
Making Products Using Object-Oriented Programming 

John Uebbing - Hewlett-Packard Laboratories (Chair) 
Jim Waite - Hewlett-Packard Lake Stevens Instrument Division 

Tom Lanning - AT&T 
Ragu Raghavan - Mentor Graphics Corporation 

Carl Nelson - Carl Nelson and Associates 
Alen Schiller - Wild Leitz 

Hamid Eghbalnia - Artecon Inc. 

John Uebbing 

In putting together this panel, I had the opportunity of talking with several companies mak- 
ing products using object-oriented programming. There are many such companies, and there are 
more products under development than have been released. Based on talking with these com- 
panies, and Hewlett-Packard’s experience, the following conclusions can be drawn. 

Large systems have special problems. Cross reference by large numbers of different objects 
from different classes can lead to “spaghetti structure.” There is a need to put classes into major 
groups that are well architected and supported with special documents giving the philosophy as 
well as cookbook examples of how classes in the group are used. It is wise to try to integrate 
large systems early, to identify performance and other usability problems. Intelligent memory 
and storage management is not well developed and has significantly hurt the performance of large 
CAD systems that a number of major CAD houses have built. 

Some of the best advantages of object-oriented programming for products occur when the 
product area has a specia1 match to object-oriented programming. These areas include: 

- Computer Aided Design (including CASE) 

- Compound Documents 

- Vector and Matrix Test Results 

- Interfaces to disparate pieces of hardware 

- Windowed User Interfaces 

- Any product where somewhat disparate elements must 
be handled in a similar way 

AS in any software project, it is important not to become entranced with the technology, but to 
focus on solving the cusltomer’s problems. 

There is good evidence that, within reason, the object-oriented programming language itself 
is not nearly so important to success as the surrounding environment of tools and libraries. The 
tools include interactive interpreters, memory and database management, dynamic linkers, perfor- 
mance analyzers, message tracers, and documentation systems. Systems like Lisp and Smalltalk 
are more mature in many respects. However, the lack of interfaces to conventional programming 
languages and their appetite for ma.chine resources makes them unattractive for competitive end 
user products. Languages like C++, Objective-C and MacApp need more tools and development. 
Tools for the rational design of classes and their inheritance are in their infancy. Designing for 
code reuse shows promise, but is hard to do. It requires well designed classes that are well docu- 
mented and easy to learn. It should be a goal of the project and requires good engineering 
management. 

Jim Waite 

Lake Stevens Instrument Division has used the object-oriented methodology in software 
development for over three years. In the summer of 1985, we moved from our own homegrown 
object-oriented technology and adopted Objective-C as a platform for future software products, 
for both host workstation and firmware environments. We have released one major product in this 

October 1987 OOPSLA ‘87 Addendum to the Proceedings 105 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F62138.62153&domain=pdf&date_stamp=1987-01-01


time, a workstation based virtual instrument and measurement interface for the HP3565 multi- 
channel Dynamic Signal Analyzer. The modular nature of this hardware lends itself to object- 
oriented software design. 

The software consists of 312 classes, 6044 methods, and 100,474 NCSL. The project effort 
took 39 engineer-years for a productivity rate of 11 lines per engineer per day. We expect higher 
productivity in projects that leverage existing code by inheritance. An open question concerns 
how to measure this productivity, since inheritance results in more functionality per line of code 
than conventional programming methods. 

The division has made a large investment in developing tools for implementing large 
software projects in Objective-C. One of the most useful contributions we have made is a series of 
scripts that manage source code control, makefile dependencies, and the process of building an 
executable. Code metrics are based on class documentation and headers; these metrics prove use- 
ful in predicting the project lifecycle. Also, we have combined efforts with other HP divisions to 
add memory management to Objective-C, as well as a runtime message interpreter and a dynamic 
10s ler. 

We now have a manageable process in place from which to do development, but our object- 
oriented design process needs to improve. We have had problems applying standard structured 
analysis techniques (data and control flow) to classes and methods. Messaging is a concept that 
doesn’t fit well with these tools. We don’t have a good graphical way of describing the system, 
especially one with 300 classes. 

Another difficulty is that maintainance of such a large system of classes is difficult. This is 
particularly true for instances of highly “visible” classes, i.e., those that are known by many other 
objects in the system. This problem would be alleviated somewhat by the use of graphical tech- 
niques to document the system. In addition, we have learned to avoid the use of hidden dependen- 
cies between objects in the system. 

