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Abstract

Physical systems are inherently parallel; intuition suggests that simulations of these systems
may be amenable {o parallel exccution. The parallel execution of a discrete-event simulation
requires careful synchironization of processes in order to ensure the execution’s correctness; this
synchronization can degrade perforinance. Largely negative results were recently reported in a
study which used a well-known synchronization method on queueing network simulations. In
this paper we discuss a synchronization method, appointments, which has proven itself to be
effective on simulations of FCFS queucing networks. The key concept behind appointments is
the provision of lookahead. Lookalicad is a prediction on a processor’s future hehavior, based
on an analysis of the processor’s simulation state. We show how lookahead can be computed
for FCF'S queueing network simulations, give performance data that demonstrates the method’s
cffectiveness under moderate to heavy loads, and discuss performance trade-offs between the

quality of lookaliead, and the cost of computing lookalead.
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1 Introduction

Physical systems are inherently parallel; intuition suggests that simulations of these systems may
be amenable to parallel execution. The parallel execution of a discrete-event simulation [2] requires
careful synchronization of processes in order to ensure the execution’s correctness. A number of
synchronization methods have been proposed; some have been studied empirically. With few excep-
tions the evidence is that overhead inherent in these methods prevents any significant performance
benefit from parallel execution.

Quecucing network simulations provide a stress test for parallel discrete-event simulation because
so little computation is associated with each event. Parallel queueing network simulations are also
interesting from a historical point of view, as much of the early work in this field implicitly uses
a gneueing network model for the simulation. The seminal work in parallel simulation by Chandy
and Misra[l] identified the concept of lookalicad as being suflicient to avoid logical deadlock between
processors. Lookahcad is the ability of a process to predict (possibly minutely) those aspects of its
future hehavior which affect the synchronization requirements of other processes. Implementations
of the Chandy/Misra algorithms invariably create a lookahead ability by requiring that each job
receive a.minimum service time ¢. Knowledge that a future job requires at least € service allows
a processor to predict that a job which arrives immediately will not depart for at least € time.
Because most probability distributions of interest are not bounded from below, implementations
must choose ¢ to be very small. Performance studies[6,14] have strongly suggested that this poor
lookahead ability leads to dismal performance due to extremely high synchronization overhead.

In [t1] we proposed that more extensive lookahead be calculated by analyzing a process’s simu-
lation state, and showed how this could be accomplished in both queueing network simulations, and
logic network simulations. In {12] we examined the effect that increased lookahead has on overall
performance. More recently FFujimoto re-examined the Chandy/Misra algorithms and focused on
increasing lookahead ability by increasing ¢, 1lis results are more encouraging, but poor perfor-
mance is still observed when the ratio of mean service time to € is high (say, 10). Lubachevsky[9]
also uses lookahead which is computable under the assumption of minimum service times. While
he does not report any empirical results, one can expect his scheme to suffer from similar failings as
the Chandy/Misra algorithms as reliance on small minimum service times has already been shown

to yicld poor performance.
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Figure 1: Distributed Simulation of Three Queues

The purpose of this paper is to point out the feasibility of using detailed shnulation-speciﬁc
information to compute lookahcad in stochastic FCFS queueing network models. Unlike past
treatments of parallel queueing network simulations this lookahead does not rely upon a minimum
service time. We discuss the trade-offs between lookahead quality and the cost of computing it,
and use a parallel implementation of our method to show that under moderate to heavy loads a
protocol based on lookahead can yield good performance on simulation models that have defeated
other protocols. Fujimoto has independently performed a similar study?.

