
Report on the 

OBJECT-ORIENTED DATABASE 
WORKSHOP: 

Implementation Aspects 

Held in conjunction with the 

Object-Oriented Programming Systems, Languages, and 
Applications 

(OOPSLA ‘87) Conference 

October 5, 1987 
Orlando, Florida 

Satish M. Thatte 

Workshop Chairman 

Artificial Intelligence Laboratory 
Texas Instruments Incorporated 

P.O. Box 655474, M/S 238 
Dallas, TX 75265 

CSNet: Thatte@ti-csl 

1 Introduction 

Object-oriented database systems combine the strengths of object-oriented programming 

systems and data models, with those of database systems. This half-day workshop focused 
on issues such as object persistence, persistent object storage servers, object sharing, trans- 

actions on objects, query optimization, and performance issues (buffering, prefetching, 
clustering, etc.) 

The workshop panel consisted of eight members: Cmig Damon (Ontologic), San- 

dra Heiler (Computer Corporation of America), David Maier (Oregon Graduate Center), 

Patrick O’Brien (Digital Equipment Corporation), Lawrence Rowe (University of Cali- 

fornia at Berkeley), Alfred Spector (Carnegie-Mellon University), David Wells (Texas In- 
struments), and Stanley Zdonik (Brown University). In the first 90 minutes, each panel 

member presented his/her position. This was followed by questions from the workshop 

participants and discussion. 
To encourage vigorous interactions and exchange of ideas between the participants, the 

October 1987 OOPSLA ‘87 Addendum to the Proceedings 73 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F62139.62150&domain=pdf&date_stamp=1987-01-01


workshop was limited to participants based on the submission of an abstract describing 

their work related to implementation issues of object-oriented database systems. The 
workshop announcement drew a very enthusiastic response. 35 single authors and 18 
co-authors submitted abstracts. 57 participants (including panel members and walk-in 

participants) attended the workshop. 

This report is organized into two major sections. Section 2 presents position statements 
of the panel members. Section 3 transcribes questions asked by the workshop participants 
to panel members and their answers. Section 4 concludes the report. 

2 Panel position statements 

VBase object-oriented database system 

Craig Damon, Ontologic 

Vbase is the object-oriented database system being built by Ontologic. Much of its 

linguistic heritage is drawn from the language CLU developed at MIT. It is a compile time 

type safe system with full inheritance. Vbase supports persistent, shared and local objects. 

The system is written in the two Vbase languages, TDL, the type definition or schema 

language, and COP, an object- oriented extended C. 
One feature of the Vbase system which has proven a great boon to the implementation 

is the clean distinction between abstract types and storage types. Most object systems 
provide only a single storage type for all instances, or perhaps a single storage class for 

all instances of a single abstract type. In Vbase, an abstract type defines a set of abstract 
behaviors (operations, properties, attributes, relationships, etc.) which are the sole ex- 

ternal interface to instances of the type. The type manager implements these behaviors 

internally by storing and manipulating its instances’ representation. It is the storage type 

which handles management of the representation’s storage, including dereferencing, object 

faulting, clustering and object persistence. These behaviors are associated with “storage 

class” rather than with “abstract class.” 
An abstract type provides a default storage class which implements these behaviors. 

A type might limit the set of storage managers that it supports, either for performance 

reasons (as in the case of integers) or semantic reasons (as in the case of certain system 

types which must reside in shared memory). Typically, however, a type will allow a wide 

range of storage classes. This vastly simplifies a.dding a new storage class for use by existing 

abstract types. We added a process local (heap based) stora,ge class in a few days, ma,king 

non-persistent instances of the existing abstract types possible. 
Raising the storage problem to being a semantically visible portion of the system has 

another clear advantage for clustering. The storage ma,nagers all support a series of clus- 

tering levels. The normal arrangement is to support chunks (contiguous stora.ge), segments 

(a clustering of chunks) and areas (a clustering of segments); however any given storage 

manager is free to support any number of levels of clustering. For the default persistent 

storage type, a segment is the unit of transfer to and from disk and an area maps to a disk 

74 OOPSLA ‘87 Addendum to the Proceedings October 1987 



partition or file. As an alternative, process local objects have only two levels of clustering: 

chunks and segments, where segments are built along operating system paging boundaries 
in a virtual memory system. 

Since all storage managers support the sa.me basic model of clustering, it becomes a 

much simpler problem to export a strong clustering pragma language to the type im- 

plementor. In Vb ase, objects may be clustered at any clustering level, along semantic 

relationships. Typically, all of the separate storage pieces required to implement an object 
are clustered within the same chunk. This chunk is then clustered within the same segment 

as the chunks implementing another related object. For example, in a CAD application, 
all of the sub pieces of an assembly might be clustered within the same segment, thus re- 

quiring only a single disk transfer when accessing the assembly. Our experience in tuning 

applications to take advantage of the clustering capabilities of the system has been very 

favorable. We have reduced the disk activity of one application by more than a factor of 

five with only a change to the clustering actions. 

