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Abstract 

Physical syst.ems are inherently parallel; intuition suggests that simulations of these systems 

lIIay he arnenablf' t.o parallel execution. The parallel execution of a discrete-event simulation 

requires careful synchronizat.ion of processes in order to ensure the execution's correctness; this 

sYllc.hrollizat.ion ran degrade perforlllance. Largely negative result.s were recently reported in a 

st.lldy which IIs(~d a wdl-known synchronization method on queueing network simulations. In 

t.his p:'Iwr we discuss a synchronization method, appointments, which has proven itself to be 

('rf('r.tiv(~ 011 sillllllat.iolis of FCFS queueing networks. The key concept behind appointments is 

t.Il1~ provision of {oo!.:ahcad. Lookahead is a prediction on a processor's future hehavior, based 

011 all analysis of I.Iw processor's silllulat.ion st.at.e. \Ve show how lookahead can be computed 

for FCl"S queueing nclwork simulations, give performance data that demonstrates the method's 

cffectivPlless ulllkr Jlloderat.e t.o heavy loads, and discuss performance trade-offs between the 

qualit.y of lookalll'ad, alld t.he cost. of cOlllput.ing lookahead. 

-To ilppear in I.he Proc(~cdings of the AGM SIGPLAN Symposium on Parallel Programming, Environments, 

Appli(,;Lt.iuns, ilnd Lilngu .. ).\(~S, Yale Universit.y, July 1988. 

'This research was support.ed in part by the National Aeronautics and Space Administration under NASA contract 

N ASI-IHI!l7 \Vhilr~ \.lie author consulted at. leASE, Mail Stop 132C, NASA Langley Research Cent.er, Hampton, VA 

:Wiljri. 
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1 Introduction 

Physical syst.ems are inherently parallel; intuition suggests that simlilations of these systems may 

Iw alllellahle to para.lld execut.ion. The parallel execution of a discrete-event simulation [2] requires 

cardlll sYllchrolli7.ation of IHocesses in order t.o ensure the execution's correctness. A number of 

sYllchrolli7.ation methods have been proposed; some have been studied empirically. With few excep

t.ions the ('vidence is tha.t oV<'rhead inherent. in these methods prevents any significant performance 

I)(~nefit. from parallel ex('cut.ion. 

qucueillg network simulatiolls provide a stress test for parallel discrete-event simulation because 

so little computation is associated with each event. Parallel queueing network simulations are also 

illterest.illg from a. hist.orical point of view, as much of the early work in this field implicitly uses 

a q IH'llf'i ng network model for the simulation. The seminal work in parallel simulation by Chandy 

alld rvl ism[ I] idcnt.ifipd t.he concept of looka/uad as bei ng sufficient to avoid logical deadlock between 

proc('ssors. Lookahrad is t.he ability of a process to predict (possibly minutely) those aspects .of its 

futUff' I){~havior whirh affect the synchronization requirements .of .other processes. Implementations 

of till' Cha'Hly/Misra. algorithms invariably create a lookahead ability by requiring that each job 

f('("(~ive a. minimulII s('I"vic:e time (. Knowledge that a future job requires at least f. service allows 

a. pron~ss()r t.o predict that a job which arrives immediately will not depart for at least f. time. 

Ikc.urse 'IlOSt. probability dist.ributions of interest are n.ot bounded from below, implementations 

IIIl1st choos(~ ( t.o be very small. Performance studies[6,14] have strongly suggested that this poor 

lookalll'ad ahilit.y leads to dismal perf.ormance due to extremely high synchronization .overhead. 

In [II] WI' IlI'oPllspd t.hat. 1II0re extensive lookahead be calculated by analyzing a process's simu

lal.ioll sl.at.(~, a.nd show(·d how this could be a.ccOIllplished ill both queueing network simula.tions, anel 

log;ic IIl'twork silllula.l.ions. III [12] we examilled the efrect that increased lookahead has on overa.lI 

pl'I'forlllancl'. 1\1 ore r(,(O(·IIt.ly Fuji'lIol.o re-examined the Chandy /M isra. alp;orithms and focused Oil 

ill(Orpasing; loobhl'.ul ahilit.y hy increa.sing (. llis results are more encouraging, but poor perfor

lIIallce is still observl'd when the ra.l.io of lIIean service time to { is high (say, to). Lubachevsky[9] 

also usps looka.h('ad whic:h is computable under the assumption of minimum service times. While 

he dol'S 1I0t. l"I'port. allY cmpiri(Oal results, olle can expect his scheme to suffer from similar fai1il1gs as 

t.Il1~ Chandy/r..lisra. al~orithllls as reliance 011 small minimum service times has already been shown 

to yi('lrI poor perforllla.nce. 
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Figure J: Distrihuted Simulation of Three Queues 

The }lurposl' of this paper is to point out the feasibility of using deta.iled simulation-specific 

illforma.tioll to compllte lookahead ill stochast.ic FCFS queueing network models. Unlike past 

tn'a."\lI('IIt.s of parallel queueing ndwork simulations this lookahead does not rely upon a minimum 

s('J"virp tilllP. We discuss the trade·orcs between lookahead quality and the cost of computing it, 

a lid lise a. pa ralld i III plernent.ation of our method t.o show that under moderate to heavy loads a 

prot.ocol ba.sed 011 lookahead can yield good performance on simulation models that have defeated 

other protocols. Fujitllot.o has illdependently perfonn('d a similar studyl. 

Ewry processor ill a. parallel discrd('-event simulation maintains its own simulation clock, and 

it.s OWII (,V'~lIt list. i\ simpl(' exalllplE' clearly illustrates the need for synchronization. Figure 1 

d""irls thl' Sitlllliatillll of ;t thrl'P qUPl1e II ('twork011 1.1If('(' processors. Queue CJ, sends a job to 

(111('111' (J'l. with a tillll'·stalllp of 10. The lirst event in Q2's·event list is the one which accepts 

this job. Silll1r1atillll ("orredn('ss is pnsurpd if, within ('very processor, the simulation time order 

of ('valual.l'li ('Wilts is IItonotollirally inCTPa.sillg. To ensure this mOllotonicity Q2 does not process 

1.111' fir~t f'V('IIf. in its ('\I('nt list until it is certain that some other event with a smaller time-stamp 

will nf'VN h(~ il1!.;(~rted into the evpnt list. Such an event might occur, for example, if at time 1 a.n 

pxl.!'Tllal a.rrival a.ppears at (h, is given 2 units of service, and then is routed to Q2. The role of a. 