Iivery processor in a. parallel discrete-event simulation maintains its own simulation clock, and
its own event list. A simple example clearly illustrates the neced for synchronization. Figure 1
depicts the simulation of a three queue network on three processors. Queue @y sends a job to
quene Qy with a time-stamp of 10, The first event in Q2’s-event list is the one which accepts
this joh. Simulation correctness is ensured if, within cvery processbr, the simulation time order
of evaluated events is monotonically increasing. To ensure this monotonicity @, does not process
the first event in its event list until it is certain that some other event with a smaller time-stamp
will never be inserted into the event list. Such an event might occur, for example, if at time 1 an

external arrival appears at @, is given 2 units of service, and then is routed to Q2. The role of a

"Private communication from Richard Fujimoto.



conservative synchronization protocol is to coordinate Q1, @2, and Q3 so every processor evaluates
events monotonically in simulation time, so that a processor evaluates the first event in its list
as soon as it is safe to do so, and so that system deadlock is avoided (or detected /corrected). Tt
should be mentioned that optimistic synchronization is currently a topic of active study([7]; under
an optimistic protocol @2 would process the first event in its list with the expectation that no job
with a smaller time-stamp will appear. If one does appear, then corrective measures must be taken.
T'he protocol discussed in this paper is conservative.

Discrete-cvent simulation synchronization protocols are typically described in terms of message
passing behavior between logical processes (LP)’s, or the subsystems modeled by processors. Asso-
ciated with cach LPis a set of readers and a set of writers. LP; is a writer for LP; if it is possible for
the processing of an event in LP; to cause a “message” to be sent to LPj, who in turn modifies the
event list in LP;. In this case LP; is a reader for LP;. It is useful to distinguish between “content”

and “

protocol” messages. As the titles suggest, a content message directly concerns the simulation
and its state while a protocol message concerns only the implementation of the synchronization
protocol. In the example above a content message from @1’s processor to Q2’s processor causes
Lhe insertion of the event in Q2’s processor’s event list. At some point Q3 might send a protocol
message to (2 promising that it will send no jobs with a time-stamp less than 15 (although we ha?e
not. yet identified how Q3 can provide such a promise), thereby allowing Q2’s processor to evaluate
the arrival at time 10. Protocol messages may themselves be time-stamped.

In previous protocols [13,1,15] a protocol message from LP; to LP; with a time-stamp of ¢
provides a promise that LP’s next message to LP; (a message which may cause modification of
L.P;’s event list) will have a time-stamp no greater than ¢. The established protocols vary in their
details, but all share a distinetive characteristic: the protocol mechanism is largely independent
of the system being simulated. ‘This generality is attractive, but requires that an LP’s decision to
send a protocol message with a time-stamp of ¢ is based solely on the time-stamps of protocol and
content messages that the LI has received. To ensure the protocol’s gencrality information about
the simulation state, or how an L responds to a content message is not used. As a consequence
many protocol messages must be exchanged, as each protocol message allows the simulation to
precede only incrementally. Studies of the “Null Message” method have shown that the ratio of

protocol messages to content messages is very high. Reed’s recent empirical study of this method



on quencing network simulations shows it to be of limited utility[14].

The role of a protocol message from LI to LP; is to provide a lower bound on the simulation
time at which L may next alfect LP}’s event list. The quality of this bound depends on LP;'s
ability to predict its future behavior. In the quest for generality, the previous synchronization
protocols fail to take advantage of knowledge about the simulated system. A better bound on
future betiavior can be obtained by analyzing the LPs simulation state to find lookahead. The
section to follow outlines a synchronization protocol that relies upon the computation of simulation-

specific lookahead.

2 The Appointment Protocol

Before discussing means of identifying lookahead we will introduce the synchronization protocol that
uses it. A small number of definitions must first be given. LP;’s simulation clock is denoted C;;
LPs eveat list is denoted I, and is assumed to be ordered by increasing time-stamps. e; denotes
the event at the head of E;, and f; denotes its time-stamp. We assume the usual relationship
hetween € and F;  just prior to processing the event e; with time-stainp f;, C; is advanced to f;.