Mapping Objects from Disk to Memory 

David Maier, Oregon Graduate Center 

The desired properties for objects stored on disk and objects in use by an application 

program are quite different. A key desirable feature for disk storage is flexibility. We want 
objects and types to be free to change, we wa.nt to capture multiple aspects of an object, 

and we may want to support free-format portions of an object state. Further, we often 

want to access objects on disk by associatively accessing their states. Within program 

memory, however, we are willing to trade flexibility for faster access. Usually, a particular 

program is only interested in a certain aspect of an object, and thus, only part of the 

object’s state. We want object access in program memory to be competitive with access to 

record a.nd array structures - being able to proceed by addressing rather than by searching. 

We are investigating ways to efficiently map flexible, variable-size objects on disk to more 

structured fragments of object state in program memory, 

The OBJFADS Shared Object Hierarchy 

Lawrence Rowe, University of California, Berkeley 

I strongly believe tha.t stand alone object-oriented da.ta.bascs do not, solve very n1an.v 
real-life problems. You must solve probIems tha.t involve business da.ta.. Wllen I talk to 

people that are building real world applications, they are not interested in yet another 

database system. 
OBJFADS is an object-oriented programming environment for POSTGRES, a next- 

generation database system designed to support engineering/scientific and expert system 
applications. OBJFADS h as a shared object hierarchy (i.e., a portion of the object hi- 

erarchy is shared with other users), a direct manipulation interface, extensible interface 

October 1987 OOPSLA ‘87 Addendum to the Proceedings 75 



abstractions (e.g., active forms with user-defined field types), and integrated application 

generators (e.g., query/update interface generators). POSTGRES is an extensible rela- 

tional DBMS (e.g., users can define new attribute data types and access methods) that 
provides support for complex objects, procedures (i.e., data of type “procedure”), active 

databases (e.g., alerters, triggers, and rules), precomputed values (e.g., procedures and 

rules), and historical data (including versions and snapshots). 

The OBJFADS shared object hierarchy is stored in a POSTGRES database. The major 

problem with this approach to sharing is efficient implementation of object referencing and 

updating. Object referencing time can be reduced by maintaining an object cache in the 

a.pplication program, by precomputing the main memory object representation, a.nd by 

pre-fetching related objects. 

The object cache reduces the time to fetch an object that is referenced frequently. 

POSTGRES precomputed procedures will be used to reduce the overhead required the first 

time an object is fetched from the database. Complex objects are typically represented by 
tuples in severa.l relations. To fetch an object, these relations must be “joined” and the data 

attributes must be coerced into the appropriate application data types. A precomputed 
procedure can maintain a copy of the main memory object representation in the database. 

Precomputation will reduce the time required to fetch the object while, at the same time, 

maintaining the relational representation in the database. Lastly, prefetching will be used 

to reduce the probability that an object will have to be fetched from the database when 

it is first referenced. Applications typically reference complex objects composed of several 

related objects. Prefetching all objects that make up the complex object reduces the 

database fetches. 

Because the DBMS has user defined types, and because we are going from a. da,tabase 

type system to a type system in the program language, a general type mapping facility is 
needed. For existing database systems, the types are fixed. Therefore, existing database 

systems pretty much wire the mapping into the run-time system of a programming lan- 

guage. In contrast, in POSTGRES, objects can be shared and they can reference local 

objects. Therefore, when a shared object is saved in the database system, that object 

needs to be “unbound” from the run-time system, and a description of how to recrea.te 

it needs to be stored in the database. Similarly, when ‘the object is retrieved from the 

database into memory, that object needs to be recreated from its description stored in the 
database. We ran into lot of problems in this process when we dealt with objects such as 

windows and I/O ports. For example, when an object is retrieved from the database, it 

has windows defined in the X window server. It must be able to recrea.te those windows 

from a description stured in the database on how to generate them. 
Support for composite objects is absolutely needed. Won Kim’s paper on composite 

object in the OOPSLA ‘87 proceedings looks real interesting. There are two wa.ys to 

support composite objects. If you do records and pointers, you get into the prefetching 

and clustering “racket.” The second thing you can do is to use rehtions with precomputed 
procedures. Th e nea.t thing about precomputed procedures, for a.t least the queries they 

express, is that they do perfect caching. It makes query optimization a lot easier. 

The Utility of a Uniform Distributed Transaction Facility for 

76 OOPSLA ‘87 Addendum to the Proceedings October 1987 



Supporting Object-Oriented Databases 

Alfred Spector, Carnegie Mellon University 

Databases of all types, be they as simple as file systems or as complex as the latest 
extensible database management systems, can benefit from a carefully implemented dis- 

tributed transaction facility. Such a facility should, at minimum, support inter-transaction 

synchronization; recovery after transaction abort, and node, server, and media failures; 

commit management; and location-transparent calls on objects. I argue that such facili- 

ties can have easy to use interfaces and be highly efficient. As an example, I will briefly 

sketch the interface to the Camelot Distributed Transaction Facility, which my group has 

built at Carnegie Mellon. Camelot is intended for production use in a number of applica- 

tion environments, including on-line transaction processing and special purpose databases. 