I I'l'i va \.1' '·OIllIllIlJlic:a.t.iol1 from Hichard Fujimo\.o. 
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COIlf;Nva.tivc synchronization protocol is to coordinate Q1, Q2, and Q3 so every processor evaluates 

(~Venl.f; lIIonotollically in simulation time, so that a processor evaluates the first event in its list 

:\.f; f;()On "$ it. if; sa.fe 1.0 do so, a.nd so t.hat. syst.em dea.dlock is avoided (or detected/corrected). It. 

should hI' ment.ioned t.hat optimistic synchroni,mtion is currently a topic of active study[7]j under 

an opt.illlif;t.ic prot.ocol (h would IH"oceSf; the first event in its list with the expectation that no job 

with a f;1lla.ller timc-stamp will appear. If one does appear, then corrective measures must be taken. 

Th() prot.ocol discllssed in t.hif; paper is conservative. 

Discret.e-evcnt. silllulation synchronizat.ion protocols are typically described in terms of message 

pa$silll; heha.vior betwcen /ogim/ proce.'i.o;es (LP )'s, or the subsystems modeled by processors. Asso

ciat.ed wit.h each LI' if; a set of rcadcrs and a set of writers. LPi is a writer for LPj if it is possible for 

til(' proccf;sin~ of an ('vent in LPi to cause a. "message" to be sent to LPj, who in turn modifies the 

('v('nt. lif;t in I-,Pj. In I.hif; case I,Pj is a reader for LPi. It is useful to distinguish between "content" 

a.lld "prot.ocol" messa.ges. As the titles suggest, a content message directly concerns the simulation 

a.lld its sta.te while a protocol message concerns only the implementation of the synchronization 

protocol. 111 t.he exa.lllple ahove a content message from Q1'S processor to Q2'S processor causes 

th(' ills('rt.ioll of t.h(~ ('vcnl. in (h's processor's event list. At some point Q3 might send a protocol 

IIIcssage t.o (h promising that it will send no jobs with a time-stamp less than 15 (although we have 

1I0t. yd idpllt.ificd how (2:1 call provide sllch a promise), thereby allowing Q2'S processor to evaluate 

t.he a.rriva.1 a.t. t.ime 10. Protocol mef;sa.ges may themselves be time-stamped. 

In previolls prot.ocols [1;J,I,15] a protocol message from LPi to LPj with a. time-stamp of t 

provid('s a. promise t.hat. I,Pi'S next message to LPj (a message which may cause modification of 

/'/'/s I'VPIII. lif;t) will ha,ve a. t illl('-st.amp no greater than t. The established protocols vary in their 

dl'l.a ils, (,11 t. all sharI' a dist.i ndive ("haract.<'I'ist.ic: the protocol m('chanism is largely independent 

of I.h" sySt.l'lli h('ill~ simulated. This ~!/,Ilerality is attractive, but requires that an LP's decision to 

s(,lId a prot.ocol mpl'sagc wit.h a. t.imp-f;t.a.mp of I is based solely on the time-stamps of protocol and 

("01l1.£'1It. Ill('Sf;agcs t.hal. the 1,1) ha.s J"(·c('ivcd. To ensure the protocol's generality information about 

t.\J(~ f;illlulatioll st.a.t.(" or how an 1,1' responds to a content. message is not used. As a consequence 

mallY prot.owl lIlPssages IllUSt. he excha.nged, a.s each protocol message allows t.he simulation to 

prl'wdp ollly innel1ll'ntally. St.udies of the "Null Message" method have shown that the ratio of 

prot.oml lIu'ssag('s t.o cont.ent messages is very high. Reed's recent empirical study of this method 
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1)11 q IIl'lIPi n1!; net.work si nlllla.t.iolls shows it to he of lilllited utili ty[I -1]. 

The rolt~ of a protocol IIlPssap;c from LPj to [,Pj is to provide a lower hound on the simulation 

I.illll' a.t whirh ',I'j ma.y IJI'Xt alr('d. ',/~i's ('vent. list.. '!'h(' quality of t.his hOllnd depcnds on LPi'S 

a.hility 1.0 pr('dict. its flltllr(~ 1H'lravior. In tllP qllPst. for generalit.y, t.he previous synrhronizal.ioll 

prol.ocols fa.il t.o I.akl~ a.dvalltag(~ of kllowll'dgf' ahout the simulat.('d syslf·rn. 1\ hl'U<'T hOlllld 011 

fll 1.11 f(' hl'fla.vior rail 1)(' ohtaim·d hy analyzing the LJY's simulat.ion stat.e 1.0 find lookahl'ad. Thl' 

~I'cl.illll 1.11 follow OIIt.lilll·S a synrlrrollization protocol that relies upon the rOlllplitatioll ofsilllulation

sllI·filil' Illokalrl'ad. 

2 The Appointment Protocol 

lIefof(~ discllssinl!; UH'a.ns of idcntifyillp; lookalll'ad we will introduce the synchronization protocol that 

IIS('S it. i\ small IIIIIIIIH'T of definitions must first be given. LPj's simulation clock is denoted Gi; 

1,I'j's I'V(,IIt. list. is dl'not.ed I~i. and is, a.ssullled to be ordered by increasing time-stamps. Cj denotes 

1.111' I'VI'IIt. a.t. the IlI'ad of I~i, alld Ii dcnotes its t.ime-stamp. We aSSIlIll(, the usual relationship 

1lI'I.wl'I'n (~j a.nd I~j jllst. prior to prll("l'ssing rhe event Cj with time-stamp Ii, Gi is advanced to Ii. 

1\ sNial s i III IIlal.ioll f('PI'a.tl'l\ Iy I'xl'r utes a t. h re('-step cycle: ad vann' I 11(' si m ula.t.ion clock to t h(' 

l.illll'·SI.a.IIlP Ii of 1.111' first I'WIII. ill til(' ('vcnt list Ci, process Ci (which Illay alt,<'T the event list, 

hilI. will III'VI'r add 1'\'I'IIt.S wil.h lillH.'-starnps I('ss than Ii), and rPrllove I.he event just processed. 