A serial simulation repeatedly executes a three-step cycle: advance the simulation clock to the
time-stamp f; of the first event in the event list ¢;, process e; (which may alter the event list,
bhut will never add events with time-stamps less than f;), and remove the event just processed.
LD in a parallel simulation must not process e; until it is certain that none of L P;’s writers will
cause an carlier event than ¢; to be _ins',crt'ed into £;. The mechanism we use to prevent LP; from
processing an event “too early” is the appointmént. Every one of LP;’s writers provides LP; with
an appointment time beyond which 1 P; will not advance its clock without further permission. An
appointment that LD, gives LD is denoted Ajj; we denote the set of all appointments given to LP;
by {W,}. Only an LP’s writers must supply it with appointment times.

IMigure 2 gives high level psendo-code describing the appointment protocol. We have left unspec-
ificd olher necessary mechanisms, e.g. asynchronous message-passing routines to update appoint-
ment valnes and maodify the event list, For clarity we have also left unspecified direct optimizations
which ensure that a new appointment. is not requested before the last such request was satisfied.
Like all conservative synchronization protocols, this one prevents the processing of an event if there

is any chance that an event with a smaller time-stamp will be inserted into the event list.



Definitions

C Value of L P;’s simulation clock

pn LP;’s event list

€ First event on I;

fi Time-stamp of first event on E;

A Appointment provided by writer LP; to reader LP;

min{W;} Minimum over all appointments given to LF; by its writers

Laop {
If( fi < min{W;})
{Ci=Jq
Process event eg;

Remove ¢; from Fy;

Else
{ For every writer LP,
If( Agi <e;)
Request a new appointment from L Py;
For every reader L P;
If ( LP; has requested a new appointment )

Compute and send a new appointment A;;;

A
} Forever

Figure 2: Appointment Synchronization Pseudo-code




The ability of this protocol to reduce synchronization overhead to acceptable levels clearly
depends on the ability to provide lookahead. A quencing network often has structure which allows
a quence (@ 4 to periodically provide upper bounds on the times at which it will route jobs to other
quenes. The aggregation of these bounds form the basis of an appointment. The sections to follow

show how various degrees of lookahead can be computed in queueing network simulations.

3 Lookahead in FCFS Queueing Networks ©

Lookahead is easily computed in a stochastic simulation of a ncﬁ(brk of FCIS queues. The sim-
ulation is distributed by assigning queues to processors. Depending on the size of tllle queueing ‘
network, a processor may be assigned several queucs. A processor is rcsponsible for simulating
the quencing activity of each of its quencs, and for maintaining all statistical information collected
about the quenes’ behavior. An LI then consists of the possibly fragmented subnetwork assigned
Lo o processor. [t-is important to note that past treatments of parallel queneing simulations have
treated each queuc individually as an L P; this invariably leads to high overhead because synchro-
nization costs are suffered on a per-L P basis. |

A typical simulation of a quene requires three event handlers: AddToQueue, BeginService, and
FinishService. The random service time of a job entering service is traditionally sampled by
BeginService, and the destination of the completed job is traditionally chosen by FinishService.
A serial simulation gains nothing by choosing the service time and branching destination any sooner
than required. For the purposes of computing lookahead there is much to be gained by 'choosingv
them earlier. Qur ;x,l)ilil,_v to do so depends in large part on the méde]_a.ssumptions. In the simplest
hut most common type of stochastic simulation the service time of (:'\)gsr)' job at a (]l.lCllC is drawn
from a common distribution and the branching destination is chosen from'a common distribution.
Note that these quantities could be drawn al any time —it can be advantageous to select a job's
service time and branching destination before the job arrives. For example, if at time ¢ quene @4
has no jobs enquencd for Qg but it is known that the next job which branches to @pg has servi.cc
time s, then Q4 will send no jobs to Qg before time e4(t) + s, where € 4(¢) is the time at which
Q4 will next he cmpiy if no further arrivals occur: ¢ plus the sum of service times of all jobs in
quene at time & c4(2) + s is a sharp bound if the next job arrives prior to time e 4(¢), and has Qp

chosen as its branching destination.



