includes the superclass represen- 
tation. 
Since the class hierarchy and instance 
hierarchy are intertwined, either the 
class hierarchy must be made to con- 
form to the instance hierarchy, or vice 
versa. 

A programming technique of using “ab- 
stract classes” that have no instance vari- 
ables (such classes are intended solely for 
use as superclasses of other classes, i.e., 
never for direct instantiation) is common 

in Smalltalk and Flavors [Moon 19861 and 
addresses points (1) and (2). The exemplar- 
based system described by LaLonde et al. 
[1986] deals with all the above points and 
introduces a new form of inheritance 
(called OR-inheritance) as well. 

4. SUMMARY 

This paper has reviewed a variety of formal 
approaches to types that support in one 
way or another the notions of ADTs and 
inheritance. The last section highlighted 
some OOP systems that provide the prac- 
tical benefits offered by these ideas, without 
necessarily providing an associated formal 
basis for their application to the checking 
and controlled derivation of system de- 
scriptions. Our indirect objective through- 
out has been to determine to what extent 
current research in the area of type theories 
can be utilized to provide such a basis, by 
providing straightforward representations 
for the objects and behaviors observed in 
OOP. Unfortunately, none of the currently 
available type theories appear perfectly 
suited to this task. 

Although there are exciting areas of cor- 
respondence between currently available 
type theories and OOP languages, there are 
also mismatches. Although the theories re- 
viewed produced languages with capabili- 
ties similar to those seen in OOP languages, 
none of these languages provides a com- 
plete set of capabilities directly equivalent 
in power to the OOP languages currently 
in use. 

The algebraic approach supports inher- 
itance in a direct fashion, but it is first 
order. Although record and Q-terms struc- 
tures may be used to represent objects, 
polymorphic methods may not be included 
in these structures without destroying the 
desired subtype relationship between the 
structures. The appropriate response to 
this in the case of both record and term 
orderings was to avoid storing polymorphic 
methods in these structures, leaving only 
instance variables to be inherited. 

The OOP language most closely resem- 
bling this approach is CommonLoops, in 
which methods are defined separately from 
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representational data structures and dis- 
criminators are used to select the most 
appropriate methods for performing appli- 
cation of generic functions. Although the 
record-based approach to subtyping in 
FUN could support an approach to inher- 
itance similar to that seen in Common- 
Loops, this was never suggested in FUN, 
the language used to showcase that theory. 
On the other hand, it is expected that 
languages developed on top of the term- 
ordering model will make use of automatic 
compile-time discrimination for method se- 
lection. Operationally, this approach can 
provide the same advantages as method 
inheritance; but the CommonLoops ap- 
proach does not assume inheritance of 
instance variables, whereas both the 
record- and term-oriented models of sub- 
typing do. 

CommonObjects, which is closer to the 
usual OOP model, expressly forbids inher- 
itance of instance variables in the interest 
of strong data abstraction. It focuses in- 
stead on method inheritance as a central 
capability of OOP. Not discussed in this 
paper was the use of bounded existential 
quantification, which may be used to ex- 
press partially abstract types [Cardelli and 
Wegner 19851. This ability is interesting in 
this context because it allows limited 
knowledge concerning the representation 
type of packages to be made available. Al- 
though at first glance this capability might 
appear to be useful in providing a spectrum 
of possibilities with respect to data ab- 
straction in the presence of inheritance- 
from completely open (as in the case of 
Smalltalk) to completely closed (as in 
CommonObjects)-in fact this is not 
the case. This is because inheritance based 
on ordering the types of records requires 
that these types not be abstract (i.e., inher- 
itance in FUN is based entirely on repre- 
sentation) and therefore requires an open 
interface: thus, to the extent that existen- 
tials are used to hide the representation of 
object state in FUN, inheritance is not 
available. 

None of the type theories reviewed 
consider the possibility of overriding in- 
heritance. Although the use of separate 
hierarchies for behavioral and implemen- 

tational description may alleviate the need 
for unprincipled use of this technique, over- 
riding seems a natural approach to incre- 
mental enhancement of behavior when 
performed in a principled fashion. In the 
case of record or term type orderings, a 
discriminator-based approach to method 
selection could be used to achieve the de- 
sired effect-if the discriminators for ge- 
neric functions can themselves be defined 
by the programmer (as in CommonLoops). 
The algebraic approach could be considered 
to support the same objectives as principled 
overriding through the device of theory 
extension. 

All of the theories reviewed provide sat- 
isfactory models for ADTs. Although the 
approach of Russell toward support of 
ADTs seems more flexible and natural than 
the others reviewed, Russell’s type system 
does not support inheritance. On a positive 
note, however, if Russell were to support 
subtyping, the result could bear a very 
strong resemblance to the method inherit- 
ance provided by CommonObjects, since 
types in Russell are sets of operations. Ex- 
tending Russell in this way therefore seems 
a fruitful direction for research. 