1,I'j ill a. para.llf'1 simulation III1ISI. lIol proress {'i until it is certa.in that nOlle of (,Pi'S writers will 

('allsl' all ('arlipr (,V(,1I1. I.hall ('i t.o h('im;erted into Ei. The mechanism we use to prevent LPi from 

Pl'llf'l'ssi II/!, a.II I'V(,1I1. ., t.oo ('a.rly'· is t.he flppoilltment. Everyone of LPj's writers provides LPi with 

all apJloillt.IIII'III I.ill'" lH'yolld which 1,l'i will lIot advallce its clark witholll. further permission. An 

appllilll.IIII·IIt. I.hal. ',I', I!,iv('s 1,/~i is <1('110\.('1\ .'\ij; w(' d(,lIote the H('t of a.1I appoint.nH'lIts given to ['Pj 

hy {~V}l. Ollly all ',I"s writ.PTs IIIIISt.SIlJlply it with appointment tim('s. 

FiJ!.III'1' ~ J!;ivl's hiJ!;h l('vl'l pS('lIdo,('wl" d('scrihillg the appoilltmellt protocol. 'vVe have left unsper

ilil'd ot.III·" III'c('$sary 1III'('lraliisIIls, ('./!;. aSYllchrollolls IIIessag('-passillp; rOlltillcH to IIpda.te appoint-

1111'111. valill's alld IIlodif), t.lrl' ('\'I'llt. list.. For darity w(' ha.ve also left IIIISIH'ciliC'd dirc'r\. optil1li~a.l.i()ns 

wlrirll ('/lSllrl' t.hal a III'W apl'oillllll(·1I1. is 1I0t rC'qll('sted before thl' last. sllrh reqll(,Ht was satisfied. 

I.ik .. ;111 ('ollsl'rva.t.ivl' s,Vllrlrrollizal.ioll protocols, this olle prevents till' pror('ssing of an event if t.hel'<' 

is a.IIY ('ha.IICI' I.ha.t. all ('\'('111. wil.h a Hlllallt'J' I.illl<'-stamp will be insert.ed into the ev('nt list. 
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Loop { 

Definitions 

Cj Value of J,Pj'S silllulation dock 

Ej [Jpj's event. list. 

f:j First. event on Jj'j 

Ii Time-stamp of first. event on Ej 

Akj Appoint.lllent provided by writer LPk to reader LPj 

min{lVd MinimulII over all appointments given to LPj by its writers 

If ( Ii ::; min{Wj} ) 

{ Cj = Ii; 

} 

Els(~ 

} 

Process cv<'nt. Cjj 

Rf'1ll0VC Cj from Ejj 

For every writ,<'I' /,I'k 

If ( Aki < Cj ) 

Requcst a new appointment from LPkj 

For every rpa.ller L Pj 

If ( /'['j has requested a new appointment) 

Compute and send a new appointment Ajjj 

} For('ver 

Fip;ul'e 2: Appointment. Synchronization Pseudo-code 
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'I'h(' a.hility of this proto('ol t.o n·dll('{' sYII('hI'OIliJ.:a.t,ioll oVNIIl'ad t.o a('cept.ahl<· levels c1ea.rly 

dl'Jll'llils 1111 1.11(' a.hilil.y t.o "rovidl' lookahl'ad. A qUl'ul'ill1!, 1I(!l.work off.l!1I has st.rudlll"(· which allows 

"'1"1'"". (J t1 1.0 p(,riodica.lly p!"Ovid(' IIJlpl'r hounds 011 t.he tilllPs a.t. which it. will roul.e jobs I.oot.her 

II III! III'S. 'I'h(' a.ggrega.t.ion of I.Il('s(· hounds form t.he basis of an appoilltment. The sections to follow 

show how va,riolls degrees of looka,head can be computed in queueing network simulations. 

3 Lookahead in FCFS Queueing Networks 

Lookaliead is easily <:fllllputed ill a. st.ochastic simulation of a network of FCFS queues. The sim

ula,tjoll is d istrihll t.ed hy assigllillg q nenes t.o processors. DependiI~g on the size of the queueing' 

1l1'1,work, a. processor ma.y be assiglled several qneHes. A processor is responsible for simulating 

1.1". qllPIiPi1l1!, act.ivity of parh of it.s quelll'S, alld for maintaining all st.atistical information collected 

about thl' <]II('II~S' hehavior. All L1' then consists of the possibly fragmented suhnetwork assignee! 

I,ll a processor. It. 'is illlportant. to note that. past treatments of parallel queueing simulations haw 

trl'al.('d ('ach II uell(' i IIdivid ually as all I,Pj t. his invariably leads to high overhead because synchro

lIiza.l.ion rosts are sum'reel 011 a per-I,P hasis. 

A typical si llIulatioll of a q ueul' rI'll IIi res three event handlers: AddToQueue, BeginService, and 

FinishService. Th(' randolll service time of a job entering service is traditionally sampled by 

BoginSorvice, a.lld t.he d(·sl.itlatioJl of the completed job is traditionally chosen by FinishService. 

A sl'ria.1 silllulat.ioll gaills lIot.hing hy choosing the service time and bl:anching destination any sooner 

tllall I'l'qllin·d. For t.1J(' !,lIrpos('s of computing lookahead there is much to be gained by choosing 

1.1)('111 !'aTIi!'\". Ollr a.hilit.y t.o do so dI'peJlds in large part on the model a.ssumptions. In the simplest 

hilt. IIIllst ("olllillon t.YPI' of st.ochastic silllulation t.he:wrvice time of ev(!ry job at a. queue is drawn 

frolll a. ("0111 Ilion dist.rihlltion and 1.111' hr;lIlchilig dl'sl.ina.tion is cllosPII fro III 'a common 'distrihution. 

Noll' Ihal. 111I'sl' '111<Lnl.ili(·s ("ollid 1)(' drawn at. any time --'il. can he adva.nt.ageolls to select a job's 

sl'rvin' t.illll' alld hrallchillg dpst.inat.ioll b('/ore the job arrives. For exa.mple, if a.t time t queue QA 

has 110 johs pnquPu('d for q 8 hul. it. is knowlI that the next job which branches to Q B has service 

t.iIlH· .~, t.hen QA will sl'lId no johs to QH before time CA(t) + s, where CA(t) is the time at which 

Cd ,\ will next. Iw elllpty if no furl.her arrivals occur: t plus the sum of service times of all jobs in 

If 111'111' ;1.1. t.i lIIe t. (: ,,(I) + .<; is a sharp oOlln<1 if the next job arrives prior to time e A( t), and has Q B 

c1l1lsl'n as its hra.nchillg dest.inat.ion. 