T'he observation above led us to an organization which associates with every queue a future list
ol jobs which have not yet arrived. A job’s service time and branching destination are determined
when it joins the future list. The future list is kept large enough so that it contains a job for every
possible branching destination. When the event handler AddToQueue is called at simulation time ¢
to simulate a job arrival at @ 4, the first job in Q 4’s future list is removed and is used to represent
the arrival. If that job branches to Qpg, and its removal empties the future list of jobs which
branch to Q g, then additional jobs are appended to the future list in a manner which preserves
the statistical integrity of the simulation——jéhs with randomly selected service times and branching
destinations are appended to the future list until a job with destination Qg is added. Note also
that once a job Jy arrives at Q 4 its arrival time at the next queue @Qp is already determined;
consequently the processor holding Q p may be immediately informed of Jg’s arrival there. This
is advantageous when Q4 and Qp reside in different processors, as it may allow @ p to simulate
Jy’s arrival ahead (in real time) of its simulated departure from Q 4. After computing Jg’s arrival
time at Q g, we compute a lower bound on the time of @ 4’s next, as yet unseen job to Q g, called
Inear- A deseription of Jnepr is found in Q 4’s future list. Because Q4 is FCFS, we know that
Jnere cannot depart, at least until all jobs current enqueued at QQ 4 reccive service, at time e4(1).
Furthermore, Jpe does not receive service until every job ahead of it in the future list receives
service. Letting S be the sum of service times of all jobs ahead of and including Jnez¢ in the future
list, e 4(1) + 5 is then a lower bound on the time that Q 4 will next route a job to Q. This bound
is cheaply computed, and is passed to Q g’s processor along with the message reporting the arrival
of Jy. Pigure 3 illustrates these points, and a possible transformation of a queue and its future list
upon the simulated arrival of a job. Figure 4 outlines the roles played by the the event handlers in
this scheme.

It is apparent from the description above that lookahead information is continually being com-
pited and exchanged between queues. Observe however that a bound b provided by Q4 for Qp
can become “stale”  the bound is predicated on the assumption that the next job from Q4 is
roited as soon as possible; it is possible for the simulation clock in @ g’s processor to advance up
to b without another job being sent from Q 4 to @g. In the absence of further jobs from @ 4, and
in the absence of active measures by Q 4’s processor to compute a new bound on the time of the

next job from Q4 1o Q g, the appointment time « provided by Q 4’s processor to Q g’s processor
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AddToQueue (Q, )
{ Remove first job Jy from front of Qs future list;
Append Jy to end of Qs real queue; .
If ( No jobs in future list that branch to J;.Branch )
Repeat {
Create job J;
Randomly chose service time J.Service;
Randomly chose branch J.Branch;
Append J to end of Q’s future list;
} Until (J.Branch = J}.Branch)
Jpu = first job in future list such that Jg.Branch = J;.Branch;
S = Sum of future list service times through Jpg;
Apt =5+ eqp(t);
Notify quene Jy.Branch of arrival at time ex(2);
Notify queue Jy.Branch of appointment at time Apt;

Add BeginService event to event list at time ex(t) — Jy.Service;

BeginService (Q, )
{ J = Iirst job in Q’s real queue;
Compute desired statistics;

Add FinishService event to event list at time ¢ 4 J.Service;

FinishService (Q, 1)
{ Remove first job in Q’s real queuc;

Compute desired statistics;




cannot exceed . As Qpg's processor advances in simulation time it may find that the first event
inits list has a time-stamp larger than «. In this casec a new appointment is requested from Q 4’s
processor. It is eventually incumbent. upon Q 4’s processor to satisfy this request by compﬁting a
new appointment.

L P; can construct an appointment for L P; in several different ways. T'wo of the simplest ways

are deseribed below.

