
NASA Contractor Report 181669

lCASE REPORT NO. 88-29

leASE
PARALLEL DISCRETE-EVENT SIMULATION OF

FCFS STOCHASTIC QUEUEING NETWORKS

David M. Nicol

Contract No. NASI-1810l
May 1988

;lit-.5/! {!£,-/.f0 &, ~y

NASA-CR-181669
19880014819

~ ~ ',' , .'. ') t·. 'J"' L :-/(~ ... ~:p:~,~~I~
I , •. ;; ')i~)\ \
_3 .:-,,"\:'!. \ .. \~ il

(~~"1 ~ ; (.• '7
[. 'r ~.'J.' Ie
~jJl ~J1 h ~i

"JUl 1 1 19:IB
LANGLEY r.~.SU·f\CH CUrTER

llrJI~, !:l ~I f ~,:,\
H,t..p.'.r'TCH1, V!~~GHHA

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center. Hampton. Virginia 23665

Operated by the Universities Space Research Association

~A
National Aeronautics and
Space Administration

L!!~!ey R~reh C4)ntcr
Hampton, Virginia 23665

1111111111111 1111 1111111111111111111111111111
NF00888

Parallel Discrete-Event Simulation Of FCFS Stochastic

Queueing N etworks*

David M. Nicolt

Dqmrtment. of Computer Science

The College of William and Mary

\Villi ams burg, VA 23185

May 1988

Abstract

Physical syst.ems are inherently parallel; intuition suggests that simulations of these systems

lIIay he arnenablf' t.o parallel execution. The parallel execution of a discrete-event simulation

requires careful synchronizat.ion of processes in order to ensure the execution's correctness; this

sYllc.hrollizat.ion ran degrade perforlllance. Largely negative result.s were recently reported in a

st.lldy which IIs(~d a wdl-known synchronization method on queueing network simulations. In

t.his p:'Iwr we discuss a synchronization method, appointments, which has proven itself to be

('rf('r.tiv(~ 011 sillllllat.iolis of FCFS queueing networks. The key concept behind appointments is

t.Il1~ provision of {oo!.:ahcad. Lookahead is a prediction on a processor's future hehavior, based

011 all analysis of I.Iw processor's silllulat.ion st.at.e. \Ve show how lookahead can be computed

for FCl"S queueing nclwork simulations, give performance data that demonstrates the method's

cffectivPlless ulllkr Jlloderat.e t.o heavy loads, and discuss performance trade-offs between the

qualit.y of lookalll'ad, alld t.he cost. of cOlllput.ing lookahead.

-To ilppear in I.he Proc(~cdings of the AGM SIGPLAN Symposium on Parallel Programming, Environments,

Appli(,;Lt.iuns, ilnd Lilngu ..).\(~S, Yale Universit.y, July 1988.

'This research was support.ed in part by the National Aeronautics and Space Administration under NASA contract

N ASI-IHI!l7 \Vhilr~ \.lie author consulted at. leASE, Mail Stop 132C, NASA Langley Research Cent.er, Hampton, VA

:Wiljri.

i

1ft
Nrf-.:<.~':? tf~

1 Introduction

Physical syst.ems are inherently parallel; intuition suggests that simlilations of these systems may

Iw alllellahle to para.lld execut.ion. The parallel execution of a discrete-event simulation [2] requires

cardlll sYllchrolli7.ation of IHocesses in order t.o ensure the execution's correctness. A number of

sYllchrolli7.ation methods have been proposed; some have been studied empirically. With few excep­

t.ions the ('vidence is tha.t oV<'rhead inherent. in these methods prevents any significant performance

I)(~nefit. from parallel ex('cut.ion.

qucueillg network simulatiolls provide a stress test for parallel discrete-event simulation because

so little computation is associated with each event. Parallel queueing network simulations are also

illterest.illg from a. hist.orical point of view, as much of the early work in this field implicitly uses

a q IH'llf'i ng network model for the simulation. The seminal work in parallel simulation by Chandy

alld rvl ism[I] idcnt.ifipd t.he concept of looka/uad as bei ng sufficient to avoid logical deadlock between

proc('ssors. Lookahrad is t.he ability of a process to predict (possibly minutely) those aspects .of its

futUff' I){~havior whirh affect the synchronization requirements .of .other processes. Implementations

of till' Cha'Hly/Misra. algorithms invariably create a lookahead ability by requiring that each job

f('("(~ive a. minimulII s('I"vic:e time (. Knowledge that a future job requires at least f. service allows

a. pron~ss()r t.o predict that a job which arrives immediately will not depart for at least f. time.

Ikc.urse 'IlOSt. probability dist.ributions of interest are n.ot bounded from below, implementations

IIIl1st choos(~ (t.o be very small. Performance studies[6,14] have strongly suggested that this poor

lookalll'ad ahilit.y leads to dismal perf.ormance due to extremely high synchronization .overhead.

In [II] WI' IlI'oPllspd t.hat. 1II0re extensive lookahead be calculated by analyzing a process's simu­

lal.ioll sl.at.(~, a.nd show(·d how this could be a.ccOIllplished ill both queueing network simula.tions, anel

log;ic IIl'twork silllula.l.ions. III [12] we examilled the efrect that increased lookahead has on overa.lI

pl'I'forlllancl'. 1\1 ore r(,(O(·IIt.ly Fuji'lIol.o re-examined the Chandy /M isra. alp;orithms and focused Oil

ill(Orpasing; loobhl'.ul ahilit.y hy increa.sing (. llis results are more encouraging, but poor perfor­

lIIallce is still observl'd when the ra.l.io of lIIean service time to { is high (say, to). Lubachevsky[9]

also usps looka.h('ad whic:h is computable under the assumption of minimum service times. While

he dol'S 1I0t. l"I'port. allY cmpiri(Oal results, olle can expect his scheme to suffer from similar fai1il1gs as

t.Il1~ Chandy/r..lisra. al~orithllls as reliance 011 small minimum service times has already been shown

to yi('lrI poor perforllla.nce.

1

Event List

tillle: 2') Event List Event List cvcnt : add_tn_queue

time: 20 I' time: 10 1 i 1 time:)
eVL"TIt : add_to_queue event: add_to_queue , event: add_to_queue

--l

~

II'
0) ° 11 °3 2

Figure J: Distrihuted Simulation of Three Queues

The }lurposl' of this paper is to point out the feasibility of using deta.iled simulation-specific

illforma.tioll to compllte lookahead ill stochast.ic FCFS queueing network models. Unlike past

tn'a."\lI('IIt.s of parallel queueing ndwork simulations this lookahead does not rely upon a minimum

s('J"virp tilllP. We discuss the trade·orcs between lookahead quality and the cost of computing it,

a lid lise a. pa ralld i III plernent.ation of our method t.o show that under moderate to heavy loads a

prot.ocol ba.sed 011 lookahead can yield good performance on simulation models that have defeated

other protocols. Fujitllot.o has illdependently perfonn('d a similar studyl.

Ewry processor ill a. parallel discrd('-event simulation maintains its own simulation clock, and

it.s OWII (,V'~lIt list. i\ simpl(' exalllplE' clearly illustrates the need for synchronization. Figure 1

d""irls thl' Sitlllliatillll of ;t thrl'P qUPl1e II ('twork011 1.1If('(' processors. Queue CJ, sends a job to

(111('111' (J'l. with a tillll'·stalllp of 10. The lirst event in Q2's·event list is the one which accepts

this job. Silll1r1atillll ("orredn('ss is pnsurpd if, within ('very processor, the simulation time order

of ('valual.l'li ('Wilts is IItonotollirally inCTPa.sillg. To ensure this mOllotonicity Q2 does not process

1.111' fir~t f'V('IIf. in its ('\I('nt list until it is certain that some other event with a smaller time-stamp

will nf'VN h(~ il1!.;(~rted into the evpnt list. Such an event might occur, for example, if at time 1 a.n

pxl.!'Tllal a.rrival a.ppears at (h, is given 2 units of service, and then is routed to Q2. The role of a.