G 



'I'll(' observa.t.ioll above led III' to an orga.nization which associates with every queue a future list 

of johs whirh havp 1I0t. yl't. al"riv(·(1. A joh's sel'vire t.illl(, and hranrhing d(·st.inat.ion arc d('terJIlitwd 

whl'lI it. joills t.h(' fllt.lIl"l' list.. The fllt.lIl"(' list is k('pt. large ('nough so that. it. cont.ains a job for every 

I'ossihll' hrall('hiJlg destinat.ioJl. Whl'll the evellt handler AddToQueue is called at simulation time t 

t.0 sill1l1late a job arrival at QA, the first job in QA'S future list is removed and is used to represent 

t.1,,· arriva.1. If t.ha.t. job branches t.o Q B, and its removal empties the future list of jobs which 

bra,lI('h t.o Cd fl, t.hen additional johs a.re a.ppended to the future list in a manner which preserves 

t.he st.at.ist.ical integrit.y of I. he simulation--johs with randomly selected service times and branching 

dest.inat.ions are a.ppended to the future list until a job with destination QB is added. Note also 

t.hat. onc(' a. joh .J H arrives at Q II it.s arrival time at the next queue Q B is already determinedj 

ronsl'« u(·IIt.ly the pro(,essor hold ing Q B may be immediately informed of .I B 's arrival there. This 

is ad vant.ageous wllell q A and Q a reside in different processors, as it may allow Q B to simulate 

.In's a.rriva.l ah('(-\,d (in real time) of it.s simulated departure from Q A. After computing .lB's arrival 

till\(' at. Cd /I, we compute a lower hOllnd on the time of Q A 's next, as yet unseen job to Q B, called 

.I N,';I'I' A desni pt.ioll of .J Next is found in Q A '8 future list. Because Q A is FCFS, we know that 

.IN,'.1'l ('allllot. del>art. a.t. least lIntil all jobs current enqueued at QA receive service, at time CA(t). 

FlIl't.I,,·rlllorl', .JNeJ'/ does not receive service until every job ahead of it ill the future list receives 

sprvin·. Let.t.ing .". he t1w Slllll of service times of all jobs ahead of and including .J Next in the future 

list., ('A (l) + S is then a lower hound on the time that Q A will next route a job to Q B. This bound 

is ('hl'aply ('olllput.ed, and is passed to Q B 's processor along with the message reporting the arrival 

of .1/1. Figuw;~ illllst rat.l's t.hes(' POillt.S, and a possible transformation of a queue and its future list 

111'011 t.h .. silllllbt.l.('d arrival of ii, joh. Figllre" olltlines the roles played by t.he the event handlers in 

t.lris SdH'IIIP. 

It. is appal'l'nt. frolll the <\I'script.ion abov(' that lookahead information is continua.1ly being com

I'll II'" alld ('xc\lfl.llgpd I)('t.w(·('n (JlleHI'S. 0 hsel've however that a bound b provided by Q A for Q B 

r,," 1)I'ro"l(~ "st.ale" t.lw bOHnd is predicated on the assumption that the next job from Q A is 

1'01lt.l'd ,IS snOlI as possihl<'j it is possihle for the simulation dock in Q a's processor to a.dvance up 

t.o b wir.lrollt. ,,"oUI('r job beillg sent from (JA to (J8.ln the absence of further jobs from QA, and 

ill r.11(~ a.bS(~IIc(~ of ar.t.ive lIIeasures by (J" 's processor to compute a new hound on the time of the 

III'Xt. job rrolll q A t.o q a, th(' appoilltment. time It provided by Q A 's processor t.o Q B'S processor 
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I ;1I I lire Li sl 

loh: .L3 

Service: 1 

Br:lllch: 3 

loh :L2 
Service: 7 
Branch: 2 

Jobs in Queue 

Job: Ll 
Service: 5 
Branch: 2 

r------------------------
Processor 

Jobs in Queue 

Job :Ll 
Service: 6 
Branch : sink 

Event List 

time: t+7 

event:linish_scrvice 

job :LJ 

simulation time = t + 5 
residual = 2 

'i:::~;::~~"1 :80und'l+ 8 ~IIIIIIII. 

~ 1111111--( 03 im __ mm __ ~~mmm 

Future List 

loh: .L5 
Service: 1 
Branch: 2 

.I()h:L4 

Sl"rvicl' : 10 
Branch: J 

Joh: i.3 
Service: 1 

Before arrival of L2 at time t 

Jobs in Queue 

Job:L2 
Service: 7 

Branch: 2 

Job: Ll 
Service: 5 

r------------------------
: Event List 

Jobs in Queue 

Job:Ll 
Service: 6 
Branch : sink 

time: t + 8 
evcnt:add_lo_qucue 

job:L2 

time: t+7 

evcnt:linish_scrvice 

job:Ll 

Branch: 2 " 1" " slmu atlOn tune = t + 5 

simulation time = t residual = 2 Branch: 3 I 

~ 11111I"a{: IBound·I+211 ~IIIIIIII. 
O2 

o 
3 ------------------------

After arrival of L2 at time t 

Figure :1: Transformation of queue and future list after a job arrival 
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AddToQueue (q, t) 

Rplllove finil, job Jf frolll front of (J's future listj 

A pp(,lul .J J t.o end of q's 1'('a.1 q u('u('; 

If ( No johs in fut.ure list. t.hat brallch to .If .Branch ) 

Repcat { 

en'at.e joh .I; 

Ralldomly chose s('rvice t.ime J .Service; 

Ralldornly dIOse hranch J.Branchj 

Append .I to elld of Q's future list; 

} Until (J.Branch = Jf.Branch) 

.Ill = first. job ill future list such that JB.Branch = Jf.Branch; 

,c,' = SIII1I of future list service times through JB; 

A7Jt = S + (:A(t); 

Not.ify queue .If. Branch of arrival at time CA(t); 

Notify queue .If.Branch of appointment at time Apt; 

Add BeginService event to event list at time eA(t) - Jf.Service; 

BeginService (q, t) 

.I = First. joh in (J's 1'('(11 qu(,ue; 

COlllpllt.e df'sired st.at.ist.ics; 

Add FinishSpl'vire ('v('nt. t.o event. list at t.ime t + J.Service; 

FinishService (Q. l) 

Remove first. job in (J's rea.l queuej 

Comput.e d('sired stat.ist.ics; 
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call1lOt. I'xce(~d b. As q H'S processor advances in simulation time it may find that the first event 

ill its list. has a. t.inH'-st.amp larger t.hall fl. In this case a new appointment is requested from QA'S 

pnw('sslIr. It. is cv(~nll1a.\ly ilu·ullIhell!. upon QA'S processor to satisfy this request. hy computing a 

Ill'wappoint.mellt.. 