Camelot Release 0.7(31 )-aleph p resently runs on the Unix-compatible, Mach operating 

system on IBM RT PCs, DEC V axes, and Sun 3’s in the DARPA internet environment. 

Camelot provides coherent layers whereby we permit users to install subsystems. We 

permit people to issue remote procedure calls or methods on objects. We support all 

the commit protocols that you can conceive of. We handle recovery and provide security 

facilities. We have Mach, which is a Unix compatible distributed operating system that 

CMU is building and distributing. On top of Mach there are communication components, 

TCP/IP layer, and a message model with an RPC stub compiler. On top of that we have 

Ca.melot transaction facility, and then finally we can layer servers. Jeannette Wing at 
CMU is overseeing an effort to build a C++ derivative that has persistent objects that 
utilize recovery and transaction support in Camelot. 

Camelot is designed to support implementation of other object bases. We have plans 

underway to support a relational database system as well. At the kernel we have a process 

which restarts the system after crashes. We do our own disk management for objects. We 

do write-ahead logging based upon information from the data servers as to what they want 

logged, so we can take into account their semantic knowledge. Our programming libra,ries 

will do a pretty good job of deciding the minimum amount of logging to do for value 

logging. For operation logging, which we will support shortly, the programmer will have 

to do more. Communication manager makes RPC work, tracks what transaction is spread 

over the network so we can handle the commitment of transactions. The transaction 

manager supports Eliot Moss’s nested transaction model, supports a number of other 

kinds of transaction, like commit protocols including a. non-blocking commit protocol, 

which reduces the likelihood that data remains blocked due 1.0 a coordinator cra.sll, and 

the recovery manager uses the log to get you out of abort problems, tra.nsa.ction, a.l,orts, 

node failures or immediate failures. 

Issues in object-oriented database implementation 

Stanley B. Zdonik, Brown University 

October 1987 OOPSLA ‘87 Addendum to the Proceedings 77 



I will describe some general principles for implementing object-oriented databases and 

persistent object systems. I will briefly touch on requirements for object storage, concur- 

rency control, and distribution. These ideas will be illustrated with experience gained from 

the implementation of our object-server named Observer and our object-oriented database 

system, named ENCORE. Encore provides basic database ca.pabilities, such as types, meth- 

ods, properties, inheritance, that you would expect in an object-oriented database. Below 

Encore lies Observer. It is typeless and knows nothing about high-level semantic models 

used by Encore. Observer essentially provides a mapping between object identifiers and 

storage chunks. Also it has fa,cilities for handling concurrency, clustering, recovery, and 

other aspects of storage management. Observer is running, and in fact, is being used by 

Steve Rice in the implementa.tion of his Garden programming environment. Garden is 

a. graphical programming environment that allows programs to be developed by manipu- 

lating eye contact and dra.wing pictures. There are many things in Observer that were 

responses to the needs of Garden environment. 

Garden as our first client, drove us to choose a typeless model in Observer. Garden 

people had already written a lot of code, and wanted to have a type model of their own, 

and wa,nted to be a.ble to support that model without rewriting some of the code. A 

consequence of the fact that Observer is typeless is that it is easier to build other kinds of 

models, for example, ENCORE, on top of it. There are some questions about the current 

implementation. E’or example, we were wondering whether it would be better to have a. 

model in Observer tha,t allows the identification of object pointers rather than storing 

only arbitrary storage chunks. This would allow us, for example, to do garbage collection 

on Observer. Since we are doing some concurrency control in Observer, some notion of 

versions at this level may be useful to handle conflicts. 

Observer supplies more than just the standard locking modes. We do supply read and 
write locks, and if you should use those in a two-phase way, then you get well-known seri- 

alized transactions. People occasionally want transactions which are non-serial to achieve 

high performance. We provide notify and write-keep locks for this purpose. 

Observer has a notion of segments. A segment is the unit of clustering. It is also the 

unit of read operation from Observer. Observer will return all the objects in its segment. 

Segments can be of any arbitrary size. UNIX does not ‘do a very good job of providing 

segments that are contiguous on disk. Therefore, we actually built an experimental file 

system that guarantees logically contiguous segments of arbitrary size on disk. Segment 

loading is accomplished by simple heuristics implemented a.t Encore level, like store all 

objects of given Encore type together, store a.11 objects with a. common value or property 

together. If these simple heuristics are not a.clequa7.te for a.11 al)I)lical,ion, 1.11(*11 it, is I)ossil,lt 

at the application level to decide how to load the segmpnt.s. 