1. LP; scans all of the latest bounds its queues have already provided to queues in LP;. The
] | ) ) J

appointment value is the least of these.

2. LI scans its event list to find the first future job arrival to any one of its queues. It comba.r(‘s
this time to the minimum appointment given to it by a writer L P, and denotes the minimum
of these two values by m; this quantity is a lower bound on the time at which djob next
arrives at any queuc in the L. Then for every every pair of queues Q4 and Qg such that
Q 4 lives in LP; and Qp in LI’ we compute a new bound. The new bound is computed on
the assumption that the next job to arrive at Q 4 (not necessarily with branching destination
Q) arrives at simulation time m. Letting Jyez: be the first job in Q4’s future I.ist with
destination Qg and letting S be the sum of service times of jobs ahead and including Jnez: ih
the the future list, we compute the appointment value max{m, (:,i(C,-)}—i-S. This appointment
reflocts Lhe possibility of an arrival precisely at time m—the max term coniputes the earliest
time at which the job represented by that arrival begins service in the queue. Among all such

hounds computed for all queues, the minimum is the new appointment.

The first of these methods is the cheapest to compute, but will not not produce a usable appointment
il any of the old bounds are stale. Furthermore, LP; can.coniputc this value for itself whenever
it desires. The second method uses more information (the value m) and so may producé better
hounds at the (j()sll. of some additional computation. It is important to note though that even if some
hounds are impmvdl, the appointment improves only if the minimum bound is improved upon. It
is also important Lo note that for any given queue, recomputing a bound with an increased value
of . will not improve the bound if m is less than the next known time that the queue could be
cempty. The key idea behind using @ 4’s future list to compute an appointment is to find a lower

bound qn the time at which the next job arrives at Q 4. The second scheme is quite pessimistic

10



when computing this bound. It is possible that value defining m is associated with a quene far
removed from Q 4, and that a much better bound on the next arrival at Q1 is possible. We have
implemented a method which analyzes the full simulation state in an LI in order to determine for
cach Q4 the best possible bound 14 on the time of its next arrival. Then for every writer/reader
pair Q4 — Qp a bound is constructed just like the one above, with t4 taking the place of m in
the calculation. The minimum bound so calculated is the new appointment. A description and
analysis of this method follows.

We first freeze all incoming bounds to LP;'s queues by making copics of their current values;
this climinates any further effect that other processors can have on the forthcoming algorithm.
Iivery queue which reads from an ofl-processor queue has its min.apt value set to the minimum of
its frozen off-processor bounds. Next, we scan the event list for job arrival events. Associated with
cach such event is a target quene; the arrival time is used to update the queue’s min_apt value if
that value cither exceeds the job arrival time, or is in the initial state. Following these initialization
steps, every queue’s min_apt value is either null, or is equal to the minimum time at which a job
might arrive cither from off-processor, or from the event list. The problem now is to analyze the
cffects of job arrivals at those minimum times. This analysis is performed by esséntially simulating
the effects of job arrivals. For every queue with some value in its min_apt ficld we place in a shadow
coend list a shadow cvcnt which denotes a job arrival at time min_apt. The shadow-time-stamps of
shadow-events taken off of the shadow-event list will be monotonically increasing. Proceeding with
the shadow-simulation, we remove the minimum time shadow-event from the shadow-event list. If
the specified quene has already been “touched” by the shadow-simulation we simply discard the
shadow-event. Otherwise we consider the effects of a job arrival at the specified queue (say Q 4),
at the shadow-event time. This is accomplished by computing a bound for each of Q 4’s readers,
hased on the assumption that a job arrives at the shadow-arrival time. Shadow-events describing
these arrivals are inserted into the shadow-event list, _the queue is marked as having been touched
by the shadow-simulation, and a count of “touched” queues is incremented. We are finished if this
count equals the number of unfixed queues. Because the shadow-simulation simulates propagation
of jobs through the network at the earliest possible times, the shadow-time associated with the
first touch of a quene by the shadow-simulation is a lower bound on the time of the next true job

arrival at the quene. Once the shadow-simulation has finished it is a simple matter to compute

11



new bounds for queues in ()l.lltfl' processors by using the shadow-job arrival times.