,,"i ca.1I const.ruct a.1I a.ppoillt.nwllt. for 1,/~j in s('veral different ways. Two of the simplest ways 

aJ'(~ dl'scrihed hdow. 

I. 1,1'i scans all of t.he lat.l's!. houllds its (pieties have already provided t.o quelles in LPj. TIl(' 

appoilll.llIl'nt. va hI<' is thl' II'Clsl. of t.hes(·. 

'2. '.I'i SCflns il.s PW'IIt. list 1.0 lind I.h(' first fut.ure job arrival to allY olle of its qU(,lIes. It compares 

I.his I.illle t.o t.he minimulII a pilOi nl.llll'n I. givell to it by a. writer I,P, alld denot.es t.he minimum 

of I.h(~s(' t.wo vallll's by m; t.his C)ualltity is a lower bound on the time at which a job next 

ani VI'S at allY q 11('11(' in t.he I, P. Then for every every pair of queues Q A and Q B such that 

Cd It liv('s ill I,Pi and Q H ill 1,Ij W(! compute a new bound. The new bound is computed 011 

I.h .. aSSlI1lJ ptioll I.ha.t 1.11(' next job t.o arrive at Q A (not necessarily with branching destination 

Cdll) arriv('s a.1. Sillllllat.ioll tillle 11/.. Letting JNext be the first job in QA'S future list with 

dl"st.illa.l.iOlI q H alld Idtillg S· 1)(· the Slllll ofs(~rvice times of johs ahead and including JNext in 

t.hl' 1.111' fut.llr<' list, WI' COlli I'll t.e t.he a.ppointment va.lue max{m,f:A(Ci)}+S. This appointment 

(,plll'rls til!' possihilil.y of all arriva.l precisely at time m--tlw max tPrIlI computes the earliest 

I.illll' a.1. which I.h{~ joh reprl'scllt.l'd by that arrival begins servk(· in the queue. Among all such 

bOil lids (·OIllIIlII.I,d for all qIWIII'S, I.hp llIinimullI is the new appoilltll]('nt.. 

'1'111' Ii nil. of I.II(,SI' 1111'1. hods is til!' diP", I II'S I. to comp"l.!', hll t will not lIot prod lice a IIsable appointment 

if allY of I.he old houllds aTI' st.all'. Furt.hermore, Ll'j cancompllte this va.lue for itself whenever 

il. dl'sifl's. TIII~ s('("01111 lIIet.hod IIS(,S lIIore information (the value m) and so may produce better 

houllds al. I.III~ ("ost. of sOllie add i t.iollal COlli 1''' t.ation. It is importa.nt to note though that even if some 

houllds <1.1"1' illlproVl'd, t.hl' appoilltlllPnt. improves only if the minimum bound is improved upon. It 

is also iJllportant. t.o lIote t.ha.t. for allY ~i\'('n qIH'IIP, recomputing a bound with an increased value 

of 11/. will nol. illlproVl' til(' boulld if 111 is less than the next known time that thl' queue could be 

('llIpl.y. Till' kpy icll'a. hehind IIsill~ Cd.4 's fllt.ure Jist to compute an a.ppoint.ment is to find a lower 

houlld (III tI)(' time at. whirh t.he n('xt. job arriws a.t q A. The second scheme is quite pessimistic 
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WIIl'II cOlllpllt.inJ,!; t.his hOllnd. It. is possihl(' tha.1. \'alll(~ d<'lininJ,!; '/I/. is associal.('d wit.h a qucue far 

n'llIlIv"d frolll q It, alld that a. IIIl1ch lu,t.t.('r bOlllld on t.III' III'XI. arriva.l at. (J ,\ is possible. \V(' ha.\'(' 

illlpl(,III1'nl<'d a Ilwt.hod which a.nalyz('s t.he filII siTllulation state in an 1.-[> in order to determine for 

I'a,ch q A t.he best. possible bound tA on the time of its next arrival. Then for every writer/reader 

pa.ir q A - q H a. bound is const.ructed just like the one above, with tA taking the place of m in 

t.he calculat.ion. The minimum houlld so calcula.ted is the new appointment. A description and 

allalysis of this met.hod follows. 

We first. freeze all illcoming bounds t.o LPj's queues by making copies of their current values; 

this elimina.tes allY further ('frect t.hat other processors can have on tlw forthcoming algorithm. 

I';very queue which reads from an ofr-processor queue has its min_apt value set to the minimum of 

it.s frozl'lI ofr-proc('s~or boullds. Next., we scan the event list for job arrival events. Associated with 

('(trh sllch ('vellt. is a t.a.rget. qll('IH'; the arriva.l time is used to updat.e the queue's min_apt value if 

t.hat. value eit.her exceeds the job arriva.)time, or is in the initial stat.e. Following these initialization 

st.eps, every queue's min_apt value is either null, or is equal to the minimum time at which a job 

llIigllf, arrive eit.her from ofr-processor, or from the event list. The problem now is to analyze the 

Plli,('\.s of job arrival~ at those minimum times. This analysis is performed by essentially simulating 

till! (,m~ct.s of joh arri vals. For ('very q IWlle with s01lle value ill its min_apt field we place in a shadow 

('11('711 lisl a shadow fl1(:111 which dcnotes a job arrival at time milulpt. The shadow-time-stamps of 

shad()w-(~v('lIt.s t.akell ofr of the shadow-event list will be monotonically increasing. Proceeding with 

t.hl' shadow-siIllUIa.tioll, we rcmov(, the minimum time shadow-event from the sha.dow-event list. If 

t.11I~ sp('('ifi(," queue has alrea.dy becn "touched" by the shadow-simulation we simp,ly discard the 

sl,adow-l'vPIlI.. Otlr('rwis(~ we ('011 sider t.lre effects of a. job arrival at tire specificd queue (say QA), 

at 1.1r(' slradow-I~vellt t.ime. This is accolllplished by computing a bound for ea.ch of QA'S readers, 

hasl'd Oil till' a.ssulllpl ion t.hal. a. joh arriws at the slradow-a.rriva.1 t.ime. Shadow-events describing 

1.11I's(' anivals an~ ins('r1.('d int.o the shadow-event list, the queue is marked as having been touched 

hy 1.1((' shadow-silllula.t.ion, a.lld a. COUllt. of "touched" queues is incremented. We are finished if this 

coun 1. I'q ua.ls t.lre '(11111)(,1' of un fixed q 1I(,IIt'S. Becallse t.he sha.dow-simulation simulates propa.gation 

or johs I.hrough t.lre nt'1.work at. I.h(' ('a.diest possible times, the shadow-time associated with the 

firsl. I.lIud, of a qU(,ll(, hy I.he sha.dow-simulation is a lower bound on the time of the next true job 

arriv.rI a.t. 1.111' (I'J(~U('. Once t.hl' shadow-simulation has finished it is a simple matter to compute 
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IIC'W hOlllldH for qllC'lIl'H in ot.hpr prllrl'HHOI'S by IIsill~ t.he shadow-joh a.rriva.1 t.imps. 