I I'l'i va \.1' '·OIllIllIlJlic:a.t.iol1 from Hichard Fujimo\.o.

2

COIlf;Nva.tivc synchronization protocol is to coordinate Q1, Q2, and Q3 so every processor evaluates

(~Venl.f; lIIonotollically in simulation time, so that a processor evaluates the first event in its list

:\.f; f;()On "$ it. if; sa.fe 1.0 do so, a.nd so t.hat. syst.em dea.dlock is avoided (or detected/corrected). It.

should hI' ment.ioned t.hat optimistic synchroni,mtion is currently a topic of active study[7]j under

an opt.illlif;t.ic prot.ocol (h would IH"oceSf; the first event in its list with the expectation that no job

with a f;1lla.ller timc-stamp will appear. If one does appear, then corrective measures must be taken.

Th() prot.ocol discllssed in t.hif; paper is conservative.

Discret.e-evcnt. silllulation synchronizat.ion protocols are typically described in terms of message

pa$silll; heha.vior betwcen /ogim/ proce.'i.o;es (LP)'s, or the subsystems modeled by processors. Asso­

ciat.ed wit.h each LI' if; a set of rcadcrs and a set of writers. LPi is a writer for LPj if it is possible for

til(' proccf;sin~ of an ('vent in LPi to cause a. "message" to be sent to LPj, who in turn modifies the

('v('nt. lif;t in I-,Pj. In I.hif; case I,Pj is a reader for LPi. It is useful to distinguish between "content"

a.lld "prot.ocol" messa.ges. As the titles suggest, a content message directly concerns the simulation

a.lld its sta.te while a protocol message concerns only the implementation of the synchronization

protocol. 111 t.he exa.lllple ahove a content message from Q1'S processor to Q2'S processor causes

th(' ills('rt.ioll of t.h(~ ('vcnl. in (h's processor's event list. At some point Q3 might send a protocol

IIIcssage t.o (h promising that it will send no jobs with a time-stamp less than 15 (although we have

1I0t. yd idpllt.ificd how (2:1 call provide sllch a promise), thereby allowing Q2'S processor to evaluate

t.he a.rriva.1 a.t. t.ime 10. Protocol mef;sa.ges may themselves be time-stamped.

In previolls prot.ocols [1;J,I,15] a protocol message from LPi to LPj with a. time-stamp of t

provid('s a. promise t.hat. I,Pi'S next message to LPj (a message which may cause modification of

/'/'/s I'VPIII. lif;t) will ha,ve a. t illl('-st.amp no greater than t. The established protocols vary in their

dl'l.a ils, (,11 t. all sharI' a dist.i ndive ("haract.<'I'ist.ic: the protocol m('chanism is largely independent

of I.h" sySt.l'lli h('ill~ simulated. This ~!/,Ilerality is attractive, but requires that an LP's decision to

s(,lId a prot.ocol mpl'sagc wit.h a. t.imp-f;t.a.mp of I is based solely on the time-stamps of protocol and

("01l1.£'1It. Ill('Sf;agcs t.hal. the 1,1) ha.s J"(·c('ivcd. To ensure the protocol's generality information about

t.\J(~ f;illlulatioll st.a.t.(" or how an 1,1' responds to a content. message is not used. As a consequence

mallY prot.owl lIlPssages IllUSt. he excha.nged, a.s each protocol message allows t.he simulation to

prl'wdp ollly innel1ll'ntally. St.udies of the "Null Message" method have shown that the ratio of

prot.oml lIu'ssag('s t.o cont.ent messages is very high. Reed's recent empirical study of this method

3

1)11 q IIl'lIPi n1!; net.work si nlllla.t.iolls shows it to he of lilllited utili ty[I -1].

The rolt~ of a protocol IIlPssap;c from LPj to [,Pj is to provide a lower hound on the simulation

I.illll' a.t whirh ',I'j ma.y IJI'Xt alr('d. ',/~i's ('vent. list.. '!'h(' quality of t.his hOllnd depcnds on LPi'S

a.hility 1.0 pr('dict. its flltllr(~ 1H'lravior. In tllP qllPst. for generalit.y, t.he previous synrhronizal.ioll

prol.ocols fa.il t.o I.akl~ a.dvalltag(~ of kllowll'dgf' ahout the simulat.('d syslf·rn. 1\ hl'U<'T hOlllld 011

fll 1.11 f(' hl'fla.vior rail 1)(' ohtaim·d hy analyzing the LJY's simulat.ion stat.e 1.0 find lookahl'ad. Thl'

~I'cl.illll 1.11 follow OIIt.lilll·S a synrlrrollization protocol that relies upon the rOlllplitatioll ofsilllulation­

sllI·filil' Illokalrl'ad.

2 The Appointment Protocol

lIefof(~ discllssinl!; UH'a.ns of idcntifyillp; lookalll'ad we will introduce the synchronization protocol that

IIS('S it. i\ small IIIIIIIIH'T of definitions must first be given. LPj's simulation clock is denoted Gi;

1,I'j's I'V(,IIt. list. is dl'not.ed I~i. and is, a.ssullled to be ordered by increasing time-stamps. Cj denotes

1.111' I'VI'IIt. a.t. the IlI'ad of I~i, alld Ii dcnotes its t.ime-stamp. We aSSIlIll(, the usual relationship

1lI'I.wl'I'n (~j a.nd I~j jllst. prior to prll("l'ssing rhe event Cj with time-stamp Ii, Gi is advanced to Ii.

1\ sNial s i III IIlal.ioll f('PI'a.tl'l\ Iy I'xl'r utes a t. h re('-step cycle: ad vann' I 11(' si m ula.t.ion clock to t h('

l.illll'·SI.a.IIlP Ii of 1.111' first I'WIII. ill til(' ('vcnt list Ci, process Ci (which Illay alt,<'T the event list,

hilI. will III'VI'r add 1'\'I'IIt.S wil.h lillH.'-starnps I('ss than Ii), and rPrllove I.he event just processed.

1,I'j ill a. para.llf'1 simulation III1ISI. lIol proress {'i until it is certa.in that nOlle of (,Pi'S writers will

('allsl' all ('arlipr (,V(,1I1. I.hall ('i t.o h('im;erted into Ei. The mechanism we use to prevent LPi from

Pl'llf'l'ssi II/!, a.II I'V(,1I1. ., t.oo ('a.rly'· is t.he flppoilltment. Everyone of LPj's writers provides LPi with

all apJloillt.IIII'III I.ill'" lH'yolld which 1,l'i will lIot advallce its clark witholll. further permission. An

appllilll.IIII·IIt. I.hal. ',I', I!,iv('s 1,/~i is <1('110\.('1\ .'\ij; w(' d(,lIote the H('t of a.1I appoint.nH'lIts given to ['Pj

hy {~V}l. Ollly all ',I"s writ.PTs IIIIISt.SIlJlply it with appointment tim('s.

FiJ!.III'1' ~ J!;ivl's hiJ!;h l('vl'l pS('lIdo,('wl" d('scrihillg the appoilltmellt protocol. 'vVe have left unsper­

ilil'd ot.III·" III'c('$sary 1III'('lraliisIIls, ('./!;. aSYllchrollolls IIIessag('-passillp; rOlltillcH to IIpda.te appoint-

1111'111. valill's alld IIlodif), t.lrl' ('\'I'llt. list.. For darity w(' ha.ve also left IIIISIH'ciliC'd dirc'r\. optil1li~a.l.i()ns

wlrirll ('/lSllrl' t.hal a III'W apl'oillllll(·1I1. is 1I0t rC'qll('sted before thl' last. sllrh reqll(,Ht was satisfied.