1 claim that for applications, queries and query optimization a.re not 1,ha.t imporIa.nt 

anymore. You will still do them, but you will not do them as much. This is my view of 

how an engineer works: he comes in the morning, he swif,ches his machine on, he issues 

a query, and he loads up his working set. Then he follows rcla.tic)nships for the rest. of 

the day. That means, graph traversal is really what he does a lot of. Therefore, we need 

not focus so much on query optimization; instead we have to solve this gra.ph traversal 

78 QOPSLA ‘87 Addendum to the Proceedings October 1987 



problem. This means that you ha,ve to reduce the number of object faults and do a. good 

job of object clustering. 

Object-Oriented Engineering Information System to support 

VHSIC design 

Sandra Heiler, Computer Corporation of America 

We are currently in the process of designing and developing an object management 

system, which will be the ma.jor component in an object-oriented Engineering Information 

System. The goal of this system is to support Very High Speed Integrated Circuit (VH- 

SIC) design by providing services to integrate software and hardware tools from different 

vendors, to manage engineering data, and to provide support for the management and 

control of engineering processes. 
The development effort will provide a set of specifications and core services to support 

tool integration and management without requiring the various installations that use such a 

system either to re-implement the whole system or to change the way they do business. This 

means that the resulting system must be tailorable to existing configurations of hardware, 

software tools, and data repositories and must enforce the engineering and management 

policies of each installation. 

The object manager has much in common with an Object-Oriented DBMS (OODBMS). 

It extends the functions of such a system, though, in several ways: First, it must manage 
non-database objects, i.e., objects that have no stored extents (for example, dyna.mic 

objects such as the results of simulations that are recomputed each time they are accessed). 

Second, the object manager must support arbitrary operations on these objects, in 

addition to supporting traditional da.ta.base operations. For example, the object manager 

must support the running of engineering tools on design objects. Engineering opera.tions 

may span days, expanding OODBMS issues of object persistence, concurrency control, and 

recovery. 

Third, the object manager must use supporting services provided by a collection of 

heterogeneous hardware and software. For example, the object manager is not responsible, 

itself, for the storage and manipulation of database objects. Instead, it relies on a set 
of underlying DBMSs to actually perform storage and manipulation operations. These 

underlying facilities will range from powerful general-purpose object-oriented DBMSs to 

very weak or specialized proprietary products. 

In this environment, method management becomes a. critical issue. ‘I’he issrrc a.rises 

because location and invocation of a method often requires dynamic decisions based on 

such information as the availability of system resources (optimization issues) and object 

sta.te information. For example, various forms of the sa.me method may be executable in 

different environments, the desired method code ma.? I,r located remote from the host on 
which it must be executed, or a. particular object version may require an older version of 
the method code. Optimization in a distributed, heterogeneous environment may involve 

decisions including method run-time requirements, node availability, resource utilization, 

October 1987 OOPSLA ‘87 Adde:tc!u.m to the Proceedings 79 



and data movement considerations (e.g., a decision to move method code to the object vs. 

moving method parameters to the code). 

Object-Oriented Database Extension to Trellis 

Patrick O’Brien, Digital Equipment Corporation 

The Object-Based Systems Group is designing an object-oriented database extension 

to Trellis, an object-oriented language and programming environment developed at DEC. 

The primary purpose of the database, which we call an “object-repository,” is to provide 

shared access to persistent objects in a multi-user environment. It will also provide the 

usual database amenities such as concurrency control, recovery, and authorization. The 

database is intended for applications, such as engineering data management, which have 

complex data structuring requirements and special data accessing needs. 

Our objective is to achieve a tight integration of da.tabase management concepts within 

the object-oriented style of Trellis/Owl. This contrasts with traditional language/database 

interfaces that rely upon a set of function calls or a separate data manipulation language 

which has little or no interaction with other language features. With the traditional ap- 

proach, the databa.se complicates the programmer’s view by introducing a second level 

of stora.ge with different data modeling constructs. As well, some objects are temporary, 
others are persistent and shareable, and decisions must be made about when to update 

objects in the database. We would like to make the interface between the programming 

language and the database as transparent as possible (i.e. maintain an illusion of a one 

level store). 
Our database extension to Trellis/Owl is presented to the programmer as new types 

added to the library. We use existing facilities for declaration of types and variables, 

along with existing control structures for iteration and exception handling. This allows 

programs to access and manipulate database objects in the manner as all other objects. 

The repository and the Trellis/Owl language support the same data structuring capabilities 

so there is no impedance mismatch. 

Concurrency and recovery are also important issues. One of the main reasons for having 

object repositories is to allow applications to share information. Conventional database 

concurrency mechanisms, however, are too restrictive for the design environments that 

we want to support. For example, simple transactions based on locking can provide for 

atomic update and recovery, but they tend to force a. much more seria.1 schedule tha.n is 

logically necessary. Furthermore, they prevent a tra.nsa.ction Irom seeing the intermedia.t,e 

results of another transaction. We do not believe tha.t we can define the semantics of 

sharing for all applications and provide one synchroniza.tion mechanism tha.t will suffice 

for all applications. Our general philosophy is to provide the proper level of primitives 

so that applications built on top of the system can prtsent the transaction mecha.nism 

that best suits their environment. Thus, the repository will provide low level mechanisms 

for coordinating reliable updates to objects, and these mechanisms can be tailored and 

extended for a particular application. 