'1'111' ;·olllplf'xit.y of t.his 1I1I'lh"d is (J( I'; IIII!, /.:), whl'rC' I~ is t.he 1I111111)('r of int.er-qll('IIP cOllncctions 

III t.11I~ 1,1'. This follows heralls(' a.ny ~iven inter-qltelw link will ha.ve a. silllulat('d shadow-arrival 

sclll,d IIled t.o cross it. at. 1II0St. on('(, (1)('c<1l1s(' a queue is touched at most. once), a.nd priority list.s 

sllch as heaps ('xact. a. lo~arithlllic cost for each access. This complexity does not wnsider the cost 

of illit.iali1.in~ tlH~ priority heap. Initiali;.:ation requires that we determine each queue's minimum 

illcolllinJ!; orr-processor hound. Letting l~ denote the number of links from off-processor queues, this 

is achi(~v('d ill O( in !,jlll(,. We IIllist also det.ermine for each queue whet.her there is a future job 

arrival in t.he evcnt list. It is possihl(' to link events in a such a way that the first arrival event for 

a.IlY J!;ivclI qlWIW is accessihle in const.a.nt. time. This endows the initialization phase with an O(n) 

('olllplf'xit.y, where 7/. is the llullIbcr of queues on the LP. The O(E log E) cost thus dominates. It 

is appropriat.e t.o point Ollt. t.ha.t. this method is similar in spirit to that d.iscussed iOn [5]. Due to 

dilrN(,IH"PS in t.11(' llIoclPls alld applica.t.ions, Grosdj and Tropper's a.lgorit.hm has a sJi~htly smaller 

cOIIIJllexit.y O(nlo/!,II + I':). 
YC't. allot.her a pJlroa.ch t.o ("(1111 pll t.i II~ look" Il('ad is quite general, and docs not. ('III ploy the inter

II 111'11(' hOllllds at. a II; i IIst.('ad, it. allalyzes each processor's event list.. Imagine momentarily that. all 

processors ar(' t.f'mporarily inhihit('d from modifyin~ their event lists. Let lm.in be the minimum time 

stamp allIOIlJ!; alljoh arriva.l eV(,IIt.s on the event lists. Then clearly any appointment value a < tmin 

hl't.w('('n any t.wo pro('('ssors call be increased to tmin' This type of lookahead is equivalent to that 

propos!'!1 hy Lu ha.ch('vsky [9]; IIC)\\'{'ver, the "minimal propagation" delays his method depends on 

al'l' IIslIally Z(,fO in J!;pneral stochast.ic queueing networks. Lubachevsky's method calls for global 

sYllchrolliza.t.ions hPl.\well 11I'oc('ssors so tha.t. 'JIlin can be found, and events \vhich can be performed 

("ollcllrrellt.ly 1)1' iclPJltified. 0111' ()vNall a.pproach is asynchronous, and we prefer to avoid global 

synchrollizations if Jlossihle. A low('\' hOlllld on tlllin can be constructed asynchronollsly under tIl<' 

asslllllpt.ioll that. IIlPssal!,ps hPl.wl'l'n 1,I'j and /,I}j a.n' r('ceived in the order that they are sent. Let 

'f'm".1 ;\.IId 'f'mu''I. III' t.WO arrays sllch that 'l'O//(:lj contains a snapshot of of LPj's minimum job 

arrival I'wnt. at SOIl1(' rea.l tilllC' .0; I j, 'f'olu:'l.j colltai liS a. snapshot of of [,Pj'S minimum job arri val 

(,Wilt. a.1. SOIlI(' rea.ltillle .O;~i, anel .'iIi < 82j for any i and j. It call be shown t.hat the minimum value 

i II t.1)(~ '/'01/.c\ a.rra.y is a lower bOil nd 011 (I1t!l fll t.ure joh arrival event time, and is consequently a lower 

11(1111)(1 011 a.ny iJlI.Nprocessor a.ppoint.mellt. The Tone arrays are easily maintained by appending 
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lIIillima.1 rlll.urp joh arrival timl's 0111.0 lII<'ssap;('s ('xclla.llp;cd bet.w('1'1I pro("('ssors. This IIIcthod is 

I'vpn l';tsiN 1.0 illlpl(~lI\ent. on a. shal'l,d-lIl<'mory ma.('hine ir t.he ('v('nt. lists an' sl.or('(1 in COllllllon 

1I11'1lI01'y, 011(' processor can he sol!'l)' dedicated to t.he task or collecting Tone values and updat.ing 

sl.all' appoint.ment.s. 

We have impll'llIcnted the second, third and fourth of these methods. The following section 

dis!' IIsses t. hei r 0 hSl'rv('d perrorlllance. 

4 Performance Results 

W(~ have im pll~lIIent.('d a parallel discrete-event queueing network simula tion on NASA Langley's 

Fll'xj:12 [IOjllllllt.iproressor. The FI('xj:l:~ is a hus-orient.ed shared-Illemory archit.ecture which sup

porl.s hot.h local a.nd p;loha.lmelllory. Our implement.a.tion ta.kes advantage of the global memory

I'a.ch Pl'Oc('ssor's ('V(~IIt. list. is in glohal llIelllory, and one processor may inscrt an ev('nt int.o a.nother's 

list.. Mil t.llal (~XclIlSi()1I is PII rorced lIsi ng low-level pri mitives such as spin-locks. Data structures dc

snihillg t.he hOllnds het.wcen qllelles and the appointments between processors are also orga.nized 

III t.hl' glohal memory. 