We agree that an object-oriented view of a software system more precisely models the prob- 
lem space of the system. Beginning at the highest level of abstraction, classes denote the funda- 
mental players, while methods are operations to be performed on them. Critically, the high level 
of modularity that develops from this approach to object-oriented software design must not 
sacrifice efficiency. We’ve found it is too easy to use so many little objects that the system spends 
a lot of time allocating and deallocating memory, resulting in lower than expected performance. 

Tom Lanning 

A team of software developers at AT&T Bell Laboratories has created six versions of a 
CENTREX management system since 1985. The systems were designed using object-oriented 
techniques and were implemented in C++. Object-oriented techniques were originally used to 
improve software reuse and software quality. After several years of experience, we think that 
object-oriented design does improve software reuse and software quality in two major ways, main- 
tainability and extensibility. 

Maintainability was improved by inheritance and encapsulation. Inheritance reduced the 
amount of code to be maintained without increasing that code’s complexity. Encapsulation 
improved our ability to quickly locate code. Extensibility was also improved by inheritance: it 
usually allowed us to add new functionality without altering working software. This led to 
improved confidence and shorter unit-test and integration-test intervals. Encapsulation insured 
that, if tested software was modified, the effective scope of our change was usually well under- 
stood. 

Although object-oriented design did provide increased software reuse, we think wasteful 
duplication will continue until environments are created that allow a large number of developers 
to easily share, locate, and enhance a large common set of classes. 

Some people claim large software development projects will notice large productivity 
improvements if object-oriented designs are applied. However, it is still difficult to predict the 
behavior of complex systems, object-oriented or not, since modules have complicated hidden 

106 OOPSLA ‘87 Addendum to the Proceedingq October 1987 



interdependencies. Much as “independent encapsulated” biological objects interact to create 
dynamic interconnected biological environments, software objects interact in a common intercon- 
nected computing environment. (Some examples include use of resources such as processors, 
memory, disk storage, and operating system resources). Programming complex systems with 
object-oriented languages will be an imprecise activity until object-oriented languages and their 
environments can present this interconnection information to a system designer. 

Ragu Raghavan 

Mentor Graphics has been developing and marketing workstation based CAE/CAD software 
since 1981. The current generation system features a variety of applications built on top of a 
large (almost l,OOO,OOO lines of Apollo Pascal) shared software library. 

The library has been evolving to meet the needs of a growing number of applications. This 
evolution is becoming increasingly more painful. The solution to this problem is to re-architect 
the entire system using an object-oriented language with inheritance. 

C++ was chosen as the language of the future. It provides very good object-orientation. It 
is fully typed and type-checked at compile time. Its performance/efficiency is comparable to that 
of Pascal or C. 

A team of experienced developers spent a year re-architecting key portions of the library in 
C++. The areas chosen for initial development were memory management, the user interface 
management system, the graphic subsystem and the design data management system. 

Based on the results of this investigation, the decision to go with C++ has been reaffirmed. 
A strategy has been put in place for the large scale infusion of object-oriented programming tech- 
nology into the company. The first step was an intensive in-house training course in C++ and 
object-oriented design. 

The nucleus of a new object-oriented library is already in place. The conversion from 
Apollo Pascal to C++ will follow a phased approach. The viability of mixing Pascal and C++ 
has been demonstrated. Thus, each application group has the option of either converting over to 
C++ in one shot or gradually evolving the code from Apollo Pascal to C++. 

The need for good software engineering tools is accentuated when moving over to an object- 
oriented language with inheritance. A C++ class browser was the first tool developed. Another 
tool developed was a progressive disclosure text editor. Fortunately, the symbolic source code 
debugger on the Apollo worked OK on C++. 

Software design and coding standards were put in place even before any prototype code was 
written. This decision has proved to be extremely valuable. 

Carl Nelson 

Our applications are small by comparison to many products written with object-oriented 
programming techniques. The Navigation Application was only a prototype. It has a graphic and 
geographic window orientation and was used to prove market feasibility. Our SCSI disk for- 
matter and driver installer has a simple dialog interface. The objects are used to support differing 
hardware characteristics. It is sold to hard disk drive manufacturers and do-it-yourself disk build- 
ers for the Mac. Archive and Restore are disk archiving programs that are marketed to disk drive 
manufacturers and private label software sellers. Restore used 25% of original Archive code. We 
started with 70% of the original code and rewrote 60-70%. 