I.ik .. ;111 ('ollsl'rva.t.ivl' s,Vllrlrrollizal.ioll protocols, this olle prevents till' pror('ssing of an event if t.hel'<'

is a.IIY ('ha.IICI' I.ha.t. all ('\'('111. wil.h a Hlllallt'J' I.illl<'-stamp will be insert.ed into the ev('nt list.

,t

Loop {

Definitions

Cj Value of J,Pj'S silllulation dock

Ej [Jpj's event. list.

f:j First. event on Jj'j

Ii Time-stamp of first. event on Ej

Akj Appoint.lllent provided by writer LPk to reader LPj

min{lVd MinimulII over all appointments given to LPj by its writers

If (Ii ::; min{Wj})

{ Cj = Ii;

}

Els(~

}

Process cv<'nt. Cjj

Rf'1ll0VC Cj from Ejj

For every writ,<'I' /,I'k

If (Aki < Cj)

Requcst a new appointment from LPkj

For every rpa.ller L Pj

If (/'['j has requested a new appointment)

Compute and send a new appointment Ajjj

} For('ver

Fip;ul'e 2: Appointment. Synchronization Pseudo-code

.5

'I'h(' a.hility of this proto('ol t.o n·dll('{' sYII('hI'OIliJ.:a.t,ioll oVNIIl'ad t.o a('cept.ahl<· levels c1ea.rly

dl'Jll'llils 1111 1.11(' a.hilil.y t.o "rovidl' lookahl'ad. A qUl'ul'ill1!, 1I(!l.work off.l!1I has st.rudlll"(· which allows

"'1"1'"". (J t1 1.0 p(,riodica.lly p!"Ovid(' IIJlpl'r hounds 011 t.he tilllPs a.t. which it. will roul.e jobs I.oot.her

II III! III'S. 'I'h(' a.ggrega.t.ion of I.Il('s(· hounds form t.he basis of an appoilltment. The sections to follow

show how va,riolls degrees of looka,head can be computed in queueing network simulations.

3 Lookahead in FCFS Queueing Networks

Lookaliead is easily <:fllllputed ill a. st.ochastic simulation of a network of FCFS queues. The sim­

ula,tjoll is d istrihll t.ed hy assigllillg q nenes t.o processors. DependiI~g on the size of the queueing'

1l1'1,work, a. processor ma.y be assiglled several qneHes. A processor is responsible for simulating

1.1". qllPIiPi1l1!, act.ivity of parh of it.s quelll'S, alld for maintaining all st.atistical information collected

about thl' <]II('II~S' hehavior. All L1' then consists of the possibly fragmented suhnetwork assignee!

I,ll a processor. It. 'is illlportant. to note that. past treatments of parallel queueing simulations haw

trl'al.('d ('ach II uell(' i IIdivid ually as all I,Pj t. his invariably leads to high overhead because synchro­

lIiza.l.ion rosts are sum'reel 011 a per-I,P hasis.

A typical si llIulatioll of a q ueul' rI'll IIi res three event handlers: AddToQueue, BeginService, and

FinishService. Th(' randolll service time of a job entering service is traditionally sampled by

BoginSorvice, a.lld t.he d(·sl.itlatioJl of the completed job is traditionally chosen by FinishService.

A sl'ria.1 silllulat.ioll gaills lIot.hing hy choosing the service time and bl:anching destination any sooner

tllall I'l'qllin·d. For t.1J(' !,lIrpos('s of computing lookahead there is much to be gained by choosing

1.1)('111 !'aTIi!'\". Ollr a.hilit.y t.o do so dI'peJlds in large part on the model a.ssumptions. In the simplest

hilt. IIIllst ("olllillon t.YPI' of st.ochastic silllulation t.he:wrvice time of ev(!ry job at a. queue is drawn

frolll a. ("0111 Ilion dist.rihlltion and 1.111' hr;lIlchilig dl'sl.ina.tion is cllosPII fro III 'a common 'distrihution.

Noll' Ihal. 111I'sl' '111<Lnl.ili(·s ("ollid 1)(' drawn at. any time --'il. can he adva.nt.ageolls to select a job's

sl'rvin' t.illll' alld hrallchillg dpst.inat.ioll b('/ore the job arrives. For exa.mple, if a.t time t queue QA

has 110 johs pnquPu('d for q 8 hul. it. is knowlI that the next job which branches to Q B has service

t.iIlH· .~, t.hen QA will sl'lId no johs to QH before time CA(t) + s, where CA(t) is the time at which

Cd ,\ will next. Iw elllpty if no furl.her arrivals occur: t plus the sum of service times of all jobs in

If 111'111' ;1.1. t.i lIIe t. (: ,,(I) + .<; is a sharp oOlln<1 if the next job arrives prior to time e A(t), and has Q B

c1l1lsl'n as its hra.nchillg dest.inat.ion.

G

'I'll(' observa.t.ioll above led III' to an orga.nization which associates with every queue a future list

of johs whirh havp 1I0t. yl't. al"riv(·(1. A joh's sel'vire t.illl(, and hranrhing d(·st.inat.ion arc d('terJIlitwd

whl'lI it. joills t.h(' fllt.lIl"l' list.. The fllt.lIl"(' list is k('pt. large ('nough so that. it. cont.ains a job for every

I'ossihll' hrall('hiJlg destinat.ioJl. Whl'll the evellt handler AddToQueue is called at simulation time t

t.0 sill1l1late a job arrival at QA, the first job in QA'S future list is removed and is used to represent

t.1,,· arriva.1. If t.ha.t. job branches t.o Q B, and its removal empties the future list of jobs which

bra,lI('h t.o Cd fl, t.hen additional johs a.re a.ppended to the future list in a manner which preserves

t.he st.at.ist.ical integrit.y of I. he simulation--johs with randomly selected service times and branching

dest.inat.ions are a.ppended to the future list until a job with destination QB is added. Note also

t.hat. onc(' a. joh .J H arrives at Q II it.s arrival time at the next queue Q B is already determinedj

ronsl'« u(·IIt.ly the pro(,essor hold ing Q B may be immediately informed of .I B 's arrival there. This

is ad vant.ageous wllell q A and Q a reside in different processors, as it may allow Q B to simulate

.In's a.rriva.l ah('(-\,d (in real time) of it.s simulated departure from Q A. After computing .lB's arrival

till\(' at. Cd /I, we compute a lower hOllnd on the time of Q A 's next, as yet unseen job to Q B, called

.I N,';I'I' A desni pt.ioll of .J Next is found in Q A '8 future list. Because Q A is FCFS, we know that

.IN,'.1'l ('allllot. del>art. a.t. least lIntil all jobs current enqueued at QA receive service, at time CA(t).

FlIl't.I,,·rlllorl', .JNeJ'/ does not receive service until every job ahead of it ill the future list receives

sprvin·. Let.t.ing .". he t1w Slllll of service times of all jobs ahead of and including .J Next in the future

list., ('A (l) + S is then a lower hound on the time that Q A will next route a job to Q B. This bound

is ('hl'aply ('olllput.ed, and is passed to Q B 's processor along with the message reporting the arrival

of .1/1. Figuw;~ illllst rat.l's t.hes(' POillt.S, and a possible transformation of a queue and its future list

111'011 t.h .. silllllbt.l.('d arrival of ii, joh. Figllre" olltlines the roles played by t.he the event handlers in

t.lris SdH'IIIP.