Thl' sYllchrollizat.ioll method employed to ensure simulation correctness is only one of a host 

fir Pl'frormancp isslll's t.hat IIIIISI. he addressed hy it parallel simulator. In order to study the 

I'm'ct.ivelll'ss or the synchroniza.tion method largely in isolation from other factors (such as load 

halallcillg), we ha.v!'d sl.udied simple, very homogeneous queueing networks which arise in the design 

or i II t.('r-pro('(~ssor com !lIUII ical.ion lIetworks: rings, meshes, hypercubes, and multistage routing 

III't.works. \Ve a.SSIlIll<' t.ha.1. every s<'rv('r in a network has the same service t.ime distrihution, and the 

sa IIII' hOIJlOl!,l'lIl'OIlS hrall(·.hillg proha.hilil.ies. '!'hp st.lldies we descrihe here concern rlosed networks or 

~"-I(i lIodl'S ('X('ppt. ror :11'1,1 nodI'S in 1.1", rtlultistage ca.se) simulated using sixteen processors. Queue 

i is assign('d 1.0 procl'ssor i mod 11, where 1/. is I.he number of processors. 

,','Jlnt/ul' is t.JII' t.illlP r('quil'pd t.o solve 1.1", problem on a serial implementation divided by the 

t.illll r('qllil'l~d hy a para.lle1 illlplement.ation. It. is easy to usc the parallel code on one processor 

as 1.1", sPl'ial vprsion--the a!!Jof'ithmic .o;pcerlup so calculated measures the method's efficiency as a 

rllllrt.ion or I.he nllmbl'\' or pron'ssors used. It docs not however measure the end-user's benefit from 

parallPlislll. This 1H'lIdit. ('a.1I only be measured by comparing the performance of an optimized 

sl'rial version wil.h t.he parallel vprsion. Our performance measurements a.re based on this latter 
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1111'011'111'1'111('111. of spPC'1I III'; til(' op1.illliz('d sl'I"ial vl'rsioli wa.s nea.t('d froln th(, para.lld wrsioll hy f('

III11Vill~ all cod" r('la.l.('1I to lIIul.ua.1 ('xrillsion and syn('hl'(Inil~ation, alJ(l hy rellloving all computations 

rl'lal(·1I to \.II(' fut.1I1"<' <Iueue. A ('omparison bet.w('('n the optimized serial version and the parallel 

V('fsilJlI on on(' pro('('ssor tells III' sOlllething a.bout the cost of a processor's internaloverh<,ad of 

doing para.llel proc('ssinp; (e.g., calls to synchronization routines); it. also gives us a.n upper bound 

011 1.1)(, sp('ed II ps we (";\ n expect. Ea.ch of our performance graphs is marh'd with this upper bound 

to h"UN rdkd how C'flirilml. till' progra.m is rdativc 1.0 its inescapa.ble internal overhead. 

Thl' da.ta. Ht.rudlll'PS amI alp,oril.hllls used t()lllanage the event-list have a critical effect on per

fOl'lllallce. III t.he i 1I1.1'I'(,St.S of rapid -prototyping we first implemented the event ,list as a naive, 

dOllhly-lillkpd list. {jllder mollNa.te loads we achieved a speedup of 24 using 8 processors! This 

all(lllla.ly is simply ('xplailled hy realizing that the serial version is suh-opt.imal (see [8] for a per

fOI'1IIall('(' sl.lItly of Va.riolls list.-mallap,Pllwnt algorit.hllls); anomalies of this type have been ohserved 

ill ot.her COIl1.('Xl.s 1'1]. \V(, sllhS('<I11Plllly illlplemented a simple, bllt. more efficient list management 

algoril.h 11\ hy assoria.t.i IIg all orden'd q II<'lIe of events with each ind i vid ua I queue, and then use a 

I'OlIlhilling tn~C' 1.0 idl'lIl.ify th!' I'WIlt. list. wit.h smallest minimal event. 

The stat.istics mlll'ct.ed by ollr IlI'o~ram are minimal:, for each quellewe maintain a 128 clement 

hisl.ol!;ralll of joh waiting times. Upda,tin~ t.he histogram requires only a binary search to select a. 

hi II, allil a.1I i IInelllPlI1.. 

'1'111' rillg; t.opolop,y allows iI. qlWIIP t.o send jolls 1.0 either a left, or right neighbor; the mesh 

t.opolol?;y I'Ollnl'cl.s N 01'1.11, SOli I. h, East, alld West neigh hots, and wraps around the edges to create 

a. t.orIiS. Till' hypcrr.llhe t.opologyis the uSllal olle; themllltistage network consists of six stages, 

I'a('h of whirh has sixty-folll' qllI'III'S, a.1II1 which 'feeel forwa.rd to the lIext. sta.ge using the Butterfly 

illt/'ITonnl'dion paUI·rn. The last stage f('pds t.he first. stage. 

All of ollr ('xpNill)('nt.s ('Ill ploy sixte('n processors. In one set of experiments we assume that the 

Sl'I'vi('1' tillll' is expollI'lItial with IIl1'an It = 1.0; anothPl' set of experiment.s tf('ats t.he service time as 

t.hl' cOllsl.allt. 1.0. JlI'('ause t.1H's(' 1IC't.works aI'(' dos('d, t.he simulation load is varied hy adjusting the 

1I11111h('l' of johs plared illt.o th(, syst.PIlI. Becallse of homogeneity the load can be described simply 

hy II, t.he aV('fag(~ lIumber of johs ill quelle at. a server. For every topology and service distribution 

W(' varipd II wit.hin t.he set. {I, 2, '1, G,~, lG}. For each set of parameters we simulated tIle network 

1.1'11 l.iuIPH, start.ing frolll "" initial (,()IIri~lIratioll where each quelle has exactly v jobs in queue. 

14 



Thl' SilJlUIa.l.ioll Wa.S I.NlJlillat('d aft .. r a.1I pro('('ssnrs had advanced 1.0 sillllllal.ion I.ime 100. Large)" 

I.Nlllillat.ioll tiltH'S would he ()(.sira.hl(' if we w('re int.erested in accurate queueing network statistics; 

howev!'r, the tillliltl!;s Oil experin\('nt.s with larger termination times scaled directly, required much 

11101'(' CPU time, a.nd were suhsequently dropped. The execution time measurements exclude the 

I/O t.ilIlP f('q U i rl'd t.o i IIi tially load the prohlem, hut incl ude all other I/O required during the course 

of a. rllll. 011 r p('J"formance curves plot i nt.ervals to represent speed up. The intention is to both 

slrow wlrat. sort of speedups call he expected, and wha.t variation there is in the speedup estimates. 