The i'mnplvxil.y of this method is O( 17 log 1), where F is the number of inter-queune connections
in the LP. 'This follows because any given intcr-qncuu link will have a simulated shadow-arrival
scheduled to cross it at most once (because a queue is touched at most once), and. priority lists
such as heaps exact a logarithiic cost for each access. 'I‘ilis coml)lex;ty' does nol consider the cost
of initializing the priority heap. Initialization requires that we determine each queue’s minimum
incoming ofl-processor bound. Letting E denote the number of links from oﬁ'—processor queues, this
is achieved in ()(h) time. We must also determine for each queue whet hel there is a future job
arrival in the event list. It is possible to link events in a such a way that tho first arrival event for
any given quese is n,('('.cssﬂ)lc in constant time. This endows the initialization phase with an O(n)
complexity, where n is the number of queues on the LP. The O(FE log E) cost t.lius dominates. It
is appropriate to point out that this method is similar in spirit to that d.iscussedv in [5]. Due to
differences in the models and applications, Groselj and Tropper’s algorithm has a slightly smaller
complexity- O(nlogn + I7).

Yet another approach to computing lookahead is quite general, and does not cmploy the inter-
quene bounds at all; instead, it analyzes cach processor’s event list. Imagine momentarily that all
processors are temporarily inhibited from modifying their event lists. Let {5, be the minimum time
stanp among all job arrival ovonfs on the event lists. Then clearly any appointment value a < tmin
between any two processors can be increased to . This type of lookahead is equivalent to that
proposéd by Lubachevsky [9]; however, the “minimal propé.ga,tion” delays his method depends "on
are nsnally zero in general stochastic queuoing networks. Lubachevsky’s method calls for global
synchronizations between processors so that £, can be found, and events which can be performed
conceurrently be identified. Our overall approach is asynchronous, and we prefer to avoid global
synchronizations if pnssihlc. A lower bound on £, can be constructed asynchronously under the
assumption that messages between L% and 1 % are received in the order that they are sent. Let
Tonel and Tone2 be two arrays such that Toncl; contains a snapshot of of LP;’s minimum job
arrival event at some real time sy, Tone2; contains a snapshot of of LP;’s minimum job arrival
event, at some real |.illl(3 spq, and sp; < sg;5 for any ¢ and j. It can be shown that the minimum value
in the Toncl array is a lower bound on any future job arrival event time, and is consequently a lower

bhound on any interprocessor appointment. The T'one arrays are easily maintained by appending



minimal future job arrival times onto messages exchanged between processors. This method is
even easier Lo implement on a shared-memory machine - if the event lists are stored in common
memory, one processor can be solely dedicated to the task of collecting T'one values and updating
stale appointments.

We have implemented the second, third and fourth of these methods. The following section

discusses their observed performance.

4 Performance Results

We have implemented a parallel discrete-event queueing network simulation on NASA Langley’s
I'lex /32 [10] multiprocessor. The Flex/32 is a bus-oriented shared-memory architecture which sup-
ports both local and global memory. Our implementation takes advantage of the global memory—
each processor’s event list is in global memory, and one processor may insert an event into another’s
list. Mutual exclusion is enforced using low-level primitives such as spin-locks. Data structures de-
scribing the bounds between queunes and the appointments between processors are also organized
in the global memory.