It. is appal'l'nt. frolll the <\I'script.ion abov(' that lookahead information is continua.1ly being com­

I'll II'" alld ('xc\lfl.llgpd I)('t.w(·('n (JlleHI'S. 0 hsel've however that a bound b provided by Q A for Q B

r,," 1)I'ro"l(~ "st.ale" t.lw bOHnd is predicated on the assumption that the next job from Q A is

1'01lt.l'd ,IS snOlI as possihl<'j it is possihle for the simulation dock in Q a's processor to a.dvance up

t.o b wir.lrollt. ,,"oUI('r job beillg sent from (JA to (J8.ln the absence of further jobs from QA, and

ill r.11(~ a.bS(~IIc(~ of ar.t.ive lIIeasures by (J" 's processor to compute a new hound on the time of the

III'Xt. job rrolll q A t.o q a, th(' appoilltment. time It provided by Q A 's processor t.o Q B'S processor

7

I ;1I I lire Li sl

loh: .L3

Service: 1

Br:lllch: 3

loh :L2
Service: 7
Branch: 2

Jobs in Queue

Job: Ll
Service: 5
Branch: 2

r------------------------
Processor

Jobs in Queue

Job :Ll
Service: 6
Branch : sink

Event List

time: t+7

event:linish_scrvice

job :LJ

simulation time = t + 5
residual = 2

'i:::~;::~~"1 :80und'l+ 8 ~IIIIIIII.

~ 1111111--(03 im __ mm __ ~~mmm

Future List

loh: .L5
Service: 1
Branch: 2

.I()h:L4

Sl"rvicl' : 10
Branch: J

Joh: i.3
Service: 1

Before arrival of L2 at time t

Jobs in Queue

Job:L2
Service: 7

Branch: 2

Job: Ll
Service: 5

r------------------------
: Event List

Jobs in Queue

Job:Ll
Service: 6
Branch : sink

time: t + 8
evcnt:add_lo_qucue

job:L2

time: t+7

evcnt:linish_scrvice

job:Ll

Branch: 2 " 1" " slmu atlOn tune = t + 5

simulation time = t residual = 2 Branch: 3 I

~ 11111I"a{: IBound·I+211 ~IIIIIIII.
O2

o
3 ------------------------

After arrival of L2 at time t

Figure :1: Transformation of queue and future list after a job arrival

8

AddToQueue (q, t)

Rplllove finil, job Jf frolll front of (J's future listj

A pp(,lul .J J t.o end of q's 1'('a.1 q u('u(';

If (No johs in fut.ure list. t.hat brallch to .If .Branch)

Repcat {

en'at.e joh .I;

Ralldomly chose s('rvice t.ime J .Service;

Ralldornly dIOse hranch J.Branchj

Append .I to elld of Q's future list;

} Until (J.Branch = Jf.Branch)

.Ill = first. job ill future list such that JB.Branch = Jf.Branch;

,c,' = SIII1I of future list service times through JB;

A7Jt = S + (:A(t);

Not.ify queue .If. Branch of arrival at time CA(t);

Notify queue .If.Branch of appointment at time Apt;

Add BeginService event to event list at time eA(t) - Jf.Service;

BeginService (q, t)

.I = First. joh in (J's 1'('(11 qu(,ue;

COlllpllt.e df'sired st.at.ist.ics;

Add FinishSpl'vire ('v('nt. t.o event. list at t.ime t + J.Service;

FinishService (Q. l)

Remove first. job in (J's rea.l queuej

Comput.e d('sired stat.ist.ics;

9

call1lOt. I'xce(~d b. As q H'S processor advances in simulation time it may find that the first event

ill its list. has a. t.inH'-st.amp larger t.hall fl. In this case a new appointment is requested from QA'S

pnw('sslIr. It. is cv(~nll1a.\ly ilu·ullIhell!. upon QA'S processor to satisfy this request. hy computing a

Ill'wappoint.mellt..

,,"i ca.1I const.ruct a.1I a.ppoillt.nwllt. for 1,/~j in s('veral different ways. Two of the simplest ways

aJ'(~ dl'scrihed hdow.

I. 1,1'i scans all of t.he lat.l's!. houllds its (pieties have already provided t.o quelles in LPj. TIl('

appoilll.llIl'nt. va hI<' is thl' II'Clsl. of t.hes(·.

'2. '.I'i SCflns il.s PW'IIt. list 1.0 lind I.h(' first fut.ure job arrival to allY olle of its qU(,lIes. It compares

I.his I.illle t.o t.he minimulII a pilOi nl.llll'n I. givell to it by a. writer I,P, alld denot.es t.he minimum

of I.h(~s(' t.wo vallll's by m; t.his C)ualltity is a lower bound on the time at which a job next

ani VI'S at allY q 11('11(' in t.he I, P. Then for every every pair of queues Q A and Q B such that

Cd It liv('s ill I,Pi and Q H ill 1,Ij W(! compute a new bound. The new bound is computed 011

I.h .. aSSlI1lJ ptioll I.ha.t 1.11(' next job t.o arrive at Q A (not necessarily with branching destination

Cdll) arriv('s a.1. Sillllllat.ioll tillle 11/.. Letting JNext be the first job in QA'S future list with

dl"st.illa.l.iOlI q H alld Idtillg S· 1)(· the Slllll ofs(~rvice times of johs ahead and including JNext in

t.hl' 1.111' fut.llr<' list, WI' COlli I'll t.e t.he a.ppointment va.lue max{m,f:A(Ci)}+S. This appointment

(,plll'rls til!' possihilil.y of all arriva.l precisely at time m--tlw max tPrIlI computes the earliest

I.illll' a.1. which I.h{~ joh reprl'scllt.l'd by that arrival begins servk(· in the queue. Among all such

bOil lids (·OIllIIlII.I,d for all qIWIII'S, I.hp llIinimullI is the new appoilltll]('nt..

'1'111' Ii nil. of I.II(,SI' 1111'1. hods is til!' diP", I II'S I. to comp"l.!', hll t will not lIot prod lice a IIsable appointment

if allY of I.he old houllds aTI' st.all'. Furt.hermore, Ll'j cancompllte this va.lue for itself whenever

il. dl'sifl's. TIII~ s('("01111 lIIet.hod IIS(,S lIIore information (the value m) and so may produce better

houllds al. I.III~ ("ost. of sOllie add i t.iollal COlli 1''' t.ation. It is importa.nt to note though that even if some

houllds <1.1"1' illlproVl'd, t.hl' appoilltlllPnt. improves only if the minimum bound is improved upon. It

is also iJllportant. t.o lIote t.ha.t. for allY ~i\'('n qIH'IIP, recomputing a bound with an increased value

of 11/. will nol. illlproVl' til(' boulld if 111 is less than the next known time that thl' queue could be

('llIpl.y. Till' kpy icll'a. hehind IIsill~ Cd.4 's fllt.ure Jist to compute an a.ppoint.ment is to find a lower

houlld (III tI)(' time at. whirh t.he n('xt. job arriws a.t q A. The second scheme is quite pessimistic

10

WIIl'II cOlllpllt.inJ,!; t.his hOllnd. It. is possihl(' tha.1. \'alll(~ d<'lininJ,!; '/I/. is associal.('d wit.h a qucue far

n'llIlIv"d frolll q It, alld that a. IIIl1ch lu,t.t.('r bOlllld on t.III' III'XI. arriva.l at. (J ,\ is possible. \V(' ha.\'('

illlpl(,III1'nl<'d a Ilwt.hod which a.nalyz('s t.he filII siTllulation state in an 1.-[> in order to determine for

I'a,ch q A t.he best. possible bound tA on the time of its next arrival. Then for every writer/reader

pa.ir q A - q H a. bound is const.ructed just like the one above, with tA taking the place of m in

t.he calculat.ion. The minimum houlld so calcula.ted is the new appointment. A description and

allalysis of this met.hod follows.