80 OOPSLA '87 Addendum to the Proceedings October 1987 



How object-oriented databases are different from relational 
databases 

David Wells, Texas Instruments 

I see three ma.jor differences between OODBs and relational systems: complex, highly 

interconnected objects; access driven by the data rather than the program; and very com- 

plex translation routines. I will discuss what I see as the implications of these differences. 

Because inter-object references are stored directly in an OODB, an object’s identity 

must be invariant over changes to its state, and time must be a qualifier of identity to 

allow references to specific states of an object or to “most recent.” Object boundary is 

a nasty problem. A user should be able to save objects without worrying about object 

boundaries. Object closure is not an acceptable definition of boundary, due to its potential 
size in Lisp-like environments. Also, do we really need to store an object’s entire value? 

If we are pointing to a buffer, should we save that buffer, or should we throw it away and 

recreate it when required? “Local persis tence” further complicates the issue. STANDARD- 

OUTPUT should be a persistent object because it may be referenced by other persistent 

objects. However, when a persistent object moves from machine to machine, it would 

reasonaMy be expected to use the local standard output. 

OODBs have a. na.vigational feel; I go from one object to another, and I look inside 

an object to determine reasona.ble places to go next. This is unlike a typical relational 

query, where you can look at the program and see where you are going. Since access 
hints are stored within the OODBs, we should be able to do much more in the way of 

intelligent storage management, concurrency control, caching, and prefetching than in 

relational systems. At the same time, concurrency control is complicated because in the 

limit we can often reach the entire object space, thereby precluding the use of a priori 

locking. Care must be ta.ken to avoid overly restrictive lock sets. 

l?or OODB translation routines are going to be more complex, implying that the sys- 

tem should be divided into a semantic module and a storage module to allow their reuse. 

Translation requires a lot of relocation in addition to pointers and virtual machine refer- 

ences. The handling of global references in local environments is an open issue. If you 

store a function in an OODB and bring it back on a different machine, can that function 

have free variables, and if so, how should they bind in the new environment? If we do bind 

to a local environment, does that mean that to store a function, you must guarantee that 

it can always load? 

3 Discussion 

There was a lively discussion on many issues, such as the role of parallel computer archi- 

tectures for OODBs, concurrency control of complex ol)jects, clustering and prefetching, 
garbage collection of persistent objects, query optimization, and operating system support 

for databases. 

October 1987 OOPSLA ‘87 Addendum to the Proceedings 81 



Michael Caruso, Innovative Systems: It seems to me that implicit in the presenta- 
tion of some pnel members is a very element,a.ry “record-a.t-a-time” model of computation 

based on the Von Neumann architecture. But if you free yourselves from these assump- 

tions you start to get some answers to questions on clustering and partitioning of objects, 

and graph traversal algorithms. I would suggest there are other alternatives to record- 

a,t-a-time architecture. With these alternatives you can think about encapsulating a time 

duration and can move the notion of iteration encapsulation down to a lower level in the 

architecture. It is a fundamental characteristic of database systems to encapsula.te the 

iteration abstraction at a very low level in order to make the system perform well. We 

view this alternate computer architecture as a parallel/pipelined processor to allow a query 

to operate in pa.rallel on elements of a collection. The idea of binding a messa.ge to an 

operation and binding a name to an operation can be factored in different ways. I can 

exploit the fact that certain information about that collection is structured in such a way 

that binding of the message is not necessarily done element at a time. The other thing 

we can do is to execute progra.ms in a pipeline fashion. A program is not really interested 

in seeing information a whole object at a time. What it is interested in doing is to see a. 

function at a time, for a collection of objects. You can think about alternative clusterings 

for objects, carving up objects, not horizontally, but vertically, and arrange structures in 

memory to optimize this vertical partitioning and graph traversal in parallel. 

Eliot Moss, University of Massachusetts: I would like to say something back to 

Michael Caruso on this. My recollection is that his company has been looking prirnarily 

at statistical and ma.nagerial databases. The argument I might make, if I put on David 

Wells’ hat for a minute, is that the kind of data David is looking is different; he is going 

to do more navigation, instead of parallel access. So, access patterns will be a property of 

data. 
Michael Caruso, Innovative Systems: I am interested in complex structures a,nd 

how they decompose. What I have is a set of objects, but for that set I will do navigationa. 

access. 

Remark from the audience: All of us agree that we would like to have multiple 

interfaces to data. Some are “record-at-a-time,” some are at a higher level. The higher 

level interfaces allow cleverer strategies within the object or server. I think that is the 

point you (Michael ?) were trying to make. 