't. is '"' f('f1sonahle t.o lIIeaSI1 H' trrw speed u p by ind ucing precisely the sa.me branching and service 

I.ill'" 1H'lravior in tire serial and para.IIC'1 versions. Inst.ead, for each set of experimental parameters 

w(~ III('aslln'd 1.1l(~ Ilwan ILl' and st.andard deviation a p of ten parallel rUllS, and the mean J.Ls and 

salllpl .. sl.alldard deviation a., of t.en sPl'ial runs. Then we plot an interval cont.aining a. high speedup 

est.illlatp, (It .• + (T .• )/(Itp - a l ,), and a. low sp!'edup estimate, (Ils - a .• )/(JLI' + ap ). 

,0'iJ!;lIr('s !'i awl Ii pres('nt.s t.he speedllp int.ervals. Each graph's title has the form "Topol

oV;Y / Looka.h(Oad typ"/ Dist.rihll tion"; ·the lookahead type is Full or Border, depending OIl whether the 

lookah('a.d (·aklllal.ion ana.IYl':ed tire filII /,/' state or simply computed bounds at the queues which 

f('l'd oJl:pron'ssnr (PH'III'S. A n'"III)('r or obs('rva.tions stand out. Ordered roughly by importance, 

l.Iwy a.re: 

I. (J 1)(1 (Or lIIoderal.f~ 1.0 Iwavy si 1lIlIlat.ioll loads every graph approaches its optima.l level (a speed up 

wlrieh t.ellds t.o Iw dosl' 1.0 ('lcVI'Il). Thl'se experiments show that good speed lipS arc sometimes 

possihl(, ill I.I)(Os(' types or sillllliations. If the simulation load is low the proportion of useful 

work t.o lookalH'ad COIII(lllt.at.ioll has 1.0 diminish, yielding poor spcedups. 

~. TI/(~ s(~rvil'l' t.illJ(' variat.ion has a St.rollP; cfred. on speedup. Undcr high variation very small 

lookalr('ad valll(Os al'l~ (lossihll', rrwarrillp; that lookahcad is computcd more often, thereby in

I'll rri Ill!; i 1)("J'('a~('cI oVl'rhl'ad. This is ill agreemcnt. with Fuji moto's experiments[3]. 

:1. N et.wol'k t.opolol!;y st.l'OlIl!;ly afr"ct.s performance undcr low loads. Hypercubes have a richer in

t.l'rCOIIIIl'rl.ioll stl'lIct.lIl'e, which ca.lIses increased uncertainty in future behavior (meaning that 

lookallf'acl hOllllds are IIOt. sharp). (J IHI<'I" low loa.ds and expollclltial service times simulation 

of h'yp('fclll)(~ irrt.('I'("ollllectiolls pcrfoflll('d poorly while other illl.('fCOllllcctiolls did somewhat 

1)(~t.t.<,I'. 
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-1. Simulations of rings tend to have higher va.riance. This is understood by realizing that high 

workload ill Honw net.work rep;ion does not easily disperse; th<' other topologies are l}('tter at. 

sprmding jobs around the network. This understanding of the phenomenon is re-enforced by 

Reed's observation[14] that concentrated chains of jobs tended to form in his simulations. 

5. The form of lookahead used (Border or Full) has a smaller effect on performance than we 

anticipated. In this set of experiments the cheaper form of lookahead (Border) uniformly 

performed beUer, but this effect was secondary when compared to the effects of service time 

dist.ribution and topology. We hasten to recall though that the mapping of queues to pro

cessors forces every queue to feed a proportionally large number of off-processor queues, so 

that the lookahead gained by collecting additional information from on-processor queues is 

overshadowed by the cost of collecting that information. We did study two variations on 

the lookahead calculation which only analyzes event lists. In one variation we dedicated a 

processor to the task of searching for this type of lookahead while all other processors did 

simulation work. This scheme had very little impact on the execution times. In a second vari

ation we relied entirely on appointments computed by the auxiliary processor, and achieved 

compara.tively poor speedups, even under high loads. 

Two other points arc of interest and arc not shown in these graphs. Network size has some 

effect 0/1 performance; as expected, larger problems yield larger speedups, although the speedup 

still depends most heavily on the average queue length and the service time distribution. Secondly, 

we Il1easuT<~d the number of times the lookahead analysis algorithm is called in the course of a 

simulation run. Under high loads (v = 16) the analysis routine is never called: the ordinary 

lookahead computed with every arrival to a queue sustains the progress of the simulation. 

We reiterate the main conclusion that we can draw from this data: at least under limited 

circumstances it is possible to achieve good real speedups by using a conservative synchronization 

mechanism which exploits the problem being simulated. 

5 Summary 

The parallelization of discrete-event simulations has proven to be a difficult problem, due in large 

part to extensive and irregular synchronization requirements. One means of alleviating that syn-
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rhrollizat.ioll hlll"<l(,1I is t.o havp llJ'o('('ssol's allalyzp th('ir sillllllat.ioll st.at.(' a.nd compute lookahmd. 

low .. 1' hOlilids Oil t.illll's a.t. which t.11<'y 1H'l'l'orfll act.iolls t.hat. direct.ly a.m,rt t.he (~vpnt. list.s of ot.II('1' 

pro('(·ssors. WI' illllsl.l'at,(' t.his t,('Chlliqlw 011 t.h!' knotty prohlem of st.ochastic qllcucillg nctwork 

SiIIlUIa.1.iolis. Th<'se silllllla.t.ions are pa.rticula.r1y difficult becausc tlwir intrinsic computation to syn

chl'Ollizat.ioll cost. rat.io is so dis-advantageous. We show how the simulation can be re-organized 

t.o a.llow lookahead t.o he COlli pllt.ed for reFS queueing networks, discuss trade-oITs bctween the 

qua.li1.y of lookahead ,\IIe1 the cost. of providing it, and demonstrate the effectiveness of the method 

hy i III plel!l(~11 t.a1.ion Oil several COlli ilion CJ lIeueing network topologies. This result stands in contrast 

wi1.h pJ'(~violls s1.lIdh's which IIs('d synchronization mechanisms that are largely unaware of the un

d"rlyillg silllllla.tion (lrol>ll'llI. Genera.lity in a synchronization mechanism is a worthy goal, but the 

pri('(~ of that. p,oal lIIay he poor performance. 
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