We first. freeze all illcoming bounds t.o LPj's queues by making copies of their current values;

this elimina.tes allY further ('frect t.hat other processors can have on tlw forthcoming algorithm.

I';very queue which reads from an ofr-processor queue has its min_apt value set to the minimum of

it.s frozl'lI ofr-proc('s~or boullds. Next., we scan the event list for job arrival events. Associated with

('(trh sllch ('vellt. is a t.a.rget. qll('IH'; the arriva.l time is used to updat.e the queue's min_apt value if

t.hat. value eit.her exceeds the job arriva.)time, or is in the initial stat.e. Following these initialization

st.eps, every queue's min_apt value is either null, or is equal to the minimum time at which a job

llIigllf, arrive eit.her from ofr-processor, or from the event list. The problem now is to analyze the

Plli,('\.s of job arrival~ at those minimum times. This analysis is performed by essentially simulating

till! (,m~ct.s of joh arri vals. For ('very q IWlle with s01lle value ill its min_apt field we place in a shadow

('11('711 lisl a shadow fl1(:111 which dcnotes a job arrival at time milulpt. The shadow-time-stamps of

shad()w-(~v('lIt.s t.akell ofr of the shadow-event list will be monotonically increasing. Proceeding with

t.hl' shadow-siIllUIa.tioll, we rcmov(, the minimum time shadow-event from the sha.dow-event list. If

t.11I~ sp('('ifi(," queue has alrea.dy becn "touched" by the shadow-simulation we simp,ly discard the

sl,adow-l'vPIlI.. Otlr('rwis(~ we ('011 sider t.lre effects of a. job arrival at tire specificd queue (say QA),

at 1.1r(' slradow-I~vellt t.ime. This is accolllplished by computing a bound for ea.ch of QA'S readers,

hasl'd Oil till' a.ssulllpl ion t.hal. a. joh arriws at the slradow-a.rriva.1 t.ime. Shadow-events describing

1.11I's(' anivals an~ ins('r1.('d int.o the shadow-event list, the queue is marked as having been touched

hy 1.1((' shadow-silllula.t.ion, a.lld a. COUllt. of "touched" queues is incremented. We are finished if this

coun 1. I'q ua.ls t.lre '(11111)(,1' of un fixed q 1I(,IIt'S. Becallse t.he sha.dow-simulation simulates propa.gation

or johs I.hrough t.lre nt'1.work at. I.h(' ('a.diest possible times, the shadow-time associated with the

firsl. I.lIud, of a qU(,ll(, hy I.he sha.dow-simulation is a lower bound on the time of the next true job

arriv.rI a.t. 1.111' (I'J(~U('. Once t.hl' shadow-simulation has finished it is a simple matter to compute

11

IIC'W hOlllldH for qllC'lIl'H in ot.hpr prllrl'HHOI'S by IIsill~ t.he shadow-joh a.rriva.1 t.imps.

'1'111' ;·olllplf'xit.y of t.his 1I1I'lh"d is (J(I'; IIII!, /.:), whl'rC' I~ is t.he 1I111111)('r of int.er-qll('IIP cOllncctions

III t.11I~ 1,1'. This follows heralls(' a.ny ~iven inter-qltelw link will ha.ve a. silllulat('d shadow-arrival

sclll,d IIled t.o cross it. at. 1II0St. on('(, (1)('c<1l1s(' a queue is touched at most. once), a.nd priority list.s

sllch as heaps ('xact. a. lo~arithlllic cost for each access. This complexity does not wnsider the cost

of illit.iali1.in~ tlH~ priority heap. Initiali;.:ation requires that we determine each queue's minimum

illcolllinJ!; orr-processor hound. Letting l~ denote the number of links from off-processor queues, this

is achi(~v('d ill O(in !,jlll(,. We IIllist also det.ermine for each queue whet.her there is a future job

arrival in t.he evcnt list. It is possihl(' to link events in a such a way that the first arrival event for

a.IlY J!;ivclI qlWIW is accessihle in const.a.nt. time. This endows the initialization phase with an O(n)

('olllplf'xit.y, where 7/. is the llullIbcr of queues on the LP. The O(E log E) cost thus dominates. It

is appropriat.e t.o point Ollt. t.ha.t. this method is similar in spirit to that d.iscussed iOn [5]. Due to

dilrN(,IH"PS in t.11(' llIoclPls alld applica.t.ions, Grosdj and Tropper's a.lgorit.hm has a sJi~htly smaller

cOIIIJllexit.y O(nlo/!,II + I':).
YC't. allot.her a pJlroa.ch t.o ("(1111 pll t.i II~ look" Il('ad is quite general, and docs not. ('III ploy the inter­

II 111'11(' hOllllds at. a II; i IIst.('ad, it. allalyzes each processor's event list.. Imagine momentarily that. all

processors ar(' t.f'mporarily inhihit('d from modifyin~ their event lists. Let lm.in be the minimum time

stamp allIOIlJ!; alljoh arriva.l eV(,IIt.s on the event lists. Then clearly any appointment value a < tmin

hl't.w('('n any t.wo pro('('ssors call be increased to tmin' This type of lookahead is equivalent to that

propos!'!1 hy Lu ha.ch('vsky [9]; IIC)\\'{'ver, the "minimal propagation" delays his method depends on

al'l' IIslIally Z(,fO in J!;pneral stochast.ic queueing networks. Lubachevsky's method calls for global

sYllchrolliza.t.ions hPl.\well 11I'oc('ssors so tha.t. 'JIlin can be found, and events \vhich can be performed

("ollcllrrellt.ly 1)1' iclPJltified. 0111' ()vNall a.pproach is asynchronous, and we prefer to avoid global

synchrollizations if Jlossihle. A low('\' hOlllld on tlllin can be constructed asynchronollsly under tIl<'

asslllllpt.ioll that. IIlPssal!,ps hPl.wl'l'n 1,I'j and /,I}j a.n' r('ceived in the order that they are sent. Let

'f'm".1 ;\.IId 'f'mu''I. III' t.WO arrays sllch that 'l'O//(:lj contains a snapshot of of LPj's minimum job

arrival I'wnt. at SOIl1(' rea.l tilllC' .0; I j, 'f'olu:'l.j colltai liS a. snapshot of of [,Pj'S minimum job arri val

(,Wilt. a.1. SOIlI(' rea.ltillle .O;~i, anel .'iIi < 82j for any i and j. It call be shown t.hat the minimum value

i II t.1)(~ '/'01/.c\ a.rra.y is a lower bOil nd 011 (I1t!l fll t.ure joh arrival event time, and is consequently a lower

11(1111)(1 011 a.ny iJlI.Nprocessor a.ppoint.mellt. The Tone arrays are easily maintained by appending

1'1.

lIIillima.1 rlll.urp joh arrival timl's 0111.0 lII<'ssap;('s ('xclla.llp;cd bet.w('1'1I pro("('ssors. This IIIcthod is

I'vpn l';tsiN 1.0 illlpl(~lI\ent. on a. shal'l,d-lIl<'mory ma.('hine ir t.he ('v('nt. lists an' sl.or('(1 in COllllllon

1I11'1lI01'y, 011(' processor can he sol!'l)' dedicated to t.he task or collecting Tone values and updat.ing

sl.all' appoint.ment.s.

We have impll'llIcnted the second, third and fourth of these methods. The following section

dis!' IIsses t. hei r 0 hSl'rv('d perrorlllance.