Frank Manola, GTE: Can we agree, or agree to disagree, on the fact that people 

want to use database systems for different kind of data. Engineers want to access data 

that might involve a more “object-at-a-time” approa,ch, and people who do conventional 

da.ta.base applications, like pa.yroll, a.re going to a.ccess “Set,-B.t.-il-t.iTTle.:: ‘l’iic prol)lc~il I SYC 

is that historically people have tried to use databases for F\-erything. M’hen we talk to 

people like General Dynamics, they are not interested in ha.ving two incompa.tible da.ta.l,a.se 

systems, one for their engineering data and one for their business da.ta. They a.re interested 

in ha.ving one database system in which they can star? a.11 data.. Therefore, it seems to 

me that for some queries the employee file is going to be processed the sa.me wa.y a.s it 

always has been, namely set-at-a-time, in spite of the fact that one of the new things 

that it can store about employees is their photographs and other complicated information. 

a2 OOPSLA ‘87 Addendum to the Proceedings October 1987 



Can we look at implementation techniques that involve satisfying both set-oriented access 

and set-oriented query optimizations that we know how to do, as well as object-at-a- 
time unpredictable access patterns for new applications that have driven object-oriented 

database implementations recently. 
I have now heard the CODASYL area concept reinvented for the third time in the last 

one and half days! People found that very difficult to use in doing storage clustering. I 

think it is a straight-forward idea, it is intuitively nice, and I have no objection to it. I 

just wonder, because the things being put in these clusters are called objects instead of 

records, all of a sudden how people are going to make those things work. I think we ought 

to keep in mind that a lot of people want to use database systems for corporate databases, 

not just to support engineering design tools. 

David Wells, Texas Instruments: With respect to the notion of parallel queries 

and parallel processing, it seems to me that the correct solution to that problem is to allow 

a set to be an object or an object to have the value of a set. Once you have got the set of 

objects, it is up to the user to process them anyway he wants, and each processing thread 

then becomes independent with respect to the database. If each one of these threads is 

following essentially a depth-first traversal, then the clustering technique ought to be smart 

enough to recognize that as we go from one object to the next one. 

We are looking at doing the clustering in the object server, which will collect statistics 

and will sta.tistically determine what objects ought to be clustered. We suspect very 
strongly that clustering will have to be related to application. Essentially, an application 

would say “I’m an editor, or I’m a compiler, or I’m a CAD system,” and then you would get 
different kinds of prefetching based on the application. We will collect statistics differently. 

We also suspect that we will go through a learning phase and a using phase, because 
statistics collecting is going to be a little bit expensive, and also for the object faulting 

mechanism, you want to know why an object has been fetched, as opposed to simply the 

fact tha.t it has been fetched. So in our approach the storage system itself will collect 

those statistics, and we will get away from the notion that a user has to specify clustering 

(objects going in areas). From our garbage collection experience on Lisp machines, users 

most often do not tell you the right things and therefore you are better off not doing 

anything. 
David Jordan, Bell Labs: I am talking from a user’s perspective. It’s a CAD/CAM 

type application. We have got a need to store a multi-level hierarchy of information 

representing a product design. Regarding multi-level hierarchies, I was wondering what 

work has been done in terms of locking, clustering, and access? For exa.mple, for locking, 

a given complex object consists of many sub-objects, and you -woul.d like to be a.ble to 

essentially lock sub-trees without interference. If someone tries to lock a. global complex 

object, you need to know that sub-objects have been locked a.nd vice-versa. You do not 

want to go in and lock sub-objects if the global object has been locked. All the clustering 

implementations I have seen are just one level. It seems like we could use clustering both 
from a depth-first and breadth-first order depending ou what type of access we anticipate. 

For global complex objects, we typically have applications that are going to access a 

particular sub-tree. 

October 1987 OOPSLA ‘87 Addendum to the Proceedings 83 



Lawrence Rowe, University of California-Berkeley: Read Jim Gray’s paper on 

locking published hack in 77-78. Several people have looked a& hiera.rchical locking to 
support composite or complex objects, where you can set the lock on the large object and 

then whenever you come in and lock you must go through the lock hierarchy in the correct 

order. In terms of clustering, whether you chose to enforce one or two policies, or whether 

you have a system that learns based on usa.ge or on some other way of specifying sets of 

records that should be co-located, is one of the big controversial issues. If there were a 

clear answer to clustering, I am not sure we would be having this panel! 

Stanley Zdonik, Brown University: As far as the first question on locking complex 

objects is concerned, what you mean by complex objects varies from application to appli- 
cation, in fact from operation to operation. As somebody else on the panel mentioned, it is 

not correct to necessarily lock all its pieces whenever you touch the top level of a complex 

object. For each operation, you need to build in the knowledge (either in the code or 

somehow else declaratively), about what pieces need to be locked. I do not think there 

is a, genera.1 solution that has to go with the application code. In our view, clusters a.re 

just buckets. You can throw wha.tever you want in them. As far as clustering hierarchies 

are concerned, I do not understand your (Jordan’s) question, because we do not have a 

one-level view of clustering. You can throw the entire complex object into a cluster if that 

is what your wish. 