Almost all of the work to date on 
object-oriented languages and typing sys- 
tems uses a single hierarchy for organizing 
specifications. On the one hand, this hier- 
archy is intended to capture generalization 
and specialization from a behavioral per- 
spective; on the other, it is used to support 
composition of imperative implementa- 
tions. That these two forms of hierarchy 
should not in general be equated follows 
from the following observations. 

First, a given data structure and associ- 
ated procedures that represent an ab- 
straction are often extended by adding 
additional methods in order to represent 
another abstraction that is not behaviorally 
related to the first in a reasonable way. An 
example of this sort of anomaly has been 
identified in the Smalltalk- implemen- 
tation [LaLonde et al. 19861: In practice 
the class Dictionary is a subclass of Set 
owing to the intent to share the implemen- 
tation of Set with Dictionary, but the Dic- 
tionary abstraction is not behaviorally a 
subclass of Set. 
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Second, composing fragments of im- 
perative specification as is done with 
sendsuper does not in general preserve 
notions of behavioral equivalence or more 
general notions of behavioral ordering. 
This is especially true with respect to weak 
encapsulation under inheritance as dis- 
cussed by Snyder [ 1987 1. The use of a single 
hierarchy for two conceptually distinct re- 
lationships among specifications when cou- 
pled with the early binding implied by static 
typing leads to type systems that are very 
conservative when compared with the prac- 
tice of Smalltalk or the various LISP ob- 
ject-oriented extensions. 

It therefore seems necessary to acknowl- 
edge these hierarchies as independent 
means of organizing specifications. It is not 
adequate to make ,use of multiple inherit- 
ance. To see this, consider a subhierarchy 
rooted in the class Matrix. It is common in 
the literature to cite Full-Matrix and 
Sparse-Matrix as examples of the use of 
inheritance; so these are designed as sub- 
classes of Matrix. (The examples in this 
paper of Point with subclasses Cart-Point 
and Polar-Point are similar.) Now, in ac- 
tual problems involving matrices, such sub- 
classes as Positive-Matrix and Orthogonal- 
Matrix are also relevant. Indeed, it may 
even be useful to restrict some algorithm to 
Positive-Orthogonal-Matrix. These notions 
are behavioral, and should be independent 
of the choice of implementation, that is, 
full or sparse. Using multiple inheritance 
within a single hierarchy that combines 
behavioral and implementation aspects 
means that the client of the class library 
must navigate through a class population 
that includes FuU-Positive-Orthogonal- 
Matrix and Sparse-Positive-Orthogonal- 
Matrix when in fact the decision about full 
or sparse implementation should be made 
independently, possibly at a later time in 
the design and possibly even during execu- 
tion of a program. 

It is not farfetched to consider that there 
may be a variety of representations of full 
or sparse matrices, depending on the kinds 
of numbers and types of operations that 
will be performed. These issues must be 
addressed as object-oriented languages sup- 
ported by type systems seek to bridge the 

gap between rapid prototyping and produc- 
tion quality implementations. 

4.1 Desiderata for OOP 

This paper generally assumes that OOP 
represents a positive step toward the design 
and implementation of complex software 
systems. In terms of this goal, our desider- 
ata include the following. 

(1) We want to support an object- 
oriented approach to the description of sys- 
tem components so that in the context of 
parallel and distributed computational sys- 
tems we have a means of packaging, in a 
coherent manner, the elements of data that 
“go together” in a variety of computations. 

(2) We want to support a more flexible 
and symmetric style of associating opera- 
tions with objects than that exhibited 
by, say, Smalltalk so that we can define 
operations that make use of knowledge con- 
cerning the representations of all objects 
involved in a computation. Then, for in- 
stance, methods could be written that 
handle two argument vectors composed of 
different element types. On a parallel ar- 
chitecture, we could perform pairwise op- 
erations on respective vector elements 
followed by O(log n) reduction of the 
results. 

(3) We want to support inheritance of 
description components in a systems 
description environment. This will pro- 
vide a means of (a) enhancing produc- 
tivity through reuse of description and 
(b) enhancing understandability through 
person-oriented classification techniques- 
generalization and specialization. 

(4) We want to support the idea that one 
notion may have a variety of implementa- 
tions because performance-oriented system 
description requires a means of specifying 
and selecting representations and algo- 
rithms (possibly instantiated in hardware) 
that are most appropriate in a given con- 
text. For example, whether to attempt an 
O(log n) reduction on a particular under- 
lying architecture depends on the scale of 
the individual operations with respect to 
the scaie of the allocation and control op- 
erations on that architecture. 
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(5) We want to incorporate an explicit 
typing system that can support but not 
require static typing of descriptions because 
flexibility in system description is closely 
related to the ability to control the time at 
which components are bound and the 
strength of such bindings. A typing system 
can provide much of the information 
needed to effect binding decisions properly. 