4 Performance Results

W(~ have im pll~lIIent.('d a parallel discrete-event queueing network simula tion on NASA Langley's

Fll'xj:12 [IOjllllllt.iproressor. The FI('xj:l:~ is a hus-orient.ed shared-Illemory archit.ecture which sup­

porl.s hot.h local a.nd p;loha.lmelllory. Our implement.a.tion ta.kes advantage of the global memory­

I'a.ch Pl'Oc('ssor's ('V(~IIt. list. is in glohal llIelllory, and one processor may inscrt an ev('nt int.o a.nother's

list.. Mil t.llal (~XclIlSi()1I is PII rorced lIsi ng low-level pri mitives such as spin-locks. Data structures dc­

snihillg t.he hOllnds het.wcen qllelles and the appointments between processors are also orga.nized

III t.hl' glohal memory.

Thl' sYllchrollizat.ioll method employed to ensure simulation correctness is only one of a host

fir Pl'frormancp isslll's t.hat IIIIISI. he addressed hy it parallel simulator. In order to study the

I'm'ct.ivelll'ss or the synchroniza.tion method largely in isolation from other factors (such as load

halallcillg), we ha.v!'d sl.udied simple, very homogeneous queueing networks which arise in the design

or i II t.('r-pro('(~ssor com !lIUII ical.ion lIetworks: rings, meshes, hypercubes, and multistage routing

III't.works. \Ve a.SSIlIll<' t.ha.1. every s<'rv('r in a network has the same service t.ime distrihution, and the

sa IIII' hOIJlOl!,l'lIl'OIlS hrall(·.hillg proha.hilil.ies. '!'hp st.lldies we descrihe here concern rlosed networks or

~"-I(i lIodl'S ('X('ppt. ror :11'1,1 nodI'S in 1.1", rtlultistage ca.se) simulated using sixteen processors. Queue

i is assign('d 1.0 procl'ssor i mod 11, where 1/. is I.he number of processors.

,','Jlnt/ul' is t.JII' t.illlP r('quil'pd t.o solve 1.1", problem on a serial implementation divided by the

t.illll r('qllil'l~d hy a para.lle1 illlplement.ation. It. is easy to usc the parallel code on one processor

as 1.1", sPl'ial vprsion--the a!!Jof'ithmic .o;pcerlup so calculated measures the method's efficiency as a

rllllrt.ion or I.he nllmbl'\' or pron'ssors used. It docs not however measure the end-user's benefit from

parallPlislll. This 1H'lIdit. ('a.1I only be measured by comparing the performance of an optimized

sl'rial version wil.h t.he parallel vprsion. Our performance measurements a.re based on this latter

1:1

1111'011'111'1'111('111. of spPC'1I III'; til(' op1.illliz('d sl'I"ial vl'rsioli wa.s nea.t('d froln th(, para.lld wrsioll hy f('­

III11Vill~ all cod" r('la.l.('1I to lIIul.ua.1 ('xrillsion and syn('hl'(Inil~ation, alJ(l hy rellloving all computations

rl'lal(·1I to \.II(' fut.1I1"<' <Iueue. A ('omparison bet.w('('n the optimized serial version and the parallel

V('fsilJlI on on(' pro('('ssor tells III' sOlllething a.bout the cost of a processor's internaloverh<,ad of

doing para.llel proc('ssinp; (e.g., calls to synchronization routines); it. also gives us a.n upper bound

011 1.1)(, sp('ed II ps we (";\ n expect. Ea.ch of our performance graphs is marh'd with this upper bound

to h"UN rdkd how C'flirilml. till' progra.m is rdativc 1.0 its inescapa.ble internal overhead.

Thl' da.ta. Ht.rudlll'PS amI alp,oril.hllls used t()lllanage the event-list have a critical effect on per­

fOl'lllallce. III t.he i 1I1.1'I'(,St.S of rapid -prototyping we first implemented the event ,list as a naive,

dOllhly-lillkpd list. {jllder mollNa.te loads we achieved a speedup of 24 using 8 processors! This

all(lllla.ly is simply ('xplailled hy realizing that the serial version is suh-opt.imal (see [8] for a per­

fOI'1IIall('(' sl.lItly of Va.riolls list.-mallap,Pllwnt algorit.hllls); anomalies of this type have been ohserved

ill ot.her COIl1.('Xl.s 1'1]. \V(, sllhS('<I11Plllly illlplemented a simple, bllt. more efficient list management

algoril.h 11\ hy assoria.t.i IIg all orden'd q II<'lIe of events with each ind i vid ua I queue, and then use a

I'OlIlhilling tn~C' 1.0 idl'lIl.ify th!' I'WIlt. list. wit.h smallest minimal event.

The stat.istics mlll'ct.ed by ollr IlI'o~ram are minimal:, for each quellewe maintain a 128 clement

hisl.ol!;ralll of joh waiting times. Upda,tin~ t.he histogram requires only a binary search to select a.

hi II, allil a.1I i IInelllPlI1..

'1'111' rillg; t.opolop,y allows iI. qlWIIP t.o send jolls 1.0 either a left, or right neighbor; the mesh

t.opolol?;y I'Ollnl'cl.s N 01'1.11, SOli I. h, East, alld West neigh hots, and wraps around the edges to create

a. t.orIiS. Till' hypcrr.llhe t.opologyis the uSllal olle; themllltistage network consists of six stages,

I'a('h of whirh has sixty-folll' qllI'III'S, a.1II1 which 'feeel forwa.rd to the lIext. sta.ge using the Butterfly

illt/'ITonnl'dion paUI·rn. The last stage f('pds t.he first. stage.

All of ollr ('xpNill)('nt.s ('Ill ploy sixte('n processors. In one set of experiments we assume that the

Sl'I'vi('1' tillll' is expollI'lItial with IIl1'an It = 1.0; anothPl' set of experiment.s tf('ats t.he service time as

t.hl' cOllsl.allt. 1.0. JlI'('ause t.1H's(' 1IC't.works aI'(' dos('d, t.he simulation load is varied hy adjusting the

1I11111h('l' of johs plared illt.o th(, syst.PIlI. Becallse of homogeneity the load can be described simply

hy II, t.he aV('fag(~ lIumber of johs ill quelle at. a server. For every topology and service distribution

W(' varipd II wit.hin t.he set. {I, 2, '1, G,~, lG}. For each set of parameters we simulated tIle network

1.1'11 l.iuIPH, start.ing frolll "" initial (,()IIri~lIratioll where each quelle has exactly v jobs in queue.

14

Thl' SilJlUIa.l.ioll Wa.S I.NlJlillat('d aft .. r a.1I pro('('ssnrs had advanced 1.0 sillllllal.ion I.ime 100. Large)"

I.Nlllillat.ioll tiltH'S would he ()(.sira.hl(' if we w('re int.erested in accurate queueing network statistics;

howev!'r, the tillliltl!;s Oil experin\('nt.s with larger termination times scaled directly, required much

11101'(' CPU time, a.nd were suhsequently dropped. The execution time measurements exclude the

I/O t.ilIlP f('q U i rl'd t.o i IIi tially load the prohlem, hut incl ude all other I/O required during the course

of a. rllll. 011 r p('J"formance curves plot i nt.ervals to represent speed up. The intention is to both

slrow wlrat. sort of speedups call he expected, and wha.t variation there is in the speedup estimates.

't. is '"' f('f1sonahle t.o lIIeaSI1 H' trrw speed u p by ind ucing precisely the sa.me branching and service

I.ill'" 1H'lravior in tire serial and para.IIC'1 versions. Inst.ead, for each set of experimental parameters

w(~ III('aslln'd 1.1l(~ Ilwan ILl' and st.andard deviation a p of ten parallel rUllS, and the mean J.Ls and

salllpl .. sl.alldard deviation a., of t.en sPl'ial runs. Then we plot an interval cont.aining a. high speedup

est.illlatp, (It .• + (T .•)/(Itp - a l ,), and a. low sp!'edup estimate, (Ils - a .•)/(JLI' + ap).