October 1957 OOPSLA ‘87 Addendum to the Proceedings 107 



Product Statistics: 

Program 
- Navigation Application 
- SCSI Disk Formatter 
- Archive 
- Restore 
- MacApp Itself 

UMacApp 
Object Support 
UList 
UAppleTalk 
UDialog 
UPrinting 
UTEView 
Debugging Support 
Resource Support 

Lines Bytes Units Months People 
8039 274133 - 5 1 
7600 207967 - 5 1 
14658 358662 10 8 1.5 
7942 183048 8 2 1 
32111 824195 
12558 335358 
4355 100727 
645 16749 
3101 87201 
2146 57764 
2528 69899 
2178 55837 
3451 77800 
1149 22860 

MacApp is a big win for small to medium applications that have one or more of these 
characteristics: 1) Use the standard Mac user interface, 2) Have a concept of views that represent 
flat pieces of paper that display a view of your data, 3) Read, write, and display data that resides 
in one or more documents, 4) Have simple dialogs, 5) The interface is uncertain or will change. 

It is a good prototyping tool for the non-standard or large application. MacApp or any 
object-oriented language is just another tool to get the job done. Good judgement when designing 
an application for a machine outweighs any advantage of an object-oriented programming 
language. Standard data structures and algorithms that map onto a machine’s architecture are 
best done in standard ways. Using an object-oriented programming framework to organize these 
data structures in a high level way is where the real win lies. Application speed should not be a 
concern. You should speed it up after you build the prototype and bottlenecks are found. 
MacApp also serves as a common framework and notation from which to describe the pieces of 
the application. This works fine as long as the complexity of a piece does not exceed a threshold 
of understandability. A rule of thumb is 2-3 minutes of conversation at a white board. 

In doing object-oriented design, an obvious thing to do is to make the objects correspond to 
things in the application, such as: 

UmyAw - Application object 
UmnDoc - Document 
UmyCmnd - Command objects 
UCommon - Common place to store stuff 
UmyFrames - Frame overrides 
UmyMa.inView - Main view in program 
UmyFirstView - A support View 
UmySecondView - Another support View 
UmyWorkObject - objects that hold data or work in the application 

Pascal has some shortcomings as a language onto which to graft object-oriented concepts. 
The sni2 structure for separate compilation causes problems with circular references, mainly as a 
result of strongly typed data structures. The solution is to use “spaghetti inheritance” and type 
coercion. The types are changed to accommodate strict inheritance, and coercion is used to make 
simple ancestor types into a descendant type. 

Object reorganization during the development of a project takes time, but the benefit is the 
review of code and object design for possible repartitioning. In MacApp, the unit implementation 
is combined with the interface. Separation of the definition from implementation, as C++, 
Modula-2 or TML Pascal seem to have done, would solve some of these problems. 

108 OOPSLA ‘87 Addendum to the Proceedings October 1987 



Alen Schiller 

GIS is a geographic information system that stores information associated with graphics. It 
differs from System 9 in that the user can ask questions about the graphics and images displayed 
in terms of spatial references as well as by attribute references: for example, “show all houses 
within one mile of this electrical substation.” The databases are currently on the order of 20-100 
megabytes; the long term goal is 1-5 gigabyte databases. 

IMPLEMENTATION 

Why we looked at object-oriented programming: 

- Dissatisfied with time frame needed to put an idea into code and demonstrate it. 

- Traditional software lifecycle approach wasn’t working. 

- Traditional approach made code hard to change and maintain. 

We phased it in: Picked areas of implementation where failure or performance problems would 
have minimum effect on the project. 

Implementation Areas (Initial): 

1) Human Interface: (Menu Handler) 

- Requirements were complex and often conflicting. 

2) Plot Task: 

- Fairly standalone, complex and must support many plotters whose requirements were simi- 
lar but had specific differences. 

- Implemented this part by using GKS metafile output and creating classes and objects for 
each type of entry in GIiS metafile. 

Areas of implementation (Later on): 

1) Database 

- Extendible hashing 

- Range trees 

- Cache management 

2) Application Language 

- Intent was to build a language that users could use to access the system without having to 
know C or the internals. 

- Interactive and interpreted with an on line debugger. After the user has got it working it 
should be compiled and run to maximize speed. 

- Current Status: Development stage using the vendor’s product rather than developing our 
own. This is an important point. We felt it was more important to develop the “objects” 
rather than concentra,te on the environment. 

3) Human Interface: Devices, Windows, etc. 

- Extended menu handler to incorporate other devices, windows. 