David Wells, Texas Instruments: I want to make a point with respect to hierar- 

chical locking. We do not really ha.ve a strict hierarchy. We have a directed graph, and 

therefore, it is not clear that a strict hierarchical locking policy is going to work, because 

there is more than one way to get to an object. You have to know all of the objects within 

a closure of an object to determine whether the closures overlap. That is difficult for two 
reasons, one is that the closures often are very large, and that means keeping track of a 

large amount of information. When you try to determine whether two closures over1a.p so 

that you can allocate a lock, you have to look at an awful lot of objects, which may not 

even be on the sa,me server. If it is a distributed system, determining the closure overlap is 
going to take you a.11 over the place. It is not clear that the method will work in pra.ctice. 

Roger King, University of Colorado: Since you (Stanley Zdonik) have a separation 

between the Observer and layers above it, do you find that a lack of semantics at the lower 

level cause problems, such as storing differentials ? 

Stanley Zdonik, Brown University: Yes, they do cause problems. There a.re clearly 

tradeoffs of having no semantics at the Observer level; you cannot do much there that you 

might want to do (such as garbage collection). That is why I hinted ant, the idea of putting 

some semantics, such as pointers, storage layout, and versions. 1 vie\v the bo~tndary 

between Observer and Encore as an experimental boundary. Ba.sed on feedback from 

users and our own intuitions, we will push the boundary as far down as possible to get the 

performance and functionality we need. 
Jim Rumhaugh, GE R&D Center: I would like to hear a little more discussion 

about garbage collection on large data.bases. Of course: t.he easy approach is to let the user 
do it, but that has many disadvantages. I would like to know whether people think it can 

be made to work and how. Also how you do garbage collection, if the system is distributed 

a4 OOPSLA ‘87 Addendum to the Proceedings October 1987 



and must continually remain up, i.e., you cannot shut it down to make a garbage collection 

sweep. 
Satish Thatte, Texas Instruments: How about not doing garbage collection at all 

as the solution to your (Jim Rumbaugh’s) problem ? You have only immutable objects, 

and you create new versions. Sure that would cost a lot of storage, but storage is getting 

cheap! 
David Maier, Oregon Graduate Center: I am not going to solve your problem of 

distributed garbage collection. I think a real important thing is garbage prevention. That 

is, you are going to co-mingle temporary and persistent objects in a workspace. You have to 

do as much work as you can before committing to prevent the garbage from getting to the 
database in the first place. I really think persistence has to be on the basis of reachability 

from some persistent root, and then you garbage collection either incrementally or at the 

time when you commit them to the database. 

Richard Steiger, Park Place Systems: I would like to ask David Wells how abstract 

data types help you with the dangling reference problem. 

David Wells, Texas Instruments: That is pretty simple. You just ensure that the 
abstract data type does not give you a pointer into the middle of itself. We do not do 

garbage collection. Every committed object is in the database forever. 
John Carnegie, Mentalix: I would like to ask Da.vid Maier if objects are going to 

change in size, how are you going to get around preventing garbage at commit time ? 

David Maier, Oregon Graduate Center: I am not saying that all garbage is 

preventable. I am just saying that there ought to be smarts in the workspace manager 

that does not simply copy everything to disk at commit time. If you are not saving 

everything, you want to avoid storing anything to the database that will become garbage 

as soon as the transaction commits. 

Eliot Moss, University of Massachusetts: I just wanted to see if I could convince 

Fred Brown (University of St. Andrews) to say something about the garbage collection 

in the persistent object support for PS-Algol, because they claimed to have implemented 

garbage collection on disk. 

Fred Brown, University of St. Andrews: What we have basically done is to 

implement a two-level storage model because we cannot-access disk efficiently. We have 

a local workspace and we do garbage collection there. We do not have to get very much 

garbage going out to disk. 

Question from the audience: How can you increase query performance ? 

Lawrence Rowe, University of California, Berkeley: To process a query pre- 

sented as a string, first you have to parse it, va1ida.t.e it, then pa,ss th a.1, a.11 0fI 1,~) tI.ic 

planner. The plan gets handed off to the executor and the executor does opera.tions of 

fetching tuples or pages from the disk and executing predicates on the tuples to determine 

what is going on. If you handle a query string at this level, it is guaranteed to go slow. 

So, what are the tactics for making it go fast ? Well, one tactics is to cache the descriptor 

that describes how to go to the disk. The rea.l way to go fast is to avoid all this junk, and 
precompute and cache the plan so that you can do a remote procedure call on the cached 

plan from an application. 

October 1987 OOPSLA ‘87 Addendum to the Proceedings 85 



The design alternatives are based on when the plans are created and where they are 

cached. One possibility is to compile the plans at the time the program is compiled, and 

put those plans on disk. This is what is done in DB2. So when a program is run, it says 
“run query 32,” and at the time the query is submitted first, it goes out to disk, grabs 

the plan, loads it in memory, and runs the plan. I just want to point out that going to 
disk requires about 30 milliseconds, so the guaranteed shortest time to do this has got to 

be the overhead to get to disk, plus 30 milliseconds. The second alternative is to cache 
the plan in the DBMS. The first time you run the query you go through all this stuff, and 

then just leave the cached plan in the back end, so that for subsequent executions of the 

same query, all you have to do is pass the parameters, plug the parameters into the plan 
and execute it. That is done in RTI INGRES and it is a reasona,bly fast technique. 