,0'iJ!;lIr('s !'i awl Ii pres('nt.s t.he speedllp int.ervals. Each graph's title has the form "Topol­

oV;Y / Looka.h(Oad typ"/ Dist.rihll tion"; ·the lookahead type is Full or Border, depending OIl whether the

lookah('a.d (·aklllal.ion ana.IYl':ed tire filII /,/' state or simply computed bounds at the queues which

f('l'd oJl:pron'ssnr (PH'III'S. A n'"III)('r or obs('rva.tions stand out. Ordered roughly by importance,

l.Iwy a.re:

I. (J 1)(1 (Or lIIoderal.f~ 1.0 Iwavy si 1lIlIlat.ioll loads every graph approaches its optima.l level (a speed up

wlrieh t.ellds t.o Iw dosl' 1.0 ('lcVI'Il). Thl'se experiments show that good speed lipS arc sometimes

possihl(, ill I.I)(Os(' types or sillllliations. If the simulation load is low the proportion of useful

work t.o lookalH'ad COIII(lllt.at.ioll has 1.0 diminish, yielding poor spcedups.

~. TI/(~ s(~rvil'l' t.illJ(' variat.ion has a St.rollP; cfred. on speedup. Undcr high variation very small

lookalr('ad valll(Os al'l~ (lossihll', rrwarrillp; that lookahcad is computcd more often, thereby in­

I'll rri Ill!; i 1)("J'('a~('cI oVl'rhl'ad. This is ill agreemcnt. with Fuji moto's experiments[3].

:1. N et.wol'k t.opolol!;y st.l'OlIl!;ly afr"ct.s performance undcr low loads. Hypercubes have a richer in­

t.l'rCOIIIIl'rl.ioll stl'lIct.lIl'e, which ca.lIses increased uncertainty in future behavior (meaning that

lookallf'acl hOllllds are IIOt. sharp). (J IHI<'I" low loa.ds and expollclltial service times simulation

of h'yp('fclll)(~ irrt.('I'("ollllectiolls pcrfoflll('d poorly while other illl.('fCOllllcctiolls did somewhat

1)(~t.t.<,I'.

15

IIV~H:r!lltJc/Hordr:r /f xponenliol Hypercube/I 1111/[xponentic:1 :f. ; ~;

I ~
1~

1;-
Ma.imum Pcn.~ihl(! I"

Maximum Possible -----_. ~. n III
T n. 10 .J

:-l :r: u
~L: TI 01 /1 :r Q) !l I ~I

Q)
Cl a I

Ring/Border/Exponential
111 (;

U1 6 . I T
I 16

:r:

2 . T 14

12 Moxinlum Possible 0' 0 ---------- ----------
II H I" 16 0 4 R 12 16 g- 10 :r: :r: Avg Queue Length Avg Queue Length 0 I I

~) 8
Q)

I (1

:1 U1

Me~;h/13order /fxpClncntiol Mesh/Full/Exponential
Fi 16

2 ,., H
0

~i' MoximllrTl p(I~;!>jblr: I" Maximurn Pos~ible 0 ., 8 I;> 16
... _." _._------------

Avg Queue Length I () If) .1 g. 10
.1 .l I
" "0 I 01 I< Q) R

I Q) ~,

n. (I
If) f, III (,

" II I Ring/Full/Exponential II ? j ..
16

()
14 ()

0 ., 8 12 16 () 8 I' 16

AvC] ()lJeur. I r.ngth tlVg Queue. Length 12 Maximum Possible

I g 10

I I TI
Q) 8

I Q)
Q

5 III

Mllllisl (Jqc/l3order /[xponcntinl Mill t is t oge/f-u II/Exponent i (J I 1 If, It;

14 14 2 L

Mq'tHOU"' I '{}',;";Ihln
ty1.~X!rr:-!.Jrt0?fl~!!i~L __ ... _ 0

'8
I;' I" '0 ., I:? 16]

I Avg Queue Length
(, III n 1f) .J: , _, T

" () :L (,I)~
~) R

'" OJ :J: 11 n
III f,

III 6

., o.

j 7

a
0 4 B I' , 6

0 4 8 12 16
Avg Queue l cngth Avg Queue Length

Figure !i: Speedup Curves, 16 Processors, Exponential Service Times

16

II/P':rcIJi)(:/llord':I/Col1:;t(lrli Ilyp,:rclJbe:/1 IJll/Collslol11
P. I'.
1~ H

1;'> MnwimlJm Po~; .. ihln 171 Maximum Possible

(] If) "
.T-:

T g- 10 1 :l:: :r_
_J :r:
fJ l:J
~J R .. , 0) 8
QJ Q)

n 0.
ell F; (fJ 6

I
Ring/Border /Constont

71 :r 16

"i 0
() ~ Ii 1;> 16 0 4 8 12 16 12 - .. ___ .~ximum Possible

AVe) QuelJe I. r.nglh Avg Queue Length n. 10 :r:::I: = :r: I :) I
n
0) 8
Q)

0.
(I) 6

Mcsh/E3ordcr /Constant Mesh/Full/Constant
Il. 16

H 14 2

17 MOJiimlJn1 Pn~~!;ibla 17 Maximum Possible 0
or

-- --- - -_. -
:r: I

0 4 8 12 16
() 10 I '5- 10 . :::c] Avg Queue Length
.1
(l U :t:

QJ R Q) A :::
OJ Q)

(] 0.
ell fi (II 6 -

:f Ring/Full/Constant

~I
16

14
0 R 17 16 0 4 8 12 16

Avq Q,JCUC I r.ngth Avg Queue Length

"f
Maximum Possible

:r: = :r:

~ 10 I I
~ A-J
0.

(fJ 6-
Mllili:;lm]c/norrkr /ColIstcwl Multistage/Full/Constant

4 1(, 15

14 14 2

17 Moximom Posslhle 17 Maximum Possible 0 -,- -r .. :'T"- -'" - --- -.- ::t: 0 4 8 12 16
n 10 I 0.10 I

Avg Queue Length , ::J =c

!.l l:J
") A Q) 8
QJ OJ
n 0.

(II fj (fJ 6 •.

4 4 .-

? 2

n 0
'1 8 12 16 0 4 8 12 16

Avq Queue Length Avg Queue Length

Fi~lIn' (i: Sppp<iup Curves, 16 Processors, Constant Service Times

17

-1. Simulations of rings tend to have higher va.riance. This is understood by realizing that high

workload ill Honw net.work rep;ion does not easily disperse; th<' other topologies are l}('tter at.

sprmding jobs around the network. This understanding of the phenomenon is re-enforced by

Reed's observation[14] that concentrated chains of jobs tended to form in his simulations.

5. The form of lookahead used (Border or Full) has a smaller effect on performance than we

anticipated. In this set of experiments the cheaper form of lookahead (Border) uniformly

performed beUer, but this effect was secondary when compared to the effects of service time

dist.ribution and topology. We hasten to recall though that the mapping of queues to pro­

cessors forces every queue to feed a proportionally large number of off-processor queues, so

that the lookahead gained by collecting additional information from on-processor queues is

overshadowed by the cost of collecting that information. We did study two variations on

the lookahead calculation which only analyzes event lists. In one variation we dedicated a

processor to the task of searching for this type of lookahead while all other processors did

simulation work. This scheme had very little impact on the execution times. In a second vari­

ation we relied entirely on appointments computed by the auxiliary processor, and achieved

compara.tively poor speedups, even under high loads.

Two other points arc of interest and arc not shown in these graphs. Network size has some

effect 0/1 performance; as expected, larger problems yield larger speedups, although the speedup

still depends most heavily on the average queue length and the service time distribution. Secondly,

we Il1easuT<~d the number of times the lookahead analysis algorithm is called in the course of a

simulation run. Under high loads (v = 16) the analysis routine is never called: the ordinary

lookahead computed with every arrival to a queue sustains the progress of the simulation.