- Rather unique in that our product must support input from multiple devices including 
alphanumeric screens and 1G button “puck” or mouse. 

PROBLEMS 

1) Learning Curve 

- Productivity initially goes down 

- Pays for itself in the long run 

- Vendor also has a good training course 

October 1987 OOPSLA ‘57 Addendum to the Proceedings 109 



2) C and Object-Oriented World 

- In the Unix world, C can be somewhat of a “religious” language. 

- Difficult to persuade people that the object-oriented approach is “necessary” or “better.” 

- Need a “phased” non-pressured approach to introduce object-oriented C. 

3) Code: Looks suspiciously like C code 

- First object-oriented C code looks like regular C procedure calls, except they are called 
methods. Similar to transplanting a Fortran programmer to a C environment. You get C 
code that looks suspiciously like Fortran. The old learning curve again. 

4) Debugger : 

- Need a debugger that understands objects. If the object language you decide to use 
extends the basic language, be sure you have some reasonable way for your programmers to 
debug their resultant code. This debugger should understand the language extensions and 
yet allow you the same abilities as your system supplied debugger. In our case, our vendor 
supplied us with a product that not only allows us to debug object code but also to write 
and debug regular C code. 

5) With Vendor Code: “The Bug” 

- If you make the commitment to use a particular vendor product, you better check to see 
what kind of support you get for any bugs you find. 

- One of the reasons that we chose Objective-C over C++ was that at the time of evaluation 
(over 2 years ago), Objective-C was a supported product and C++ was not. 

- You are going to find bugs in the software supplied to you. Vendors don’t have any more 
magical ways of developing and debugging software than you do. The important thing is to 
make sure that you can get immediate support or work-arounds. If the company does not 
have a hot line number or people dedicated to customer software support you might want to 
give it a second thought. 

- In our specific case we went to the extent of visiting the vendors offices and talking to the 
people in software development. 

6) NIH: Not Invented Here 

- You’ll hear this a lot from the people on the panel. Object-oriented programming doesn’t 
solve lhis problem. 

7) Collections 

- Same object in different collections. What happens when you start freeing collections. 
Memory Management a severe problem. 

8) Over a Network 

- Our environment is Sun workstations connected over Ethernet with NFS. How to share or 
transfer objects over the net? This is a non-trivial problem and we have not satisfactorily 
solved it. The problem is aggravated by the fact that when objects are created they have a 
pointer as a unique identifier. This is totally useless over a net. 

9) Fuzzy Requirements 

- Many of our system requirements were not clearly spelled out. They changed over time. 
Our product sells internationally. It was not uncommon for the European market to have a 
need that was exactly counter to what is needed by the North American market. 

- It appears that using object-oriented programming does help in a limited way in trying to 
develop a product in an environment where the requirements conflict. 

10) Prototyping 

- Seems to be quite good here but mainly because of vendor’s foundation classes. 

110 OOPSLA ‘87 Addendum to the Proceedings October 1987 



Hamid Eghbalnia 

During development of applications using object-oriented technology for the past several 
years, a number of issues have emerged. In retrospect, most issues are not unexpected topics, but 
are of a fundamental nature. Focusing on these fundamental issues should provide a smoother 
path during product development. If one point is to be stressed, that point must be that object- 
oriented languages are mainly a toolbox intended to provide a more natural representation of the 
problem domain. 

One must distinguish between object-oriented design, implementation, and languages. The 
act of design in terms of objects or object modeling can take place independent of the language. 
This object-based model can be implemented using traditional programming languages. Object- 
oriented languages are effective toolboxes to bridge the gap between the object-based design and 
implementation. Viewing object-oriented languages as toolboxes will emphasize the need for 
training in order to use the tool appropriately. 

The toolbox view will emphasize another aspect as well. As toolboxes become larger, 
finding the right tool among the many tools available becomes more time consuming. Therefore, 
techniques for organizing toolboxes become critical - otherwise, the toolbox is rendered ineffective. 
The sheer number of objects and methods in a large system can overwhelm the memory of any 
programmer before overwhelming machine memory. 

Management of memory and the storage environment is an important system issue. This is 
despite advances in hardware and boards with more real memory for less money. The persistent 
storage of many revisions of objects and the management of this environment requires more than 
“plugging in another memory board.” It is true that this is not specific to object-oriented 
environments. However, it is also true that these environments tend to use more memory and are 
more resource intensive and may therefore need a special focus in order to mature effectively. 

October 1987 OOPSLA ‘87 Addendum to the Proceedings 111 