4.2 Evaluation 

Several systems address aspects of objec- 
tives (l)-(3) and even some of (4). Exam- 
ples are CommonLoops [Bobrow et al. 
19861 and OakLisp [Lang and Perlmutter 
19861. These systems are for the most part 
dynamically typed, offering little support 
(in a formal way) for control over the degree 
of binding that can be obtained from well- 
informed compilation. The metaclasses and 
generic functions of CommonLoops do pro- 
vide a framework for addressing this issue. 
Most systems employing a formal type sys- 
tem do not support dynamic typing. An 
exception in this regard is Emerald. The 
type system that Emerald uses, however, 
does not appear to support objective (3). 
This is because Emerald views the in- 
stances of objects as incorporating the 
operations valid on those objects via the 
notion of a signature and further uses an- 
timonotonic ordering on operation types. 
This prohibits such situations as passing a 
natural (number) to a routine that types its 
argument as an integer. 

In many cases, an operation that is valid 
on an operand of type T should be valid on 
an object whose type is a subtype of T, 
although the method chosen to implement 
that operation might be a specialization of 
the generic method. This suggests that a 
different treatment of the association of 
operations of a type with objects of the type 
is needed in order to provide the appropri- 
ate expressiveness. Although the anti- 
monotonic order is a valid order in some 
contexts, it is not appropriate when trying 
to capture the operational use of inherit- 
ance that is exhibited by Smalltalk and 
more generally CommonLoops and Oak- 
Lisp. In these cases, we want to have a 
notion of being able to select the “most 

specific” instance of an operation for the 
given types of the arguments. This is essen- 
tially a mixture of inclusion polymorphism 
and operator overloading. 

To capture the notion of the most spe- 
cific operation applicable, we want to use a 
monotonic order so that, given S 5 T, op- 
erations that apply to objects of type S are 
more specific than those for T. This is 
essentially what the method lookup proce- 
dures of CommonLoops and OakLisp are 
able to accomplish. On the other hand, 
when considering a situation such as rep- 
resentation of an individual that incorpo- 
rates an instance variable that is required 
to be of some function type, the antimon- 
otonic order should apply to determine type 
correctness. Higher order function appli- 
cations also require use of the antimono- 
tonic ordering. 

None of the approaches really address 
multiple implementations of the same ab- 
straction in a fully effective manner. We 
basically contend that it is necessary to 
provide for a behavioral description sepa- 
rate from the (several) implementation 
descriptions of a notion. This provides a 
common yardstick against which to mea- 
sure the implementations. This is not a new 
view, but one that seems to have fallen into 
disfavor as the focus has shifted to direct 
implementations of pure or nonimperative 
descriptive notations (e.g., OBJ). The need 
for such a separation has been recognized 
recently by others [LaLonde et al. 1986; 
Snyder 19871 and has been discussed 
above. 

It is worth noting that the notion of 
multiple implementations actually has two 
dimensions: first, that there are separate 
representations and mechanisms for ac- 
complishing the same thing and, second, 
that there may be different versions of the 
same approach (usually differing in time) 
that involve different compatibility re- 
quirements. The Cedar system provides ad- 
vanced support for the second notion 
through the device of “configurations” 
[Swinehart et al. 19861. 

The notion of existential types is in- 
tended to address such ideas, but it is not 
yet well integrated with inclusion poly- 
morphism and overloading, nor is there 
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provision for behavioral description. The 
basic approach is one of representing an 
abstraction via a signature much as in Em- 
erald. There are still technical difficulties 
regarding the status of the representation 
type. 

The OBJ work is most advanced as a 
behavioral notation, and we believe that 
many of the techniques that are developed 
there can be fruitfully integrated with an 
operational notation that is used to give 
implementation descriptions and behav- 
ioral descriptions in separate hierarchies 
that are connected via pragma modules. 
These would describe the intensional ap- 
plicability of the available implementations 
of a notion. The behavioral hierarchy could 
be oriented toward classifying notions in 
terms of common behavioral characteris- 
tics; the hierarchy of implementations 
would allow reuse of common representa- 
tion and implementation mechanisms. 

To conclude, we believe that both the 
theory and practice of OOP may be im- 
proved in substantial ways: More work is 
required in the area of type systems to 
provide the necessary basis for checking 
and controlled derivation of efficiently im- 
plemented systems using the OOP meta- 
phor, and the practice of OOP itself, as 
represented by currently available OOP 
languages, should evolve by generalizing 
inheritance in order to make use of separate 
behavioral and implementation hierar- 
chies. The OOP languages reviewed repre- 
sent a variety of exciting departures from 
the model provided by Smalltalk. There are 
many inventive approaches to OOP that 
were not covered here because of the 
primary focus on type theories. With the 
growing interest in OOP, this trend of lan- 
guage development should continue. A fu- 
ture synthesis of formal typing systems 
with the powerful and flexible capabililties 
of OOP represents a goal requiring coop- 
eration between theorist and practitioner; 
its attainment will be an important advance 
for computer science. 
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