The synchronization method employed to ensure simulation correctness is only one of a host
of performance issues that must be addressed by a parallel simulator. In order to study the
effectiveness of the synchronization method largely in isolation from other factors (such as load
balancing), we haved studied simple, very homogeneous queueing networks which arise in the design
of inter-processor communication networks: rings, meshes, hypercubes, and multistage routing
nelworks, We assume that every server in a network has the same service time distribution, and the
same homogeneous branching probabilitics. 'The studies we describe here concern closed networks of
256 nodes (except for 3841 nodes in the multistage case) simulated using sixteen processors. Queue
i is assigned to processor 7 mod n, where n is the number of processors.

Specdup is the time required to solve the problem on a serial implementation divided by the
time required by a parallel implementation. It is easy to use the parallel code on one processor
as the serial version-the algorithinic spcedup so calculated measures the method’s efficiency as a
function of the number of processors used. It does not however measure the end-user’s benefit from
parallelism. This benefit can only be measured by comparing the performance of an optimized

serial version with the parallel version. Our performance mcasurements are based on this latter
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measurement. of speedup; the optimized serial version was created from the parallel version by re-
moving all code related to mutual exclusion and synchrnniintion, and by removing all computations
related to the future quene. A comparison between the optimized serial version and the parallel
version on one processor tells us something about the cost of a processor’s internal overhead of
doing parallel processing (e.g., calls to synchronization routines); it also gives us an upper bound
on the speedups we can expect. Fach of our performance graphs is marked with this upper bound

to hetter reflect how eflicient the program is relative to its inescapable internal overhead.

The data structures and algorithms used to manage the event-list have a critical effect on per-

formance. In the interests of rapid-prototyping we first implemented the event 'list as a naive,
doubly-linked list. Under moderate loads we achieved a speedup of 24 using 8 processors! This
anomaly is simbl_y explained by realizing that the serial version is sub-optimal (see [8] for a per-
formance study of various list-management nlgqrit.lnns); anomalies of this type have been observed
in other contexts [1]. We subsequently implemented a simple, but more efficient [ist mana’g.cmcni
algorithin by associating an ordered queue of events with each individual queue, and then use a
combining tree to identify the event list with smallest minimal event.

The statistics collected by our program are minimal: for each quene we maintain a 128 clement
histogram of job waiting times, Up(la,.ting the histogram requires ouly a binary scarch to select a
bin, and an increment.

The ring topology allows a queue to send jobs to cither a left or right neighbor; the mesh
topology connects North, South, East, and - West neighbors, and wraps around the edges to create
a torus. The hypercube topology is the usual one; the multistage network consists of six: stages,
cach of which has sixty-four quenes, and which feed forward to the next stage using thévnutterﬂy
interconnection pattern, ‘The last stage feeds the first stage. |

All of our experiments employ sixteen processors. In one set of experiments we aséume that the
service time is exponential with mean g = 1.0; another set of experiments treats the service time as
the constant 1.0, Becanse these networks are closed, the simulation load is varied by adjusting the
number of jobs placed into the system. Becanse of homogenceity the load can be described simply
by 7, the average number of jobs in queue at a server. For every topology and service distribution
we varied # within the set {1,2,4,6,8,16}. For each sct of parameters we simulated the network

ten times, starting from an initial configuration where each queue has exactly v jobs in queue.



T'he simulation was terminated after all processors had advanced to simulation time 100. Larger
termination times would be desirable if we were interested in accurate queneing network statistics;
however, the timings on experiments with larger termination times scaled directly, required much
more CPU time, and were subsequently dropped. The execution time measurements exclude the
1/0 time required to initially load the problem, but include all other I/0 required during the course
of a run. Our performance curves plot intervals to represent specdup. The intention is to both
show what sort of speedups can be expected, and what variation there is in the speedup estimates.
It is unreasonable to measure true speedup by inducing precisely the same branching and service
time behavior in the serial and parallel versions. Instead, for each set of experimental parameters
we measured the mean g, and standard deviation o, of ten parallel runs, and the mean pg and
sample standard deviation g, of ten serial runs. Then we plot an interval containing a high speedup
estimate, (ji, -+ ay)[(j1p = a3,), and a low speedup estimate, (j1s — 05)/(1tp + ).