The tradeoff is the time it takes to go through this versus the time it takes to fetch 

from the database. The third possibility is to cache these plans in the application program. 

At the time the program is loaded, the plans come in at the same time. That is what is 

done in the new Tandem distributed SQL system. By putting plans in the application 

programs, you do not have to pay the time to do the first compile, and you also do not 

have to pay the time to go to disk the first time you want to run the query. What they 

effectively do is just glue in the cached plan into the application program and they do the 

remote procedure call directly to the back. The second issue is when do you validate the 

cached plans ? Well, you have to validate the data types that are passed across. Then you 

also have to worry about schema changes. Again in System R, the plans were all stored 

in the database, if there was a schema change, they could just invalidate all the plans in 
the database. In the RTI world, validation for cached plans is still needed at run time; 

resulting into overhead. 
Alfred Spector, Carnegie Mellon University: I must admit that in my world 

of on-line transaction processing, long transaction mentioned in design applications is 

completely foreign to me. We think in terms of maybe a quarter of a second. What 

I see is that transactions are relatively short, but there is some higher structuring that 

is needed in these design applications. There is user-level locking and user-level version 
maintenance associated with them; probably, it does not make sense to think of the low- 

level transaction system to maintain these very long term transactions. This may be is 

self-serving, because our system (Camelot) does not do it, but I really do not know what 

I would do if I had to do it. I would let people program the locks on top the system, and 

implement check-out/check-in policies on top. 

How many people are implementing, planning to implement, or have implemented 

object-oriented database systems of some kind ? If you are with son-ieollc else here, just, 

one of you raise your hand. (At this point about 25 people raised their ha.nds!) One thing 

I wanted to observe is that we are not reaching closure on this yet. This is still like the 60’s 

when everybody was developing a new programming langua.ge and every Ph.D. thesis WB.S 

another programming language notion. I do not believe t,hat there is a common model that, 
is going to emerge for next ten years in this area. So there is not going to be a standard. 

We are going to have to have systems that are inter operable. We are going to need to 

access RTI’s INGRES at the same time to access a lot of data in it, and we need to access 

86 OOPSLA ‘87 Addendum to the Proceedings October 1987 



our special purpose systems as well. They are going to have to work together, because 
there is no alternative. We are not going to have a common single system that everyone 

is going to use. The only thing that I know is that the operating systems people should 
really try to do something to help; otherwise there is going to be 10 times 20 man years 

of work built on the low-level components, as everyone re-extends UNIX to do exactly the 

same low-level primitive functions. 

4 Conclusion 

There were clearly two camps at the workshop. The majority camp was coming from 
the programming language community. It wanted to extend programming environments 

with persistent object repositories and object-oriented databases (not surprising, as this 

was the OOPSLA ‘87 conference). The minority camp coming from conventional database 

community, although shared many of the goals of the majority camp, differed markedly in 

its approach (extending a relational database) and emphasis (query optimization versus 

unpredictable navigation in the object world). H owever, many participants felt that new 

equations are emerging in the market place where there will be room for conventional 
databases to handle massive business data and complex ad hoc queries, object-oriented 

databa.ses to handle and navigate engineering data with complex structures, and databases 

for real-time transactions to deliver high throughput for simple transactions. A new market 

segment is likely to emerge that will help tie these heterogeneous databases. 
It was evident from the workshop and the conference that the field of object-oriented 

databases is taking off almost exponentially as a. strong market-driven activity. Over 25 

efforts are currently underway to implement OODB systems. There are many difficult 

research problems that need to be solved: object-oriented data models, management of 

composite objects, OODB programming la.nguages, distributed transaction management 

on abstract data types for co-operative design environment, change management for evolv- 

ing objects, object sharing in multi-lingual and heterogeneous distributed environments, 

query optimization techniques for abstract data types, development of an a.ppropriate per- 
formance matrix for OODBs, and performance and reliability issues. Many workshop 
participants expected that major progress will be made to solve these problems over the 

next five years. Relational database technology took over ten years before being accepted 

by the market. OODB technology will need five to ten years to transition from its current 

status of “proof of concepts” to the status of “full commercial systems.” 

Based on the written evaluation forms returned by the participants, t,hc workshop was 

a success within the constraints of its three hours time limit. However, most participants 

would have liked a better focused, full one-day workshop, with an advanced list of issues 
and agenda distributed to the panel members. This is an excellent suggestion, and should 

be considered for the OOPSLA ‘88 conference to be held at San Diego, CA. 

October 1987 OOPSLA ‘87 Addendum to the Proceedings 87 