We reiterate the main conclusion that we can draw from this data: at least under limited

circumstances it is possible to achieve good real speedups by using a conservative synchronization

mechanism which exploits the problem being simulated.

5 Summary

The parallelization of discrete-event simulations has proven to be a difficult problem, due in large

part to extensive and irregular synchronization requirements. One means of alleviating that syn-

18

rhrollizat.ioll hlll"<l(,1I is t.o havp llJ'o('('ssol's allalyzp th('ir sillllllat.ioll st.at.(' a.nd compute lookahmd.

low .. 1' hOlilids Oil t.illll's a.t. which t.11<'y 1H'l'l'orfll act.iolls t.hat. direct.ly a.m,rt t.he (~vpnt. list.s of ot.II('1'

pro('(·ssors. WI' illllsl.l'at,(' t.his t,('Chlliqlw 011 t.h!' knotty prohlem of st.ochastic qllcucillg nctwork

SiIIlUIa.1.iolis. Th<'se silllllla.t.ions are pa.rticula.r1y difficult becausc tlwir intrinsic computation to syn­

chl'Ollizat.ioll cost. rat.io is so dis-advantageous. We show how the simulation can be re-organized

t.o a.llow lookahead t.o he COlli pllt.ed for reFS queueing networks, discuss trade-oITs bctween the

qua.li1.y of lookahead ,\IIe1 the cost. of providing it, and demonstrate the effectiveness of the method

hy i III plel!l(~11 t.a1.ion Oil several COlli ilion CJ lIeueing network topologies. This result stands in contrast

wi1.h pJ'(~violls s1.lIdh's which IIs('d synchronization mechanisms that are largely unaware of the un­

d"rlyillg silllllla.tion (lrol>ll'llI. Genera.lity in a synchronization mechanism is a worthy goal, but the

pri('(~ of that. p,oal lIIay he poor performance.

References

[I] 1\. M. Chandy a.nd J. Misra. Distributed simulation: a case study in design and verification of

dist.rihllt.('d prof,!;rallIs. n't'l~' 'I'm us. on S'O/twlll'e Engineer'ing, 5(5):440-452, September 1979.

[:l] G. S. Fishfllan, l)ri7lciplcs 0/ lJisaele Event Simulation. John Wiley and Sons, New York,

I!J7X.

1:11 IL M. FlljiIIlOt.O. Perfonnanc(' IIIP(l.surelllcllts of distributed simulation strategies. In Proceecl­

illy.' 0/ till' I !J..,8 S(',',' Con[crcwc on lJi!:;tributcd Simulation, pages 14-20, San Diego, CA,

I!JXX.

I'\] E.F. (;('hrillg<'r, D.P. Si(~wio('('k, a.nel Z. Sega.ll. Par'allcl Pro('essiug: The (:111* E3.:pcricnc('.

Di)!;i l.a I Prl'ss, Bedford, l'vla~sachllset1.s, 1987.

1."1] B. (;. <:rosdj alld C. Tropp<'l'. The l.illle-of-llext-eveIlL algorithm. In Proceedings 0/ the 1988

ses' ('0/1/(1'(71('(' on /)isil'ibu/n/ Simulation, pages 25-29, San Diego, CA, 1988.

[(i] V. II 01 1111'S. ['amlld algo/'i/hl/l,lj on multiple]J1'Ocessor m'cltitcclurcs. PhD. thesis, Department

of COlllplIl.l'r Sriell('p, University of Texas a.t Austin, 1978.

19

[7] D. It. .Jt'[ert;on. Virtuallillll~. ACM T"'aTt,~. (J7t l)mfJIYl1Iulli71Y LmIY!l(l!J('s mul SYHff'7lls, 7(:1):/101

12.'i, J m~!i.

[x] D.W . .Jones. All empirical comparison of priority-queue and evcnt-set implemcntations.

CACM, 29(4)::WO-<J11, April 19SG.

[a] B. D. LII hachevsky. Bounded lag dit;tribuled discrete event simmulation. In I'mcecdings of the

1988 HCS Conference on Distributed Simulation, pages 183-191, San Diego, CA, 1988.

[10] N. Matclan. The Flex/32 lIlulticomputer. In I'mccedings of the 12th International Symposium

on Computer A rchitectur'c, pages 209-213, Computer Society Press, June 1985.

[11] D. M. Nicol. The Performance of Synchronizing Networks. Master's thesis, Department of

Computer Science, University of Virginia, January 1984.

[12] D. M. Nicol, P. F. Reynolds, Jr. Problem Oriented Protocol Design. In Proceedings of the

1984 Winter Simulation Conference, pages 471-474, Dallas, Texas, December 1984.

[I:t] .I. K. Peacock, E. Manning, and .1. W. Wong. Synchroni;mtion of distributed simulation using

hroadrast algorithms. COTll]Jltla Networks, 4:3-10, 1980.

[11] D. A. Reed, A.D. Maloney, and U.D. McCredie. Parallel discrete event simulation using shared

memory. IEEE Trans. on Software Engilleel·ing, 14(4):541-553, 1988.

[l!iJ P. F. Reynolds, Jr. A shared resource algorithm for distributed simulation. In Proceedings of

l1u; Nilltlt A nnltal Jlltcrnation(J./ Computer Computer Architecture Conference, pages 259-266,

Austill, Texas, April 1982.

20

NI\SI\
~Lll ... \,1 f\f"('JI,lI ,IIC,. ,~ ~'I{I
',1,.,., (\QI·11I'\1,<,I- ,II(Y'

1. Report No.

NASA CR-181669

Report Documentation Page

2. Government Accession No. 3. Recipient's Catalog No.

TeASE Report No. 88~--L- I 5. Report Date
. 4~"fiil;;-and sul;titi~'-

PARALLEL OISCREn:-gVt:NT SIMULATION OF FCFS
STOCHASTIC QUEUEING NETWORKS

7. Authorlsl

David M. Nicol

9. Performing Organization Name and Address

May 1988

6. Performing Organization Code

8. Performing Organization Report No.

88-29

10. Work Unit No.

505-90-21-01

tnRtitute for Computer Applications in Science
and Engineering

11. Contract or Grant No.

NAS1-18107
Mail Stop l32C, NASA Langley Research Center

VA 23665-5225 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Contractor Report
National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

15. Supplementary Notes

Langley Technical Monitor:
Richard W. Barnwell

Final Report

16. Abstract

14. Sponsoring ~gency Code

Submitted to SIGPLAN PPEALS
Symposium

Physical systems are inherently parallel; intuition suggests that simulations
of these systems may be amenable to parallel execution. The parallel execution of
a discrete-event simulation requires careful synchronization of processes in order
to ensure the execution's correctness; this synchronization can degrade per­
formance. Largely negative results were recently reported in a study which used a
well-known synchronization method on queueing network simulations. In this paper,
we discuss a synchronization method, appointments, which has proven itself to be
effective on simulations of FCFS queueing networks. The key concept behind
appointments is the provis ion of lookahead. Lookahead is a prediction on a
processor's future behavior, based on an analysis of the processor's simulation
state. We show how lookahead can be computed for FCFS queueing network simula­
tions, give performance data that demonstrates the method's effectiveness under
moderate to heavy loads, and discuss performance trade-offs between the quality of
lookahead, and the cost of computing lookahead.

17. Key Words ISuggested by Authorlsll

parallel simulation, discrete event
simulation, queueing networks

18. Distribution Statement

61 - Computer Programming and
Software

66 - Systems Analysis
Unclassified - unlimited

19. Security Classif. lof this report I

Unclassified
20. Security Classif. lof this pagel

Unclassified
21. No. of pages

22
22. Price

A02

NASA FORM 1626 OCT 86
/

End of Document