Figures 5 and 6 presents the speedup intervals. Each graph’s title has the form “Topol-
ogy/Lookahead type/Distribution”; the lookahead type is Full or Border, depending on whether the
lookahead calculation analyzed the full L P state or simply computed bounds at the queues which
feed off-processor quenes. A nnmber of observations stand out. Ordered roughly by importance,

they are:

1. Under moderate to heavy simulation loads every graph approaches its optimal level (a speedup
which tends to be close to eleven). These experiments show that good speedups are sometimes
possible in these types of simulations. If the simulation load is low the proportion of useful

work to lookahead computation has to diminish, yielding poor speedups.

2. The service time variation has a strong effect on speedup. Under high variation very small
fookahead values are possible, meaning that lookahead is computed more often, thereby in-

curring increased overhead. This is in agreement with Fujimoto’s experiments[3].

3. Network topology strongly affects performance under low loads. Hypercubes have a richer in-
terconnection structure, which causes increased uncertainty in future behavior (meaning that
lookahead bounds are not sharp). Under low loads and exponential service times simulation
of hypercube interconnections performed poorly while other interconnections did somewhat

better.
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1. Simulations of rings tend to have higher variance. This is understood by realizing that high
workload in some network region does not easily disperse; the other topologies are better at
spreading jobs around the network. This understanding of the phenomenon is re-enforced by

Reed’s observation[14] that concentrated chains of jobs tended to form in his simulations.

5. The form of lookahcad used (Border or Full) has a smaller effect on performance than we
anticipated. In this set of experiments the cheaper form of lookahead (Border) uniformly
perforied better, but this effect was secondary when compared to the effects of service time
distribution and topology. We hasten to recall though that the mapping of queues to pro-
cessors forces every queue to feed a proportionally large number of off-processor queues, so
that the lookahead gained by collecting additional information from on-processor queues is
overshadowed by the cost of collecting that information. We did study two variations on
the lookahead calculation which only analyzes event lists. In one variation we dedicated a
processor to the task of searching for this type of lookahead while all other processors did
sitnulation work. This scheme had very little impact on the execution times. In a second vari-
ation we relied entirely on appointments computed by the auxiliary processor, and achieved

comparatively poor speedups, even under high loads.

Two other points are of interest and are not shown in these graphs. Network size has some
effect on performance; as expected, larger problems yield larger speedups, although the speedup
still depends most heavily on the average queue length and the service time distribution. Secondly,
we measured the number of times the lookahead analysis algorithm is called in the course of a
simulation run. Under high loads (v = 16) the analysis routine is never called: the ordinary
lookahead computed with every arrival to a queue sustains the progress of the simulation.

We reiterate the main conclusion that we can draw from this data: at least under limited
circumstances it is possible to achieve good real speedups by using a conservative synchronization

mechanism which exploits the problem being simulated.

5 Summary

The parallelization of discrete-event simulations has proven to be a difficult problem, due in large

part to extensive and irregular synchronization requirements. One means of alleviating that syn-

18



chronization burden is to have processors analyze their simulation state and compute lookahead,
lower hounds on times at which they perform actions that direetly affect the event lists of other
processors. We illustrate this technique on the knotty problem of stochastic queucing network
simulations. These simulations are particularly difficult because their intrinsic computation to syn-
chronization cost ratio is so dis-advantageous. We show how the simulation can be re-organized
to allow lookahcad to be computed for FCFS queueing networks, discuss trade-ofls between the
quality of lookahead and the cost of providing it, and demonstrate the effectiveness of the method
by implementation on several common queueing network topologies. This result stands in contrast
with previous studies which used synchironization mechanisms that are largely unaware of the un-
derlying simulation problem. Generality in a synchronization mechanism is a worthy goal, but the

price of that goal may be poor performance.
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